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ABSTRACT

We introduce the first best-of-both-worlds algorithm for contextual combinatorial
bandits that simultaneously guarantees Õ(

√
T ) regret in the adversarial regime

and Õ(lnT ) regret in the corrupted stochastic regime. Our approach builds on
the Follow-the-Regularized-Leader (FTRL) framework equipped with a Shannon
entropy regularizer, yielding a flexible method that admits efficient implementations.
Beyond regret bounds, we tackle the practical bottleneck in FTRL (or, equivalently,
Online Stochastic Mirror Descent) arising from the high-dimensional projection
step encountered in each round of interaction. By leveraging the Karush-Kuhn-
Tucker conditions, we transform the K-dimensional convex projection problem
into a single-variable root-finding problem, dramatically accelerating each round.
Empirical evaluations demonstrate that this combined strategy not only attains
the attractive regret bounds of best-of-both-worlds algorithms but also delivers
substantial per-round speed-ups, making it well-suited for large-scale, real-time
applications.

1 INTRODUCTION

Online decision-making is often modelled via the multi-armed bandit framework: over T rounds,
a learner selects an action and incurs a loss, observing only partial feedback. Many real-world
tasks—from selecting at most m movies on a streaming platform to curating a list of m products
on an e-commerce homepage—require choosing a subset of up to m items from K≫ m base arms
in each round. This combinatorial bandit variant admits either semi-bandit feedback (per-arm
losses) or full-bandit feedback (aggregate loss). Semi-bandit feedback is realistic—web analytics
record click-through outcomes for each displayed item—and statistically advantageous, reducing
minimax regret from O(

√
KT ) under full-bandit feedback to O(

√
mT ) (Audibert et al., 2014). In

each round, the learner faces either stochastic losses (e.g., from a fixed linear model on random
contexts) or adversarial losses (modeling malicious perturbations). Contexts consist of user-feature
vectors drawn i.i.d. from a distribution, and instantaneous losses are linear in these features. The best-
of-both-worlds (BOBW) paradigm unifies strategies across stochastic and adversarial loss regimes,
achieving optimal regret guarantees in both (Zimmert et al., 2019; Tsuchiya et al., 2023). However,
gaps remain in current BOBW approaches for contextual combinatorial bandits—highlighted by
Tsuchiya et al. (2023); Kuroki et al. (2024) and exacerbated by evolving regulations and emerging
technologies—motivating us to revisit the problem.

Challenges. While many companies possess extensive user data, their operating environments are
rarely stationary and face multiple challenges:

• Adversarial and corrupted stochastic regimes. Advertising markets, for instance, evolve
in real time as competitors react to each other (Balseiro et al., 2015; Jin et al., 2018), while
recommendation systems must adapt to shifting user preferences (Koren, 2009) and defend against
malicious actors (Mukherjee et al., 2013; Christakopoulou & Banerjee, 2019; Zhang et al., 2020).
A natural remedy is a best-of-both-worlds strategy—provided it is computationally efficient.
However, recent privacy regulations (e.g., the EU’s GDPR (GDP, 2016)) restrict context collection
(for example, via third-party cookies), so the assumption of perfect knowledge of the context
distribution no longer holds. This gap motivates BOBW algorithms that explicitly handle corrupted
stochastic contexts—treating unexpected losses as corruptions—to secure optimal regret guarantees,
which existing literature has yet to address.
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• Subroutine computational efficiency for combinatorial bandits. Advances in large language
models (LLMs) allow platforms to generate vast pools of K candidate ads at negligible cost,
which can then be deployed for personalized advertising (Meguellati et al., 2024). Yet most
existing algorithms require solving a K-dimensional convex program in each round, making them
increasingly expensive as K grows. Moreover, on-the-fly customization of ad attributes (e.g., color,
layout) via generative models further increases the runtime of these subroutines. Consequently,
accelerating the per-round projection step is essential for practical, large-scale deployment.

Contributions. Our key contributions are summarized as follows.

• Best-of-Both-Worlds for Contextual Combinatorial Semi-Bandits. We propose an algorithm
for general contextual combinatorial semi-bandits that achieves both Õ(

√
T ) regret in the adver-

sarial regime and Õ(lnT ) regret in the corrupted stochastic regime.1 Our method instantiates
Follow-the-Regularized-Leader (FTRL) with a Shannon-entropy regularizer, enabling efficient
implementations in many practical settings (see Sec. 2).

• Accelerated Projection for FTRL/OSMD. For a popular class of combinatorial action sets,
namely the m-set, we accelerate the projection subroutine in any FTRL scheme with a Legendre
regularizer—equivalently, in Online Stochastic Mirror Descent (OSMD) for linear payoffs under the
corresponding mirror map (Shalev-Shwartz, 2012). By exploiting the Karush-Kuhn-Tucker (KKT)
conditions, we reduce the typical K-dimensional convex projection to a one-dimensional root-
finding problem (see Sec. 3). Results therein are generalizable to a broader class of combinatorial
action set that admits a separable structure, e.g., separable matroids.

As a result, our algorithm is comparable to the per-iteration complexity of Follow-the-Perturbed-
Leader (FTPL) (Neu, 2015; Neu & Bartók, 2016)—which injects random noise to cumulative losses
and selects the action with minimal perturbed total loss—while preserving the tight adversarial
and stochastic regret guarantees characteristic of FTRL. Hence, we achieve both statistical and
computational efficiency.

1.1 RELATED WORK

Our work builds on three streams of literature: (i) contextual combinatorial bandits, (ii) algorithms
that exploit semi-bandit feedback, and (iii) adversarial linear bandits and best-of-both-worlds
algorithms.

(i) Contextual Combinatorial Bandits. The contextual combinatorial bandit problem was introduced
by Qin et al. (2014), who proposed the C2UCB algorithm for multi-item recommendations. This
framework builds on earlier combinatorial semi-bandit models motivated by influence maximization
in social networks Chen et al. (2013). Under the i.i.d. reward assumption, linear generalization across
arms reduces the regret dependence on the action-set size K from

√
K to the context dimension d.

Consequently, when d ≪ K, the regret scales with
√

dT instead of
√

KT , offering a substantial
statistical advantage. Stochastic variants have explored Thompson sampling Wang & Chen (2018)
and refined confidence sets Takemura et al. (2021); however, none of these algorithms provide optimal
regret guarantees against an adaptive adversary.

(ii) Semi-Bandit Feedback and Efficient Optimization. Combinatorial bandits were first formal-
ized by Cesa-Bianchi & Lugosi (2012), who generalized EXP3 (Auer et al., 2002) from single arms
to binary action vectors. Their algorithm, COMBAND, operates under full-bandit feedback—the
learner only observes an aggregated loss for the binary action vector they have chosen—and achieves
Õ
(√

mKT ln(K/m)
)

regret. Follow-up work connected this update to mirror descent on combinato-
rial polytopes: COMPONENTHEDGE Koolen et al. (2010), COMBEXP Combes et al. (2015), and the
OSMD analysis of Audibert et al. (2014). Audibert et al. (2014) provide a concise taxonomy and prove
matching lower bounds, showing that the

√
mKT rate is information-theoretically optimal whenever

semi-bandit feedback is available. These results are also summarized in (Bubeck & Cesa-Bianchi,
2012, Section 5.6.1). To reduce per-round runtime, Neu & Bartók (2016) introduced a stochastic
mirror-descent update that samples a single action and updates only the observed coordinates, thereby
avoiding the full Bregman projection required by standard OSMD or FTRL. The trade-off is an extra
logarithmic factor in the regret bound. Variance-reduced estimators and high-probability analyses

1Here, Õ(·) suppresses poly-logarithmic factors.
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Our Paper Qin et al. (2014) Zierahn et al. (2023) Ito et al. (2022) Kong et al. (2023)

Feedback Semi-bandit Full-bandit Semi/Full-bandit Graph bandit Linear bandit

Adv. Regret Õ
(

poly(d,m,K)
√

T
)

N/A Õ
(

poly(d,m,K)
√

T
)

Õ
(√

αT
)

Õ
(√

T
)

Stoch. Regret O
(
poly(d,m,K)(lnT )3) Õ

(
d
√

mT
)

N/A O

(
α(lnT )3

∆min

)
O

(
(lnT )2

∆min

)

Table 1: Comparison of regret bounds across different settings

later refined these guarantees (Zimmert et al., 2019), yet computing the exact Bregman projection
still requires time linear in the number of arms K.
(iii) Adversarial Linear Bandits and Best-of-Both-Worlds. When losses can adapt to the learner’s
past, the i.i.d. assumption no longer holds. For single-arm actions (m = 1) the classical EXP4 algo-
rithm attains Õ(

√
T ) regret, but its running time and memory scale with the number of experts—that

is, the total number of deterministic policies mapping contexts to arms—which grows exponentially
in the arm size K (Auer et al., 2002). Neu & Olkhovskaya (2020) mitigated this explosion with
REALLINEXP3, achieving Õ

