
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

THE ROLE OF TASK COMPLEXITY IN EMERGENT ABIL-
ITIES OF SMALL LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

We investigate the relationship between task complexity and the minimum model
size required for learning specific tasks in small transformer models. We focus
on the ListOps dataset, consisting of nested math operations. We define the task
complexity as the Kolmogorov complexity (KC) of the code solving the task, using
a rough proxy for KC. We find a power-law relation between KC and parameters
required to learn, suggesting number of parameters to learn harder task increases
almost cubic in KC. On individual math operations, sum mod 10 is hardest to
learn. Surprisingly, when combining tasks, we observe that sum is learned earlier
and with fewer parameters when trained alongside max and median. Analyzing
the model, we find strong evidence that models trained on sum alone and models
trained jointly converge to different algorithms. Concretely, the sum alone model
doesn’t seem to have learned number properties in the embedding layer, likely
memorizing the sum table. In contrast, models trained on three tasks (maximum,
median and sum) reveals that joint training results in clear number-like properties.
Finally, we also find evidence that the sum-only model utilizes its feedforward
layer more than the jointly trained model. Conversely, the attention layer in the
joint model is activated more than the sum model. Our findings suggest there is
another dimension to emergent abilities in language models, namely the algorithms
being learned, potentially impacting scaling laws.

1 INTRODUCTION

The scaling laws of language models have been a central focus in machine learning research,
describing how performance varies with model size, computational cost, and dataset size (Hoffmann
et al., 2022; Muennighoff et al., 2024; Hestness et al., 2017). However, these laws have largely
overlooked a crucial factor: the intrinsic complexity of the tasks being learned. Our work addresses
this gap by introducing a quantitative measure of task complexity and exploring its relationship with
model size and emergent abilities.

Using the ListOps dataset (Nangia & Bowman, 2018) as our experimental framework, we investigate
how the complexity of mathematical operations—specifically maximum (max), minimum (min),
median (med), and sum modulo 10 (sum)—influences the learning dynamics of transformer models.
By approximating Kolmogorov complexity (KC) (Kolmogorov, 1965; Li et al., 2008) through the
compressed size of minimal Python code implementing these operations, we establish a novel,
quantifiable metric for task complexity. Our study reveals several groundbreaking findings:

1. Cubic model growth with complexity: We discover a power-law relationship between
task complexity (as measured by KC) and the minimum model size required for learning.
This quantitative link between complexity and model capacity offers a new perspective on
scaling laws, suggesting they are less universal than previously thought and are significantly
influenced by task complexity.

2. Change in Algorithmic Complexity: Surprisingly, in multitask settings, we observe that
the sum operation, when trained alongside max and median, is learned earlier and with fewer
parameters than when trained in isolation. This finding challenges conventional wisdom
about task difficulty and suggests that curriculum design and task diversity play critical roles
in model learning.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

3. Smarter Solution via Joint Training: Our analysis of embedding layers reveals that models
trained on three tasks (max, med, sum) develop meaningful numerical representations. In
contrast, models trained solely on sum rarely exhibit these structures, suggesting they rely
more on memorization than understanding.

These results provide compelling evidence that joint training guides models towards finding alterna-
tive, more efficient solutions. While training on sum alone may lead small models to memorize sum
tables, joint training appears to push the system towards learning good number embeddings. This, in
turn, enables the model to discover more efficient algorithms for performing sum operations, rather
than relying on rote memorization.

Our work bridges the gap between algorithmic complexity theory and practical neural network training
while challenging our understanding of scaling laws. It highlights the importance of considering task
complexity and training diversity when designing and deploying models. Gaining a deeper insight
into how task complexity, model capacity, and learning interact is essential for building more effective
systems.

2 METHODOLOGY

We investigate the relationship between task complexity and model learning dynamics using KC as a
measure of task difficulty. We employ the ListOps dataset to study nested mathematical operations,
focusing on maximum, minimum, median, and sum modulo 10. Our approach involves training
small-scale transformer models and analyzing their performance and internal representations. In this
section, we describe our analysis methodology, including our approximation of KC, the specifics of
the ListOps dataset, our model architecture, and our evaluation techniques.

