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Abstract

Stein variational inference (SVI) is a sample-based
approximate Bayesian inference technique that
generates a sample set by jointly optimizing the
samples’ locations to minimize an information-
theoretic measure of discrepancy with the target
probability distribution. SVI thus provides a fast
and significantly more sample-efficient approach
to Bayesian inference than traditional (random-
sampling-based) alternatives. However, the opti-
mization techniques employed in existing SVI
methods struggle to address problems in which
the target distribution is high-dimensional, poorly-
conditioned, or non-convex, which severely limits
the range of their practical applicability. In this pa-
per, we propose a novel trust-region optimization
approach for SVI that successfully addresses each
of these challenges. Our method builds upon prior
work in SVI by leveraging conditional indepen-
dences in the target distribution (to achieve high-
dimensional scaling) and second-order information
(to address poor conditioning), while additionally
providing an effective adaptive step control proce-
dure, which is essential for ensuring convergence
on challenging non-convex optimization problems.
Experimental results show our method achieves
superior numerical performance, both in conver-
gence rate and sample accuracy, and scales better
in high-dimensional distributions, than previous
SVI techniques.

1 INTRODUCTION

Drawing inferences from noisy data is a fundamental ca-
pability in artificial intelligence, machine learning, and sci-
entific and engineering applications. Mathematically, this
procedure is naturally expressed in the language of posterior

Bayesian inference. Many of these inference problems can
be formulated as probabilistic graphical models (PGMs),
which are an effective tool for modeling joint distributions
with known conditional independences among the individual
variables. The conditional independence structure encoded
in a PGM can greatly simplify the inference task [Koller
and Friedman, 2009]. Nonetheless, exact Bayesian infer-
ence is typically computationally intractable, so in practice
approximate inference methods are used instead.

One of the most common approximate Bayesian inference
methods is sample-based approximation, which uses a sam-
ple set to represent the target distribution. This approxima-
tion has the benefits of simplicity, flexibility, arbitrary preci-
sion (as sample size increases), and easy empirical estima-
tion of any statistic over the target distribution. Traditional
methods for generating a sample-based approximation are
based on random sampling. Common examples of random
sampling algorithms include Markov chain Monte Carlo
(MCMC) [Andrieu et al., 2003], nested sampling [Speagle,
2020], and Hamiltonian Monte Carlo [Betancourt, 2017].
Due to their dependence on random processes to explore
the state space, these methods can be slow to converge and
sample inefficient. These deficiencies become especially
pronounced in high-dimensional problems.

Stein variational inference (SVI) is a more efficient alter-
native for generating a sample-based approximation [Liu
and Wang, 2016]. In place of random sampling, SVI deter-
ministically optimizes a set number of samples to minimize
KL divergence with the reference distribution. SVI has been
demonstrated to have superior sample efficiency over ran-
dom sampling methods, capturing more information with
fewer samples [Liu and Wang, 2016]. However, SVI can still
struggle to scale to high-dimensional, ill-conditioned, and
non-convex objectives. Previous work [Zhuo et al., 2018,
Wang et al., 2018, Detommaso et al., 2018] on SVI methods
has addressed some of these challenges individually, but no
single previous SVI method for PGM problems handles all
these challenges well.
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In this paper, we propose a novel trust-region optimization
approach for SVI that successfully addresses each of these
challenges. Our method builds upon prior work by leverag-
ing both conditional independences in the target distribu-
tion to achieve high-dimensional scaling [Zhuo et al., 2018,
Wang et al., 2018] and second-order information to address
poor conditioning [Detommaso et al., 2018] in the same sys-
tem. We also provide an effective adaptive step control pro-
cedure for SVI, which is essential for ensuring convergence
on challenging non-convex optimization problems. Experi-
mental results show our method achieves superior numerical
performance, both in convergence rate and sample accuracy,
and scales better to high-dimensional distributions than pre-
vious variational inference techniques. Code for our method
and experiments is available at https://github.com/NEU-
RAL/TrustRegionSVI.

2 STEIN VARIATIONAL INFERENCE

The objective of SVI [Liu and Wang, 2016] is to approxi-
mate a given target distribution p(x) on X ⊆ RD using the
Kullback-Leibler (KL) divergence-minimizing representa-
tive q within some family Q of tractable model distributions

min
q∈Q

KL(q||p) ≡ Ex∼q[log q(x)− log p(x)] (1)

To achieve this, we begin with some initial distribution q0
and generate a set of pushforwards q1, ..., qL according to
the rule ql+1 = (Tl)∗ql where Tl ∈ RD → RD is some
perturbation Tl = I + Φl of the identity map. At each
iteration l, we seek a perturbation function Φl from some
function space F such that

J [Φl] ≜ KL((I +Φl)∗ql||p) J [Φl] < J [0] (2)

To ensure the descent condition, we can choose Φl to be
an infinitesimal application of the negative functional gra-
dient at J [0] in F . For a Hilbert space F , the gradient of
a functional J at some S ∈ F is defined as the element
∇J [S] ∈ F satisfying

⟨∇J [S], V ⟩F = DJ [S](V ) for all V ∈ F

DJ [S](V ) ≜ lim
τ→0

1

τ
(J [S + τV ]− J [S])

Consider some kernel k : X ×X 7→ R with a corresponding
reproducing kernel Hilbert space (RKHS)H. A particularly
advantageous choice for F is the vector-valued RKHSHD

because this space has a closed form for the desired func-
tional gradient∇J [0] [Liu and Wang, 2016]

∇J [0](x) = −Ez∼q[k(z, x)∇z log p(z)

+∇zk(z, x)] (3)

In order to compute the expectation above, we need some
tractable representation of the distribution q. A natural

choice for this representation is a sample, since this pa-
rameterization is both flexible, and makes the expectation
in Eq. 3 trivial to approximate.