√
dKT regret under the strong assumption that the context distribution

is known. Liu et al. (2023) proposed an algorithm that achieves O((dm)3
√

T ) regret bound when
applied to combinatorial semi-bandit case with only access to 1 context sample per time period t,
though the resulting log-determinant FTRL remains intractable for the combinatorial bandits case
because of exponentially many constraints Foster et al. (2020); Zimmert & Lattimore (2022) and
the nonlinearity introduced by their lifting covariance technique. The first near-optimal treatment is
the Matrix-Geometric-Resampling (MGR) algorithm of Zierahn et al. Zierahn et al. (2023), which
achieves Õ

(√
mKT max{d,m/λmin(Σ)}

)
regret but fails to provide best-of-both-worlds regret guar-

antees and relies on a sampling sub-routine which requires O(lnT ) samples in each round. Similar to
the issue of generalizing (Liu et al., 2023), a straightforward extension of the best-of-both-worlds
(BOBW) algorithm from the linear contextual bandit setting, as studied by Kuroki et al. (2024),
to the contextual combinatorial bandit framework yields an action space whose cardinality grows
exponentially with the size of the combinatorial decision variables. This exponential growth ren-
ders the resulting optimization problem NP-hard and computationally infeasible for large-scale
applications. More broadly, the BOBW question—achieving Õ(lnT ) under stochastic contexts
and Õ(

√
T ) under adversarial ones without prior knowledge—originated in the K-armed bandit

setting (Bubeck & Slivkins, 2012; Seldin & Slivkins, 2014) and has since been settled for linear
bandits via data-dependent stability (Lee et al., 2021), and a streamlined FTRL scheme (Kong et al.,
2023) and for contextual bandits via Exp4-style expert reductions (Pacchiano et al., 2022; Dann
et al., 2023), at the cost of exponential policy-enumeration. In the purely combinatorial semi-bandit
setting, hybrid-regularizer methods (Zimmert et al., 2019; Ito, 2021) achieve the optimal BOBW rates
but do not consider contextual information and the stemmed difficulty of inverse-covariance matrix
estimation. Consequently, no prior method simultaneously handles unknown covariance, large/infinite
policy classes, and combinatorial action structure while maintaining BOBW regret bounds. We close
this gap with a Shannon-entropy FTRL algorithm that requires neither policy enumeration nor known
Σ, yet still achieves optimal BOBW rates on arbitrary combinatorial action sets.

2 BEST-OF-BOTH-WORLDS ALGORITHM FOR CONTEXTUAL COMBINATORIAL
SEMI-BANDITS

We begin our analysis of contextual combinatorial bandits by describing the interaction protocol that
the learner follows and the problem settings that the best-of-both-worlds framework unifies. Given K
base arms, m maximum number of base arms allowed to pull per round, an action set A⊆{A ∈
{0,1}K : ∑

K
k=1(A)k ≤ m}, and a context space X ⊂ Rd , the interaction protocol for the contextual

combinatorial bandit problem proceeds as follows.

Interaction Protocol. In each round t = 1, . . . ,T the interaction protocol proceeds as follows. The
environment first chooses the loss coefficients θt,1, . . . ,θt,K ∈ Rd , and draws an i.i.d. context Xt ∼D .
The learner observes Xt and plays the vector At ∈A . The learner then observes the arm-wise losses
ℓt(Xt ,k) = ⟨Xt ,θt,k⟩ for every k such that (At)k = 1 and suffers the total loss ∑

K
k=1 ℓt(Xt ,k)(At)k.
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Consistent with the prior work on linear contextual bandits such as (Kuroki et al., 2024), we adopt
the following assumption throughout this paper.
Assumption 1. The distribution D , from which contexts X are independently drawn, satisfies
E[XX⊤] = Σ ≻ 0; ∥X∥2 ≤ 1 D-almost surely; ∥θt,k∥2 ≤ 1 for all k ∈ [K] and t ∈ [T ]; ℓt(x,k) =
⟨x,θt,k⟩ ∈ [−1,1] for all x ∈X ,k ∈ [K], and t ∈ [T ].

Under this assumption, we distinguish between the adversarial and stochastic regimes as follows. In
the adversarial regime, the unknown loss coefficients {θt,k}K

k=1 may vary arbitrarily with respect to
time but is independent of the learner’s action sequence. In the stochastic regime, the loss function
takes the form ℓt(Xt ,k) = ⟨Xt ,θk⟩+ ε(Xt ,k) for all k ∈ [K], where θk is also unknown but fixed
throughout the T interaction periods, and ε(Xt ,k) is an independent zero-mean noise. There is
an additional intermediate regime that interpolates between the adversarial and stochastic regime,
referred to as corrupted stochastic regime (Zimmert & Seldin, 2021; Kuroki et al., 2024). In this case,
the loss function associated with each base arm k is defined by ℓt(Xt ,k) = ⟨Xt ,θt,k⟩+ ε(Xt ,k), where
ε(Xt ,k) is independent zero-mean noise. On the other hand, the coefficients θt,k are such that there
exist fixed and unknown vectors θ1, . . . ,θK and that satisfy ∑

T
t=1 maxA∈A ∑

K
k=1 ∥θt,k−θk∥2(A)k ≤C

for a fixed corruption level constant C > 0. Note that C = 0 corresponds to the stochastic regime
and C = Θ(T ) corresponds to the adversarial regime with additional zero-mean noise. For any fixed
context vector x ∈X , we define u⋆ : X → A as the optimal context-dependent action map that
achieves minimum loss in hindsight, that is,

u⋆(x) = argmin
A∈A

E

[
T

∑
t=1

K

∑
k=1

ℓt(x,k)(A)k

]
.

The learner’s performance is then measured by the pseudo-regret

RT = E

[
T

∑
t=1

K

∑
k=1

ℓt(Xt ,k)
(
(At)k−

(
u⋆(Xt)

)
k

)]
,

where the expectation is taken with respect to the action-selection distribution chosen by the learner
and the sequence of random contexts and loss coefficients chosen by the environment. As noted in
the introduction, it is well-established in the literature that the optimal regret bounds are Õ(lnT )
in the stochastic regime and Õ(

√
T ) in the adversarial regime. Algorithms that achieve both rates

simultaneously and without prior knowledge of the environment’s nature are referred to as “best-of-
both-worlds” (Bubeck & Slivkins, 2012; Seldin & Slivkins, 2014).

In the stochastic regime, we define the suboptimality gap associated with an arbitrary action A ∈A
and a fixed context x ∈X through ∆A(x) = ∑

K
k=1 ℓt(x,k)((A)k − (u⋆(x))k), and its minimum as

∆min = minA∈A \{u⋆(x)}minx∈X ∆A(x). Additionally, we denote Ft = σ(X1,A1, . . . ,Xt ,At) as the σ -
algebra generated by the history of contexts and actions up to and including time t. For any positive
semi-definite matrix M ∈Rd×d , we denote by λmin(M) its smallest eigenvalue. With these definitions
and notation in place, we now turn to our proposed method. Algorithm 1 consists of an action-
selection rule and a loss-estimation procedure. The action-selection rule applies entropy-regularized
FTRL to the convex hull of the action set, then samples an action from the original combinatorial
action space, whose cardinality grows exponentially with m. Namely, we denote the Shannon entropy
H : conv(A )→ R by H(A) = −∑

K
k=1(A)k ln(A)k and specify the time-varying regularizer used in

Step 3 of Algorithm 1 as ψt(A) =−H(A)/ηt .

The loss estimation is particularly relevant for the contextual case, as learning the optimal action
hinges on a computationally tractable approximation of the unknown parameter θt,k governing the loss.
Given the covariance matrix Σt,k =E[(At)kXtX⊤t |Ft−1], it is known that we can construct the unbiased
estimator θ̂t,k defined through θ̂t,k = Σ

−1
t,k Xtℓt(Xt ,k)(At)k for all k ∈ [K]. However, computing this

estimator is computationally inefficient as its construction requires computing the inverse of the d×d
covariance matrix Σt,k, which is of complexity O(d3). Furthermore, this estimation approach assumes
that the covariance matrix is known in advance, which is not the case in most real-world scenarios.
To avoid such practical problems, we consider relying on the approach of the Matrix-Geometric-
Resampling method proposed by (Neu & Olkhovskaya, 2020), as described by the subroutine within
Algorithm 1. This approach improves the computational efficiency by order of O(d) comparing
to computing the naı̈ve unbiased estimator and does not require full knowledge of the context
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Algorithm 1 FTRL for contextual combinatorial semi-bandits

Require: Context dimension d, subset size m≤ K, exploration set E ⊆A , learning rates {ηt}T
t=1,

{αt}T
t=1, {Mt}T

t=1, initialization θ̃0,k = 0 for all k ∈ [K]
1: for t = 1, . . . ,T do
2: Observe context Xt ∈ Rd

3: Compute Āt(Xt) ∈ argmina∈conv(A ) ∑
t−1
s=1 ∑

K
k=1⟨Xs, θ̃s,k⟩(Ā)k +ψt(a)

