

EFFICIENT BEST-OF-BOTH-WORLDS ALGORITHMS FOR CONTEXTUAL COMBINATORIAL SEMI-BANDITS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We introduce the first best-of-both-worlds algorithm for contextual combinatorial
 012 bandits that simultaneously guarantees $\tilde{\mathcal{O}}(\sqrt{T})$ regret in the adversarial regime
 013 and $\tilde{\mathcal{O}}(\ln T)$ regret in the corrupted stochastic regime. Our approach builds on
 014 the Follow-the-Regularized-Leader (FTRL) framework equipped with a Shannon
 015 entropy regularizer, yielding a flexible method that admits efficient implementations.
 016 Beyond regret bounds, we tackle the practical bottleneck in FTRL (or, equivalently,
 017 Online Stochastic Mirror Descent) arising from the high-dimensional projection
 018 step encountered in each round of interaction. By leveraging the Karush-Kuhn-
 019 Tucker conditions, we transform the K -dimensional convex projection problem
 020 into a single-variable root-finding problem, dramatically accelerating each round.
 021 Empirical evaluations demonstrate that this combined strategy not only attains
 022 the attractive regret bounds of best-of-both-worlds algorithms but also delivers
 023 substantial per-round speed-ups, making it well-suited for large-scale, real-time
 024 applications.

1 INTRODUCTION

028 Online decision-making is often modelled via the *multi-armed bandit* framework: over T rounds,
 029 a learner selects an action and incurs a loss, observing only partial feedback. Many real-world
 030 tasks—from selecting at most m movies on a streaming platform to curating a list of m products
 031 on an e-commerce homepage—require choosing a subset of up to m items from $K \gg m$ base arms
 032 in each round. This *combinatorial bandit* variant admits either *semi-bandit feedback* (per-arm
 033 losses) or *full-bandit feedback* (aggregate loss). Semi-bandit feedback is realistic—web analytics
 034 record click-through outcomes for each displayed item—and statistically advantageous, reducing
 035 minimax regret from $\mathcal{O}(\sqrt{KT})$ under full-bandit feedback to $\mathcal{O}(\sqrt{mT})$ (Audibert et al., 2014). In
 036 each round, the learner faces either stochastic losses (e.g., from a fixed linear model on random
 037 contexts) or adversarial losses (modeling malicious perturbations). Contexts consist of user-feature
 038 vectors drawn i.i.d. from a distribution, and instantaneous losses are linear in these features. The best-
 039 of-both-worlds (BOBW) paradigm unifies strategies across stochastic and adversarial loss regimes,
 040 achieving optimal regret guarantees in both (Zimmert et al., 2019; Tsuchiya et al., 2023). However,
 041 gaps remain in current BOBW approaches for contextual combinatorial bandits—highlighted by
 042 Tsuchiya et al. (2023); Kuroki et al. (2024) and exacerbated by evolving regulations and emerging
 043 technologies—motivating us to revisit the problem.

044 **Challenges.** While many companies possess extensive user data, their operating environments are
 045 rarely stationary and face multiple challenges:

- 046 • **Adversarial and corrupted stochastic regimes.** Advertising markets, for instance, evolve
 047 in real time as competitors react to each other (Balseiro et al., 2015; Jin et al., 2018), while
 048 recommendation systems must adapt to shifting user preferences (Koren, 2009) and defend against
 049 malicious actors (Mukherjee et al., 2013; Christakopoulou & Banerjee, 2019; Zhang et al., 2020).
 050 A natural remedy is a best-of-both-worlds strategy—provided it is computationally efficient.
 051 However, recent privacy regulations (e.g., the EU’s GDPR (GDP, 2016)) restrict context collection
 052 (for example, via third-party cookies), so the assumption of perfect knowledge of the context
 053 distribution no longer holds. This gap motivates BOBW algorithms that explicitly handle corrupted
 stochastic contexts—treating unexpected losses as corruptions—to secure optimal regret guarantees,
 which existing literature has yet to address.

054 • **Subroutine computational efficiency for combinatorial bandits.** Advances in large language
 055 models (LLMs) allow platforms to generate vast pools of K candidate ads at negligible cost,
 056 which can then be deployed for personalized advertising (Meguelliati et al., 2024). Yet most
 057 existing algorithms require solving a K -dimensional convex program in each round, making them
 058 increasingly expensive as K grows. Moreover, on-the-fly customization of ad attributes (e.g., color,
 059 layout) via generative models further increases the runtime of these subroutines. Consequently,
 060 accelerating the per-round projection step is essential for practical, large-scale deployment.

061 **Contributions.** Our key contributions are summarized as follows.

062 • **Best-of-Both-Worlds for Contextual Combinatorial Semi-Bandits.** We propose an algorithm
 063 for general contextual combinatorial semi-bandits that achieves both $\tilde{\mathcal{O}}(\sqrt{T})$ regret in the adver-
 064 sarial regime and $\tilde{\mathcal{O}}(\ln T)$ regret in the corrupted stochastic regime.¹ Our method instantiates
 065 Follow-the-Regularized-Leader (FTRL) with a Shannon-entropy regularizer, enabling efficient
 066 implementations in many practical settings (see Sec. 2).

067 • **Accelerated Projection for FTRL/OSMD.** For a popular class of combinatorial action sets,
 068 namely the m -set, we accelerate the projection subroutine in any FTRL scheme with a Legendre
 069 regularizer—equivalently, in Online Stochastic Mirror Descent (OSMD) for linear payoffs under the
 070 corresponding mirror map (Shalev-Shwartz, 2012). By exploiting the Karush-Kuhn-Tucker (KKT)
 071 conditions, we reduce the typical K -dimensional convex projection to a one-dimensional root-
 072 finding problem (see Sec. 3). Results therein are generalizable to a broader class of combinatorial
 073 action set that admits a separable structure, e.g., separable matroids.

074 As a result, our algorithm is comparable to the per-iteration complexity of *Follow-the-Perturbed-
 075 Leader* (FTPL) (Neu, 2015; Neu & Bartók, 2016)—which injects random noise to cumulative losses
 076 and selects the action with minimal perturbed total loss—while preserving the tight adversarial
 077 and stochastic regret guarantees characteristic of FTRL. Hence, we achieve both statistical and
 078 computational efficiency.

079 1.1 RELATED WORK

080 Our work builds on three streams of literature: (i) *contextual combinatorial bandits*, (ii) algorithms
 081 that exploit *semi-bandit feedback*, and (iii) *adversarial linear bandits and best-of-both-worlds*
 082 *algorithms*.

083 **(i) Contextual Combinatorial Bandits.** The contextual combinatorial bandit problem was introduced
 084 by Qin et al. (2014), who proposed the C²UCB algorithm for multi-item recommendations. This
 085 framework builds on earlier combinatorial semi-bandit models motivated by influence maximization
 086 in social networks Chen et al. (2013). Under the i.i.d. reward assumption, linear generalization across
 087 arms reduces the regret dependence on the action-set size K from \sqrt{K} to the context dimension d .
 088 Consequently, when $d \ll K$, the regret scales with \sqrt{dT} instead of \sqrt{KT} , offering a substantial
 089 statistical advantage. Stochastic variants have explored Thompson sampling Wang & Chen (2018)
 090 and refined confidence sets Takemura et al. (2021); however, none of these algorithms provide optimal
 091 regret guarantees against an adaptive adversary.

092 **(ii) Semi-Bandit Feedback and Efficient Optimization.** Combinatorial bandits were first formalized
 093 by Cesa-Bianchi & Lugosi (2012), who generalized EXP3 (Auer et al., 2002) from single arms
 094 to binary action vectors. Their algorithm, COMBAND, operates under *full-bandit feedback*—the
 095 learner only observes an aggregated loss for the binary action vector they have chosen—and achieves
 096 $\tilde{\mathcal{O}}(\sqrt{mKT \ln(K/m)})$ regret. Follow-up work connected this update to mirror descent on combinatorial
 097 polytopes: COMPONENTHEDGE Koolen et al. (2010), COMBEXP Combes et al. (2015), and the
 098 OSMD analysis of Audibert et al. (2014). Audibert et al. (2014) provide a concise taxonomy and prove
 099 matching lower bounds, showing that the \sqrt{mKT} rate is information-theoretically optimal whenever
 100 semi-bandit feedback is available. These results are also summarized in (Bubeck & Cesa-Bianchi,
 101 2012, Section 5.6.1). To reduce per-round runtime, Neu & Bartók (2016) introduced a *stochastic*
 102 mirror-descent update that samples a single action and updates only the observed coordinates, thereby
 103 avoiding the full Bregman projection required by standard OSMD or FTRL. The trade-off is an extra
 104 logarithmic factor in the regret bound. Variance-reduced estimators and high-probability analyses

105 ¹Here, $\tilde{\mathcal{O}}(\cdot)$ suppresses poly-logarithmic factors.

	Our Paper	Qin et al. (2014)	Zierahn et al. (2023)	Ito et al. (2022)	Kong et al. (2023)
Feedback	Semi-bandit	Full-bandit	Semi/Full-bandit	Graph bandit	Linear bandit
Adv. Regret	$\tilde{\mathcal{O}}(\text{poly}(d, m, K)\sqrt{T})$	N/A	$\tilde{\mathcal{O}}(\text{poly}(d, m, K)\sqrt{T})$	$\tilde{\mathcal{O}}(\sqrt{\alpha T})$	$\tilde{\mathcal{O}}(\sqrt{T})$
Stoch. Regret	$\mathcal{O}(\text{poly}(d, m, K)(\ln T)^3)$	$\tilde{\mathcal{O}}(d\sqrt{mT})$	N/A	$\mathcal{O}\left(\frac{\alpha(\ln T)^3}{\Delta_{\min}}\right)$	$\mathcal{O}\left(\frac{(\ln T)^2}{\Delta_{\min}}\right)$

Table 1: Comparison of regret bounds across different settings

later refined these guarantees (Zimmert et al., 2019), yet computing the exact Bregman projection still requires time linear in the number of arms K .

(iii) Adversarial Linear Bandits and Best-of-Both-Worlds. When losses can adapt to the learner’s past, the i.i.d. assumption no longer holds. For single-arm actions ($m = 1$) the classical EXP4 algorithm attains $\tilde{\mathcal{O}}(\sqrt{T})$ regret, but its running time and memory scale with the number of experts—that is, the total number of deterministic policies mapping contexts to arms—which grows exponentially in the arm size K (Auer et al., 2002). Neu & Olkhovskaya (2020) mitigated this explosion with REALLINEXP3, achieving $\tilde{\mathcal{O}}(\sqrt{dKT})$ regret under the strong assumption that the context distribution is known. Liu et al. (2023) proposed an algorithm that achieves $\mathcal{O}((dm)^3\sqrt{T})$ regret bound when applied to combinatorial semi-bandit case with only access to 1 context sample per time period t , though the resulting log-determinant FTRL remains intractable for the combinatorial bandits case because of exponentially many constraints Foster et al. (2020); Zimmert & Lattimore (2022) and the nonlinearity introduced by their lifting covariance technique. The first near-optimal treatment is the Matrix-Geometric-Resampling (MGR) algorithm of Zierahn et al. Zierahn et al. (2023), which achieves $\tilde{\mathcal{O}}(\sqrt{mKT \max\{d, m/\lambda_{\min}(\Sigma)\}})$ regret but fails to provide best-of-both-worlds regret guarantees and relies on a sampling sub-routine which requires $\mathcal{O}(\ln T)$ samples in each round. Similar to the issue of generalizing (Liu et al., 2023), a straightforward extension of the best-of-both-worlds (BOBW) algorithm from the linear contextual bandit setting, as studied by Kuroki et al. (2024), to the contextual combinatorial bandit framework yields an action space whose cardinality grows exponentially with the size of the combinatorial decision variables. This exponential growth renders the resulting optimization problem NP-hard and computationally infeasible for large-scale applications. More broadly, the BOBW question—achieving $\tilde{\mathcal{O}}(\ln T)$ under stochastic contexts and $\tilde{\mathcal{O}}(\sqrt{T})$ under adversarial ones without prior knowledge—originated in the K -armed bandit setting (Bubeck & Slivkins, 2012; Seldin & Slivkins, 2014) and has since been settled for linear bandits via data-dependent stability (Lee et al., 2021), and a streamlined FTRL scheme (Kong et al., 2023) and for contextual bandits via Exp4-style expert reductions (Pacchiano et al., 2022; Dann et al., 2023), at the cost of exponential policy-enumeration. In the purely combinatorial semi-bandit setting, hybrid-regularizer methods (Zimmert et al., 2019; Ito, 2021) achieve the optimal BOBW rates but do not consider contextual information and the stemmed difficulty of inverse-covariance matrix estimation. Consequently, no prior method simultaneously handles unknown covariance, large/infinite policy classes, and combinatorial action structure while maintaining BOBW regret bounds. We close this gap with a Shannon-entropy FTRL algorithm that requires neither policy enumeration nor known Σ , yet still achieves optimal BOBW rates on arbitrary combinatorial action sets.

2 BEST-OF-BOTH-WORLDS ALGORITHM FOR CONTEXTUAL COMBINATORIAL SEMI-BANDITS

We begin our analysis of contextual combinatorial bandits by describing the interaction protocol that the learner follows and the problem settings that the best-of-both-worlds framework unifies. Given K base arms, m maximum number of base arms allowed to pull per round, an action set $\mathcal{A} \subseteq \{A \in \{0, 1\}^K : \sum_{k=1}^K (A)_k \leq m\}$, and a context space $\mathcal{X} \subset \mathbb{R}^d$, the interaction protocol for the contextual combinatorial bandit problem proceeds as follows.