Stein variational gradient descent (SVGD) [Liu and Wang,
2016] combines a sample-based approximation of q and
the descent direction in Eq. 3 into an iterative procedure
for generating a sample-based approximation of p. SVGD
first samples a set of points {xi}ni=1 from an initial distri-
bution q0 and then iteratively updates the location of each
sample using some static step size ξ and a sample-based
approximation of Eq. 3

xi ← xi + ξ
1

n

n∑
j=1

k(xj , xi)∇xj log p(xj)

+∇xj
k(xj , xi) (4)

The first term of this update pushes the samples towards
high probability areas of p while the second term, referred
to as the kernel repulsion term, pushes apart samples that
are close together. The kernel repulsion term is essential
because it spreads the sample across the distribution [Liu
and Wang, 2016].

3 RELATED WORK

SVGD [Liu and Wang, 2016], as discussed above, strug-
gles to scale to high-dimensional, non-convex, and ill-
conditioned objectives. Several subsequent works have sug-
gested modifications to address these challenges.

There are two major contributors to SVI’s poor performance
in high dimensions. First, the information (in bits) required
to encode the joint target distribution p grows exponentially
with respect to it’s dimension. This increases the amount of
information approximation methods (like SVI) must infer to
accurately approximate p [Koller and Friedman, 2009]. Sec-
ond, when using distance-based kernels, like the radial basis
function (RBF) kernel, the magnitude of the kernel repul-
sion term decreases in higher dimensions, resulting in mode
collapse, where all the sample points are densely packed
around a single mode of the target distribution [Zhuo et al.,
2018]. When the conditional factorization of p is known (i.e.
when p is represented by a PGM), these conditional inde-
pendence relations can be exploited to dramatically simplify
the inference task and address these challenges [Koller and
Friedman, 2009].

Graphical Stein variational inference methods [Zhuo et al.,
2018, Wang et al., 2018] exploit the conditional indepen-
dences encoded in the PGM for the target p via their ker-
nel design. Assuming the space X is a product of factors
X = C1 × ...× CD, graphical SVI employs a set of D local
kernels ka : XSa ×XSa 7→ R, where Sa represents the fac-
tor Ca and its Markov blanket Γa. In this local kernel setting,
the Hilbert space F over which we take functional gradients
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becomes the product H1 × ... × HD of the local kernels’
RKHSs. In this space, the closed form for the functional
gradient∇Ĵ [0] (∧ decorator used to indicate usage of local
kernels and differentiate from the gradient in Eq. 3) is given
by

(∇Ĵ [0](x))a = −Ez∼q[ka(z, x)∇za log p(z)

+∇zaka(z, x)] for a ∈ 1, ..., D (5)

This functional gradient interpretation of the graphical SVI
update follows naturally from previous work [Zhuo et al.,
2018, Wang et al., 2018], but has not been presented before.
So, we present a proof in Appendix A. Note that utilizing
the above descent direction only guarantees that the result-
ing approximation q agrees with the target’s conditional
distributions: q(xa|xΓa) = p(xa|xΓa) [Zhuo et al., 2018,
Wang et al., 2018], indicating that these methods inference
the conditionals as desired.

Other work on SVI has explored improving high-
dimensional performance on problems without conditional
structure by employing Grassman manifold [Liu et al.,
2022], low-dimensional subspace projection [Chen and
Ghattas, 2020, Chen et al., 2019], and slicing [Gong et al.,
2021] strategies.

Many previous SVI methods only utilize first-order informa-
tion in their updates, which is often insufficient to achieve
good convergence on ill-conditioned objectives. The Stein
variational Newton method (SVN) [Detommaso et al., 2018]
incorporates second-order information by deriving a New-
ton system to compute an approximate Newton update wi

for each sample xi. This Newton system is block-structuredH(x1, x1) . . . H(x1, xn)
...

. . .
...

H(xn, x1) . . . H(xn, xn)


w1

...
wn

 =

−∇J [0](x1)
...

−∇J [0](xn)


where the ab-th entry of the Hessian matrix block H(x, y)
is

(H(x, y))ab = Ez∼q[−k(z, x)k(z, y)∂ab log p(z)
+ ∂zbk(z, x)∂zak(z, y)] (6)

By applying a block-diagonal approximation to the original
system, SVN solves a decoupled system for the approximate
Newton update wi of each sample xi

H(xi, xi)wi = −∇J [0](xi) for i ∈ 1, ..., n (7)

To solve these decoupled systems, SVN utilizes a conjugate
gradient method such as the Newton-CG method [Nocedal
and Wright, 1999]. Like SVGD, SVN does not leverage
conditional independence, and thus performs poorly in high
dimensions.