4: Find a distribution pt(·|Xt) over A such that Ea∼pt (·|Xt )[a] = Āt(Xt)
5: Set πt(a|Xt) = (1−αtηt)pt(a|Xt)+αtηt1[a ∈ E]/|E| for all a ∈A and sample At ∼ πt(·|Xt)
6: Observe loss ℓt(Xt ,k) for all k ∈ [K] such that (At)k = 1
7: Subroutine Precision-matrix estimation(πt ,Mt )
8: for n = 1, . . . ,Mt do
9: Draw X(n)∼D and A(n)∼ πt(·|X(n))

10: Compute Cn,k = ∏
n
j=1(I− (A( j))kX( j)X( j)⊤/2) for all k ∈ [K]

11: return Σ̂
+
t,k = (I +∑

Mt
n=1 Cn,k)/2 for all k ∈ [K]

12: End Subroutine
13: Compute θ̃t,k = Σ̂

+
t,kXtℓt(Xt ,k)(At)k for all k ∈ [K]

distribution D , at the cost of introducing an additional bias in the estimation of the precision matrix
Σ
−1
t,k . Note that we only require Mt = ⌈4K ln(t)/(αtηtλmin(Σ))⌉= Õ(ln(t)) context samples at every

time step. Additionally, an exploration set E ⊆A is introduced to bound λmin(Σt,k) away from zero.
The set E thus must satisfy that, for every k ∈ [K], there is at least one action A∈ E such that (A)k = 1.
For simplicity, we select E =

{
A∈ {0,1}K : ∑

K
k=1(A)k = 1

}
, in which case |E|= K. For every t ∈ [T ],

we specify the remaining algorithmic parameters as ηt = 1/βt , where βt = max{2,c2 lnT,β ′t } and
β ′t+1 = β ′t + c1(1+ (m ln(K/m))−1

∑
t
s=1 H(Ās(Xs)))

−1/2. We also let αt = 4K ln(t)/λmin(Σ). In
addition, we set the problem-dependent constants c1 =

√
(d + lnT/λmin(Σ))K lnT/(m ln(K/m)) as

well as c2 = 8K/λmin(Σ). For initializations, we choose β ′1 = c1 ≥ 1. These definitions ensure that
0≤ αtηt ≤ 1/2 and 0 < ηt ≤ 1/2 throughout t = 1, . . . ,T rounds.

We state our main results in Theorem 2.1 and sketch the key elements of its proof in the next
section. The regret upper bounds presented in Theorem 2.1 are optimal in the dependence on T up to
logarithmic factors and, to the best of our knowledge, constitute the first known best-of-both-worlds
results for contextual combinatorial semi-bandits. Note that in the corrupted stochastic regime, the
corruption budget C enters only as an additive constant in the regret bound (see Appendix A.1 for
details) and is therefore subsumed by the O(·) notation.

Theorem 2.1 (Best-of-both-worlds regret guarantee for contextual combinatorial bandits). The regret
of Algorithm 1 satisfies the following.

(i) In the adversarial regime, we have RT = O
(

m
√

K ln(K/m)T lnT (d + lnT/λmin(Σ))
)

;
(ii) In the stochastic regime and the corrupted stochastic regime, we have RT =

O
(

K lnT m3/2 ln((K−m)T )(d+lnT/λmin(Σ))
∆min

)
.

2.1 REGRET ANALYSIS

Establishing a best-of-both-worlds guarantee with a computationally efficient algorithm poses several
challenges. First, the approach of Zierahn et al. (Zierahn et al., 2023), which uses fixed learning and
sampling rates yields only an Õ(

√
T ) suboptimal regret bound in the stochastic regime—a result

of its constant-learning-rate schedule and the coarse penalty bound in the FTRL analysis. Second,
adopting the context-less best-of-both-worlds analysis for combinatorial semi-bandits by Zimmert et
al. (Zimmert et al., 2019) relies on a hybrid regularizer to control arm-wise entropy; this, however,
demands arm-wise bias control that state-of-the-art precision-matrix estimators cannot guarantee
under standard assumptions. To overcome these limitations, we exploit the time-varying learning rate
to refine the regret analysis to be compatible with the stochastic regime, and we lift the mean-action
space (support size K) to the space of action distributions (support size exponential in m). Together,
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these approaches enable a self-bounding argument commonly used to achieve a Õ(lnT ) regret bound
in the stochastic and corrupted stochastic regimes.

Analyzing regret in the contextual combinatorial semi-bandit setting presents an inherent challenge
due to the evolving dependency between the sequence of observed contexts X1, . . . ,XT , and the
learned parameters {θ̃1,k}K

k=1, . . . ,{θ̃T,k}K
k=1. To address this, we follow a strategy inspired by (Neu &

Olkhovskaya, 2020; Zierahn et al., 2023), in which we introduce an auxiliary game that simplifies the
regret analysis. We define an auxiliary regret notion by introducing a ghost context sample X0 ∼D ,
drawn independently from the data used to construct the estimates {θ̃t,k}K

k=1. The regret in this
auxiliary game is then

R̃T (X0) = E

[
T

∑
t=1
⟨X0, θ̃t,k⟩

(
(At)k−

(
u⋆(X0)

)
k

)]
.

This fixed-context formulation decouples the randomness in the context sequence from the random-
ness in parameter estimation, making the analysis more tractable. The following result relates the
regret in the original contextual semi-bandit setting (as defined in the previous section) to the regret
in the auxiliary game.
Lemma 2.2 (Original game vs. auxiliary game (Neu & Olkhovskaya, 2020, Equation (6))). For any
X0 ∼D , the regret of Algorithm 1 satisfies

RT ≤ E
[
R̃T (X0)

]
+2

T

∑
t=1

E

[
max
A∈A

E

[
K

∑
k=1
⟨Xt , θ̂t,k− θ̃t,k⟩(A)k |Ft−1

]]
.

This decomposition allows us to break down the regret into two components: the auxiliary regret,
which captures the performance of the algorithm in a fixed-context game, and the excess bias-induced
regret, which reflects the cumulative effect of using θ̃t,k rather than the unbiased estimator θ̂t,k.
By analyzing these two terms separately, we can control the total regret under both stochastic and
adversarial assumptions.

As an initial step in our regret analysis, we state the following lemma, which bounds the per-round
excess regret introduced by the bias in the precision-matrix estimation subroutine. This result enables
us to bound the total bias-induced regret in Lemma 2.2 by O(lnT ) and to control the additional
exploration regret in the auxiliary game.
Lemma 2.3 (Bias control). For all t ∈ [T ], the estimates {θ̃t,k}K

k=1 constructed in Algorithm 1 satisfy
maxA∈A E

[
∑

K
k=1⟨x, θ̂t,k− θ̃t,k⟩(A)k |Ft−1

]
≤ m/t2.

We proceed to bound the regret for the auxiliary game, whose proof strategy follows by an FTRL
analysis with a carefully-chosen learning-rate schedule, while taking context into account.
Lemma 2.4 (Regret decomposition for the auxiliary game). The regret of Algorithm 1 evaluated in
the auxiliary game satisfies

E
[
R̃T (X0)

]
= L

√(
Kd lnT +

√
mK(lnT )2

λmin(Σ)

) T

∑
t=1

E[H(Āt(X0))]+
8Km ln(K/m) lnT

λmin(Σ)
,

where L > 0 is a universal constant.

Lemma 2.4 serves as the combinatorial bandits analogue of Lemma 3 in (Kuroki et al., 2024), which
was established for linear contextual bandits. However, while (Kuroki et al., 2024) defines entropy
over the space of action distributions, our setting defines entropy over the mean-action polytope. As a
result, directly generalizing their entropy bound to settings with multiple arm pulls is insufficient for
establishing an optimal regret bound in the stochastic regime for contextual combinatorial bandits.
To overcome these limitations, we derive a refined entropy bound by exploiting a careful partitioning
of the base arm set [K] and lifting the mean-action space (support size K) to the space of action
distributions (support size exponential in m). This refined bound enables the application of the
self-bounding technique from (Zimmert & Seldin, 2021) in the stochastic setting.
Lemma 2.5 (Refined entropy bound in the stochastic regime). Take a ghost sample X0 ∼ D and
any action sequence A1, . . . ,At generated under the policy sequence π1, . . . ,πT using Algorithm 1.
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Suppose that ∑
T
t=1 ∑k:(u⋆(X0))k=0(At)k ≥ e, where we recall that e is the Euler number. The mean-

action sequence Ā1, . . . , ĀT generated by Algorithm 1 then satisfies

E

[
T

∑
t=1

H(Āt(X0))

]
≤ m ln((K−m)T )E

[
T

∑
t=1

∑
A∈A \{u⋆(Xt )}

πt(A)

]
.

The proof for Theorem 2.1 then follows by combining the insights of all lemmas presented in this
section. The complete proof auxiliary results are deferred to Appendix A.1.