2.1 KOLMOGOROV COMPLEXITY AND ITS APPROXIMATION

Kolmogorov Complexity (KC), also known as algorithmic complexity, provides a formal measure of
the information content of a string (Kolmogorov, 1965; Li et al., 2008). For a given string s, its KC
K(s) is defined as the length of the shortest program that produces s as its output. While KC offers a
powerful theoretical framework for quantifying complexity, it is fundamentally incomputable (Li
et al., 2008), necessitating the use of approximations in practical applications.

In this study, we employ a proxy measure for KC based on the compressed size of minimal Python
code implementing each task. This approach aligns with the intuition that more complex tasks
require longer descriptions, and thus, larger compressed sizes. Our method leverages the Lempel-Ziv
(LZ) compression algorithm (Ziv & Lempel, 1977), which forms the basis of the widely used gzip
compression tool. The use of compression algorithms as proxies for KC is well-established in the
literature. Cilibrasi & Vitanyi (2005) introduced the Normalized Compression Distance (NCD),
which uses standard compression algorithms to approximate the ideal Normalized Information
Distance based on KC. This approach has been successfully applied in various domains, including
bioinformatics, musicology, and plagiarism detection (Li et al., 2004).

Our specific methodology of using gzip-compressed code size as a KC proxy follows the precedent set
by several researchers. Zenil et al. (2014) employed a similar technique in their study of algorithmic
complexity for short strings. In the context of machine learning, Dingle et al. (2018) used compressed
code length as a complexity measure to study the learnability of Boolean functions. By applying
gzip compression to minimal Python implementations of our target tasks, we obtain a practical,
computable proxy for KC. This allows us to quantify task complexity and examine its relationship
with the minimum model size required for successful learning.

It’s important to note that while this proxy provides a useful approximation, it has limitations. The
choice of programming language (Python in our case) and the specific implementation details can
influence the compressed size. Additionally, for very short or highly regular strings, compression-
based approximations may not fully capture the theoretical KC. To mitigate these issues, we establish
a set of ground rules (Appendix C) to ensure we do not use advanced features that do not capture the
complexity of the algorithm (e.g. we do not use addition or sorting). Despite these constraints, our
approach offers a pragmatic and widely accepted method for estimating relative task complexities in
the context of machine learning and emergent abilities in language models.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2.2 EXPERIMENTAL SETUP

Choice of task For our study on the emergence of abilities in language models, we chose the
ListOps dataset (Nangia & Bowman, 2018) as our primary experimental framework. This choice was
motivated by several key factors that align with our research objectives:

1. Procedural Generation: ListOps is a synthetically generated dataset, allowing us to create
a large volume of examples with controlled properties. This feature enables us to fine-tune
the complexity and distribution of our training and evaluation data.

2. Exact Evaluation: The mathematical nature of ListOps operations ensures unambiguous,
exact evaluation of model outputs. This precision is crucial for accurately assessing model
performance and learning trajectories.

3. Adjustable Complexity: ListOps offers a framework to modulate problem complexity by
combining different operations and adjusting nesting depths. This flexibility allows us to
create a spectrum of task difficulties, enabling a nuanced study of the relationship between
task complexity and model size.

4. Inter-task Relationships: The dataset’s multiple operations (max, median, sum modulo 10)
provide an opportunity to explore task synergies and interference. This aspect led to our key
discovery regarding the benefits of joint training, particularly in accelerating the learning of
more challenging operations like sum modulo 10.

Dataset Description ListOps consists of nested mathematical equations involving operations such
as min, max, median, and sum modulo 10 applied to single-digit numbers (0-9) (Appendix H.1). It
uses the Polish notation: (operation, [inputs]) To disentangle any complexity arising from tokenization
we further simplify these expression by representing them by symbols: ’+’ for max, ’−’ for min,
’/’ for median, and ’%’ for sum modulo 10. For example (max,3,(min,7,4,9))=4 becomes
s(+3(-749))=4e, with ‘s’ and ‘e’ being start and end tokens.