Other prior works have leveraged second order informa-
tion to improve the performance of other variational infer-
ence techniques such as stochastic gradient MCMC [Wang
et al., 2021] and Langevin dynamics sampling [Wang and
Li, 2020].

Importantly, the previously discussed graphical SVI meth-
ods do not utilize an adaptive method for step control, which
was identified in Detommaso et al. [2018] as important fu-
ture work. Adaptive step control has been implemented for
low-dimensional subspace projection methods [Chen et al.,
2019]. However, this method selects step sizes to minimize
the KL divergence between projections of the target p and
sample set {xi}ni=1 onto a low-dimensional subspace, which
does not necessarily guarantee a reduction of the divergence
between the target p and sample set {xi}ni=1 themselves.

4 EXPLOITING CONDITIONAL
INDEPENDENCE IN SECOND-ORDER
SVI

4.1 SECOND VARIATION IN LOCAL KERNEL
SETTING

As a first contribution, we show how to implement a second-
order Hessian model for SVI that exploits conditional in-
dependence. To do this, we generalize the formula for the
second-order variation presented in SVN [Detommaso et al.,
2018] to the local kernel space H1 × ... × HD utilized
by graphical SVI methods. The second variation is de-
fined as the directional derivative along a pair of directions
V,W ∈ H1 × ...×HD

D2J [0](V,W ) = lim
τ→0

1

τ
(DJ [τW ](V )−DJ [0](V ))

Theorem 1. Along a pair of directions V,W ∈ H1 × ...×
HD the second variation is 1

D2J [0](V,W ) =

D∑
a=1

D∑
b=1

⟨⟨hab(x, y), wb(y)⟩Hb
, va(x)⟩Ha

(8)

hab(x, y) = Ez∼q[−ka(z, x)kb(z, y)∂ab log p(z)
+ ∂zakb(z, y)∂zbka(z, x)] (9)

For the proof of this theorem, see Appendix B.

4.2 DECOUPLED NEWTON SYSTEMS

Following SVN [Detommaso et al., 2018], we employ a
block-diagonal approximation of the Hessian defined by

1The inner products here are between the functions hab, wb, va
in Hilbert spaces. x and y are free variables only included to show
which functions share which inputs.



Theorem 1 and solve a decoupled system for the approxi-
mate Newton update wi for each sample xi

Ĥ(xi, xi)wi = −∇Ĵ [0](xi) for i ∈ 1, ..., n (10)

where the entries of the Hessian Ĥ(xi, xi) are defined by the
second variation coefficients (Ĥ(xi, xi))ab = hab(xi, xi)
from Eq. 9.

5 TRUST-REGION METHODS

Our second contribution is implementing two trust-region
methods for SVI optimization. Trust-region methods are iter-
ative procedures for optimizing a smooth objective function
f : RM → R [Nocedal and Wright, 1999]. At each iteration
t, these methods generate an additive update w ∈ RM to
the current estimate x ∈ RM by minimizing a second-order
approximation of the objective over a closed ball defined by
some norm || · || and a radius ∆, called the trust region

minw∈RM f(x) +∇f(x)⊤w +
1

2
w⊤Hw

s.t. ||w|| ≤ ∆ (11)

where H is the symmetric Hessian model.

Given the Newton system’s (Eq. 10) block-diagonal
structure, we propose utilizing the norm ||w|| ≜
max{||wi||2}ni=1 to define the trust region, where wi is the
update for each individual sample xi. The advantage of us-
ing this norm is that, in combination with the block-diagonal
Hessian model, the trust-region minimization Eq. 11 is sepa-
rable over the updates wi for each sample xi; consequently,
these updates can be efficiently computed in parallel.

5.1 KL DIVERGENCE APPROXIMATION

Standard trust-region methods rely on objective function
evaluations to adjust the trust-region radius ∆ used in each
iteration based on the observed change in objective value. In
the specific case of SVI, we aim to minimize KL divergence.
The computation of KL divergence can be split into two
terms

KL(q||p) = Ex∼q [− log p(x)]−H(q)

whereH(q) is the entropy of q. The first term can be easily
approximated via an empirical estimate with our current
sample set. The second term requires computing the entropy
of q given the representative set of samples {xi}ni=1, which
is more difficult. Since SVI already requires the computa-
tion of kernel matrices, we propose utilizing the kernelized
approximation of entropy from Bach [2022].

H(q) ≈ −tr
[
1

n
K log(

1

n
K)

]
= −

n∑
i=1

λi log(λi) (12)

where K is the n× n kernel matrix for the sample {xi}ni=1,
such that Kij = k(xi, xj), and {λi}ni=1 are the eigenvalues
of 1

nK. Since this approximation requires the computation
of eigenvalues, which is a computationally expensive O(n3)
operation, we utilize the eigenvalues of a Nyström approxi-
mation of 1

nK in place of the full matrix. We use a non-local
kernel k : X × X → R for this approximation. The full
algorithmic details of the approximation are presented in
Algorithm 1. It’s time complexity is O(m3 + n) where m
is the Nyström size.