3 EFFICIENT NUMERICAL SCHEME FOR COMBINATORIAL SEMI-BANDITS

In the adversarial combinatorial semi-bandit setting, as presented in Section 2, the learner must
perform FTRL/OSMD updates over the convex hull of the combinatorial action space —an operation
that naively entails a K-dimensional Bregman projection. By exploiting the KKT conditions of this
convex subproblem, we reduce each update to a single one-dimensional root-finding call per round,
yielding a more computationally efficient scheme. We first formalize the interaction protocol and
then present the OSMD algorithm (Algorithm 2) under the context-free regime. For simplicity, we
study in this section the m-set setting, where exactly m arms are pulled in each round. Note that in
terms of computing Bregman projection, the context-free m-set setting is without loss of generality,
since Step 3 of Algorithm 1 is computed under a fixed context and we may iterate through m number
of j-subsets, where j = 1, . . . ,m. An efficient Õ(K) action-sampling procedure in the m-set setting is
proposed in (Zimmert et al., 2019, Appendix B.2).

Interaction Protocol. Fix the number of base arms K and m-set size m≤ K. Let A = {A ∈ {0,1}K :
∑

K
k=1(A)k=m}. Then, in each round t = 1, . . . ,T , the interaction protocol proceeds as follows. The

environment chooses an adversarial loss vector ℓt = (ℓt,1, . . . , ℓt,K) ∈ [−1,1]K . The learner then plays
the vector At ∈A , suffers the total loss ⟨At ,yt⟩= ∑

K
k=1 ℓt,k(At)k, and observes the coordinate losses

ℓt,k for every k such that (At)k = 1.

Algorithm 2 Online stochastic mirror descent for semi-bandits (Lattimore & Szepesvári, 2020,
Algorithm 18)

Require: m-set size m≤ K, learning rate η , function F
1: Initialize Ā0 = argmina∈conv(A ) F(a)
2: for t = 1, . . . ,T do
3: Choose distribution pt over A such that Ea∼pt [a] = Āt
4: Sample action At ∼ pt , observe partial losses ℓt,k for all k with (At)k = 1
5: Compute the importance-weighted loss estimator ℓ̂t,k = (At)kℓt,k/(Āt)k for all k ∈ [K]

6: Update the decision vector by solving Āt+1 = argmina∈conv(A ){η⟨a, ℓ̂t⟩+DF(a, Āt)}

Algorithm 2 proceeds in each round by: (i) sampling an action At ∼ pt , (ii) computing the importance-
weighted loss estimator ℓ̂t,k, and (iii) updating the mean action via the Bregman projection. Here,
DF(a, Āt) is the Bregman divergence from Definition 1.

Definition 1 (Bregman divergence). Given a convex differentiable function F : A →R, the Bregman
divergence DF : conv(A )× conv(A )→ R+ associated with F is defined as

DF(a, Ā) = F(a)−F(Ā)−⟨∇F(Ā), a− Ā⟩ ∀a, Ā ∈ conv(A ).

Assuming that the convex potential function F : A → R is separable, that is, F can be expressed as
F(a) = ∑

K
k=1 f (ak) where f : R→ R is convex, and ak is the k-th coordinate of a ∈A . Hence, the

update step amounts to solving the convex subproblem

min
a∈conv(A )

η⟨a, ℓ̂t⟩+DF(a, Āt), (1)

whose unique minimizer we denote by a⋆.
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We derive the KKT conditions as the following. Let us assign the following Lagrangian multipliers
λ ∈ R to the constraint ∑

K
k=1 ak = m, then µ ∈ RK to the set of constraints ak ≥ 0, ∀k ∈ [K]

and ν ∈ RK to the set of inequality constraints ak ≤ 1, ∀k ∈ [K]. Then the Lagrangian has the
form L (a,λ ,µ,ν) = ∑

K
k=1[η ℓ̂t,kak + f (ak)− f ((Āt)k)− f ′((Āt)k)(ak− (Āt)k)]+λ (∑K

k=1 ak−m)−
∑

K
k=1 µkak +∑

K
k=1 νk(ak−1). The resulting KKT conditions for equation 1 are as follows.

0 ≤ ak ≤ 1, ∑
K
k=1 ak = m, ∀k ∈ [K] (Primal feasibility)

µk ≥ 0, νk ≥ 0, ∀k ∈ [K] (Dual feasibility)
µk ak = 0, νk (ak−1) = 0, ∀k ∈ [K] (Complementary slackness)

η ℓ̂t,k + f ′(ak)− f ′((Āt)k)+λ −µk +νk = 0, ∀k ∈ [K] (Stationarity)

We continue to reformulate the stationarity condition by distinguishing between cases for an arbitrary
arm index k ∈ [K]. First, note that when ak > 0, complementary slackness implies that µk = 0.
Substituting into the stationarity condition yields f ′(ak)+λ + ck = 0, where we use the shorthand
notation ck = η ℓ̂t,k− f ′((Āt)k). Inverting f ′ then gives ( f ′)−1(−λ−ck) = ak. Next, consider the case
when ak = 0, the stationarity condition together with dual feasibility µk ≥ 0 gives f ′(0)+λ + ck =
µk ≥ 0, which implies ( f ′)−1(−λ − ck) ≤ 0. Since the range of ( f ′)−1 is [0,1], we conclude that
( f ′)−1(−λ −ck) = 0 = ak. Thus, we have shown that solving the K-dimensional convex optimization
problem equation 1 reduces to a one-dimensional root-finding problem ∑

K
k=1( f ′)−1(−λ − ck) = m.

Algorithm 3 Bisection algorithm for solving equation 1

Require: Tolerance ε , loss parameters c
1: Initialize λ = mink∈[K]{−ck− f ′(m/K)} and λ̄ = maxk∈[K]{−ck− f ′(m/K)}
2: for l = 1 to log2(ε

−12L
√

K(λ̄ −λ )) do
3: λ = (λ + λ̄ )/2
4: if m−∑

K
k=1( f ′)−1(−λ − ck)> 0 then

5: λ̄ ← λ

6: else
7: λ ← λ

8: return ak = m/K +( f ′)−1(−λ − ck)− (1/K)∑
K
k=1( f ′)−1(−λ − ck) for all k ∈ [K]

Similar to the result in (Li et al., 2024, Theorem 6.1), which analyzes a perturbation-based algorithm
specialized for multi-armed bandits, our bisection algorithm enjoys the following convergence
guarantee.

Theorem 3.1 (Convergence of Algorithm 3). Suppose that f is strictly convex and differentiable,
and that ( f ′)−1 is L-Lipschitz continuous. Then, for any tolerance ε > 0, Algorithm 3 outputs
a ∈ conv(A ) with ∑

K
k=1 ak = m and ∥a−a⋆∥2 ≤ ε.

Even when ( f ′)−1 is not available in closed form, we may resort to some approximation oracle.
Below we discuss how the convergence proof could be modified to accommodate the approximation
error.

Corollary 3.2 (Convergence with an approximate inverse oracle). Assume we have an oracle that, on
input z∈R, returns ỹ=( f ′)−1(z) satisfying |ỹ−( f ′)−1(z)| ≤ τ for some known tolerance τ > 0. Then,
under the same assumptions as in Theorem 3.1, and provided that τ ≤ ε/(2

√
K), the approximate

algorithm yields a vector ã ∈ conv(A ) satisfying ∥ã−a⋆∥2 ≤ ε in O(ln(L
√

K(λ̄ −λ )/ε)) bisection
iterations.

Note that Algorithm 2 calls Algorithm 3 with input ck = η ℓ̂t,k− f ′((Āt)k) for all k ∈ [K] in each
iteration t = 1, . . . ,T in order to compute the mean-action vector Āt . Thus, the width of the search
interval λ̄ −λ is on the order of O(t) with high probability. This observation implies that the t-th call
to Algorithm 3 requires O(ln(

√
Kt/η)) iterations with high probability. In addition, each iteration

runs in time O(K). Hence, if η = O(
√

T ), then the t-th call of Algorithm 3 runs in time at most
O(K ln(

√
KT )) = Õ(K) with high probability. Using the sampling scheme of complexity Õ(K)

8
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proposed by Zimmert et al. (2019), the efficiency of Algorithm 3 as used by Algorithm 2 is thus
comparable to the sampling procedure employed by FTPL (Neu & Bartók, 2016).

We remark on the extension of our results in this section to settings beyond m-set such as a partition
matroid (Oxley, 2006). Although we now have cardinality constraints per partition instead of a
single cardinality constraint, each partition is handled by its own scalar root-finding problem, and
every arm enters exactly one partition. Hence, the work across all partitions sums to K, which is the
same as the uniform-matroid case. Building on the previous observation, the Bregman projection
using our method still runs in time O(K log(1/ε)); the bisection method over partition i runs in time
O(ci log(1/ε)) with K = ∑i ci.