Tokenization and CoT: We employ a character-based tokenization strategy for processing ListOps
expressions. (Appendix H.2). We find that directly solving nested ListOps in one step can be quite
challenging for transformer model (Fig. 7) Even with a maximum of three nesting levels with
three operands (inputs) we find that GPT models with over 10 million parameters still fail to
learn the task. To enhance model performance, particularly on more complex operations like sum
modulo 10, we introduced a chain of thought (CoT) approach in our training data (Appendix H.3):
s(%12(%34))>(%127)>0=0e, wehre the ‘>’ token means one step of CoT, wherein we solve
the right-most, inner-most parenthesis.

Performance Evaluation To assess model performance, we randomly select 1000 equations from
a held-out test set. The model is prompted to generate solutions character-by-character, starting from
the equation prompt (e.g., s(+3(-749))>). We use the output to produce two metrics

1. Loss: using cross-entropy computed for every character of the output.

2. Accuracy: or “number of correct” answers evaluated using only the final answer, which we
define as the first character after the first ‘=’ symbol.

We then calculate the percentage of correctly solved equations, providing a clear metric of the model’s
problem-solving accuracy.

Model Architecture For our experiments, we employed a series of tiny GPT models, inspired by
the nanoGPT architecture (Karpathy, 2022). These models were specifically designed to be minimal
yet functional implementations of the GPT architecture, allowing us to explore the relationship
between model size and task performance with fine-grained control. Each model in our study uses
a single attention head. We set the feedforward hidden dimension to four times the embedding
dimension, a common practice in transformer architectures, providing sufficient complexity in the
feedforward networks while keeping the model size constrained. By varying the embedding size and
the number of transformer layers, we can create a range of models with different parameter counts.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

103 104 105

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

Name
MAX
MED
SUM
n_layer
2
3
4
5
6
Training data type
CoT

104

Transition point (Sigmoid - mean)

3 × 102

4 × 102

6 × 102

Ko
lg

om
or

ov
 C

om
pl

ex
ity

 S
ym

bo
lic

Name
MAX
MED
SUM
Number of operations
1
13.45x0.36

Figure 1: Learning max, med and sum. Left: As the number of parameters increases, the model
demonstrates the ability to learn different operations. Max requires the fewest parameters to learn,
while sum demands the most, reflecting the relative complexity of the task. We report the average
results from five simulations for each configuration, fitting a sigmoid curve to the data. Transition
points (Sigmoid - mean), marked by stars, indicate the midpoints of these fits. Right: The Kolgomrov
Complexity, based on symbolic algorithms, vs the transition point. For the sum, the algorithm
involves an explicit sum table and has therefore considerably higher complexity.

3 RESULTS

To understand how language models acquire mathematical abilities, we focus on accuracy as the
primary metric for observing the emergence of learning, following the approach of Wei et al. (2022).
While some subsequent studies have questioned the concept of emergence by examining other metrics
(Schaeffer et al., 2024), we argue that this critique overlooks a fundamental principle from physics:
during a phase transition, not all measurable quantities necessarily exhibit discontinuous changes. In
a phase transition, only certain quantities, called the “order parameter”, best captures the essential
change in the system’s state. For instance, in the transition from a paramagnet to a ferromagnet, the
net magnetization serves as the order parameter, showing a sharp change at the critical temperature,
while other properties may vary smoothly.

Emergence of learning on single math operations. Based on the above, we believe that accuracy
serves as the most appropriate order parameter for observing the emergence of mathematical abilities.
While other metrics like loss may appear continuous (Fig. 13), accuracy often exhibits a more abrupt
change as the model transitions from inability to ability in solving mathematical tasks. We first
experimented with three individual operations in ListOps: max, med, and sum. We use equations with
a maximum of three nesting levels and three operands per parenthetical group. Figure 1 left illustrates
our findings from these basic experiments. As evident from the results, the difficulty of learning these
operations varies significantly, with max being the easiest, then med. The sum operation, however,
presents a substantially greater challenge, requiring a much larger number of parameters. This stark
difference in learning difficulty among seemingly similar mathematical operations raises intriguing
questions about the nature of task complexity and its relationship to model size.

3.1 AMBIGUITIES IN KOLMOGOROV COMPLEXITY

We now turn to Kolmogorov Complexity (KC) as a measure of algorithmic difficulty. The application
of KC to our specific problem domain presents several ambiguities that require careful consideration.