Algorithm 1 Approx-KL

1: Inputs: Sample points {xi}ni=1, reference distribution
p, Nyström size m

2: Select a subset S ⊂ {xi}ni=1 of size m uniformly at
random without replacement

3: Compute the kernel matrix K using kernel function k
on the subset S

4: U, {λi}mi=1, V = SVD( 1nK)
5: H =

∑m
i=1 λi log(λi)

6: P = 1
n

∑n
i=1 log p(xi)

7: Return −P +H

Our first trust-region algorithm, TR-SVI-KL, adjusts the
shared trust-region size based on how well the local
quadratic model (Eq. 11) predicts the observed change in
objective value. If a step increases the objective value, it
is rejected. The full algorithmic details of this trust-region
method are presented in Algorithm 2. The per-iteration time
complexity of this method is O(n2D2 +m3) where m is
the Nyström size used for Approx-KL.

5.2 GRADIENT-BASED TRUST-REGION

Even with the Nyström approximation, the KL divergence
approximation in Algorithm 1 is still relatively expensive to
compute. Moreover, the approximation error can negatively
impact the efficacy of the trust-region adjustment. Therefore,
in this subsection, we describe an alternative trust-region
method that avoids the need to evaluate the objective at all,
by taking advantage of the recently developed AdaTrust
method [Grapiglia and Stella, 2022].

The motivating idea behind a gradient-based trust-region is
that a converging optimization should contain a subset of
iterations in which the magnitude of the gradient is consis-
tently decreasing. Our gradient-based trust-region method
stores the lowest observed gradient magnitude value and
compares the gradient magnitude at each new iterate against
it. The trust-region is expanded if the gradient magnitude
at the current iterate is less than the lowest seen so far
and constricted otherwise. The algorithmic details of this
trust-region method are presented in Algorithm 3. The per-
iteration time complexity of this method is the same as SVN,
O(n2D2).



Algorithm 2 TR-SVI-KL

1: Inputs: Initial points {xi}ni=1, reference distribution p,
initial trust-region ∆

2: for each iteration t do
3: for each sample xi do
4: Compute wi by solving system in Eq. 10 using

CG-Steihaug [Nocedal and Wright, 1999] with
trust-region ∆

5: end for
6: m =

∑n
i=1

1
2w

⊤
i Ĥ(xi, xi)wi +∇Ĵ [0](xi)

⊤wi

7: u = Approx-KL({xi + wi}ni=1, p, ⌊n/10⌋)
8: o = Approx-KL({xi}ni=1, p, ⌊n/10⌋)
9: ρ = u−o

m

10: ∆ =


∆/2 if ρ < .0001

1.5∆ if ρ > .7

∆ otherwise

11: {xi}ni=1 =

{
{xi}ni=1 if ρ < 0

{xi + wi}ni=1 otherwise
12: end for

6 RESULTS

6.1 EXPERIMENTAL SET-UP

In this section, we experimentally evaluate our trust-region
SVI algorithms. As baselines, we compare against prior
work on SVI, namely MP-SVGD [Zhuo et al., 2018] and
SVN [Detommaso et al., 2018], which also serve as abla-
tions of our method. Motivated by the results in Appendix
F, we utilize variants with more advanced step control rules
to make these baselines as strong as possible. The first
of these modified methods is MP-SVGD-DSS, which uti-
lizes a decaying step size. The second is MP-SVGD-AG
which utilizes the off-the-shelf adaptive optimizer AdaGrad
[Duchi et al., 2011] for step control. The third is SVN-
CTR which utilizes the CG-Steihaug method [Nocedal and
Wright, 1999] for solving the systems in Eq. 7 with a con-
stant trust-region size.

The hyperparameters for the trust-region methods were
set based on performance on small toy problems during
early algorithm development and then used for every ex-
periment without alteration. In general, the convergence of
trust-region methods is not sensitive to exact hyperparameter
settings [Nocedal and Wright, 1999]. The hyperparameters
for the SVI baselines were fit to each specific problem via
grid search to maximize performance, which introduces ex-
tra information that our methods did not receive. Note that
this makes the following comparisons somewhat unfairly
biased against our methods. All SVI methods, both ours and
the baselines, utilize an RBF kernel with a lengthscale set
manually based on performance. Exact hyperparameter set-
tings for each method and problem are shown in Appendix

Algorithm 3 TR-SVI-AT

1: Inputs: Initial points {xi}ni=1, reference distribution p
2: bmin = .1

3: b, w, bmax, g =
√∑n

i=1 ||∇Ĵ [0](xi)||2
4: for each iteration t do
5: for each sample point xi do
6: Compute wi by solving system in Eq. 10 using

CG-Steihaug [Nocedal and Wright, 1999] with
trust-region g

b
7: end for
8: {xi}ni=1 = {xi + wi}ni=1

9: g =
√∑n

i=1 ||∇Ĵ [0](xi)||2

10: b, w =

{
max(bmin, .9b), g if g < .999w

min(bmax, b+
g2

b ), w otherwise
11: end for

E. We also compare against VIPS40 [Arenz et al., 2018], a
state-of-the-art, Gaussian mixture model-based variational
inference method. All experiments were run on a desktop
with an Intel Core i7-13700K, 32 GB RAM, and a NVIDIA
RTX 4080.