3.1 NUMERICAL EXPERIMENTS

We now evaluate the per-iteration runtime of Algorithm 3. All experiments are conducted on a
machine with a 2.3 GHz 8-core Intel Core i9 processor and all optimization problems are modeled
in Python. In all experiments, we fix the m-set size to m = 5, vary the number of base arms
K ∈ {10, . . . ,100}, and run each algorithm for N = 25 iterations on a loss vector y ∈ [0,1]K whose
entries are drawn uniformly at random. Mean per-iteration runtimes and their 95% confidence
intervals are reported, and two instances of problem equation 1, each employing a different regularizer,
are evaluated. The first instance uses Tsallis entropy with parameter α = 1/2, as in (Zimmert et al.,
2019; Zimmert & Seldin, 2021), which is known to achieve best-of-both-worlds results. This
corresponds to the regularizer f (x) =−√x (labeled as “Tsallis”). The second instance employs the
widely used negative Shannon entropy, induced by the regularizer f (x) = x lnx (labeled as “Negative
Shannon entropy”).
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(b) Negative Shannon entropy.

Figure 1: Per-iteration runtime for different regularizers.

We compute the mean-action projection of FTRL via Algorithm 3, and compare it against two
baselines: the heuristic Newton method used in (Zimmert et al., 2019), 2 and a direct implementation
of the optimization step using MOSEK.3 In all cases, we solve to an error tolerance of ε = 10−7,
matching the suboptimality and feasibility tolerances used in MOSEK. Figure 1 visualizes the per-
iteration runtimes of Algorithm 3, the Newton method, and MOSEK, as a function of the number K
of base arms. We observe that Algorithm 3 runs nearly 10 times faster than the Newton baseline for
K = 100, and consistently outperforms MOSEK by a factor of approximately 5 across all values of K.
This highlights the computational efficiency of our bisection-based Algorithm 3.
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A APPENDIX

A.1 PROOFS AND AUXILIARY RESULTS FOR SECTION 2

For ease of notations in the proofs, we set γt = αtηt throughout this section. We start by addressing
the terms relevant to the regret induced in the auxiliary game for a fixed context R̃T (x). Denote as
well the time-varying Bregman divergence from p ∈ conv(A ) to q ∈ conv(A ) through

Dt(q, p) = ψt(q)−ψt(p)−⟨∇ψt(q),q− p⟩.

We start by the following lemma by following a standard FTRL analysis with varying potentials.

Lemma A.1 (Stability-penalty decomposition). For any context x ∈X and γt ≤ 1 for all t ∈ [T ], we
have

EAt

[
T

∑
t=1
⟨x, θ̃t,k⟩((At)k− (u⋆(x))k)

]

≤
T

∑
t=1

(
ψt(Āt+1(x))−ψt+1(Āt+1(x))

)
+ψT+1(u⋆(x))−ψ1(Ā1(x))︸ ︷︷ ︸

Penalty

+
T

∑
t=1

(1− γt)
K

∑
k=1
⟨x, θ̃t,k⟩

(
(Āt(x))k− (Āt+1(x))k

)
−Dt(Āt+1(x), Āt(x))︸ ︷︷ ︸

Stability

+ U(x)︸︷︷︸
Exploration-induced regret

,

(2)
where U(x) = ∑

T
t=1 γt ∑

K
k=1⟨x, θ̃t,k⟩(1/|E|− (u⋆(x))k).

Proof of Lemma A.1. It follows from the construction of Āt(x) that

EAt

[
T

∑
t=1
⟨x, θ̃t,k⟩

(
(At)k− (u⋆(x))k

)]

=
T

∑
t=1

K

∑
k=1

(1− γt)
(
(Āt(x))k− (u⋆(x))k

)
⟨x, θ̃t,k⟩+

T

∑
t=1

K

∑
k=1

γt

( 1
|E| − (u⋆(x))k

)
⟨x, θ̃t,k⟩.

Applying a standard FTRL regret decomposition result (see e.g. (Lattimore & Szepesvári, 2020,
Exercise 28.12)) to the first term on the right-hand side of the above expression and applying the
definition of U(x) yields the desired result.

The following lemma is a building block for bounding the stability term appearing in Lemma A.1.

Lemma A.2 (Bound for the scaled per-arm loss). Under the assumptions of Lemma A.1, we have

max
k∈[K]
|ηt⟨x, θ̃t,k⟩| ≤ 1.
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Proof of Lemma A.2. Observe that

max
k∈[K]
|ηt⟨x, θ̃t,k⟩|= max

k∈[K]

∣∣∣ηt⟨x, Σ̂+
t,kXtℓt(Xt ,k)(At)k⟩

∣∣∣
≤ max

k∈[K]

∣∣∣ηtx⊤Σ̂
+
t,kXt

∣∣∣
≤ ηt max

k∈[K]
∥Σ̂+

t,k∥op ≤
ηt(Mt +1)

2
≤

ηt
( 4K ln(t)

αt ηt λmin(Σ)
+1
)

2
≤ 1,

where the second inequality exploits Hölder’s inequality, which applies because ∥Xt∥2 ≤ 1 by
assumption, the third inequality holds thanks to (Zierahn et al., 2023, Lemma 1), the fourth inequality
holds due to the parameter choice γt = αtηt . The last inequality again follows by the parameter
choices αt = 4K ln(t)/(γtλmin(Σ)) and ηt ≤ 1/2.

We now decompose the regret for the auxiliary game stated in Lemma A.1 as follows.
Lemma A.3 (Regret breakdown for the auxiliary game). Under the assumptions of Lemma A.1, we
have

R̃T (x)−U(x)≤
T

∑
t=1

(1−γt)ηte
K

∑
k=1
⟨x, θ̃t,k⟩2(Āt(x))k +

T

∑
t=1

(βt+1−βt)H(Āt+1(x))+mc2 ln(K/m) lnT.

Proof of Lemma A.3. We analyze the stability and penalty terms appearing in Lemma A.1. First, we
bound the per-round stability term in equation 2. By (Lattimore & Szepesvári, 2020, Theorem 26.13)
and using that ∂ 2

(∂x)2 ψt(x) = 1
ηt x

for all x ∈ conv(A ), we have

K

∑
k=1
⟨x, θ̃t,k⟩

(
(Āt(x))k− (Āt+1(x))k

)
−Dt(Āt+1(x), Āt(x))≤

ηt

2

K

∑
k=1
⟨x, θ̃t,k⟩2(zt)k, (3)

where zt lies on the line segment connecting Āt(x) and q⋆ ∈ argmaxq∈RK ∑
K
k=1⟨x, θ̃t,k⟩((Āt(x))k−

qk) − Dt(q, Āt(x)). In addition, by the first-order optimality conditions we have q⋆k =

(Āt(x))k exp(−ηt⟨x, θ̃t,k⟩). Combining the previous observation with Lemma A.2 which states that
−ηt⟨x, θ̃t,k⟩ ∈ [−1,1] for all k ∈ [K], we deduce that q⋆k ∈ [(Āt(x))k/e,e(Āt(x))k]. Because zt lies on
the line segment connecting Āt and q⋆, we then have (zt)k ≤ e(Āt(x))k for all k ∈ [K], which in turn
implies that

K

∑
k=1
⟨x, θ̃t,k⟩2(zt)k ≤ 2

K

∑
k=1
⟨x, θ̃t,k⟩2(Āt(x))k. (4)

Substituting equation 4 into equation 3 establishes the upper bound for the stability term as claimed.
As for the penalty term, we have

T

∑
t=1

(
ψt(Āt+1(x))−ψt+1(Āt+1(x))

)
+ψT+1(u⋆(x))−ψ1(Ā1(x))

≤
T

∑
t=1

(βt+1−βt)H(Āt+1(x))+
m
η1

ln(K/m)≤
T

∑
t=1

(βt+1−βt)H(Āt+1(x))+mc2 ln(K/m) lnT,

where the first inequality holds because of Jensen’s inequality and noting that H takes nonnegative
values on conv(A ), and the second inequality holds because of the choice β1 = max{2,c2 lnT,c1}.
Thus, the claim follows.

We continue to bound the extra regret for the auxiliary game due to exploration, which uses Lemma 2.3
as a building block. For the sake of completeness we first state the proof of Lemma 2.3.

Proof of Lemma 2.3. (Zierahn et al., 2023, Lemma 3) and our choice of E that satisfies |E| = K
imply that

max
A∈A

E

[
K

∑
k=1
⟨x, θ̂t,k− θ̃t,k⟩(A)k |Ft−1

]
≤√mexp

(
−γtλmin(Σ)Mt

2K

)
.

The claim then follows by the choice of Mt used in Algorithm 1.

13
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We are now equipped with the technical tools necessary to bound the exploration-induced regret, as
stated below.

Lemma A.4 (Extra regret due to exploration). We have E[U(X0)]≤ (
√

m+1)E
[

∑
T
t=1 γt

]
.