Interaction Protocol. In each round $t = 1, \dots, T$ the interaction protocol proceeds as follows. The environment first chooses the loss coefficients $\theta_{t,1}, \dots, \theta_{t,K} \in \mathbb{R}^d$, and draws an i.i.d. context $X_t \sim \mathcal{D}$. The learner observes X_t and plays the vector $A_t \in \mathcal{A}$. The learner then observes the arm-wise losses $\ell_t(X_t, k) = \langle X_t, \theta_{t,k} \rangle$ for every k such that $(A_t)_k = 1$ and suffers the total loss $\sum_{k=1}^K \ell_t(X_t, k)(A_t)_k$.

162 Consistent with the prior work on linear contextual bandits such as (Kuroki et al., 2024), we adopt
 163 the following assumption throughout this paper.

164 **Assumption 1.** *The distribution \mathcal{D} , from which contexts X are independently drawn, satisfies*
 165 $\mathbb{E}[XX^\top] = \Sigma \succ 0$; $\|X\|_2 \leq 1$ \mathcal{D} -almost surely; $\|\theta_{t,k}\|_2 \leq 1$ for all $k \in [K]$ and $t \in [T]$; $\ell_t(x, k) =$
 166 $\langle x, \theta_{t,k} \rangle \in [-1, 1]$ for all $x \in \mathcal{X}, k \in [K]$, and $t \in [T]$.
 167

168 Under this assumption, we distinguish between the adversarial and stochastic regimes as follows. In
 169 the *adversarial regime*, the unknown loss coefficients $\{\theta_{t,k}\}_{k=1}^K$ may vary arbitrarily with respect to
 170 time but is independent of the learner’s action sequence. In the *stochastic regime*, the loss function
 171 takes the form $\ell_t(X_t, k) = \langle X_t, \theta_k \rangle + \varepsilon(X_t, k)$ for all $k \in [K]$, where θ_k is also unknown but fixed
 172 throughout the T interaction periods, and $\varepsilon(X_t, k)$ is an independent zero-mean noise. There is
 173 an additional intermediate regime that interpolates between the adversarial and stochastic regime,
 174 referred to as *corrupted stochastic regime* (Zimmert & Seldin, 2021; Kuroki et al., 2024). In this case,
 175 the loss function associated with each base arm k is defined by $\ell_t(X_t, k) = \langle X_t, \theta_{t,k} \rangle + \varepsilon(X_t, k)$, where
 176 $\varepsilon(X_t, k)$ is independent zero-mean noise. On the other hand, the coefficients $\theta_{t,k}$ are such that there
 177 exist fixed and unknown vectors $\theta_1, \dots, \theta_K$ and that satisfy $\sum_{t=1}^T \max_{A \in \mathcal{A}} \sum_{k=1}^K \|\theta_{t,k} - \theta_k\|_2 (A)_k \leq C$
 178 for a fixed corruption level constant $C > 0$. Note that $C = 0$ corresponds to the stochastic regime
 179 and $C = \Theta(T)$ corresponds to the adversarial regime with additional zero-mean noise. For any fixed
 180 context vector $x \in \mathcal{X}$, we define $u^* : \mathcal{X} \rightarrow \mathcal{A}$ as the optimal context-dependent action map that
 181 achieves minimum loss in hindsight, that is,

$$u^*(x) = \operatorname{argmin}_{A \in \mathcal{A}} \mathbb{E} \left[\sum_{t=1}^T \sum_{k=1}^K \ell_t(x, k) (A)_k \right].$$

182 The learner’s performance is then measured by the pseudo-regret
 183

$$\mathcal{R}_T = \mathbb{E} \left[\sum_{t=1}^T \sum_{k=1}^K \ell_t(X_t, k) \left((A_t)_k - (u^*(X_t))_k \right) \right],$$

184 where the expectation is taken with respect to the action-selection distribution chosen by the learner
 185 and the sequence of random contexts and loss coefficients chosen by the environment. As noted in
 186 the introduction, it is well-established in the literature that the optimal regret bounds are $\tilde{\mathcal{O}}(\ln T)$
 187 in the stochastic regime and $\tilde{\mathcal{O}}(\sqrt{T})$ in the adversarial regime. Algorithms that achieve both rates
 188 simultaneously and without prior knowledge of the environment’s nature are referred to as “best-of-
 189 both-worlds” (Bubeck & Slivkins, 2012; Seldin & Slivkins, 2014).

190 In the stochastic regime, we define the suboptimality gap associated with an arbitrary action $A \in \mathcal{A}$
 191 and a fixed context $x \in \mathcal{X}$ through $\Delta_A(x) = \sum_{k=1}^K \ell_t(x, k) ((A)_k - (u^*(x))_k)$, and its minimum as
 192 $\Delta_{\min} = \min_{A \in \mathcal{A} \setminus \{u^*(x)\}} \min_{x \in \mathcal{X}} \Delta_A(x)$. Additionally, we denote $\mathcal{F}_t = \sigma(X_1, A_1, \dots, X_t, A_t)$ as the σ -
 193 algebra generated by the history of contexts and actions up to and including time t . For any positive
 194 semi-definite matrix $M \in \mathbb{R}^{d \times d}$, we denote by $\lambda_{\min}(M)$ its smallest eigenvalue. With these definitions
 195 and notation in place, we now turn to our proposed method. Algorithm 1 consists of an action-
 196 selection rule and a loss-estimation procedure. The action-selection rule applies entropy-regularized
 197 FTRL to the convex hull of the action set, then samples an action from the original combinatorial
 198 action space, whose cardinality grows exponentially with m . Namely, we denote the Shannon entropy
 199 $H : \operatorname{conv}(\mathcal{A}) \rightarrow \mathbb{R}$ by $H(A) = -\sum_{k=1}^K (A)_k \ln(A)_k$ and specify the time-varying regularizer used in
 200 Step 3 of Algorithm 1 as $\psi_t(A) = -H(A)/\eta_t$.
 201

202 The loss estimation is particularly relevant for the contextual case, as learning the optimal action
 203 hinges on a computationally tractable approximation of the unknown parameter $\theta_{t,k}$ governing the loss.
 204 Given the covariance matrix $\Sigma_{t,k} = \mathbb{E}[(A_t)_k X_t X_t^\top | \mathcal{F}_{t-1}]$, it is known that we can construct the unbiased
 205 estimator $\hat{\theta}_{t,k}$ defined through $\hat{\theta}_{t,k} = \Sigma_{t,k}^{-1} X_t \ell_t(X_t, k) (A_t)_k$ for all $k \in [K]$. However, computing this
 206 estimator is computationally inefficient as its construction requires computing the inverse of the $d \times d$
 207 covariance matrix $\Sigma_{t,k}$, which is of complexity $\mathcal{O}(d^3)$. Furthermore, this estimation approach assumes
 208 that the covariance matrix is known in advance, which is not the case in most real-world scenarios.
 209 To avoid such practical problems, we consider relying on the approach of the Matrix-Geometric-
 210 Resampling method proposed by (Neu & Olkhovskaya, 2020), as described by the subroutine within
 211 Algorithm 1. This approach improves the computational efficiency by order of $\mathcal{O}(d)$ comparing
 212 to computing the naïve unbiased estimator and does not require full knowledge of the context
 213

216 **Algorithm 1** FTRL for contextual combinatorial semi-bandits

217 **Require:** Context dimension d , subset size $m \leq K$, exploration set $E \subseteq \mathcal{A}$, learning rates $\{\eta_t\}_{t=1}^T$,

218 $\{\alpha_t\}_{t=1}^T, \{M_t\}_{t=1}^T$, initialization $\tilde{\theta}_{0,k} = 0$ for all $k \in [K]$

219 1: **for** $t = 1, \dots, T$ **do**

220 2: Observe context $X_t \in \mathbb{R}^d$

221 3: Compute $\tilde{A}_t(X_t) \in \operatorname{argmin}_{a \in \operatorname{conv}(\mathcal{A})} \sum_{s=1}^{t-1} \sum_{k=1}^K \langle X_s, \tilde{\theta}_{s,k} \rangle (\tilde{A})_k + \psi_t(a)$

222 4: Find a distribution $p_t(\cdot | X_t)$ over \mathcal{A} such that $\mathbb{E}_{a \sim p_t(\cdot | X_t)}[a] = \tilde{A}_t(X_t)$

223 5: Set $\pi_t(a | X_t) = (1 - \alpha_t \eta_t) p_t(a | X_t) + \alpha_t \eta_t \mathbf{1}[a \in E] / |E|$ for all $a \in \mathcal{A}$ and sample $A_t \sim \pi_t(\cdot | X_t)$

224 6: Observe loss $\ell_t(X_t, k)$ for all $k \in [K]$ such that $(A_t)_k = 1$

225 7: **Subroutine** Precision-matrix estimation(π_t, M_t)

226 8: **for** $n = 1, \dots, M_t$ **do**

227 9: Draw $X(n) \sim \mathcal{D}$ and $A(n) \sim \pi_t(\cdot | X(n))$

228 10: Compute $C_{n,k} = \prod_{j=1}^n (I - (A(j))_k X(j) X(j)^\top / 2)$ for all $k \in [K]$

229 11: **return** $\hat{\Sigma}_{t,k}^+ = (I + \sum_{n=1}^{M_t} C_{n,k}) / 2$ for all $k \in [K]$

230 12: **End Subroutine**

231 13: Compute $\tilde{\theta}_{t,k} = \hat{\Sigma}_{t,k}^+ X_t \ell_t(X_t, k) (A_t)_k$ for all $k \in [K]$

232

233

234

235 distribution \mathcal{D} , at the cost of introducing an additional bias in the estimation of the precision matrix

236 $\Sigma_{t,k}^{-1}$. Note that we only require $M_t = \lceil 4K \ln(t) / (\alpha_t \eta_t \lambda_{\min}(\Sigma)) \rceil = \tilde{\mathcal{O}}(\ln(t))$ context samples at every

237 time step. Additionally, an exploration set $E \subseteq \mathcal{A}$ is introduced to bound $\lambda_{\min}(\Sigma_{t,k})$ away from zero.

238 The set E thus must satisfy that, for every $k \in [K]$, there is at least one action $A \in E$ such that $(A)_k = 1$.

239 For simplicity, we select $E = \{A \in \{0, 1\}^K : \sum_{k=1}^K (A)_k = 1\}$, in which case $|E| = K$. For every $t \in [T]$,

240 we specify the remaining algorithmic parameters as $\eta_t = 1 / \beta_t$, where $\beta_t = \max\{2, c_2 \ln T, \beta'_t\}$ and

241 $\beta'_{t+1} = \beta'_t + c_1 (1 + (m \ln(K/m))^{-1} \sum_{s=1}^t H(\tilde{A}_s(X_s)))^{-1/2}$. We also let $\alpha_t = 4K \ln(t) / \lambda_{\min}(\Sigma)$. In

242 addition, we set the problem-dependent constants $c_1 = \sqrt{(d + \ln T / \lambda_{\min}(\Sigma)) K \ln T / (m \ln(K/m))}$ as

243 well as $c_2 = 8K / \lambda_{\min}(\Sigma)$. For initializations, we choose $\beta'_1 = c_1 \geq 1$. These definitions ensure that

244 $0 \leq \alpha_t \eta_t \leq 1/2$ and $0 < \eta_t \leq 1/T$ throughout $t = 1, \dots, T$ rounds.

245

246 We state our main results in Theorem 2.1 and sketch the key elements of its proof in the next

247 section. The regret upper bounds presented in Theorem 2.1 are optimal in the dependence on T up to

248 logarithmic factors and, to the best of our knowledge, constitute the first known best-of-both-worlds

249 results for contextual combinatorial semi-bandits. Note that in the corrupted stochastic regime, the

250 corruption budget C enters only as an additive constant in the regret bound (see Appendix A.1 for

251 details) and is therefore subsumed by the $\mathcal{O}(\cdot)$ notation.

252 **Theorem 2.1** (Best-of-both-worlds regret guarantee for contextual combinatorial bandits). *The regret*

253 *of Algorithm 1 satisfies the following.*

254 (i) *In the adversarial regime, we have $\mathcal{R}_T = \mathcal{O}\left(m \sqrt{K \ln(K/m) T \ln T (d + \ln T / \lambda_{\min}(\Sigma))}\right)$;*

255 (ii) *In the stochastic regime and the corrupted stochastic regime, we have $\mathcal{R}_T =$*

256 *$\mathcal{O}\left(\frac{K \ln T m^{3/2} \ln((K-m)T) (d + \ln T / \lambda_{\min}(\Sigma))}{\Delta_{\min}}\right)$.*

257

258

2.1 REGRET ANALYSIS

259

260 Establishing a best-of-both-worlds guarantee with a computationally efficient algorithm poses several

261 challenges. First, the approach of Zierahn *et al.* (Zierahn et al., 2023), which uses fixed learning and

262 sampling rates yields only an $\tilde{\mathcal{O}}(\sqrt{T})$ suboptimal regret bound in the stochastic regime—a result

263 of its constant-learning-rate schedule and the coarse penalty bound in the FTRL analysis. Second,

264 adopting the context-less best-of-both-worlds analysis for combinatorial semi-bandits by Zimmert *et*

265 *al.* (Zimmert et al., 2019) relies on a hybrid regularizer to control arm-wise entropy; this, however,

266 demands arm-wise bias control that state-of-the-art precision-matrix estimators cannot guarantee

267 under standard assumptions. To overcome these limitations, we exploit the time-varying learning rate

268 to refine the regret analysis to be compatible with the stochastic regime, and we lift the mean-action

269 space (support size K) to the space of action distributions (support size exponential in m). Together,

270 these approaches enable a self-bounding argument commonly used to achieve a $\tilde{\mathcal{O}}(\ln T)$ regret bound
 271 in the stochastic and corrupted stochastic regimes.