6.2 BAYES NET EXPERIMENT

Our first set of experiments is designed to test the different
variational inference methods’ ability to scale to distribu-
tions that are high-dimensional and poorly conditioned in a
controlled environment where we can easily recover ground
truth samples from the reference distribtuion. To this end,
we evaluate performance on recovering the joint density of a
Bayes net [Koller and Friedman, 2009]. This synthetic prob-
lem gives us a high degree of control over the parameters of
the distribution and the generative nature of Bayes nets en-
ables us to easily recover a ground truth sample via ancestral
sampling. This problem also has known conditional inde-
pendence structure that our methods and graphical baselines
can exploit.

The nodes of the Bayes net are organized into layers with
nodes in each layer conditioned only on nodes from the pre-
vious layer. The conditional/marginal distributions encoded
by each node are either a Gaussian or Gaussian mixture.
Note that this makes the resulting joint of the Bayes net a
Gaussian mixture. The exact parameters of each node are
generated randomly according to the generative process de-
scribed in Appendix D. The generative parameters for the
Gaussian mixture nodes are selected to encourage distinct
modes. The nodes are also generated to have vastly different
variances to induce poor-conditioning. We test on two Bayes
nets examples, one 30-dimensional and one 80-dimensional.
A ground truth sample for each example, containing 6 mil-
lion points, was generated via ancestral sampling. Each
variational inference method was used to produce a sample



Table 1: Maximum Mean Discrepancies against Ground Truth Sample

Model 12-Dimensional SNLP 30-Dimensional BN 80-Dimensional BN

MP-SVGD-DSS 0.05276± 0.03560 0.1492± 0.00618 0.2251± 0.00577
MP-SVGD-AG 0.05091± .01328 0.2130± 0.02086 0.2004± 0.00975
SVN-CTR 0.05067± 0.00937 0.1887± 0.00877 0.2707± 0.00276
VIPS40 0.1981± 0.12383 0.00185± 0.00095 0.2565± 0.03055
TR-SVI-KL 0.04800± 0.00979 0.01496± 0.00741 0.08634± 0.02348
TR-SVI-AT 0.03530± 0.01366 0.009674± 0.00623 0.07646± 0.02051

with 200 points.

We evaluate the quality of each method’s sample by com-
paring against the ground truth sample using the maximum
mean discrepancy (MMD) metric [Gretton et al., 2012].
MMD was chosen because it is designed to find the test
statistic that reveals the greatest discrepancy between two
distributions. MMD is also kernel-based which makes it
a somewhat natural choice to evaluate SVI methods. The
MMD of two samples X = {xi}ni=1 and Y = {yi}mi=1 is
computed as

MMD(X,Y ) =
1

n2

n∑
i,j=1

k(xi, xj)−
2

nm

n∑
i=1

m∑
j=1

k(xi, yj)

+
1

m2

m∑
i,j=1

k(yi, yj) (13)

For our tests, the kernel k is the RBF kernel whose length-
scale is set using the median heuristic [Garreau et al., 2017]
on the ground truth sample. The performance for each vari-
ational inference method on this metric is shown in Table
1. All numerical results are averaged over 5 runs with ran-
domly initialized positions for the SVI particle sets. The
standard deviation of the MMD statistic over these runs is
reported in the error bars.

Our methods outperformed the SVI baselines on both Bayes
net problems, suggesting better scaling to high dimensions
and poor conditioning. VIPS40 did outperform our method
on the lower-dimensional Bayes net problem. That said,
since the joint distribution of this Bayes net is a Gaussian
mixture, the Gaussian mixture-based approximation em-
ployed by VIPS40 is the information-theoretically optimal
choice in this specific case. The difference in performance
between our methods and VIPS40 on this problem repre-
sents the cost of flexibility. Although our methods can more
accurately capture a wider variety of distribution shapes,
they cannot achieve gold-standard performance of paramet-
ric models in their ideal use cases. Furthermore, our method
scales more effectively than VIPS40 in higher dimensions,
performing significantly better on the 80-dimensional ex-
ample. We attribute the pronounced decrease in VIPS40’s
performance to the fact that VIPS40 does not take advan-
tage of the conditional independences present in these Bayes

net models, the exploitation of which is well-known to be
critical for achieving efficient inference in high dimensions.

6.3 LOW-DIMENSIONAL SNLP WITH GROUND
TRUTH

Our next set of experiments is designed to highlight the flex-
ibility of our methods by investigating both the convergence
behavior and posterior approximation quality of the differ-
ent variational inference methods on a real-world problem
with complex posterior shapes. To this end, we evaluate our
methods and the baselines on a small example of the sensor
network localization problem (SNLP) [Biswas et al., 2006].
This problem tends to have posteriors with multimodal and
annular shapes and is therefore hard for parametric models
to accurately approximate. Its low dimensionality enables
us to recover a ground truth sample for quantitative analysis.