Proof of Lemma A.4. Observe that

E[U(X0)]≤ E

[
T

∑
t=1

γt max
A∈A

E
[ K

∑
k=1
⟨X0, θ̃t,k− θ̂t,k + θ̂t,k⟩(A)k |Ft−1

]]

≤ E

[
T

∑
t=1

γt max
A∈A

E
[ K

∑
k=1
⟨X0, θ̃t,k− θ̂t,k⟩(A)k + ℓt(X0,k) |Ft−1

]]

≤ E

[
T

∑
t=1

γt max
A∈A

E
[ K

∑
k=1
⟨X0, θ̃t,k− θ̂t,k⟩(A)k +1 |Ft−1

]]
≤ (
√

m+1)E

[
T

∑
t=1

γt

]
,

where the second inequality follows by the unbiasedness of θ̂t,k, the third inequality holds by the
assumption that ℓt(x,k) ≤ 1 for all x ∈X and k ∈ [K], and the last inequality holds because of
Lemma 2.3.

The following is another preparation lemma for establishing Lemma 2.4, which constitutes an
adaptation of (Kuroki et al., 2024, Lemma 18) to the combinatorial semi-bandit setting. It provides a
refined bound on the penalty term induced by the Shannon entropy regularizer with respect to the
ghost sample.

Lemma A.5 (Entropic bound for the ghost sample). We have

E

[
T

∑
t=1

(β ′t+1−β
′
t )H(Āt+1(X0))

]
= O

(
c1
√

m ln(K/m)

√
T

∑
t=1

E[H(Āt(X0))]

)
.

Proof of Lemma A.5. By definition of β ′t , we obtain

E

[
T

∑
t=1

(β ′t+1−β
′
t )H(Āt+1(X0))

]
= E

[
T

∑
t=1

c1√
1+(m ln(K/m))−1 ∑

t
s=1 H(Ās(Xs))

H(Āt+1(X0))

]

≤ 2c1
√

m ln(K/m)E

 T

∑
t=1

H(Āt+1(X0))√
∑

t+1
s=1 H(Ās(Xs))+

√
∑

t
s=1 H(Ās(Xs))

 ,
where in the last step we used the fact that H(Ās(Xs))≤ m ln(K/m). The above upper bound further
reduces to

2c1
√

m ln(K/m)E

 T

∑
t=1

H(Āt+1(X0))√
∑

t+1
s=1 H(Ās(Xs))+

√
∑

t
s=1 H(Ās(Xs))


= 2c1

√
m ln(K/m)E

 T

∑
t=1

H(Āt+1(X0))(
√

∑
t+1
s=1 H(Ās(Xs))−

√
∑

t
s=1 H(Ās(Xs)))

H(Āt+1(Xt+1))


= 2c1

√
m ln(K/m)E

[
T

∑
t=1

√
t+1

∑
s=1

H(Ās(Xs))−
√

t

∑
s=1

H(Ās(Xs))

]

= 2c1
√

m ln(K/m)E

[√
T+1

∑
s=1

H(Ās(Xs))−
√

H(Ā1(X1))

]

≤ 2c1
√

m ln(K/m)E

[√
T

∑
s=1

H(Ās(Xs))

]
≤ c1

√
m ln(K/m)

√
T

∑
s=1

E[H(Ās(Xs))],

14
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where the first equality holds because EXt+1∼D

[
H(Āt+1(Xt+1))|Ft

]
= EX0∼D

[
H(Āt+1(X0))|Ft

]
.

The first inequality exploits the fact that H(Ās(Xs)) ≤ H(Ā1(X1)) = m ln(K/m), and the second
inequality follows from Jensen’s inequality. Thus, the claim follows.

The following lemma provides an upper bound on the refined per-round stability term established in
Lemma A.3 in the form of variance of the parameter estimates {θ̃t,k}K

k=1 for all t = 1, . . . ,T .
Lemma A.6 (Variance control (Zierahn et al., 2023, Lemma 5)). For any context x∈X , conditioning
on the history Ft−1 yields the variance bound

(1− γt)E

[
K

∑
k=1
⟨x, θ̃t,k⟩2(Āt(x))k |Ft−1

]
≤ 3Kd.

We are now equipped with all the technicalities needed to establish the regret bound for the original
game.

Proof of Lemma 2.4. We begin by establishing an upper bound on the sum of learning rates, ∑
T
t=1 ηt ,

which will be useful throughout the proof. Observe first that by construction of β ′t , we have

β
′
t = c1 +

t−1

∑
s=1

c1√
1+(m ln(K/m))−1 ∑

s−1
u=1 H(Āu(Xu))

≥ c1t√
1+(m ln(K/m))−1 ∑

t
s=1 H(Ās(Xs))

,

where the inequality holds because H(Āu(Xu))≥ 0 for all u ∈ [t]. Thus,

T

∑
t=1

ηt ≤
T

∑
t=1

1
β ′t
≤

T

∑
t=1

√
1+(m ln(K/m))−1 ∑

t
s=1 H(Ās(Xs))

c1t

≤ 1+ lnT
c1

√
1+(m ln(K/m))−1

T

∑
s=1

H(Ās(Xs))

= O

(
lnT

c1
√

m ln(K/m)

√
T

∑
t=1

H(Āt(Xt))

)
,

(5)

where we used H(Ā1(X1)) = m ln(K/m). It then follows that

E

[
T

∑
t=1

(1− γt)ηte
K

∑
k=1
⟨x, θ̃t,k⟩2(Āt(x))k

]
= E

[
T

∑
t=1

ηteE

[
(1− γt)

K

∑
k=1
⟨x, θ̃t,k⟩2(Āt(x))k |Ft−1

]]

≤ O

(
E

[
Kd · lnT

c1
√

m ln(K/m)

√
T

∑
t=1

H(Āt(Xt))

])

≤ O

 Kd · lnT

c1
√

m ln(K/m)

√√√√E

[
T

∑
t=1

H(Āt(Xt))

] ,

(6)

where the equality holds due to the law of iterated expectations, the first inequality holds thanks to
Lemma A.6 and equation 5, and the second inequality follows from Jensen’s inequality.

We continue to bound the extra regret due to exploration by the cumulative entropy term. It follows
from Lemma A.4 that

E[U(X0)]≤ (
√

m+1)E

[
T

∑
t=1

γt

]
≤ (
√

m+1)E

[
T

∑
t=1

4ηtK lnT
λmin(Σ)

]

= O

(
K(lnT )2

c1λmin(Σ)
√

ln(K/m)

√
T

∑
t=1

E[H(At(Xt))]

)
,

(7)

where the second inequality holds because γt = αtηt and the choice of αt as well as the fact that
ln t ≤ lnT . The equality then holds because of equation 5.
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Finally, we establish an upper bound for the penalty term in the regret decomposition. Denote
by t0 the first round in which β ′t becomes larger than the constant F = max{2,c2 lnT}, i.e., t0 =
min{t ∈ [T ] : β ′t ≥ F}. We then have

E

[
T

∑
t=1

(βt+1−βt)H(Āt+1(X0))

]

= E

[
t0−1

∑
t=1

(βt+1−βt)H(Āt+1(X0))+
T

∑
t=t0

(βt+1−βt)H(Āt+1(X0))

]

≤ E

[
(β ′t0 −β

′
t0−1)H(Āt+1(X0))+

T

∑
t=t0

(β ′t+1−β
′
t )H(Āt+1(X0))

]

≤ E

[
T

∑
t=1

(β ′t+1−β
′
t )H(Āt+1(X0))

]
= O

(
c1
√

m ln(K/m)

√
T

∑
t=1

E[H(Āt(X0))]

)
,

(8)

where the first inequality is due to the fact that βt = βt+1 while t ∈ [t0−2] ,βt0−1 ≥ β ′t0−1 by construc-
tion, and β ′t = βt for t ≥ t0. The second inequality holds because β ′t is increasing in t, while the second
equality holds thanks to Lemma A.5. The claim then follows by substituting equation 6, equation 7,
and equation 8 into terms in the statement of Lemma A.3 (to bound the regret for the auxiliary game)
as well as Lemma 2.2 (to bound the regret for the original game).

The crux to show the best-of-both-worlds result now lies in constructing a tight upper bound on the
cumulative entropy term that dominates the regret bound in Lemma 2.4.