273 Analyzing regret in the contextual combinatorial semi-bandit setting presents an inherent challenge
 274 due to the evolving dependency between the sequence of observed contexts X_1, \dots, X_T , and the
 275 learned parameters $\{\tilde{\theta}_{1,k}\}_{k=1}^K, \dots, \{\tilde{\theta}_{T,k}\}_{k=1}^K$. To address this, we follow a strategy inspired by (Neu &
 276 Olkhovskaya, 2020; Zierahn et al., 2023), in which we introduce an auxiliary game that simplifies the
 277 regret analysis. We define an auxiliary regret notion by introducing a *ghost context sample* $X_0 \sim \mathcal{D}$,
 278 drawn independently from the data used to construct the estimates $\{\tilde{\theta}_{t,k}\}_{k=1}^K$. The regret in this
 279 auxiliary game is then

$$280 \quad \tilde{\mathcal{R}}_T(X_0) = \mathbb{E} \left[\sum_{t=1}^T \langle X_0, \tilde{\theta}_{t,k} \rangle \left((A_t)_k - (u^*(X_0))_k \right) \right].$$

283 This fixed-context formulation decouples the randomness in the context sequence from the randomness
 284 in parameter estimation, making the analysis more tractable. The following result relates the
 285 regret in the original contextual semi-bandit setting (as defined in the previous section) to the regret
 286 in the auxiliary game.

287 **Lemma 2.2** (Original game vs. auxiliary game (Neu & Olkhovskaya, 2020, Equation (6))). *For any*
 288 $X_0 \sim \mathcal{D}$, *the regret of Algorithm 1 satisfies*

$$289 \quad \mathcal{R}_T \leq \mathbb{E}[\tilde{\mathcal{R}}_T(X_0)] + 2 \sum_{t=1}^T \mathbb{E} \left[\max_{A \in \mathcal{A}} \mathbb{E} \left[\sum_{k=1}^K \langle X_t, \hat{\theta}_{t,k} - \tilde{\theta}_{t,k} \rangle (A)_k \mid \mathcal{F}_{t-1} \right] \right].$$

292 This decomposition allows us to break down the regret into two components: the *auxiliary regret*,
 293 which captures the performance of the algorithm in a fixed-context game, and the *excess bias-induced*
 294 *regret*, which reflects the cumulative effect of using $\tilde{\theta}_{t,k}$ rather than the unbiased estimator $\hat{\theta}_{t,k}$.
 295 By analyzing these two terms separately, we can control the total regret under both stochastic and
 296 adversarial assumptions.

298 As an initial step in our regret analysis, we state the following lemma, which bounds the per-round
 299 excess regret introduced by the bias in the precision-matrix estimation subroutine. This result enables
 300 us to bound the total bias-induced regret in Lemma 2.2 by $\mathcal{O}(\ln T)$ and to control the additional
 301 exploration regret in the auxiliary game.

302 **Lemma 2.3** (Bias control). *For all $t \in [T]$, the estimates $\{\tilde{\theta}_{t,k}\}_{k=1}^K$ constructed in Algorithm 1 satisfy*
 303 $\max_{A \in \mathcal{A}} \mathbb{E} \left[\sum_{k=1}^K \langle x, \hat{\theta}_{t,k} - \tilde{\theta}_{t,k} \rangle (A)_k \mid \mathcal{F}_{t-1} \right] \leq m/t^2$.

305 We proceed to bound the regret for the auxiliary game, whose proof strategy follows by an FTRL
 306 analysis with a carefully-chosen learning-rate schedule, while taking context into account.

307 **Lemma 2.4** (Regret decomposition for the auxiliary game). *The regret of Algorithm 1 evaluated in*
 308 *the auxiliary game satisfies*

$$310 \quad \mathbb{E}[\tilde{\mathcal{R}}_T(X_0)] = L \sqrt{\left(Kd \ln T + \frac{\sqrt{m}K(\ln T)^2}{\lambda_{\min}(\Sigma)} \right) \sum_{t=1}^T \mathbb{E}[H(\bar{A}_t(X_0))] + \frac{8Km \ln(K/m) \ln T}{\lambda_{\min}(\Sigma)}},$$

312 where $L > 0$ is a universal constant.

314 Lemma 2.4 serves as the combinatorial bandits analogue of Lemma 3 in (Kuroki et al., 2024), which
 315 was established for linear contextual bandits. However, while (Kuroki et al., 2024) defines entropy
 316 over the space of action distributions, our setting defines entropy over the mean-action polytope. As a
 317 result, directly generalizing their entropy bound to settings with multiple arm pulls is insufficient for
 318 establishing an optimal regret bound in the stochastic regime for contextual combinatorial bandits.
 319 To overcome these limitations, we derive a refined entropy bound by exploiting a careful partitioning
 320 of the base arm set $[K]$ and lifting the mean-action space (support size K) to the space of action
 321 distributions (support size exponential in m). This refined bound enables the application of the
 322 self-bounding technique from (Zimmert & Seldin, 2021) in the stochastic setting.

323 **Lemma 2.5** (Refined entropy bound in the stochastic regime). *Take a ghost sample $X_0 \sim \mathcal{D}$ and*
 324 *any action sequence A_1, \dots, A_T generated under the policy sequence π_1, \dots, π_T using Algorithm 1.*

324 Suppose that $\sum_{t=1}^T \sum_{k:(u^*(X_0))_k=0} (A_t)_k \geq e$, where we recall that e is the Euler number. The mean-
 325 action sequence $\bar{A}_1, \dots, \bar{A}_T$ generated by Algorithm 1 then satisfies
 326

$$327 \mathbb{E} \left[\sum_{t=1}^T H(\bar{A}_t(X_0)) \right] \leq m \ln((K-m)T) \mathbb{E} \left[\sum_{t=1}^T \sum_{A \in \mathcal{A} \setminus \{u^*(X_t)\}} \pi_t(A) \right].$$

330 The proof for Theorem 2.1 then follows by combining the insights of all lemmas presented in this
 331 section. The complete proof auxiliary results are deferred to Appendix A.1.
 332

334 3 EFFICIENT NUMERICAL SCHEME FOR COMBINATORIAL SEMI-BANDITS

336 In the adversarial combinatorial semi-bandit setting, as presented in Section 2, the learner must
 337 perform FTRL/OSMD updates over the convex hull of the combinatorial action space —an operation
 338 that naively entails a K -dimensional Bregman projection. By exploiting the KKT conditions of this
 339 convex subproblem, we reduce each update to a single one-dimensional root-finding call per round,
 340 yielding a more computationally efficient scheme. We first formalize the interaction protocol and
 341 then present the OSMD algorithm (Algorithm 2) under the context-free regime. For simplicity, we
 342 study in this section the m -set setting, where exactly m arms are pulled in each round. Note that in
 343 terms of computing Bregman projection, the context-free m -set setting is without loss of generality,
 344 since Step 3 of Algorithm 1 is computed under a fixed context and we may iterate through m number
 345 of j -subsets, where $j = 1, \dots, m$. An efficient $\tilde{\mathcal{O}}(K)$ action-sampling procedure in the m -set setting is
 346 proposed in (Zimmert et al., 2019, Appendix B.2).

347 **Interaction Protocol.** Fix the number of base arms K and m -set size $m \leq K$. Let $\mathcal{A} = \{A \in \{0, 1\}^K : \sum_{k=1}^K (A)_k = m\}$. Then, in each round $t = 1, \dots, T$, the interaction protocol proceeds as follows. The
 348 environment chooses an adversarial loss vector $\ell_t = (\ell_{t,1}, \dots, \ell_{t,K}) \in [-1, 1]^K$. The learner then plays
 349 the vector $A_t \in \mathcal{A}$, suffers the total loss $\langle A_t, \ell_t \rangle = \sum_{k=1}^K \ell_{t,k} (A_t)_k$, and observes the coordinate losses
 350 $\ell_{t,k}$ for every k such that $(A_t)_k = 1$.
 351

353 **Algorithm 2** Online stochastic mirror descent for semi-bandits (Lattimore & Szepesvári, 2020,
 354 Algorithm 18)

355 **Require:** m -set size $m \leq K$, learning rate η , function F

- 356 1: Initialize $\bar{A}_0 = \arg \min_{a \in \text{conv}(\mathcal{A})} F(a)$
- 357 2: **for** $t = 1, \dots, T$ **do**
- 358 3: Choose distribution p_t over \mathcal{A} such that $\mathbb{E}_{a \sim p_t} [a] = \bar{A}_t$
- 359 4: Sample action $A_t \sim p_t$, observe partial losses $\ell_{t,k}$ for all k with $(A_t)_k = 1$
- 360 5: Compute the importance-weighted loss estimator $\hat{\ell}_{t,k} = (A_t)_k \ell_{t,k} / (\bar{A}_t)_k$ for all $k \in [K]$
- 361 6: Update the decision vector by solving $\bar{A}_{t+1} = \arg \min_{a \in \text{conv}(\mathcal{A})} \{\eta \langle a, \hat{\ell}_t \rangle + D_F(a, \bar{A}_t)\}$

363
 364 Algorithm 2 proceeds in each round by: (i) sampling an action $A_t \sim p_t$, (ii) computing the importance-
 365 weighted loss estimator $\hat{\ell}_{t,k}$, and (iii) updating the mean action via the Bregman projection. Here,
 366 $D_F(a, \bar{A}_t)$ is the Bregman divergence from Definition 1.
 367

368 **Definition 1** (Bregman divergence). *Given a convex differentiable function $F : \mathcal{A} \rightarrow \mathbb{R}$, the Bregman
 369 divergence $D_F : \text{conv}(\mathcal{A}) \times \text{conv}(\mathcal{A}) \rightarrow \mathbb{R}_+$ associated with F is defined as*

$$370 D_F(a, \bar{A}) = F(a) - F(\bar{A}) - \langle \nabla F(\bar{A}), a - \bar{A} \rangle \quad \forall a, \bar{A} \in \text{conv}(\mathcal{A}).$$

372 Assuming that the convex potential function $F : \mathcal{A} \rightarrow \mathbb{R}$ is separable, that is, F can be expressed as
 373 $F(a) = \sum_{k=1}^K f(a_k)$ where $f : \mathbb{R} \rightarrow \mathbb{R}$ is convex, and a_k is the k -th coordinate of $a \in \mathcal{A}$. Hence, the
 374 update step amounts to solving the convex subproblem

$$375 \min_{a \in \text{conv}(\mathcal{A})} \eta \langle a, \hat{\ell}_t \rangle + D_F(a, \bar{A}_t), \quad (1)$$

377 whose unique minimizer we denote by a^* .

We derive the KKT conditions as the following. Let us assign the following Lagrangian multipliers $\lambda \in \mathbb{R}$ to the constraint $\sum_{k=1}^K a_k = m$, then $\mu \in \mathbb{R}^K$ to the set of constraints $a_k \geq 0, \forall k \in [K]$ and $v \in \mathbb{R}^K$ to the set of inequality constraints $a_k \leq 1, \forall k \in [K]$. Then the Lagrangian has the form $\mathcal{L}(a, \lambda, \mu, v) = \sum_{k=1}^K [\eta \hat{\ell}_{t,k} a_k + f(a_k) - f'((\bar{A}_t)_k) - f'((\bar{A}_t)_k)(a_k - (\bar{A}_t)_k)] + \lambda(\sum_{k=1}^K a_k - m) - \sum_{k=1}^K \mu_k a_k + \sum_{k=1}^K v_k(a_k - 1)$. The resulting KKT conditions for equation 1 are as follows.

$$\begin{aligned} 0 \leq a_k \leq 1, \sum_{k=1}^K a_k = m, \forall k \in [K] & \quad (\text{Primal feasibility}) \\ \mu_k \geq 0, v_k \geq 0, \forall k \in [K] & \quad (\text{Dual feasibility}) \\ \mu_k a_k = 0, v_k(a_k - 1) = 0, \forall k \in [K] & \quad (\text{Complementary slackness}) \\ \eta \hat{\ell}_{t,k} + f'(a_k) - f'((\bar{A}_t)_k) + \lambda - \mu_k + v_k = 0, \forall k \in [K] & \quad (\text{Stationarity}) \end{aligned}$$

We continue to reformulate the stationarity condition by distinguishing between cases for an arbitrary arm index $k \in [K]$. First, note that when $a_k > 0$, complementary slackness implies that $\mu_k = 0$. Substituting into the stationarity condition yields $f'(a_k) + \lambda + c_k = 0$, where we use the shorthand notation $c_k = \eta \hat{\ell}_{t,k} - f'((\bar{A}_t)_k)$. Inverting f' then gives $(f')^{-1}(-\lambda - c_k) = a_k$. Next, consider the case when $a_k = 0$, the stationarity condition together with dual feasibility $\mu_k \geq 0$ gives $f'(0) + \lambda + c_k = \mu_k \geq 0$, which implies $(f')^{-1}(-\lambda - c_k) \leq 0$. Since the range of $(f')^{-1}$ is $[0, 1]$, we conclude that $(f')^{-1}(-\lambda - c_k) = 0 = a_k$. Thus, we have shown that solving the K -dimensional convex optimization problem equation 1 reduces to a one-dimensional root-finding problem $\sum_{k=1}^K (f')^{-1}(-\lambda - c_k) = m$.

Algorithm 3 Bisection algorithm for solving equation 1

Require: Tolerance ε , loss parameters c

```

1: Initialize  $\underline{\lambda} = \min_{k \in [K]} \{-c_k - f'(m/K)\}$  and  $\bar{\lambda} = \max_{k \in [K]} \{-c_k - f'(m/K)\}$ 
2: for  $l = 1$  to  $\log_2(\varepsilon^{-1} 2L\sqrt{K}(\bar{\lambda} - \underline{\lambda}))$  do
3:    $\lambda = (\underline{\lambda} + \bar{\lambda})/2$ 
4:   if  $m - \sum_{k=1}^K (f')^{-1}(-\lambda - c_k) > 0$  then
5:      $\bar{\lambda} \leftarrow \lambda$ 
6:   else
7:      $\underline{\lambda} \leftarrow \lambda$ 
8: return  $a_k = m/K + (f')^{-1}(-\underline{\lambda} - c_k) - (1/K) \sum_{k=1}^K (f')^{-1}(-\underline{\lambda} - c_k)$  for all  $k \in [K]$ 

```

Similar to the result in (Li et al., 2024, Theorem 6.1), which analyzes a perturbation-based algorithm specialized for multi-armed bandits, our bisection algorithm enjoys the following convergence guarantee.