The goal of the SNLP is to recover the positions of a set
of sensors S = {s1, . . . , sn} ⊂ RD from a given set of
noisy pairwise distance measurements between them. This
problem can be modeled as a graph G = (V,E) in which the
sensors are represented by the vertices V and the available
measurements d̃ij are represented by the edges E between
them. A pair of sensors si and sj can only generate a range
measurement when the distance ||si − sj || between them
is less than some maximum effective sensing radius r, and
any such measurement is generated according to:

d̃ij = ||si − sj ||+ ϵij ϵij ∼ N(0, σ2)

Finally, we assume that there is a subset A ⊂ S of the
sensors (called the anchors) whose positions are known
exactly a priori.

For these experiments, we use an SNLP instance with 6
estimated nodes and 4 anchors placed on a 6× 6 unit square
in R2. The maximum range is r = 3 and the measure-
ments are noiseless but believed to be corrupted by noise
ϵij ∼ N (0, .01). The problem is visualized in graphical
form in Appendix C. A ground truth sample containing
about 1.1 million points was recovered using a standard
nested sampling library, dynesty [Speagle, 2020]. Each vari-
ational inference method was set to produce a sample of
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Figure 1: The convergence rate as a function of iteration number (a) and compute time (b) of each SVI method on the small
SNLP instance. All second-order methods show fast, smooth convergence both MP-SVGD variants oscillate until their
step size decays enough to enable convergence. Note that, unlike the other methods, SVN-CTR does not use local kernels
to compute the gradient (see Eqs. 3 and 5). Since the estimated gradients depend upon the choice of kernel, SVN-CTR’s
gradient magnitude values are not directly comparable.

200 points. Although this problem is relatively small, it is
sufficient to reveal significant differences in performance
between the different variational inference methods.

6.3.1 Convergence Results

Our first experiment in this set focuses on analyzing the
convergence behavior of the different SVI methods with
different step control approaches. Methods like SVN and
MP-SVGD that lack adaptive step control rely on a priori
user-specified step control rules or off-the-shelf adaptive
optimizers. User-specified step control rules and some pop-
ular off-the-shelf adaptive optimizers, like Adam [Reddi
et al., 2018], lack the strong convergence guarantees of
trust-region methods [Nocedal and Wright, 1999]. AdaGrad
[Duchi et al., 2011], another popular off-the-shelf optimizer,
has convergence guarantees but monotonically decreases
the step size, making it less adaptive and often slower to con-
verge than trust-region methods. These experiments demon-
strate the performance gap in convergence behavior between
trust-region methods and these other step control methods.

Figure 1a depicts the convergence for our methods and the
modified baselines as a function of iteration number. All
the second-order methods converge quickly and smoothly.
Both MP-SVGD variants oscillate until the step size decays
enough to allow convergence. TR-SVI-KL shows fewer
iterations than the other methods because of its step rejection
mechanism, which the other methods lack.

Figure 1b depicts the convergence of the methods as a func-
tion of time. Although the per-iteration time complexity
of second-order methods is greater than that of first-order
methods, they require fewer iterations, and thus less com-
pute time overall, to achieve a small gradient magnitude.

6.3.2 Numerical Performance of Generated Samples

Next, we evaluate the accuracy of the generated sample
sets as approximations of the target posterior distribution,
once again using the MMD metric (Eq. 13) against the
dynesty reference sample. The results of this experiment are
presented in Table 1.

Our trust-region methods achieved the lowest average MMD
scores with the reference sample. VIPS40 performed the
worst on this test, potentially due to the difficulty of approx-
imating the annular shapes of the SNLP posterior with a
Gaussian mixture. The samples produced by the different
methods are assessed qualitatively in Appendix G.

6.4 QUALITATIVE ANALYSIS OF
HIGH-DIMENSIONAL SNLP

Our last set of experiments is intended to test how the dif-
ferent methods scale to a high-dimensional problem with
complex shapes. To this end, we apply it to a larger 50 sen-
sor, 12 anchor SNLP instance over a 20× 20 unit square in
R2. For this problem, the maximum sensor range r = 3 and
the measurements received by the sensors are perturbed with
noise ϵij ∼ N (0, .01) whose mean and variance are known
values. The results of this experiment are only assessed qual-
itatively since recovering a high-quality reference sample
using traditional methods (e.g. dynesty [Speagle, 2020]) is
intractable. For comparison, MP-SVGD-DSS, SVN-CTR,
and VIPS40 were also run on this test. The same set of noisy
measurements were used for all methods to ensure a fair
comparison.

Figure 2 shows KDE plots generated from the samples pro-
duced by each of four methods for three selected sensors and
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Figure 2: Kernel density estimation (KDE) plots of the final samples produced by various variational inference methods
on a high-dimensional, noisy SNLP problem. From each sample, the marginal samples corresponding to the location of a
selected sensor are extracted and visualized as a KDE plot. Since ground truth was not recoverable, we also visualize the
measurements received by each selected sensor to enable qualitative analysis. These measurements are displayed as orange
circles with a radius equal to the range measurement centered on the true position of the sending node. The time to generate
the sample (in seconds) is displayed under its name.

the time required to generate each approximation. Figure 2
also displays the incoming measurements for each sensor as
circles to enable easier qualitative analysis.