Multiple Solution Algorithms For each of the operations we study (max, med, sum), there exist
multiple algorithms that can solve the problem. This multiplicity raises a critical question: Which
algorithm does our model actually learn? The answer to this question has significant implications for
our understanding of the model’s capabilities and the nature of its learning process.

Symbolic vs. Numerical Understanding To address this ambiguity, we consider two broad
categories of potential solution algorithms: 1. Purely Symbolic Algorithms 2. Number-Based
Algorithms. This categorization allows us to explore whether the model develops a true understanding
of numerical properties or merely learns to manipulate symbols without grasping their numerical
significance. We define a set of ground rules for how to design symbolic or number based algorithms
(Appendix C). Note that the number algorithm is still assumed to not use a simple python add

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

103 104 105

Number of parameters

0

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

Name
MAX
MAX,MED
MAX,MED,SUM
MAX,MIN
MAX,MIN,MED
MAX,MIN,MED,SUM
MAX,MIN,SUM
MAX,SUM
MED
MED,SUM
MIN
MIN,MED
MIN,MED,SUM
MIN,SUM
SUM
n_layer
2
3
4
5
6
Training data type
CoT

104

Transition point (Sigmoid - mean)

3 × 102

4 × 102

6 × 102

Ko
lg

om
or

ov
 C

om
pl

ex
ity

KC type
Symbolic
Number
Number of operations
1
2
3
4
17.64x0.34

Figure 2: Learning All Combinations of Operations. Left: A sigmoid function was fitted to the
data, with each configuration run across five simulations. The midpoint of each sigmoid curve is
marked by a star. Single operations use a solid line (-), double operations are dashed (- -), triples use
a dotted line (:), and all four operations are marked with dot-dash lines (:.). Kolmogorov Complexity.
For symbolic KC, we use a lookup table for sum and a sorted character list for min, max, and med.
For numerical KC for sum is implemented using bit-wise operations. Right: Comparing symbolic
(blue) and numeric (red) KC as functions of the transition point. The primary difference between
these metrics lies in operations involving sum, where the symbolic KC is significantly higher due to
the lookup table.

operation. Rather, it needs to implement that from basic boolean operations. Our rules are designed
to mimic potential learning strategies of the model rather than to define all possible algorithms.

Model Inference and Algorithmic Complexity We posit that a naively trained model may not
develop a deep understanding that the symbols represent numbers. Consequently, it is more likely that
the model learns a symbolic algorithm. However, at this stage, this remains a hypothesis that requires
further investigation. To explore this hypothesis, we calculate the KC for both symbolic and number-
based algorithms for each operation. Yet, even for symbolic solutions, there are multiple choices:
Does the model form an array, sort the elements, conditionals, or all of the above? While designing
solutions for max and med, we found the most straightforward symbolic solutions involved keeping a
sorted array of symbols and conditionals for comparing order of appearance of elements. For med, it
also involves a brute-force sorting algorithm, again only using conditionals. Yet, these algorithms
would not look significantly different when implemented with numbers, the only difference being
that the array of symbols does not need to be kept. Therefore, the difference between our numeric
and symbolic solutions for max and med is very small.

Another naive solution for max would be to memorize the full table of comparisons, but we think
this is algorithm is unlikely to be learned in our experiments for multiple reasons. First, the table
requires large memory, yet even very small models learn max. Second, we show below that max
model quickly learn an embedding of numbers that is sorted, strongly suggested an algorithm based
on a sorted list is being learned. For the sum operation, however, we believe a symbolic solution
without using number properties would require learning the full sum table, meaning an array of all
tuples [a, b, (a + b)mod10]. Based on this, to attach a KC value to the transition point in Figure 1
left, we choose symbolic solutions based on sorted lists for max and med, and based on memorizing
the sum table for the sum.

Figure 1 right demonstrates the complexity of the max, med, and sum operations plotted against
the learning transition point np (number of parameters at which learning occurs). Interestingly,
we observe an almost linear relationship in this log-log plot, suggesting a power-law relationship,
KC ≈ 13.5n0.34

p . In other words, learning grows almost as KC3. This observed power-law
relationship raises an intriguing question: Does this trend continue for more complex tasks? To
explore this further, we considered whether combining these operations might increase the overall
task complexity and provide additional data points along our KC-transition fit. This approach not
only allows us to test the robustness of our observed power-law relationship but also provides insight
into how models handle multi-operation tasks. Moreover, these experiments set the stage for a deeper
investigation into what the model actually learns, paving the way for our subsequent analyses of
embedding layers and attention mechanisms.