Theorem 3.1 (Convergence of Algorithm 3). *Suppose that f is strictly convex and differentiable, and that $(f')^{-1}$ is L -Lipschitz continuous. Then, for any tolerance $\varepsilon > 0$, Algorithm 3 outputs $a \in \text{conv}(\mathcal{A})$ with $\sum_{k=1}^K a_k = m$ and $\|a - a^*\|_2 \leq \varepsilon$.*

Even when $(f')^{-1}$ is not available in closed form, we may resort to some approximation oracle. Below we discuss how the convergence proof could be modified to accommodate the approximation error.

Corollary 3.2 (Convergence with an approximate inverse oracle). *Assume we have an oracle that, on input $z \in \mathbb{R}$, returns $\tilde{y} = (f')^{-1}(z)$ satisfying $|\tilde{y} - (f')^{-1}(z)| \leq \tau$ for some known tolerance $\tau > 0$. Then, under the same assumptions as in Theorem 3.1, and provided that $\tau \leq \varepsilon/(2\sqrt{K})$, the approximate algorithm yields a vector $\tilde{a} \in \text{conv}(\mathcal{A})$ satisfying $\|\tilde{a} - a^*\|_2 \leq \varepsilon$ in $\mathcal{O}(\ln(L\sqrt{K}(\bar{\lambda} - \underline{\lambda})/\varepsilon))$ bisection iterations.*

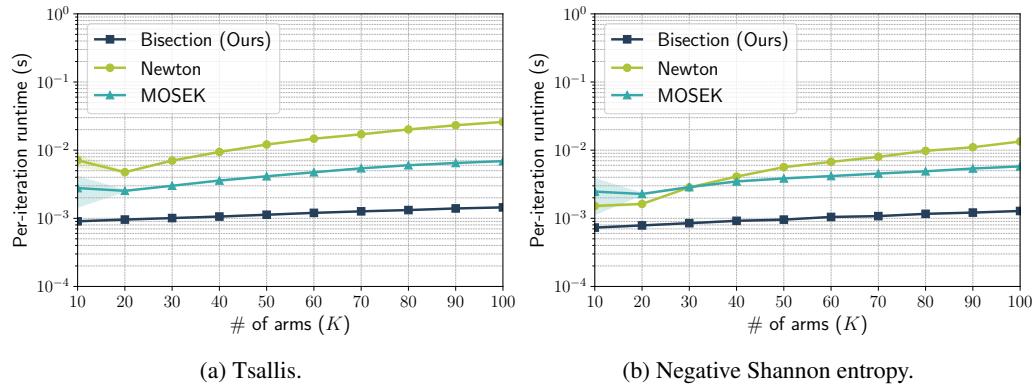
Note that Algorithm 2 calls Algorithm 3 with input $c_k = \eta \hat{\ell}_{t,k} - f'((\bar{A}_t)_k)$ for all $k \in [K]$ in each iteration $t = 1, \dots, T$ in order to compute the mean-action vector \bar{A}_t . Thus, the width of the search interval $\bar{\lambda} - \underline{\lambda}$ is on the order of $\mathcal{O}(t)$ with high probability. This observation implies that the t -th call to Algorithm 3 requires $\mathcal{O}(\ln(\sqrt{K}t/\eta))$ iterations with high probability. In addition, each iteration runs in time $\mathcal{O}(K)$. Hence, if $\eta = \mathcal{O}(\sqrt{T})$, then the t -th call of Algorithm 3 runs in time at most $\mathcal{O}(K \ln(\sqrt{KT})) = \tilde{\mathcal{O}}(K)$ with high probability. Using the sampling scheme of complexity $\tilde{\mathcal{O}}(K)$

432 proposed by Zimmert et al. (2019), the efficiency of Algorithm 3 as used by Algorithm 2 is thus
 433 comparable to the sampling procedure employed by FTPL (Neu & Bartók, 2016).

435 We remark on the extension of our results in this section to settings beyond m -set such as a partition
 436 matroid (Oxley, 2006). Although we now have cardinality constraints per partition instead of a
 437 single cardinality constraint, each partition is handled by its own scalar root-finding problem, and
 438 every arm enters exactly one partition. Hence, the work across all partitions sums to K , which is the
 439 same as the uniform-matroid case. Building on the previous observation, the Bregman projection
 440 using our method still runs in time $O(K \log(1/\varepsilon))$; the bisection method over partition i runs in time
 $O(c_i \log(1/\varepsilon))$ with $K = \sum_i c_i$.

442 3.1 NUMERICAL EXPERIMENTS

444 We now evaluate the per-iteration runtime of Algorithm 3. All experiments are conducted on a
 445 machine with a 2.3 GHz 8-core Intel Core i9 processor and all optimization problems are modeled
 446 in Python. In all experiments, we fix the m -set size to $m = 5$, vary the number of base arms
 447 $K \in \{10, \dots, 100\}$, and run each algorithm for $N = 25$ iterations on a loss vector $y \in [0, 1]^K$ whose
 448 entries are drawn uniformly at random. Mean per-iteration runtimes and their 95% confidence
 449 intervals are reported, and two instances of problem equation 1, each employing a different regularizer,
 450 are evaluated. The first instance uses *Tsallis entropy* with parameter $\alpha = 1/2$, as in (Zimmert et al.,
 451 2019; Zimmert & Seldin, 2021), which is known to achieve best-of-both-worlds results. This
 452 corresponds to the regularizer $f(x) = -\sqrt{x}$ (labeled as “Tsallis”). The second instance employs the
 453 widely used negative *Shannon entropy*, induced by the regularizer $f(x) = x \ln x$ (labeled as “Negative
 454 Shannon entropy”).



466 Figure 1: Per-iteration runtime for different regularizers.

469 We compute the mean-action projection of FTRL via Algorithm 3, and compare it against two
 470 baselines: the heuristic Newton method used in (Zimmert et al., 2019),² and a direct implementation
 471 of the optimization step using MOSEK.³ In all cases, we solve to an error tolerance of $\varepsilon = 10^{-7}$,
 472 matching the suboptimality and feasibility tolerances used in MOSEK. Figure 1 visualizes the per-
 473 iteration runtimes of Algorithm 3, the Newton method, and MOSEK, as a function of the number K
 474 of base arms. We observe that Algorithm 3 runs nearly 10 times faster than the Newton baseline for
 475 $K = 100$, and consistently outperforms MOSEK by a factor of approximately 5 across all values of K .
 476 This highlights the computational efficiency of our bisection-based Algorithm 3.

478 REFERENCES

480 Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on
 481 the protection of natural persons with regard to the processing of personal data and on the free
 482 movement of such data, and repealing Directive 95/46/EC (General Data Protection Regulation)
 483 (Text with EEA relevance). *OJ*, (L 119):1–88, 2016.

484 ²The source code for this method is available at <https://github.com/diku-dk/CombSemiBandits>.

485 ³MOSEK is accessed via the Python Fusion API ApS (2025).

486 MOSEK ApS. *The MOSEK Python Fusion API manual. Version 11.0.*, 2025. URL <https://docs.mosek.com/latest/pythonfusion/index.html>.

487

488

489 Jean-Yves Audibert, Sébastien Bubeck, and Gábor Lugosi. Regret in online combinatorial optimization. *Mathematics of Operations Research*, 39(1):31–45, 2014.

490

491 Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic multiarmed bandit problem. *SIAM Journal on Computing*, 32(1):48–77, 2002.

492

493

494 Santiago R Balseiro, Omar Besbes, and Gabriel Y Weintraub. Repeated auctions with budgets in ad exchanges: Approximations and design. *Management Science*, 61(4):864–884, 2015.

495

496 Sébastien Bubeck and Nicolo Cesa-Bianchi. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. *Foundations and Trends® in Machine Learning*, 5(1):1–122, 2012.

497

498

499 Sébastien Bubeck and Aleksandrs Slivkins. The best of both worlds: Stochastic and adversarial bandits. In *Conference on Learning Theory*, pp. 42.1–42.23, 2012.

500

501 Nicolo Cesa-Bianchi and Gábor Lugosi. Combinatorial bandits. *Journal of Computer and System Sciences*, 78(5):1404–1422, 2012.

502

503

504 Wei Chen, Yajun Wang, and Yang Yuan. Combinatorial multi-armed bandit: General framework and applications. In *International Conference on Machine Learning*, pp. 151–159. PMLR, 2013.

505

506 Konstantina Christakopoulou and Arindam Banerjee. Adversarial attacks on an oblivious recommender. In *Proceedings of the 13th ACM Conference on Recommender Systems*, pp. 322–330, 2019.

507

508

509 Richard Combes, Mohammad Sadegh Talebi Mazraeh Shahi, Alexandre Proutiere, et al. Combinatorial bandits revisited. *Advances in Neural Information Processing Systems*, 28, 2015.

510

511

512 Chris Dann, Chen-Yu Wei, and Julian Zimmert. A blackbox approach to best of both worlds in bandits and beyond. In *Conference on Learning Theory*, pp. 5503–5570. PMLR, 2023.

513

514 Dylan J Foster, Claudio Gentile, Mehryar Mohri, and Julian Zimmert. Adapting to misspecification in contextual bandits. *Advances in Neural Information Processing Systems*, 33:11478–11489, 2020.

515

516

517 Shinji Ito. Hybrid regret bounds for combinatorial semi-bandits and adversarial linear bandits. *Advances in Neural Information Processing Systems*, 34:2654–2667, 2021.

518

519 Shinji Ito, Taira Tsuchiya, and Junya Honda. Nearly optimal best-of-both-worlds

520 algorithms for online learning with feedback graphs. In *Advances in Neural Information Processing Systems*, volume 35, pp. 25834–25846, 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/hash/b7aea253ab34a773967f1e4cdea9e4fb-Abstract-Conference.pdf.

521

522

523

524 Junqi Jin, Chengru Song, Han Li, Kun Gai, Jun Wang, and Weinan Zhang. Real-time bidding

525 with multi-agent reinforcement learning in display advertising. In *Proceedings of the 27th ACM*

526 *International Conference on Information and Knowledge Management*, pp. 2193–2201, 2018.

527

528 Fang Kong, Canzhe Zhao, and Shuai Li. Best-of-three-worlds analysis for linear bandits with

529 follow-the-regularized-leader algorithm. In *Conference on Learning Theory*, pp. 657–673. PMLR,

530 2023.

531

532 Wouter M Koolen, Manfred K Warmuth, Jyrki Kivinen, et al. Hedging structured concepts. In

533 *Conference on Learning Theory*, pp. 93–105. Citeseer, 2010.

534

535 Yehuda Koren. Collaborative filtering with temporal dynamics. In *Proceedings of the 15th ACM*

536 *SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp. 447–456, 2009.

537

538 Yuko Kuroki, Alberto Rumi, Taira Tsuchiya, Fabio Vitale, and Nicolò Cesa-Bianchi. Best-of-

539 both-worlds algorithms for linear contextual bandits. In *International Conference on Artificial*

Intelligence and Statistics, pp. 1216–1224. PMLR, 2024.

540

541 Tor Lattimore and Csaba Szepesvári. *Bandit Algorithms*. Cambridge University Press, 2020.

540 Chung-Wei Lee, Haipeng Luo, Chen-Yu Wei, Mengxiao Zhang, and Xiaojin Zhang. Achieving
 541 near instance-optimality and minimax-optimality in stochastic and adversarial linear bandits
 542 simultaneously. In *International Conference on Machine Learning*, pp. 6142–6151. PMLR, 2021.

543

544 Mengmeng Li, Daniel Kuhn, and Bahar Taşkesen. Optimism in the face of ambiguity principle for
 545 multi-armed bandits. *arXiv preprint arXiv:2409.20440*, 2024.

546 Haolin Liu, Chen-Yu Wei, and Julian Zimmert. Bypassing the simulator: Near-optimal adversarial
 547 linear contextual bandits. *Advances in Neural Information Processing Systems*, 36:52086–52131,
 548 2023.

549

550 Elyas Meguelliati, Lei Han, Abraham Bernstein, Shazia Sadiq, and Gianluca Demartini. How good
 551 are LLMs in generating personalized advertisements? In *Companion Proceedings of the ACM Web
 552 Conference 2024*, pp. 826–829, 2024.

553 Arjun Mukherjee, Abhinav Kumar, Bing Liu, Junhui Wang, Meichun Hsu, Malu Castellanos, and
 554 Riddhiman Ghosh. Spotting opinion spammers using behavioral footprints. In *Proceedings of
 555 the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*, pp.
 556 632–640, 2013.

557

558 Gergely Neu. First-order regret bounds for combinatorial semi-bandits. In *Conference on Learning
 559 Theory*, pp. 1360–1375. PMLR, 2015.

560 Gergely Neu and Gábor Bartók. Importance weighting without importance weights: An efficient
 561 algorithm for combinatorial semi-bandits. *Journal of Machine Learning Research*, 17(154):1–21,
 562 2016.

563

564 Gergely Neu and Julia Olkhovskaya. Efficient and robust algorithms for adversarial linear contextual
 565 bandits. In *Conference on Learning Theory*, pp. 3049–3068. PMLR, 2020.

566 James G Oxley. *Matroid theory*, volume 3. Oxford University Press, 2006.

567

568 Aldo Pacchiano, Christoph Dann, and Claudio Gentile. Best of both worlds model selection. *Advances
 569 in Neural Information Processing Systems*, 35:1883–1895, 2022.