Sensor A received multiple measurements, so a unimodal
distribution is expected, with some variation due to sensor
noise. All SVI methods recovered a unimodal distribution
centered correctly on the intersection of the various mea-
surements. VIPS40 recovered a unimodal distribution, but
it is not correctly centered. Sensor B received a single range
measurement from an anchor, so its posterior should be an-
nular. Of the four methods, only TR-SVI-AT produced a
sample with a balanced annular shape. Sensor C received
two range measurements, resulting in a bimodal distribu-
tion. All SVI methods captured this bimodal distribution but
VIPS40 only captured one of the two modes.

Overall, TR-SVI-AT appears to capture intricate details in
high dimensions significantly more accurately than previous

variational inference methods. Notably, VIPS40 took signif-
icantly (>20x) longer than the SVI methods and produced a
visibly worse approximation.

7 CONCLUSION

We introduce a SVI method that leverages known condi-
tional independence structure, second-order information,
and adaptive step control to ensure good convergence on
high-dimensional, non-convex, and ill-conditioned objec-
tives. Our method demonstrated faster and more reliable
convergence than existing SVI methods. The approxima-
tions produced by our method were more accurate than
those of existing SVI methods and a state-of-the-art para-
metric variational inference method.
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Appendix
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A PROOF OF EQUATION 5

From the proof of Theorem 3.3 in Liu and Wang [2016], we have

τ⟨∇J [S], V ⟩+O(τ2) = J [S + τV ]− J [S]

and, at S = 0,
J [0+ τV ]− J [0] = −∆1 −∆2

where

∆1 = Ez∼q[log p(z + τV (z))]− Ez∼q[log p(z)]

∆2 = Ez∼q[log det(I + τ∇zV (z))]− Ez∼q[log det(I)]

For V ∈ H1 × ...×HD the terms above can be computed as

∆1 = Ez∼q[log p(z + τV (z))]− Ez∼q[log p(z)]

= τEz∼q[∇z log p(z) · V (z)] +O(τ2)

= τ

D∑
a=1

Ez∼q[∇za log p(z)va(z)] +O(τ2)

= τ

D∑
a=1

⟨Ez∼q[∇za log p(z)ka(z, ·)], va(·)⟩Ha +O(τ2)

and

∆2 = Ez∼q[log det(I + τ∇zV (z))]− Ez∼q[log det(I)]

= τEz∼q[trace(I−1 · ∇zV (z))] +O(τ2)

= τEz∼q[trace(∇zV (z))] +O(τ2)

= τ

D∑
a=1

Ez∼q[∇zava(z)] +O(τ2)

= τ

D∑
a=1

⟨Ez∼q[∇zaka(z, ·)], va(·)⟩+O(τ2)

Thus,

⟨∇J [0], V ⟩ =
D∑

a=1

⟨−Ez∼q[ka(z, ·)∇za log p(z) +∇zaka(z, ·)], va⟩Ha

and
(∇J [0](·))a = −Ez∼q[ka(z, ·)∇za log p(z) +∇zaka(z, ·)]

mailto:<pavlovic.l@northeastern.edu>


B PROOF OF THEOREM 1

From the proof of Theroem 1 in Detommaso et al. [2018], we know that the second variation of the SVI objective along a
pair of directions V,W ∈ H1 × ...×HD equals

D2J [0](V,W ) = −Ez∼q

[
W (z)⊤∇2

z log p(z)V (z)− trace(∇zW (z)∇zV (z))
]

(14)

By the reproducing properties ofH1 × ...×HD, namely

va(z) = ⟨ka(z, ·), va(·)⟩Ha
wa(z) = ⟨ka(z, ·), wa(·)⟩Ha

and
∂zbva(z) = ⟨∂zbka(z, ·), va(·)⟩Ha

∂zbwa(z) = ⟨∂zbka(z, ·), wa(·)⟩Ha

we get

Ez∼q

[
W (z)⊤∇2

z log p(z)V (z)
]
=

D∑
a=1

D∑
b=1

⟨⟨Ez∼q

[
−ka(z, x)kb(z, y)∂2

ab log p(z)
]
, wb(y)⟩Hb

, va(x)⟩Ha

and

Ez∼q [trace(∇zW (z)∇zV (z))] =

D∑
a=1

D∑
b=1

⟨⟨Ez∼q [∂zakb(z, y)∂zbka(z, x)] , wb(y)⟩Hb
, va(x)⟩Ha

Plugging these in yields the final expression for the second variation

D∑
a=1

D∑
b=1

⟨⟨hab(x, y), wb(y)⟩Hb
, va(x)⟩Ha (15)

where
hab(x, y) = Ez∼q [−ka(z, x)kb(z, y)∂ab log p(z) + ∂zakb(z, y)∂zbka(z, x)] (16)

C SNLP PROBLEM VISUALIZATIONS
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Figure 3: Graph representations of the sensor network localization problems used for evaluation with the small example on
the left and the large example on the right. Estimated nodes are depicted in blue and anchors in orange. The edges represent
shared range measurements between pairs of nodes. Blue edges correspond to measurements shared between two estimated
nodes and orange edges correspond to measurements from an anchor.