3.2 JOINT TRAINING ON MULTIPLE TASKS

To further explore the relationship between task complexity and model learning, we expanded our
investigation to include all possible combinations of four operations: max, min, med, and sum. The

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

results, illustrated in Figure 2 reveal a surprising and counterintuitive pattern. Contrary to our initial
expectations, we observed that models trained on mixed tasks require fewer parameters to achieve
proficiency compared to those trained on the sum operation alone. MAX and MIN achieve 100%
accuracy first, followed by the MAX+MIN+MED combination, and then all other combinations
involving sum, with the single ’sum’ operation being learned last. This finding challenges the intuitive
notion that increasing task complexity (by combining multiple operations) would necessitate larger
models or more extensive training.

Interestingly, the relationship between the number of operations and the transition point (where the
model begins to learn effectively) is not straightforward. Our analysis reveals no strong correlation
between these factors, suggesting that the mere quantity of operations is not a reliable predictor of
learning difficulty. Furthermore, when we attempt to correlate these results with a naive symbolic
KC estimate (Figure 2, right, blue dots), we find that the previously observed power-law relationship
appears to break down. Additionally, if we use KC based on numeric algorithms (red dots), we get a
different pattern, which is more along the previous power-law, except for sum.

These observations present us with a significant puzzle: What factors determine the unexpected shifts
in transition points for joint tasks? The fact that sum is learned with fewer parameters in mixed
operation settings strongly suggests that joint models are discovering more efficient algorithms than
those learned when training on sum alone. This leads us to several critical questions:

1. What is the nature of these more efficient algorithms?

2. Are these algorithms leveraging numerical properties, or are they still primarily symbolic?

3. How can we gather evidence to understand the underlying mechanisms at play?

To address these questions and gain deeper insights into what the models are actually learning, we
turn to more sophisticated analysis techniques. In the following sections, we will explore the use
of Principal Component Analysis (PCA) on the models’ embedding layers. Additionally, we will
employ various probing techniques to examine the roles and behaviors of different model components
during the processing of mixed operations.

3.3 EMBEDDING ANALYSIS: UNCOVERING NUMBER REPRESENTATIONS

The original “grokking” studies, such as Power et al. (2022), typically focused on binary operations
with pairs of symbols as input. These studies revealed that after the model finally learned the operation
(e.g., modular addition), the embeddings of the input symbols suddenly organized into a circular
structure, visible after dimensionality reduction techniques like t-SNE. Subsequent work, such as Liu
et al. (2022), demonstrated that this circular structure could be observed directly through Principal
Component Analysis (PCA).

Inspired by these findings, we examined the embedding layers of our models trained on the ListOps
dataset. We analyzed both the cosine similarity matrix of the embeddings and their principal
components. Figure 3, top, shows this analysis for a model trained solely on the sum operation, while
the second row presents the same analysis for a model trained on all three operations (max, med,
sum), which we refer to as the "all3" model.

sum-only Model For the sum-only model (Fig. 3), which achieved 96%, we observe:

1. The cosine similarity of the embedding weights shows no clear pattern among numbers.

2. The first three principal components (PC1, PC2, PC3) of the number embeddings display no
discernible structure when plotted against each other.

These observations suggest that despite achieving high accuracy, the sum-only model has not devel-
oped a structured representation of numbers.

All3 Model In contrast, the All3 model (Fig. 3) exhibits remarkable structure in its embeddings:

1. The cosine similarity matrix reveals a clear band of strong correlation around the diagonal,
indicating that consecutive numbers have correlated embeddings.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 + - / % () > = s e

0
1
2
3
4
5
6
7
8
9
+
-
/

%
(
)