570 Lijing Qin, Shouyuan Chen, and Xiaoyan Zhu. Contextual combinatorial bandit and its application
 571 on diversified online recommendation. In *Proceedings of the 2014 SIAM International Conference
 572 on Data Mining*, pp. 461–469. SIAM, 2014.

573

574 Yevgeny Seldin and Aleksandrs Slivkins. One practical algorithm for both stochastic and adversarial
 575 bandits. In *International Conference on Machine Learning*, pp. 1287–1295. PMLR, 2014.

576

577 Shai Shalev-Shwartz. Online learning and online convex optimization. *Foundations and Trends® in
 578 Machine Learning*, 4(2):107–194, 2012.

579

580 Kei Takemura, Shinji Ito, Daisuke Hatano, Hanna Sumita, Takuro Fukunaga, Naonori Kakimura, and
 581 Ken-ichi Kawarabayashi. Near-optimal regret bounds for contextual combinatorial semi-bandits
 582 with linear payoff functions. In *Proceedings of the AAAI Conference on Artificial Intelligence*,
 volume 35, pp. 9791–9798, 2021.

583

584 Taira Tsuchiya, Shinji Ito, and Junya Honda. Further adaptive best-of-both-worlds algorithm for
 585 combinatorial semi-bandits. In *International Conference on Artificial Intelligence and Statistics*,
 pp. 8117–8144. PMLR, 2023.

586

587 Siwei Wang and Wei Chen. Thompson sampling for combinatorial semi-bandits. In *International
 588 Conference on Machine Learning*, pp. 5114–5122. PMLR, 2018.

589

590 Hengtong Zhang, Yaliang Li, Bolin Ding, and Jing Gao. Practical data poisoning attack against
 591 next-item recommendation. In *Proceedings of the Web Conference 2020*, pp. 2458–2464, 2020.

592

593 Lukas Zierahn, Dirk van der Hoeven, Nicolo Cesa-Bianchi, and Gergely Neu. Nonstochastic
 594 contextual combinatorial bandits. In *International Conference on Artificial Intelligence and
 595 Statistics*, pp. 8771–8813. PMLR, 2023.

Julian Zimmert and Tor Lattimore. Return of the bias: Almost minimax optimal high probability bounds for adversarial linear bandits. In *Conference on Learning Theory*, pp. 3285–3312. PMLR, 2022.

Julian Zimmert and Yevgeny Seldin. Tsallis-INF: An optimal algorithm for stochastic and adversarial bandits. *Journal of Machine Learning Research*, 22(28):1–49, 2021.

Julian Zimmert, Haipeng Luo, and Chen-Yu Wei. Beating stochastic and adversarial semi-bandits optimally and simultaneously. In *International Conference on Machine Learning*, pp. 7683–7692. PMLR, 2019.

A APPENDIX

A.1 PROOFS AND AUXILIARY RESULTS FOR SECTION 2

For ease of notations in the proofs, we set $\gamma_t = \alpha_t \eta_t$ throughout this section. We start by addressing the terms relevant to the regret induced in the auxiliary game for a fixed context $\tilde{\mathcal{R}}_T(x)$. Denote as well the time-varying Bregman divergence from $p \in \text{conv}(\mathcal{A})$ to $q \in \text{conv}(\mathcal{A})$ through

$$D_t(q, p) = \psi_t(q) - \psi_t(p) - \langle \nabla \psi_t(q), q - p \rangle.$$

We start by the following lemma by following a standard FTRL analysis with varying potentials.

Lemma A.1 (Stability-penalty decomposition). *For any context $x \in \mathcal{X}$ and $\gamma_t \leq 1$ for all $t \in [T]$, we have*

$$\begin{aligned}
& \mathbb{E}_{A_t} \left[\sum_{t=1}^T \langle x, \tilde{\theta}_{t,k} \rangle ((A_t)_k - (u^*(x))_k) \right] \\
& \leq \underbrace{\sum_{t=1}^T (\psi_t(\bar{A}_{t+1}(x)) - \psi_{t+1}(\bar{A}_{t+1}(x))) + \psi_{T+1}(u^*(x)) - \psi_1(\bar{A}_1(x))}_{\text{Penalty}} \\
& \quad + \underbrace{\sum_{t=1}^T (1 - \gamma_t) \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle ((\bar{A}_t(x))_k - (\bar{A}_{t+1}(x))_k) - D_t(\bar{A}_{t+1}(x), \bar{A}_t(x))}_{\text{Stability}} + \underbrace{U(x)}_{\text{Exploration-induced regret}} , \tag{2}
\end{aligned}$$

where $U(x) = \sum_{t=1}^T \gamma_t \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle (1/|E| - (u^\star(x))_k)$.

Proof of Lemma A.1. It follows from the construction of $\bar{A}_t(x)$ that

$$\begin{aligned} & \mathbb{E}_{A_t} \left[\sum_{t=1}^T \langle x, \tilde{\theta}_{t,k} \rangle ((A_t)_k - (u^*(x))_k) \right] \\ &= \sum_{t=1}^T \sum_{k=1}^K (1 - \gamma_t) ((\bar{A}_t(x))_k - (u^*(x))_k) \langle x, \tilde{\theta}_{t,k} \rangle + \sum_{t=1}^T \sum_{k=1}^K \gamma_t \left(\frac{1}{|E|} - (u^*(x))_k \right) \langle x, \tilde{\theta}_{t,k} \rangle. \end{aligned}$$

Applying a standard FTRL regret decomposition result (see e.g. (Lattimore & Szepesvári, 2020, Exercise 28.12)) to the first term on the right-hand side of the above expression and applying the definition of $U(x)$ yields the desired result. \square

The following lemma is a building block for bounding the stability term appearing in Lemma A.1.

Lemma A.2 (Bound for the scaled per-arm loss). *Under the assumptions of Lemma A.1, we have*

$$\max_{k \in [K]} |\eta_t \langle x, \tilde{\theta}_{t,k} \rangle| \leq 1.$$

648 *Proof of Lemma A.2.* Observe that
649

$$\begin{aligned}
650 \quad \max_{k \in [K]} |\eta_t \langle x, \tilde{\theta}_{t,k} \rangle| &= \max_{k \in [K]} \left| \eta_t \langle x, \hat{\Sigma}_{t,k}^+ X_t \ell_t(X_t, k)(A_t)_k \rangle \right| \\
651 \\
652 \quad &\leq \max_{k \in [K]} \left| \eta_t x^\top \hat{\Sigma}_{t,k}^+ X_t \right| \\
653 \\
654 \quad &\leq \eta_t \max_{k \in [K]} \|\hat{\Sigma}_{t,k}^+\|_{\text{op}} \leq \frac{\eta_t (M_t + 1)}{2} \leq \frac{\eta_t \left(\frac{4K \ln(t)}{\alpha_t \eta_t \lambda_{\min}(\Sigma)} + 1 \right)}{2} \leq 1,
\end{aligned}$$

655 where the second inequality exploits Hölder's inequality, which applies because $\|X_t\|_2 \leq 1$ by
656 assumption, the third inequality holds thanks to (Zierahn et al., 2023, Lemma 1), the fourth inequality
657 holds due to the parameter choice $\gamma_t = \alpha_t \eta_t$. The last inequality again follows by the parameter
658 choices $\alpha_t = 4K \ln(t) / (\gamma_t \lambda_{\min}(\Sigma))$ and $\eta_t \leq 1/2$. \square
659

660 We now decompose the regret for the auxiliary game stated in Lemma A.1 as follows.
661

662 **Lemma A.3** (Regret breakdown for the auxiliary game). *Under the assumptions of Lemma A.1, we
663 have*

$$664 \quad \tilde{\mathcal{R}}_T(x) - U(x) \leq \sum_{t=1}^T (1 - \gamma_t) \eta_t e \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle^2 (\bar{A}_t(x))_k + \sum_{t=1}^T (\beta_{t+1} - \beta_t) H(\bar{A}_{t+1}(x)) + mc_2 \ln(K/m) \ln T.$$

665 *Proof of Lemma A.3.* We analyze the stability and penalty terms appearing in Lemma A.1. First, we
666 bound the per-round stability term in equation 2. By (Lattimore & Szepesvári, 2020, Theorem 26.13)
667 and using that $\frac{\partial^2}{(\partial x)^2} \psi_t(x) = \frac{1}{\eta_t x}$ for all $x \in \text{conv}(\mathcal{A})$, we have
668

$$669 \quad \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle ((\bar{A}_t(x))_k - (\bar{A}_{t+1}(x))_k) - D_t(\bar{A}_{t+1}(x), \bar{A}_t(x)) \leq \frac{\eta_t}{2} \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle^2 (z_t)_k, \quad (3)$$

670 where z_t lies on the line segment connecting $\bar{A}_t(x)$ and $q^* \in \text{argmax}_{q \in \mathbb{R}^K} \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle ((\bar{A}_t(x))_k - q_k) - D_t(q, \bar{A}_t(x))$. In addition, by the first-order optimality conditions we have $q_k^* = (\bar{A}_t(x))_k \exp(-\eta_t \langle x, \tilde{\theta}_{t,k} \rangle)$. Combining the previous observation with Lemma A.2 which states that $-\eta_t \langle x, \tilde{\theta}_{t,k} \rangle \in [-1, 1]$ for all $k \in [K]$, we deduce that $q_k^* \in [(\bar{A}_t(x))_k / e, e(\bar{A}_t(x))_k]$. Because z_t lies on the line segment connecting \bar{A}_t and q^* , we then have $(z_t)_k \leq e(\bar{A}_t(x))_k$ for all $k \in [K]$, which in turn implies that
671

$$672 \quad \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle^2 (z_t)_k \leq 2 \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle^2 (\bar{A}_t(x))_k. \quad (4)$$

673 Substituting equation 4 into equation 3 establishes the upper bound for the stability term as claimed.
674 As for the penalty term, we have

$$\begin{aligned}
675 \quad &\sum_{t=1}^T (\psi_t(\bar{A}_{t+1}(x)) - \psi_{t+1}(\bar{A}_{t+1}(x))) + \psi_{T+1}(u^*(x)) - \psi_1(\bar{A}_1(x)) \\
676 \\
677 \quad &\leq \sum_{t=1}^T (\beta_{t+1} - \beta_t) H(\bar{A}_{t+1}(x)) + \frac{m}{\eta_1} \ln(K/m) \leq \sum_{t=1}^T (\beta_{t+1} - \beta_t) H(\bar{A}_{t+1}(x)) + mc_2 \ln(K/m) \ln T,
\end{aligned}$$

678 where the first inequality holds because of Jensen's inequality and noting that H takes nonnegative
679 values on $\text{conv}(\mathcal{A})$, and the second inequality holds because of the choice $\beta_1 = \max\{2, c_2 \ln T, c_1\}$.
680 Thus, the claim follows. \square
681

682 We continue to bound the extra regret for the auxiliary game due to exploration, which uses Lemma 2.3
683 as a building block. For the sake of completeness we first state the proof of Lemma 2.3.
684

685 *Proof of Lemma 2.3.* (Zierahn et al., 2023, Lemma 3) and our choice of E that satisfies $|E| = K$
686 imply that

$$687 \quad \max_{A \in \mathcal{A}} \mathbb{E} \left[\sum_{k=1}^K \langle x, \hat{\theta}_{t,k} - \tilde{\theta}_{t,k} \rangle (A)_k \mid \mathcal{F}_{t-1} \right] \leq \sqrt{m} \exp \left(-\frac{\gamma_t \lambda_{\min}(\Sigma) M_t}{2K} \right).$$

688 The claim then follows by the choice of M_t used in Algorithm 1. \square
689

We are now equipped with the technical tools necessary to bound the exploration-induced regret, as stated below.

Lemma A.4 (Extra regret due to exploration). *We have $\mathbb{E}[U(X_0)] \leq (\sqrt{m} + 1)\mathbb{E}[\sum_{t=1}^T \gamma_t]$.*

Proof of Lemma A.4. Observe that

$$\begin{aligned} \mathbb{E}[U(X_0)] &\leq \mathbb{E}\left[\sum_{t=1}^T \gamma_t \max_{A \in \mathcal{A}} \mathbb{E}\left[\sum_{k=1}^K \langle X_0, \tilde{\theta}_{t,k} - \hat{\theta}_{t,k} + \hat{\theta}_{t,k} \rangle (A)_k \mid \mathcal{F}_{t-1}\right]\right] \\ &\leq \mathbb{E}\left[\sum_{t=1}^T \gamma_t \max_{A \in \mathcal{A}} \mathbb{E}\left[\sum_{k=1}^K \langle X_0, \tilde{\theta}_{t,k} - \hat{\theta}_{t,k} \rangle (A)_k + \ell_t(X_0, k) \mid \mathcal{F}_{t-1}\right]\right] \\ &\leq \mathbb{E}\left[\sum_{t=1}^T \gamma_t \max_{A \in \mathcal{A}} \mathbb{E}\left[\sum_{k=1}^K \langle X_0, \tilde{\theta}_{t,k} - \hat{\theta}_{t,k} \rangle (A)_k + 1 \mid \mathcal{F}_{t-1}\right]\right] \leq (\sqrt{m} + 1)\mathbb{E}\left[\sum_{t=1}^T \gamma_t\right], \end{aligned}$$

where the second inequality follows by the unbiasedness of $\hat{\theta}_{t,k}$, the third inequality holds by the assumption that $\ell_t(x, k) \leq 1$ for all $x \in \mathcal{X}$ and $k \in [K]$, and the last inequality holds because of Lemma 2.3. \square

The following is another preparation lemma for establishing Lemma 2.4, which constitutes an adaptation of (Kuroki et al., 2024, Lemma 18) to the combinatorial semi-bandit setting. It provides a refined bound on the penalty term induced by the Shannon entropy regularizer with respect to the ghost sample.