Proof of Lemma 2.5. Observe that for any A ∈ conv(A ) and any S⊂A with |S|= m, it follows that

H(A) = ∑
k/∈S

(A)k ln
1

(A)k
+ ∑

k∈S
(A)k ln

1
(A)k

≤ ∑
k/∈S

(A)k ln
K−m

∑k/∈S(A)k
+ ∑

k∈S
(A)k

(
1

(A)k
−1
)

= ∑
k/∈S

(A)k

(
ln

K−m
∑k/∈S(A)k

+1
)
,

where the inequality holds because of Jensen’s inequality and because ln(1/x)≤ 1/x−1, and the
second equality holds because ∑k∈S(A)k +∑k/∈S(A)k = m thanks to the membership of A in conv(A ).
Applying the above inequality to the entropy with respect to action given the ghost sample X0 and
S = {k ∈ [K] : (u⋆(X0))k = 1} gives

T

∑
t=1

H(Āt(X0))≤
T

∑
t=1

∑
k:(u⋆(X0))k=0

(Āt)k

(
ln

K−m
∑k:(u⋆(X0))k=0(Āt)k

+1

)

≤
T

∑
t=1

∑
k:(u⋆(X0))k=0

(Āt)k ln
e(K−m)T

∑
T
t=1 ∑k:(u⋆(X0))k=0(Āt)k

≤ ln((K−m)T )
T

∑
t=1

∑
k:(u⋆(X0))k=0

(Āt)k,

(9)

where the second inequality follows by Jensen’s inequality, and the third inequality holds because

T

∑
t=1

∑
k:(u⋆(X0))k=0

(Āt)k ≥ e.
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We continue to bound the term ∑
T
t=1 ∑k:(u⋆(X0))k=0(Āt)k. Taking expectations yields

T

∑
t=1

∑
k:(u⋆(X0))k=0

(Āt)k =
T

∑
t=1

∑
k:(u⋆(X0))k=0

∑
A∈A

πt(A)(A)k

=
T

∑
t=1

∑
k:(u⋆(X0))k=0

∑
A∈A \{u⋆(X0)}

πt(A)(A)k

≤ m
T

∑
t=1

∑
A∈A \{u⋆(X0)}

πt(A).

Substituting the above expression into equation 9 and noticing that E[πt(u⋆(X0))|Ft−1] =
E[πt(u⋆(Xt))|Ft−1] thus establishes the claim.

Finally, Theorem 2.1 can be established via combining all of the insights yielded in the above lemmas.

Proof of Theorem 2.1. For ease of notation, let us denote κ =
√

Kd lnT +K(lnT )2/λmin(Σ). The
regret bound stated in (i) follows immediately from Lemma 2.2 combined with Lemma 2.4 as well as
the observation that ∑

T
t=1 H(Āt(X0))≤ m ln(K/m)T. We now show claim (ii). Note that in the case

of ∑
T
t=1 ∑k:(u⋆(X0))k=0(Āt)k < e, we have ∑

T
t=1 H(Āt(X0))≤ e ln(e(K−m)T )+1/e, in which case we

already have the desired bound. We thus continue to consider the case when ∑
T
t=1 ∑k:(u⋆(X0))k=0(Āt)k ≥

e. Observe that due to the definition of suboptimality gap ∆A(x) and the corruption budget C, it
follows that

RT ≥ E

[
T

∑
t=1

∑
A∈A \{u⋆(Xt )}

πt(A)∆A(x)

]
−2E

[
T

∑
t=1

max
A∈A

K

∑
k=1
∥Xt∥2∥θt,k−θk∥2(A)k

]

≥ ∆minE

[
T

∑
t=1

∑
A∈A \{u⋆(Xt )}

πt(A)

]
−2C.

(10)

For any λ ∈ [0,1], we may decompose the regret as

RT = (1+λ )RT −λRT

≤ (1+λ )κ

√√√√E

[
T

∑
t=1

H(Āt(X0))

]
−λ∆minE

[
T

∑
t=1

∑
A∈A \{u⋆(Xt )}

πt(A)

]
+2λC

+O

(
K

λmin(Σ)
m ln(K/m) lnT

)

≤ (1+λ )κ
√

ln((K−m)T )

√√√√mE

[
T

∑
t=1

∑
a∈A \{u⋆(Xt )}

πt(A)

]

−λ∆minE

[
T

∑
t=1

∑
A∈A \{u⋆(Xt )}

πt(A)

]
+O

(
K

λmin(Σ)
m ln(K/m) lnT

)

≤ O

(
(1+λ )2κ2m ln((K−m)T )

4λ∆min

)
= O

(
κ2m ln((K−m)T )

∆min

)
,

where the first inequality holds thanks to Lemma 2.2 combined with Lemma 2.4 as well as the lower
bound equation 10, the second inequality follows by Lemma 2.5. The third inequality holds by the
observation a

√
x−bx≤ a2/(4b) for any nonnegative scalars a,b,x, and the last equality follows by

choosing λ = 1.

A.2 PROOFS AND AUXILIARY RESULTS FOR SECTION 3

Example 1 (Choices of f ). We provide three examples of the arm-wise regularizer f on domain [0,1]
or (0,1] that admits a closed-form expression of ( f ′)−1 and satisfies the assumptions of Theorem 3.1.
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1. f (x) : [0,1]→ R is defined through f (x) = x logx− x for x ∈ (0,1] and f (0) = 0, which is
continuous on [0,1] and differentiable on (0,1]. Note that although logx is not defined at
x= 0, we have limx→0+ x logx= 0. Observe that its first derivative for x∈ (0,1] is lnx. It then
follows that ( f ′)−1(−λ −ck) = e−λ−ck for all k ∈ [K]. In addition, note that z = f ′(x) = lnx
ranges over the compact interval z ∈ (−∞,0]. On that interval, the derivative of the inverse
∂ez/∂ z = ez satisfies ez ≤ e0 = 1 for all z ∈ (−∞,0]. By the mean-value theorem, for any
z1,z2 ∈ [−∞,0] there exists c between them such that |ez1 − ez2 | = ec|z1− z2| ≤ 1|z1− z2|.
Hence, the function ( f ′)−1(−λ − ck) = e−λ−ck is 1-Lipschitz.

2. f (x) = x2 on [0,1]. It then follows that ( f ′)−1(z) = z/2 for all z ∈ [0,2]. As in the previous
case, with z =−λ − ck, for all k ∈ [K] we have ( f ′)−1(−λ − ck) = (−λ − ck)/2. Note also
that the function ( f ′)−1(−λ − ck) = (−λ − ck)/2 is globally (1/2)-Lipschitz on its entire
domain.

3. f (x) =−√x on (0,1]. Similar to previous calculations, we have x = ( f ′)−1(z) = 1/(4z2).
Note that it must hold z < 0 for the expression to be defined properly. Hence, with z =
−λ −ck < 0, for all k ∈ [K], we have ( f ′)−1(−λ −ck) = 1/(4(−λ −ck)

2). As x ∈ (0,1] we
have z =−1/(2

√
x) ∈ (−∞,−1/2]. On that interval, the derivative of the inverse is:

∂

∂ z

(
1

4z2

)
=− 1

2z3 .

On the interval z ∈
(
−∞,− 1

2

]
, the largest magnitude of derivative of the inverse map

|( f ′)−1(z)| occurs at the smallest |z|, namely at |z| = 1/2. This follows from the fact
that |( f ′)−1(z)| is decreasing as |z| grows. Then, sup |( f ′)−1(z)| = 4, on z ∈ (−∞,−1/2].
So, |( f ′)−1(z1)− ( f ′)−1(z2)| ≤ 4|z1− z2|, for all z1,z2 ∈ (−∞,−1/2] Therefore, ( f ′)−1 is
4-Lipschitz.

Proof of Theorem 3.1. We first show that the endpoints of the search interval give rise to strictly
negative and strictly positive function values, respectively. The definition of λ in Step 1 of Algorithm 3
implies that

− f ′(k/K)≤−λ − ck ∀k ∈ [K]. (11)
As f is strictly convex, its first derivative f ′ is strictly increasing, which in turn implies that its inverse
( f ′)−1 is also strictly increasing. Applying the inverse function to both sides of equation 11 yields

( f ′)−1(−λ − ck)≥ ( f ′)−1
(

f ′
(

k
K

))
=

k
K
∀k ∈ [K].

Summing over k = 1, . . . ,K gives ∑
K
k=1( f ′)−1(−λ − ck) ≥ k. A similar argument applied to λ̄

gives ∑
K
k=1( f ′)−1(−λ̄ − ck)≤ k. Thus, by the intermediate value theorem, there exists at least one

λ ∗ ∈ [λ , λ̄ ] such that
K

∑
k=1

( f ′)−1(−λ
⋆− ck) = 0.

Next, we show that the prescribed iteration number gives an approximate solution of λ ∗ upon
termination. By the assumed L-Lipschitz continuity of ( f ′)−1, we have

|( f ′)−1(x)− ( f ′)−1(y)| ≤ L|x− y| ∀x,y ∈ R. (12)

Define the modulus of uniform continuity δ (ε) by

δ (ε) = max
δ>0
{δ : |( f ′)−1(x)− ( f ′)−1(y)| ≤ ε/(2

√
K) ∀x,y ∈ R with |x− y| ≤ δ}.

Choosing δ0 = ε/(2L
√

K) gives |( f ′)−1(x)− ( f ′)−1(y)| ≤ Lδ0 = ε/(2
√

K), which implies that
δ (ε) ≥ ε/(2L

√
K). Let the initial interval length be ∆0 = λ̄ − λ , where λ̄ ,λ are initializations

specified in Step 1 of Algorithm 3. Note that each bisection iteration halves the interval’s length.
Therefore, the interval length after l iterations is ∆l = ∆0/2l . Denote by λl the midpoint of the l-th
interval. Since the true root λ ∗ lies within this interval, the error satisfies

|λl−λ
⋆| ≤ ∆l

2
=

∆0

2l+1 .
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To guarantee that the propagated error through the L-Lipschitz function ( f ′)−1 remains below
ε/(2
√

K) in each coordinate, it suffices to have L|λl−λ ⋆| ≤ ε/(2
√

K), or equivalently, ∆0/2l+1 ≤
ε/(2L

√
K). It follows that the bisection algorithm should terminate as soon as

l ≥ log2

(
2L
√

K∆0

ε

)
−1.