>
=
s
e

max (100%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

max

0.0

0.1

0.2

0.3

0.4

0.5

0.6

cos corr for max, emb=128, nl=2

0.25 0.00 0.25
PC 1

0.4

0.2

0.0

0.2

0.4

PC
 2

01

2
3

45

6

7

8

9
0.5 0.0 0.5

PC 2

0.50

0.25

0.00

0.25

0.50

PC
 3 01

2
3

4

5
6

7

8

9

0.5 0.0 0.5
PC 3

0.4

0.2

0.0

0.2

0.4

0.6

PC
 4

0

1

2

3

4

5

6

7

8

9

PCA for max, emb=128, nl=2

0 1 2 3 4 5 6 7 8 9 + - / % () > = s e

0
1
2
3
4
5
6
7
8
9
+
-
/

%
(
)

>
=
s
e

sum (98%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

sum

0.0

0.1

0.2

0.3

0.4

0.5

0.6

cos corr for sum, emb=128, nl=2

0.50 0.25 0.00 0.25 0.50
PC 1

0.4

0.2

0.0

0.2

0.4

PC
 2

0

12

3
4

5

67

8
9

0.5 0.0
PC 2

0.4

0.2

0.0

0.2

0.4

PC
 3 0

1

2

3 4

5

6

7

8 9

0.5 0.0
PC 3

0.25

0.00

0.25

0.50

0.75

PC
 4

0

1 2

3
4

56 7

8
9

PCA for sum, emb=128, nl=2

0 1 2 3 4 5 6 7 8 9 + - / % () > = s e

0
1
2
3
4
5
6
7
8
9
+
-
/

%
(
)

>
=
s
e

all3 (99%)

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

all3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

cos corr for all3, emb=128, nl=2

0.25 0.00 0.25
PC 1

0.6

0.4

0.2

0.0

0.2

0.4

PC
 2

0
1

2
3

4

5 6

7 8
9

0.50 0.25 0.00 0.25 0.50
PC 2

0.4

0.2

0.0

0.2

0.4

PC
 3

0

1

2

3

4

5

6

7

8

9

0.25 0.00 0.25
PC 3

0.4

0.2

0.0

0.2

0.4

PC
 4

0
1

2

3

4

5

6

7
8

9

PCA for all3, emb=128, nl=2

Figure 3: Cosine Correlation and PCA: We show three models trained on: max (top row), sum
(middle), and all3 (max,med,sum, bottom row). The accuracy of each model is shown in the title of
the first column (all above 98%). Left-most column shows cosine correlation matrix for all symbols
(see axis labels). While the numbers (first red block) have generally high correlations, their correlation
patterns differ in each model. The second column zooms on the number block of cosine correlation.
In max and all3 we see a clear band of strong correlation around the diagonal. The last three columns
show PCA plots of PCi vs PCi+1. In max and all3, we see that PC1 sort the numbers, While PC1
and PC2 form an arc together. Additionally, in all3 PC3 seems to separate odd from even numbers.

2. PC1 almost perfectly sorts the numbers from 0 to 9, suggesting a learned ordering of
numerical symbols.

3. PC1 vs. PC2 forms a distinct arc, reminiscent of the circular structures observed in grokking
studies, but with an open side due to PC1’s sorting behavior.

4. Intriguingly, PC3 displays a zig-zag pattern that perfectly separates odd from even numbers.

These patterns provide strong evidence that the all3 model has learned multiple number properties,
including ordering and parity. The emergence of the odd-even distinction is particularly noteworthy,
as it’s not strictly necessary for any of the three operations. This could indicate that the model has
developed a more generalized understanding of number properties beyond what’s directly required
for the tasks.

Implications and Hypotheses The stark difference between the sum-only and all3 models leads us
to several hypotheses:

1. The sum-only model, despite its high accuracy, may be primarily memorizing the sum
table rather than learning generalizable number properties. This could explain its high
transition point in terms of required parameters.

2. The all3 model, through exposure to diverse operations, appears to have developed a more
nuanced and generalizable representation of numbers. This richer representation might
enable more efficient algorithms for all operations, including sum (e.g. bitwise).

3. The emergence of number properties not strictly necessary for the tasks (e.g., parity) sug-
gests that joint training on diverse operations promotes a more comprehensive understanding
of the underlying domain.