D BAYES NET GENERATION DETAILS

The nodes of these Bayes Nets are organized into layers. The 30-dimensional has 3 layers with 10 nodes each. The
80-dimensional has 4 layers with 20 nodes each. A node xj from the first layer has a marginally Gaussian distribution



p(xj) = N (µ, σ2). A node xj in any subsequent layer is conditioned on some random [1,M ]-size subset Cj of the nodes
from the previous layer with which it shares connections in the network. The conditional distribution of such a node is either
a Gaussian or Gaussian mixture of the form

p(xj |Cj) = N (
∑

xk∈Cj

αkxk, σ
2) or p(xj |Cj) =

2∑
l=1

ωlN (
∑

xk∈Cj

αl
kxk, σ

2) (17)

where {α(l)
k } is a set of weights and {ωl} are the GMM component weights. The 30-dimensional problem has a total of 6

GMM nodes and the 80-dimensional has 20. Nodes from all layers but the first were uniformly selected at random to be a
GMM node. The specific random generative procedure for values of each parameter are

• µ is selected uniformly from [0, 2] for 30-dimensional [0, 4] for 80-dimensional

• All weights {α(l)
k } are selected independently and uniformly from [−1, 1]

• The first GMM weight ω1 is selected uniformly from [.4, .6], the second ω2 completes the sum to 1.

• All variances σ2 were sampled uniformly over orders of magnitude [10−3, 100] to induce poor-conditioning

• Maximum number of connections M is 3 for 30-dimensional and 4 for 80-dimensional

E HYPERPARAMETER DETAILS

Table 2: Hyperparameter Settings

Model 12-Dim SNLP 100-dim SNLP 30-Dim BN 80-Dim BN

MP-SVGD-DSS (initial step, step decay) 0.1, 0.99 0.1, 0.99 0.01, 0.999 0.01, 0.99
MP-SVGD-AG (intial step) 0.5 N/A 0.05 0.05
SVN-CTR (trust region size) 1 0.1 0.1 0.1
Kernel (lengthscale) 1 3 10 60

The hyperparameters used for each SVI baseline, as well as the kernel hyperparameters utilized by all SVI methods, are
shown in Table 2. VIPS40 utilizes the default configuration provided by the source code [Arenz et al., 2018]. TR-SVI-AT and
TR-SVI-KL utilize the parameter settings listed in their respective algorithm blocks (Algorithms 2, 3) for all experiments.

F ADDITIONAL CONVERGENCE RESULTS

This additional set of tests is designed to demonstrate the necessity of adaptive step control for ensuring convergence on
non-convex objectives. To do this, we analyze the convergence of MP-SVGD [Zhuo et al., 2018] and SVN [Detommaso
et al., 2018] on the small SNLP example with static step sizes. Figure 4 depicts the convergence rates of MP-SVGD and SVN
with a variety of static step sizes, none of which produce good results. For MP-SVGD, the step size is either too large for a
portion of the optimization, causing the method to oscillate over the objective, or too small, resulting in slow convergence.
For SVN, all the step sizes result in overly large initial steps from which the method subsequently struggles to recover.
The poor performance of these methods in this experiment motivated the introduction of the improved MP-SVGD-DSS,
SVN-CTR and MP-SVGD-AG baselines.
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Figure 4: The convergence rates of MP-SVGD(a) and SVN(b) on the small SNLP instance with a variety of static step sizes.
None produce good results.

G QUALITATIVE ANALYSIS OF LOW-DIMENSIONAL SNLP

This additional set of tests is designed to demonstrate how differences in MMD performance on the small SNLP instance,
as reported in Table 1 translate to perceptible differences in the quality of the different sample approximations. Figure 5
shows kernel density estimate (KDE) plots generated from samples produced by MP-SVGD-DSS, SVN-CTR, TR-SVI-AT,
VIPS40, and dynesty, as well as the time required to generate the samples. Plots of the marginal posterior estimates for the
locations of three selected sensors are shown. These sensors were selected because they represent a variety of posterior
shapes.
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Figure 5: Kernel density estimation (KDE) plots of the final samples produced by various SVI methods and the dynesty
reference on a low-dimensional SNLP problem. From each sample, the marginal samples corresponding to the location of
the selected sensor are extracted and visualized as a KDE plot. The KDE plots of the different methods are displayed on the
same scale with the exception of SVN-CTR’s plot for sensor A, which required a scale an order of magnitude smaller to be
visible. The time required to generate each sample is displayed under its name.

Sensor D received multiple measurements from other nodes, resulting in a dense unimodal distribution. VIPS40, TR-SVI-AT,
and MP-SVGD-DSS capture this sensor’s posterior well. SVN-CTR, on the other hand, significantly underestimates the
variance of the posterior, requiring a different axis scale than the reference distribution to be visible.

Sensor E received single anchor measurement resulting in a annular posterior. All three SVI methods produced a sample
with a annular shape, but the samples of MP-SVGD-DSS and SVN-CTR display a bias towards the bottom right of the



annulus not present in TR-SVI-AT’s sample. VIPS40 recovers only a partial arc that is misshapen. All 4 methods produce
more diffuse distributions than the reference.

Sensor F received a few range measurements but not as many as Sensor D, resulting in a bimodal distribution. All 3 SVI
methods capture the bimodality of the distribution, but they also assign more probability to the lower probability mode than
the reference distribution. VIPS40 does not capture the bimodality of this distribution, only capturing the lower probability
mode.
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