Lemma A.5 (Entropic bound for the ghost sample). *We have*

$$\mathbb{E}\left[\sum_{t=1}^T (\beta'_{t+1} - \beta'_t) H(\bar{A}_{t+1}(X_0))\right] = \mathcal{O}\left(c_1 \sqrt{m \ln(K/m)} \sqrt{\sum_{t=1}^T \mathbb{E}[H(\bar{A}_t(X_0))]} \right).$$

Proof of Lemma A.5. By definition of β'_t , we obtain

$$\begin{aligned} \mathbb{E}\left[\sum_{t=1}^T (\beta'_{t+1} - \beta'_t) H(\bar{A}_{t+1}(X_0))\right] &= \mathbb{E}\left[\sum_{t=1}^T \frac{c_1}{\sqrt{1 + (m \ln(K/m))^{-1} \sum_{s=1}^t H(\bar{A}_s(X_s))}} H(\bar{A}_{t+1}(X_0))\right] \\ &\leq 2c_1 \sqrt{m \ln(K/m)} \mathbb{E}\left[\sum_{t=1}^T \frac{H(\bar{A}_{t+1}(X_0))}{\sqrt{\sum_{s=1}^{t+1} H(\bar{A}_s(X_s)) + \sqrt{\sum_{s=1}^t H(\bar{A}_s(X_s))}}}\right], \end{aligned}$$

where in the last step we used the fact that $H(\bar{A}_s(X_s)) \leq m \ln(K/m)$. The above upper bound further reduces to

$$\begin{aligned} &2c_1 \sqrt{m \ln(K/m)} \mathbb{E}\left[\sum_{t=1}^T \frac{H(\bar{A}_{t+1}(X_0))}{\sqrt{\sum_{s=1}^{t+1} H(\bar{A}_s(X_s)) + \sqrt{\sum_{s=1}^t H(\bar{A}_s(X_s))}}}\right] \\ &= 2c_1 \sqrt{m \ln(K/m)} \mathbb{E}\left[\sum_{t=1}^T \frac{H(\bar{A}_{t+1}(X_0))(\sqrt{\sum_{s=1}^{t+1} H(\bar{A}_s(X_s))} - \sqrt{\sum_{s=1}^t H(\bar{A}_s(X_s))})}{H(\bar{A}_{t+1}(X_{t+1}))}\right] \\ &= 2c_1 \sqrt{m \ln(K/m)} \mathbb{E}\left[\sum_{t=1}^T \sqrt{\sum_{s=1}^{t+1} H(\bar{A}_s(X_s))} - \sqrt{\sum_{s=1}^t H(\bar{A}_s(X_s))}\right] \\ &= 2c_1 \sqrt{m \ln(K/m)} \mathbb{E}\left[\sqrt{\sum_{s=1}^{T+1} H(\bar{A}_s(X_s))} - \sqrt{H(\bar{A}_1(X_1))}\right] \\ &\leq 2c_1 \sqrt{m \ln(K/m)} \mathbb{E}\left[\sqrt{\sum_{s=1}^T H(\bar{A}_s(X_s))}\right] \leq c_1 \sqrt{m \ln(K/m)} \sqrt{\sum_{s=1}^T \mathbb{E}[H(\bar{A}_s(X_s))]}, \end{aligned}$$

756 where the first equality holds because $\mathbb{E}_{X_{t+1} \sim \mathcal{D}} [H(\bar{A}_{t+1}(X_{t+1})) | \mathcal{F}_t] = \mathbb{E}_{X_0 \sim \mathcal{D}} [H(\bar{A}_{t+1}(X_0)) | \mathcal{F}_t]$.
 757 The first inequality exploits the fact that $H(\bar{A}_s(X_s)) \leq H(\bar{A}_1(X_1)) = m \ln(K/m)$, and the second
 758 inequality follows from Jensen's inequality. Thus, the claim follows. \square
 759

760 The following lemma provides an upper bound on the refined per-round stability term established in
 761 Lemma A.3 in the form of variance of the parameter estimates $\{\tilde{\theta}_{t,k}\}_{k=1}^K$ for all $t = 1, \dots, T$.
 762

763 **Lemma A.6** (Variance control (Zierahn et al., 2023, Lemma 5)). *For any context $x \in \mathcal{X}$, conditioning
 764 on the history \mathcal{F}_{t-1} yields the variance bound*

$$765 (1 - \gamma_t) \mathbb{E} \left[\sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle^2 (\bar{A}_t(x))_k \mid \mathcal{F}_{t-1} \right] \leq 3Kd.$$

768 We are now equipped with all the technicalities needed to establish the regret bound for the original
 769 game.
 770

771 *Proof of Lemma 2.4.* We begin by establishing an upper bound on the sum of learning rates, $\sum_{t=1}^T \eta_t$,
 772 which will be useful throughout the proof. Observe first that by construction of β'_t , we have
 773

$$774 \beta'_t = c_1 + \sum_{s=1}^{t-1} \frac{c_1}{\sqrt{1 + (m \ln(K/m))^{-1} \sum_{u=1}^{s-1} H(\bar{A}_u(X_u))}} \geq \frac{c_1 t}{\sqrt{1 + (m \ln(K/m))^{-1} \sum_{s=1}^t H(\bar{A}_s(X_s))}},$$

777 where the inequality holds because $H(\bar{A}_u(X_u)) \geq 0$ for all $u \in [t]$. Thus,

$$779 \sum_{t=1}^T \eta_t \leq \sum_{t=1}^T \frac{1}{\beta'_t} \leq \sum_{t=1}^T \frac{\sqrt{1 + (m \ln(K/m))^{-1} \sum_{s=1}^t H(\bar{A}_s(X_s))}}{c_1 t} \\ 780 \leq \frac{1 + \ln T}{c_1} \sqrt{1 + (m \ln(K/m))^{-1} \sum_{s=1}^T H(\bar{A}_s(X_s))} \\ 781 = \mathcal{O} \left(\frac{\ln T}{c_1 \sqrt{m \ln(K/m)}} \sqrt{\sum_{t=1}^T H(\bar{A}_t(X_t))} \right), \quad (5)$$

787 where we used $H(\bar{A}_1(X_1)) = m \ln(K/m)$. It then follows that

$$789 \mathbb{E} \left[\sum_{t=1}^T (1 - \gamma_t) \eta_t e \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle^2 (\bar{A}_t(x))_k \right] = \mathbb{E} \left[\sum_{t=1}^T \eta_t e \mathbb{E} \left[(1 - \gamma_t) \sum_{k=1}^K \langle x, \tilde{\theta}_{t,k} \rangle^2 (\bar{A}_t(x))_k \mid \mathcal{F}_{t-1} \right] \right] \\ 790 \leq \mathcal{O} \left(\mathbb{E} \left[\frac{Kd \cdot \ln T}{c_1 \sqrt{m \ln(K/m)}} \sqrt{\sum_{t=1}^T H(\bar{A}_t(X_t))} \right] \right) \\ 791 \leq \mathcal{O} \left(\frac{Kd \cdot \ln T}{c_1 \sqrt{m \ln(K/m)}} \sqrt{\mathbb{E} \left[\sum_{t=1}^T H(\bar{A}_t(X_t)) \right]} \right), \quad (6)$$

798 where the equality holds due to the law of iterated expectations, the first inequality holds thanks to
 799 Lemma A.6 and equation 5, and the second inequality follows from Jensen's inequality.
 800

801 We continue to bound the extra regret due to exploration by the cumulative entropy term. It follows
 802 from Lemma A.4 that

$$803 \mathbb{E}[U(X_0)] \leq (\sqrt{m} + 1) \mathbb{E} \left[\sum_{t=1}^T \gamma_t \right] \leq (\sqrt{m} + 1) \mathbb{E} \left[\sum_{t=1}^T \frac{4\eta_t K \ln T}{\lambda_{\min}(\Sigma)} \right] \\ 804 = \mathcal{O} \left(\frac{K(\ln T)^2}{c_1 \lambda_{\min}(\Sigma) \sqrt{\ln(K/m)}} \sqrt{\sum_{t=1}^T \mathbb{E}[H(A_t(X_t))]} \right), \quad (7)$$

809 where the second inequality holds because $\gamma_t = \alpha_t \eta_t$ and the choice of α_t as well as the fact that
 $\ln t \leq \ln T$. The equality then holds because of equation 5.

Finally, we establish an upper bound for the penalty term in the regret decomposition. Denote by t_0 the first round in which β'_t becomes larger than the constant $F = \max\{2, c_2 \ln T\}$, i.e., $t_0 = \min\{t \in [T] : \beta'_t \geq F\}$. We then have

$$\begin{aligned}
& \mathbb{E} \left[\sum_{t=1}^T (\beta_{t+1} - \beta_t) H(\bar{A}_{t+1}(X_0)) \right] \\
&= \mathbb{E} \left[\sum_{t=1}^{t_0-1} (\beta_{t+1} - \beta_t) H(\bar{A}_{t+1}(X_0)) + \sum_{t=t_0}^T (\beta_{t+1} - \beta_t) H(\bar{A}_{t+1}(X_0)) \right] \\
&\leq \mathbb{E} \left[(\beta'_{t_0} - \beta'_{t_0-1}) H(\bar{A}_{t+1}(X_0)) + \sum_{t=t_0}^T (\beta'_{t+1} - \beta'_t) H(\bar{A}_{t+1}(X_0)) \right] \\
&\leq \mathbb{E} \left[\sum_{t=1}^T (\beta'_{t+1} - \beta'_t) H(\bar{A}_{t+1}(X_0)) \right] = \mathcal{O} \left(c_1 \sqrt{m \ln(K/m)} \sqrt{\sum_{t=1}^T \mathbb{E}[H(\bar{A}_t(X_0))]} \right),
\end{aligned} \tag{8}$$

where the first inequality is due to the fact that $\beta_t = \beta_{t+1}$ while $t \in [t_0 - 2]$, $\beta_{t_0-1} \geq \beta'_{t_0-1}$ by construction, and $\beta'_t = \beta_t$ for $t \geq t_0$. The second inequality holds because β'_t is increasing in t , while the second equality holds thanks to Lemma A.5. The claim then follows by substituting equation 6, equation 7, and equation 8 into terms in the statement of Lemma A.3 (to bound the regret for the auxiliary game) as well as Lemma 2.2 (to bound the regret for the original game). \square

The crux to show the best-of-both-worlds result now lies in constructing a tight upper bound on the cumulative entropy term that dominates the regret bound in Lemma 2.4.

Proof of Lemma 2.5. Observe that for any $A \in \text{conv}(\mathcal{A})$ and any $S \subset \mathcal{A}$ with $|S| = m$, it follows that

$$\begin{aligned}
H(A) &= \sum_{k \notin S} (A)_k \ln \frac{1}{(A)_k} + \sum_{k \in S} (A)_k \ln \frac{1}{(A)_k} \\
&\leq \sum_{k \notin S} (A)_k \ln \frac{K-m}{\sum_{k \notin S} (A)_k} + \sum_{k \in S} (A)_k \left(\frac{1}{(A)_k} - 1 \right) \\
&= \sum_{k \notin S} (A)_k \left(\ln \frac{K-m}{\sum_{k \notin S} (A)_k} + 1 \right),
\end{aligned}$$

where the inequality holds because of Jensen's inequality and because $\ln(1/x) \leq 1/x - 1$, and the second equality holds because $\sum_{k \in S} (A)_k + \sum_{k \notin S} (A)_k = m$ thanks to the membership of A in $\text{conv}(\mathcal{A})$. Applying the above inequality to the entropy with respect to action given the ghost sample X_0 and $S = \{k \in [K] : (u^*(X_0))_k = 1\}$ gives

$$\begin{aligned}
\sum_{t=1}^T H(\bar{A}_t(X_0)) &\leq \sum_{t=1}^T \sum_{k: (u^*(X_0))_k=0} (\bar{A}_t)_k \left(\ln \frac{K-m}{\sum_{k: (u^*(X_0))_k=0} (\bar{A}_t)_k} + 1 \right) \\
&\leq \sum_{t=1}^T \sum_{k: (u^*(X_0))_k=0} (\bar{A}_t)_k \ln \frac{e(K-m)T}{\sum_{t=1}^T \sum_{k: (u^*(X_0))_k=0} (\bar{A}_t)_k} \\
&\leq \ln((K-m)T) \sum_{t=1}^T \sum_{k: (u^*(X_0))_k=0} (\bar{A}_t)_k,
\end{aligned} \tag{9}$$

where the second inequality follows by Jensen's inequality, and the third inequality holds because

$$\sum_{t=1}^T \sum_{k: (u^*(X_0))_k=0} (\bar{A}_t)_k \geq e.$$

864 We continue to bound the term $\sum_{t=1}^T \sum_{k:(u^*(X_0))_k=0} (\bar{A}_t)_k$. Taking expectations yields
 865

$$\begin{aligned} 866 \sum_{t=1}^T \sum_{k:(u^*(X_0))_k=0} (\bar{A}_t)_k &= \sum_{t=1}^T \sum_{k:(u^*(X_0))_k=0} \sum_{A \in \mathcal{A}} \pi_t(A)(A)_k \\ 867 \\ 868 &= \sum_{t=1}^T \sum_{k:(u^*(X_0))_k=0} \sum_{A \in \mathcal{A} \setminus \{u^*(X_0)\}} \pi_t(A)(A)_k \\ 869 \\ 870 &\leq m \sum_{t=1}^T \sum_{A \in \mathcal{A} \setminus \{u^*(X_0)\}} \pi_t(A). \\ 871 \\ 872 \end{aligned}$$

873 Substituting the above expression into equation 9 and noticing that $\mathbb{E}[\pi_t(u^*(X_0))|\mathcal{F}_{t-1}] = \mathbb{E}[\pi_t(u^*(X_t))|\mathcal{F}_{t-1}]$ thus establishes the claim. \square
 874