Let denote with L∗ the number of iterations after bisection algorithm terminates. Then,

|λL∗ −λ
⋆| ≤ ε

2L
√

K
.

and thus L∗ ≤ log2(2L
√

K∆0/ε). The output of Algorithm 3 is defined as

ak = ( f ′)−1(−λ − ck)+
∆

K
, ∀k ∈ [K], (13)

where ∆ = k−∑
K
k=1( f ′)−1(−ck−λ ⋆). For each coordinate k, the error induced by the difference

between λ and λ ⋆ is dominated by the Lipschitz property equation 12 through∣∣( f ′)−1(−λ − ck)− ( f ′)−1(−λ
⋆− ck)

∣∣≤ L |λ −λ
⋆| ≤ ε

2
√

K
,

which in turn implies that ( f ′)−1(−λ − ck) ≥ ( f ′)−1(−λ ⋆− ck)− ε/(2
√

K). Summing over k =
1, . . . ,d and by defining ∆λ = k−∑

K
k=1( f ′)−1(−λ − ck) yields:

∆λ ≤ k−
[

K

∑
k=1

( f ′)−1(−λ
⋆− ck)−

ε
√

K
2

]
.

By the definition of ∆ we can bound ∆λ as ∆λ ≤ ∆+ ε
√

K/2. In the worst-case scenario when the
computed error ∆λ is close to 0, the inequality above reduces to ∆≥ ∆λ −ε

√
K/2. Since ∆λ is nearly

0 or in the worst-case non-positive, this yields the bound ∆≥−ε
√

K/2. Therefore, from equation 13,
the error in each coordinate satisfies |ak−a⋆k | ≤ ε/

√
K, and therefore ∥a−a⋆∥2 ≤ ε . Thus, the claim

follows.

Proof of Corollary 3.2. Define the exact residual g(λ ) = k−∑
K
k=1( f ′)−1(−λ − ck) and the approxi-

mate residual g̃(λ ) = k−∑
K
k=1 ỹk, where each ỹk satisfies |ỹk− ( f ′)−1(−λ − ck)| ≤ τ . To measure

the oracle’s perturbation, set E(λ ) = g̃(λ )−g(λ ) =−∑
K
k=1
[
ỹk− ( f ′)−1(−λ − ck)

]
. Since this is a

sum of K individual errors, the triangle inequality gives |E(λ )| ≤ ∑
K
k=1 |ỹk− ( f ′)−1(−λ − ck)| ≤ Kτ .

In the exact inverse case we assume g(λ ) ≥ 0 and g(λ̄ ) ≤ 0, which guarantees a root λ ⋆ ∈ [λ , λ̄ ].
Accounting for the oracle error then yields g̃(λ )≥−Kτ and g̃(λ̄ )≤ Kτ .

Provided that min{g(λ ),−g(λ̄ )}> Kτ , the sign test on g̃ still selects the correct subinterval; hence
the bisection converges with each evaluation of g perturbed by at most ±Kτ . After l iterations,
the midpoint λl satisfies |λl −λ ⋆| ≤ ∆0/2l+1, with ∆0 = λ̄ −λ . Upon termination at λl , define
ãk = ỹi(λl) for all k ∈ [K]. Finally, subtract the mean of ã to ensure that ∑

K
k=1 ãk = k exactly.

Subtracting the mean of ã introduces a uniform shift of magnitude C = O
(
τ +L |λl−λ ⋆|

)
. Hence

each coordinate error can be bounded as

|ãk−a⋆k | ≤ |( f ′)−1(−λl− ck)− ( f ′)−1(−λ
⋆− ck)|︸ ︷︷ ︸

≤L |λl−λ ⋆|

+ |ỹi− ( f ′)−1(−λl− ck)|︸ ︷︷ ︸
≤τ

+C.

Since ( f ′)−1 is L-Lipschitz and each oracle error is bounded by τ , it follows that |ãk − a⋆k | ≤
L |λl−λ ⋆|+ τ +C. Taking the ℓ2-norm of the coordinatewise bound gives

∥ã−a⋆∥2 ≤
√

K max
i

∣∣ãk−a⋆k
∣∣≤√K

(
L |λl−λ

⋆|+ τ +C
)
= O

(√
K(τ +L |λl−λ

⋆|)
)
.

Hence, to ensure ∥ã−a⋆∥2 ≤ ε , it suffices that

L |λl−λ
⋆| ≤ ε

2
√

K
and τ ≤ ε

2
√

K
.
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The first inequality follows from

|λl−λ
⋆| ≤ ∆0

2 l+1 ≤
ε

2
√

K L
,

which is equivalent to

l ≥ log2

(
2
√

K L∆0

ε

)
,

while the second is simply τ ≤ ε/(2
√

K). Together, these conditions imply the claimed iteration
bound O

(
ln(L
√

K(λ̄ −λ )/ε)
)
. This observation completes the proof.

B ADDITIONAL NUMERICAL EXPERIMENTS

In Sec. 3.1 we reported the per-iteration runtime of Algorithm 3. To further validate both the approach
and our implementation, we plot cumulative-regret trajectories for OSMD (Algorithm 2), comparing
(a) our Bisection-based projection with (b) a direct solution of the projection step via MOSEK.4

Mean cumulative regrets for the stochastic and adversarial settings are shown in Figs. 2, 3, 4, and 5,
respectively, under the Tsallis and negative Shannon-entropy regularizers. We consider m ∈ {3,5},
K ∈ {20,40} base arms, and a horizon of T = 104 rounds.

Across all configurations, the two implementations yield indistinguishable regret curves (up to
numerical tolerance), supporting the correctness of our implementation. For completeness, Tables 2
and 3 report final cumulative regret for all projection subroutines considered in the paper (Bisection,
Newton, MOSEK) under the Tsallis and negative Shannon-entropy regularizers, respectively.
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Figure 2: Stochastic setting for ∆ = 0.0625 (Tsallis regularizer).

4All code to reproduce the figures is available at https://anonymous.4open.science/r/
comb-bandits-X-ICLR/.
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(a) Bisection (Ours).
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Figure 3: Stochastic setting for ∆ = 0.0625 (Negative Shannon entropy regularizer).
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(a) Bisection (Ours).
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(b) MOSEK.

Figure 4: Adversarial setting for ∆ = 0.0625 (Tsallis regularizer).
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Figure 5: Adversarial setting for ∆ = 0.0625 (Negative Shannon entropy regularizer).
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Table 2: Cumulative regret at T = 104 for ∆ = 0.0625 (Tsallis regularizer).

K m Method Stochastic (µ±σ) Adversarial (µ±σ)

20

3
Bisection (Ours) 711.3 ± 146.3 694.6 ± 161.2
Newton 726.2 ± 170.1 710.8 ± 130.4
MOSEK 734.5 ± 143.0 686.6 ± 88.1

5
Bisection (Ours) 775.7 ± 170.2 736.5 ± 119.7
Newton 761.2 ± 164.3 734.7 ± 121.3
MOSEK 758.8 ± 170.1 721.5 ± 137.4

40

3
Bisection (Ours) 1059.4 ± 190.2 1099.7 ± 143.4
Newton 1114.8 ± 181.4 1117.4 ± 171.5
MOSEK 1095.2 ± 176.1 1101.4 ± 119.7

5
Bisection (Ours) 1303.2 ± 167.3 1312.6 ± 199.0
Newton 1314.9 ± 210.2 1309.8 ± 187.6
MOSEK 1338.0 ± 197.4 1285.6 ± 164.9

Table 3: Cumulative regret at T = 104 for ∆ = 0.0625 (Negative Shannon entropy regularizer).

K m Method Stochastic (µ±σ) Adversarial (µ±σ)

20

3
Bisection (Ours) 845.1 ± 160.9 871.5 ± 107.2
Newton 835.6 ± 136.9 874.0 ± 102.8
MOSEK 847.4 ± 115.7 887.6 ± 131.4

5
Bisection (Ours) 910.2 ± 164.4 914.8 ± 126.2
Newton 914.4 ± 152.4 900.5 ± 128.8
MOSEK 925.1 ± 160.6 893.7 ± 129.9

40

3
Bisection (Ours) 1300.8 ± 149.4 1339.2 ± 115.3
Newton 1281.1 ± 118.8 1342.8 ± 101.9
MOSEK 1340.1 ± 144.5 1325.0 ± 123.5

5
Bisection (Ours) 1636.6 ± 193.4 1648.3 ± 156.4
Newton 1568.7 ± 168.5 1629.0 ± 141.8
MOSEK 1612.7 ± 168.0 1642.0 ± 170.9
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