875 Finally, Theorem 2.1 can be established via combining all of the insights yielded in the above lemmas.
 876

877 *Proof of Theorem 2.1.* For ease of notation, let us denote $\kappa = \sqrt{Kd \ln T + K(\ln T)^2 / \lambda_{\min}(\Sigma)}$. The
 878 regret bound stated in (i) follows immediately from Lemma 2.2 combined with Lemma 2.4 as well as
 879 the observation that $\sum_{t=1}^T H(\bar{A}_t(X_0)) \leq m \ln(K/m)T$. We now show claim (ii). Note that in the case
 880 of $\sum_{t=1}^T \sum_{k:(u^*(X_0))_k=0} (\bar{A}_t)_k < e$, we have $\sum_{t=1}^T H(\bar{A}_t(X_0)) \leq e \ln(e(K-m)T) + 1/e$, in which case we
 881 already have the desired bound. We thus continue to consider the case when $\sum_{t=1}^T \sum_{k:(u^*(X_0))_k=0} (\bar{A}_t)_k \geq$
 882 e . Observe that due to the definition of suboptimality gap $\Delta_A(x)$ and the corruption budget C , it
 883 follows that
 884

$$\begin{aligned} 885 \mathcal{R}_T &\geq \mathbb{E} \left[\sum_{t=1}^T \sum_{A \in \mathcal{A} \setminus \{u^*(X_t)\}} \pi_t(A) \Delta_A(x) \right] - 2\mathbb{E} \left[\sum_{t=1}^T \max_{A \in \mathcal{A}} \sum_{k=1}^K \|X_t\|_2 \|\theta_{t,k} - \theta_k\|_2 (A)_k \right] \\ 886 \\ 887 &\geq \Delta_{\min} \mathbb{E} \left[\sum_{t=1}^T \sum_{A \in \mathcal{A} \setminus \{u^*(X_t)\}} \pi_t(A) \right] - 2C. \\ 888 \\ 889 \end{aligned} \tag{10}$$

890 For any $\lambda \in [0, 1]$, we may decompose the regret as
 891

$$\begin{aligned} 892 \mathcal{R}_T &= (1 + \lambda) \mathcal{R}_T - \lambda \mathcal{R}_T \\ 893 \\ 894 &\leq (1 + \lambda) \kappa \sqrt{\mathbb{E} \left[\sum_{t=1}^T H(\bar{A}_t(X_0)) \right]} - \lambda \Delta_{\min} \mathbb{E} \left[\sum_{t=1}^T \sum_{A \in \mathcal{A} \setminus \{u^*(X_t)\}} \pi_t(A) \right] + 2\lambda C \\ 895 \\ 896 &\quad + \mathcal{O} \left(\frac{K}{\lambda_{\min}(\Sigma)} m \ln(K/m) \ln T \right) \\ 897 \\ 898 &\leq (1 + \lambda) \kappa \sqrt{\ln((K-m)T)} \sqrt{m \mathbb{E} \left[\sum_{t=1}^T \sum_{A \in \mathcal{A} \setminus \{u^*(X_t)\}} \pi_t(A) \right]} \\ 899 \\ 900 &\quad - \lambda \Delta_{\min} \mathbb{E} \left[\sum_{t=1}^T \sum_{A \in \mathcal{A} \setminus \{u^*(X_t)\}} \pi_t(A) \right] + \mathcal{O} \left(\frac{K}{\lambda_{\min}(\Sigma)} m \ln(K/m) \ln T \right) \\ 901 \\ 902 &\leq \mathcal{O} \left(\frac{(1 + \lambda)^2 \kappa^2 m \ln((K-m)T)}{4\lambda \Delta_{\min}} \right) = \mathcal{O} \left(\frac{\kappa^2 m \ln((K-m)T)}{\Delta_{\min}} \right), \\ 903 \\ 904 \end{aligned}$$

905 where the first inequality holds thanks to Lemma 2.2 combined with Lemma 2.4 as well as the lower
 906 bound equation 10, the second inequality follows by Lemma 2.5. The third inequality holds by the
 907 observation $a\sqrt{x} - bx \leq a^2/(4b)$ for any nonnegative scalars a, b, x , and the last equality follows by
 908 choosing $\lambda = 1$. \square
 909

910 A.2 PROOFS AND AUXILIARY RESULTS FOR SECTION 3

911 **Example 1** (Choices of f). We provide three examples of the arm-wise regularizer f on domain $[0, 1]$
 912 or $(0, 1]$ that admits a closed-form expression of $(f')^{-1}$ and satisfies the assumptions of Theorem 3.1.
 913

918 1. $f(x) : [0, 1] \rightarrow \mathbb{R}$ is defined through $f(x) = x \log x - x$ for $x \in (0, 1]$ and $f(0) = 0$, which is
 919 continuous on $[0, 1]$ and differentiable on $(0, 1]$. Note that although $\log x$ is not defined at
 920 $x = 0$, we have $\lim_{x \rightarrow 0^+} x \log x = 0$. Observe that its first derivative for $x \in (0, 1]$ is $\ln x$. It then
 921 follows that $(f')^{-1}(-\lambda - c_k) = e^{-\lambda - c_k}$ for all $k \in [K]$. In addition, note that $z = f'(x) = \ln x$
 922 ranges over the compact interval $z \in (-\infty, 0]$. On that interval, the derivative of the inverse
 923 $\partial e^z / \partial z = e^z$ satisfies $e^z \leq e^0 = 1$ for all $z \in (-\infty, 0]$. By the mean-value theorem, for any
 924 $z_1, z_2 \in [-\infty, 0]$ there exists c between them such that $|e^{z_1} - e^{z_2}| = e^c |z_1 - z_2| \leq 1 |z_1 - z_2|$.
 925 Hence, the function $(f')^{-1}(-\lambda - c_k) = e^{-\lambda - c_k}$ is 1-Lipschitz.
 926

927 2. $f(x) = x^2$ on $[0, 1]$. It then follows that $(f')^{-1}(z) = z/2$ for all $z \in [0, 2]$. As in the previous
 928 case, with $z = -\lambda - c_k$, for all $k \in [K]$ we have $(f')^{-1}(-\lambda - c_k) = (-\lambda - c_k)/2$. Note also
 929 that the function $(f')^{-1}(-\lambda - c_k) = (-\lambda - c_k)/2$ is globally $(1/2)$ -Lipschitz on its entire
 930 domain.

931 3. $f(x) = -\sqrt{x}$ on $(0, 1]$. Similar to previous calculations, we have $x = (f')^{-1}(z) = 1/(4z^2)$.
 932 Note that it must hold $z < 0$ for the expression to be defined properly. Hence, with $z =$
 933 $-\lambda - c_k < 0$, for all $k \in [K]$, we have $(f')^{-1}(-\lambda - c_k) = 1/(4(-\lambda - c_k)^2)$. As $x \in (0, 1]$ we
 934 have $z = -1/(2\sqrt{x}) \in (-\infty, -1/2]$. On that interval, the derivative of the inverse is:

$$\frac{\partial}{\partial z} \left(\frac{1}{4z^2} \right) = -\frac{1}{2z^3}.$$

935 On the interval $z \in (-\infty, -\frac{1}{2}]$, the largest magnitude of derivative of the inverse map
 936 $|(f')^{-1}(z)|$ occurs at the smallest $|z|$, namely at $|z| = 1/2$. This follows from the fact
 937 that $|(f')^{-1}(z)|$ is decreasing as $|z|$ grows. Then, $\sup |(f')^{-1}(z)| = 4$, on $z \in (-\infty, -1/2]$.
 938 So, $|(f')^{-1}(z_1) - (f')^{-1}(z_2)| \leq 4|z_1 - z_2|$, for all $z_1, z_2 \in (-\infty, -1/2]$. Therefore, $(f')^{-1}$ is
 939 4-Lipschitz.

940 *Proof of Theorem 3.1.* We first show that the endpoints of the search interval give rise to strictly
 941 negative and strictly positive function values, respectively. The definition of $\underline{\lambda}$ in Step 1 of Algorithm 3
 942 implies that

$$-f'(k/K) \leq -\underline{\lambda} - c_k \quad \forall k \in [K]. \quad (11)$$

943 As f is strictly convex, its first derivative f' is strictly increasing, which in turn implies that its inverse
 944 $(f')^{-1}$ is also strictly increasing. Applying the inverse function to both sides of equation 11 yields

$$(f')^{-1}(-\underline{\lambda} - c_k) \geq (f')^{-1} \left(f' \left(\frac{k}{K} \right) \right) = \frac{k}{K} \quad \forall k \in [K].$$

945 Summing over $k = 1, \dots, K$ gives $\sum_{k=1}^K (f')^{-1}(-\underline{\lambda} - c_k) \geq k$. A similar argument applied to $\bar{\lambda}$
 946 gives $\sum_{k=1}^K (f')^{-1}(-\bar{\lambda} - c_k) \leq k$. Thus, by the intermediate value theorem, there exists at least one
 947 $\lambda^* \in [\underline{\lambda}, \bar{\lambda}]$ such that

$$\sum_{k=1}^K (f')^{-1}(-\lambda^* - c_k) = 0.$$

948 Next, we show that the prescribed iteration number gives an approximate solution of λ^* upon
 949 termination. By the assumed L -Lipschitz continuity of $(f')^{-1}$, we have

$$|(f')^{-1}(x) - (f')^{-1}(y)| \leq L|x - y| \quad \forall x, y \in \mathbb{R}. \quad (12)$$

950 Define the modulus of uniform continuity $\delta(\varepsilon)$ by

$$\delta(\varepsilon) = \max_{\delta > 0} \{ \delta : |(f')^{-1}(x) - (f')^{-1}(y)| \leq \varepsilon / (2\sqrt{K}) \text{ for all } x, y \in \mathbb{R} \text{ with } |x - y| \leq \delta \}.$$

954 Choosing $\delta_0 = \varepsilon / (2L\sqrt{K})$ gives $|(f')^{-1}(x) - (f')^{-1}(y)| \leq L\delta_0 = \varepsilon / (2\sqrt{K})$, which implies that
 955 $\delta(\varepsilon) \geq \varepsilon / (2L\sqrt{K})$. Let the initial interval length be $\Delta_0 = \bar{\lambda} - \underline{\lambda}$, where $\bar{\lambda}, \underline{\lambda}$ are initializations
 956 specified in Step 1 of Algorithm 3. Note that each bisection iteration halves the interval's length.
 957 Therefore, the interval length after l iterations is $\Delta_l = \Delta_0 / 2^l$. Denote by λ_l the midpoint of the l -th
 958 interval. Since the true root λ^* lies within this interval, the error satisfies

$$|\lambda_l - \lambda^*| \leq \frac{\Delta_l}{2} = \frac{\Delta_0}{2^{l+1}}.$$

To guarantee that the propagated error through the L -Lipschitz function $(f')^{-1}$ remains below $\varepsilon/(2\sqrt{K})$ in each coordinate, it suffices to have $L|\lambda_l - \lambda^*| \leq \varepsilon/(2\sqrt{K})$, or equivalently, $\Delta_0/2^{l+1} \leq \varepsilon/(2L\sqrt{K})$. It follows that the bisection algorithm should terminate as soon as

$$l \geq \log_2 \left(\frac{2L\sqrt{K}\Delta_0}{\varepsilon} \right) - 1.$$

Let denote with L^* the number of iterations after bisection algorithm terminates. Then,

$$|\lambda_{L^*} - \lambda^*| \leq \frac{\varepsilon}{2L\sqrt{K}}.$$

and thus $L^* \leq \log_2(2L\sqrt{K}\Delta_0/\varepsilon)$. The output of Algorithm 3 is defined as

$$a_k = (f')^{-1}(-\lambda - c_k) + \frac{\Delta}{K}, \quad \forall k \in [K], \quad (13)$$

where $\Delta = k - \sum_{k=1}^K (f')^{-1}(-c_k - \lambda^*)$. For each coordinate k , the error induced by the difference between λ and λ^* is dominated by the Lipschitz property equation 12 through

$$|(f')^{-1}(-\lambda - c_k) - (f')^{-1}(-\lambda^* - c_k)| \leq L|\lambda - \lambda^*| \leq \frac{\varepsilon}{2\sqrt{K}},$$

which in turn implies that $(f')^{-1}(-\lambda - c_k) \geq (f')^{-1}(-\lambda^* - c_k) - \varepsilon/(2\sqrt{K})$. Summing over $k = 1, \dots, d$ and by defining $\Delta_\lambda = k - \sum_{k=1}^K (f')^{-1}(-\lambda - c_k)$ yields:

$$\Delta_\lambda \leq k - \left[\sum_{k=1}^K (f')^{-1}(-\lambda^* - c_k) - \frac{\varepsilon\sqrt{K}}{2} \right].$$

By the definition of Δ we can bound Δ_λ as $\Delta_\lambda \leq \Delta + \varepsilon\sqrt{K}/2$. In the worst-case scenario when the computed error Δ_λ is close to 0, the inequality above reduces to $\Delta \geq \Delta_\lambda - \varepsilon\sqrt{K}/2$. Since Δ_λ is nearly 0 or in the worst-case non-positive, this yields the bound $\Delta \geq -\varepsilon\sqrt{K}/2$. Therefore, from equation 13, the error in each coordinate satisfies $|a_k - a_k^*| \leq \varepsilon/\sqrt{K}$, and therefore $\|a - a^*\|_2 \leq \varepsilon$. Thus, the claim follows. \square

Proof of Corollary 3.2. Define the exact residual $g(\lambda) = k - \sum_{k=1}^K (f')^{-1}(-\lambda - c_k)$ and the approximate residual $\tilde{g}(\lambda) = k - \sum_{k=1}^K \tilde{y}_k$, where each \tilde{y}_k satisfies $|\tilde{y}_k - (f')^{-1}(-\lambda - c_k)| \leq \tau$. To measure the oracle's perturbation, set $E(\lambda) = \tilde{g}(\lambda) - g(\lambda) = -\sum_{k=1}^K [\tilde{y}_k - (f')^{-1}(-\lambda - c_k)]$. Since this is a sum of K individual errors, the triangle inequality gives $|E(\lambda)| \leq \sum_{k=1}^K |\tilde{y}_k - (f')^{-1}(-\lambda - c_k)| \leq K\tau$.

In the exact inverse case we assume $g(\underline{\lambda}) \geq 0$ and $g(\bar{\lambda}) \leq 0$, which guarantees a root $\lambda^* \in [\underline{\lambda}, \bar{\lambda}]$. Accounting for the oracle error then yields $\tilde{g}(\underline{\lambda}) \geq -K\tau$ and $\tilde{g}(\bar{\lambda}) \leq K\tau$.

Provided that $\min\{g(\underline{\lambda}), -g(\bar{\lambda})\} > K\tau$, the sign test on \tilde{g} still selects the correct subinterval; hence the bisection converges with each evaluation of g perturbed by at most $\pm K\tau$. After l iterations, the midpoint λ_l satisfies $|\lambda_l - \lambda^*| \leq \Delta_0/2^{l+1}$, with $\Delta_0 = \bar{\lambda} - \underline{\lambda}$. Upon termination at λ_l , define $\tilde{a}_k = \tilde{y}_i(\lambda_l)$ for all $k \in [K]$. Finally, subtract the mean of \tilde{a} to ensure that $\sum_{k=1}^K \tilde{a}_k = k$ exactly.

Subtracting the mean of \tilde{a} introduces a uniform shift of magnitude $C = \mathcal{O}(\tau + L|\lambda_l - \lambda^*|)$. Hence each coordinate error can be bounded as

$$|\tilde{a}_k - a_k^*| \leq \underbrace{|(f')^{-1}(-\lambda_l - c_k) - (f')^{-1}(-\lambda^* - c_k)|}_{\leq L|\lambda_l - \lambda^*|} + \underbrace{|\tilde{y}_i - (f')^{-1}(-\lambda_l - c_k)|}_{\leq \tau} + C.$$

Since $(f')^{-1}$ is L -Lipschitz and each oracle error is bounded by τ , it follows that $|\tilde{a}_k - a_k^*| \leq L|\lambda_l - \lambda^*| + \tau + C$. Taking the ℓ_2 -norm of the coordinatewise bound gives

$$\|\tilde{a} - a^*\|_2 \leq \sqrt{K} \max_i |\tilde{a}_k - a_k^*| \leq \sqrt{K} (L|\lambda_l - \lambda^*| + \tau + C) = \mathcal{O}(\sqrt{K}(\tau + L|\lambda_l - \lambda^*|)).$$

Hence, to ensure $\|\tilde{a} - a^*\|_2 \leq \varepsilon$, it suffices that

$$L|\lambda_l - \lambda^*| \leq \frac{\varepsilon}{2\sqrt{K}} \quad \text{and} \quad \tau \leq \frac{\varepsilon}{2\sqrt{K}}.$$

1026 The first inequality follows from
 1027

$$1028 \quad |\lambda_l - \lambda^*| \leq \frac{\Delta_0}{2^{l+1}} \leq \frac{\varepsilon}{2\sqrt{K}L},$$

1030 which is equivalent to
 1031

$$1032 \quad l \geq \log_2 \left(\frac{2\sqrt{K}L\Delta_0}{\varepsilon} \right),$$

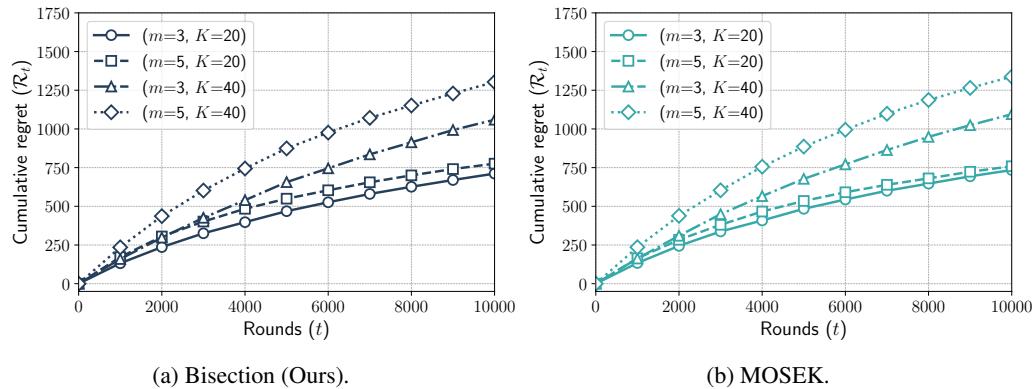
1034 while the second is simply $\tau \leq \varepsilon/(2\sqrt{K})$. Together, these conditions imply the claimed iteration
 1035 bound $\mathcal{O}(\ln(L\sqrt{K}(\bar{\lambda} - \underline{\lambda})/\varepsilon))$. This observation completes the proof. \square
 1036

1037 B ADDITIONAL NUMERICAL EXPERIMENTS

1039 In Sec. 3.1 we reported the per-iteration runtime of Algorithm 3. To further validate both the approach
 1040 and our implementation, we plot cumulative-regret trajectories for OSMD (Algorithm 2), comparing
 1041 (a) our Bisection-based projection with (b) a direct solution of the projection step via MOSEK.⁴
 1042

1043 Mean cumulative regrets for the stochastic and adversarial settings are shown in Figs. 2, 3, 4, and 5,
 1044 respectively, under the Tsallis and negative Shannon-entropy regularizers. We consider $m \in \{3, 5\}$,
 1045 $K \in \{20, 40\}$ base arms, and a horizon of $T = 10^4$ rounds.

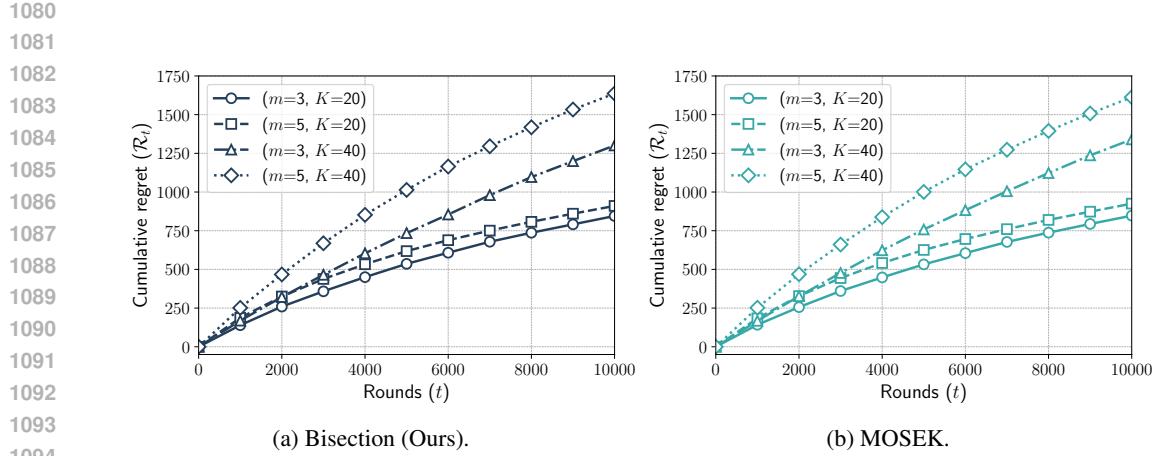
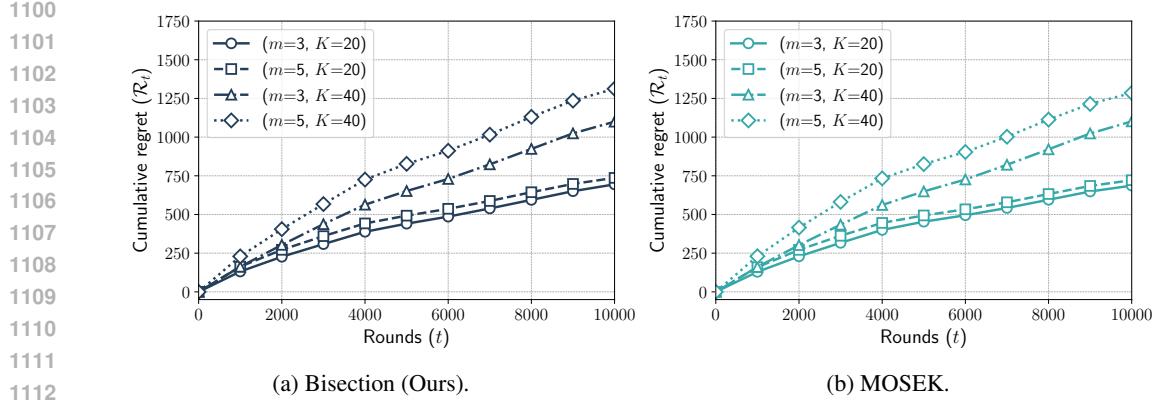
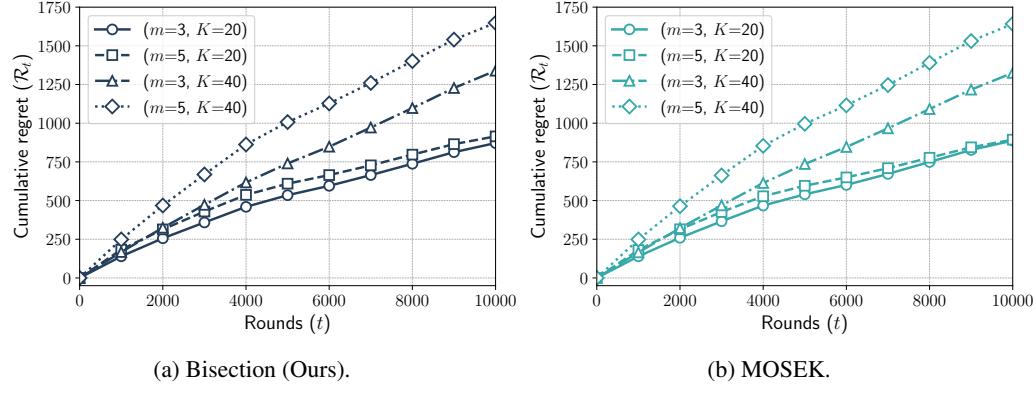
1046 Across all configurations, the two implementations yield indistinguishable regret curves (up to
 1047 numerical tolerance), supporting the correctness of our implementation. For completeness, Tables 2
 1048 and 3 report final cumulative regret for all projection subroutines considered in the paper (Bisection,
 1049 Newton, MOSEK) under the Tsallis and negative Shannon-entropy regularizers, respectively.



1062 (a) Bisection (Ours). (b) MOSEK.
 1063

1064 Figure 2: Stochastic setting for $\Delta = 0.0625$ (Tsallis regularizer).

1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079 ⁴All code to reproduce the figures is available at <https://anonymous.4open.science/r/comb-bandits-X-ICLR/>.

Figure 3: Stochastic setting for $\Delta = 0.0625$ (Negative Shannon entropy regularizer).Figure 4: Adversarial setting for $\Delta = 0.0625$ (Tsallis regularizer).Figure 5: Adversarial setting for $\Delta = 0.0625$ (Negative Shannon entropy regularizer).

1134
1135
1136
1137
1138
11391140 Table 2: Cumulative regret at $T = 10^4$ for $\Delta = 0.0625$ (Tsallis regularizer).
1141

K	m	Method	Stochastic ($\mu \pm \sigma$)	Adversarial ($\mu \pm \sigma$)
20	3	Bisection (Ours)	711.3 \pm 146.3	694.6 \pm 161.2
		Newton	726.2 \pm 170.1	710.8 \pm 130.4
		MOSEK	734.5 \pm 143.0	686.6 \pm 88.1
	5	Bisection (Ours)	775.7 \pm 170.2	736.5 \pm 119.7
		Newton	761.2 \pm 164.3	734.7 \pm 121.3
		MOSEK	758.8 \pm 170.1	721.5 \pm 137.4
40	3	Bisection (Ours)	1059.4 \pm 190.2	1099.7 \pm 143.4
		Newton	1114.8 \pm 181.4	1117.4 \pm 171.5
		MOSEK	1095.2 \pm 176.1	1101.4 \pm 119.7
	5	Bisection (Ours)	1303.2 \pm 167.3	1312.6 \pm 199.0
		Newton	1314.9 \pm 210.2	1309.8 \pm 187.6
		MOSEK	1338.0 \pm 197.4	1285.6 \pm 164.9

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
11671168 Table 3: Cumulative regret at $T = 10^4$ for $\Delta = 0.0625$ (Negative Shannon entropy regularizer).

K	m	Method	Stochastic ($\mu \pm \sigma$)	Adversarial ($\mu \pm \sigma$)
20	3	Bisection (Ours)	845.1 \pm 160.9	871.5 \pm 107.2
		Newton	835.6 \pm 136.9	874.0 \pm 102.8
		MOSEK	847.4 \pm 115.7	887.6 \pm 131.4
	5	Bisection (Ours)	910.2 \pm 164.4	914.8 \pm 126.2
		Newton	914.4 \pm 152.4	900.5 \pm 128.8
		MOSEK	925.1 \pm 160.6	893.7 \pm 129.9
40	3	Bisection (Ours)	1300.8 \pm 149.4	1339.2 \pm 115.3
		Newton	1281.1 \pm 118.8	1342.8 \pm 101.9
		MOSEK	1340.1 \pm 144.5	1325.0 \pm 123.5
	5	Bisection (Ours)	1636.6 \pm 193.4	1648.3 \pm 156.4
		Newton	1568.7 \pm 168.5	1629.0 \pm 141.8
		MOSEK	1612.7 \pm 168.0	1642.0 \pm 170.9

1182
1183
1184
1185
1186
1187