4. The circular-like structure in the all3 model’s embeddings, similar to those observed in
grokking studies, might indicate the model is learning a number representation similar to
the grokking studies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

104

Transition point (Sigmoid - mean)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
of

 th
e

up
pe

r d
ia

go
na

l o
f C

Name
MAX
MAX,MED
MAX,MED,SUM
MAX,MIN
MAX,MIN,MED
MAX,MIN,MED,SUM
MAX,MIN,SUM
MAX,SUM
MED
MED,SUM
MIN
MIN,MED
MIN,MED,SUM
MIN,SUM
SUM
Number of operations
1
2
3
4

104

Transition point (Sigmoid - mean)

3 × 102

4 × 102

6 × 102

Ko
lg

om
or

ov
 C

om
pl

ex
ity

 N
um

be
r

Name
MAX
MAX,MED
MAX,MED,SUM
MAX,MIN
MAX,MIN,MED
MAX,MIN,MED,SUM
MAX,MIN,SUM
MAX,SUM
MED
MED,SUM
MIN
MIN,MED
MIN,MED,SUM
MIN,SUM
SUM
Number of operations
1
2
3
4
17.64x0.34

Figure 4: Criteria for Symbolic vs Numeric KC. Left: The mean of the two upper diagonal bands
of the learned cosine similarity matrix C of the embeddings of number symbols vs transition point.
Efficiently learned operation combinations display a high mean, suggesting that the model may have
internalized number characters and employed a number-based algorithm. The only outlier is the sum,
which shows no number properties, implying that the model may be learning a symbolic solution,
such as a lookup table. Right: Plotting numeric KC for all combinations except sum, and symbolic
KC for sum, we recoveralmost exactly the same power-law discovered for single operations.

These findings provide a potential explanation for the counterintuitive results observed in our transition
point analysis. The all3 model’s lower transition point for learning sum, compared to the sum-only
model, may be attributed to its more efficient, number-property-based algorithm rather than rote
memorization. In the following sections, we will further probe these models to validate these
hypotheses and explore the implications for efficient algorithm learning in neural networks.

3.4 REFINING COMPLEXITY ESTIMATES: FROM SYMBOLIC TO NUMERICAL ALGORITHMS

Building upon our observations from the embedding analysis, we hypothesized that the cosine
correlation matrix of the embedding layer could serve as an indicator of whether the model learned a
number-based algorithm or a purely symbolic one. This hypothesis, while not definitive proof, is
based on the striking differences observed between the sum-only and all3 models in their embedding
structures.

Cosine Correlation as a Proxy for Algorithm Type To test this hypothesis, we plotted the mean
of the cosine correlation matrix against the transition point for each model configuration (Figure
4 left). Remarkably, we observed an almost perfect correlation in this semi-log plot. This strong
relationship suggests that the degree of structure in the embedding space, as measured by the average
cosine similarity between embeddings, is closely tied to the model’s learning efficiency. The plot
reveals a clear trend: models with higher mean cosine correlation (indicating more structured number
representations) tend to have earlier transition points. This observation aligns with our earlier
hypothesis that models learning number-based algorithms, rather than purely symbolic ones, achieve
proficiency with fewer parameters. Additionally, we observe a large gap between the sum-only
models and the rest, suggesting that the sum-only model may be the sole model that did not develop
any understanding of the numbers.

Revising Kolmogorov Complexity Estimates Based on these findings, we revised our approach
to estimating KC for tasks involving the sum operation. For models showing high correlation
between embeddings of consecutive numbers (everything except sum-only), we now assume that
some numerical characteristics were learned. Consequently, we switched from a symbolic algorithm
to a number-based algorithm for calculating KC in these cases. Specifically, instead of using a
simple lookup table or symbolic manipulation for the sum operation, we implemented a bit-wise sum
algorithm. This approach more closely aligns with the kind of numerical understanding we believe
the model has developed, based on the embedding analysis.

Improved KC vs. Transition Point Relationship The result of this revised KC calculation is
a dramatically improved relationship between KC and the transition point (Figure 4 right). With

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

300 400 500 600 700 800 900 1000 1100 1200
Step

0

20

40

60

80

100

Ac
cu

ra
cy

Finetuning MAX+MED to learn SUM (emb=48-nlayers=2)
Switch MAX+MED to SUM
SUM-Only

Figure 5: Left: Evolution of loss and accuracy in all3 and sum models. Both models have 128
embedding dimension. The all3 model, evaluated on test sets for max, med, and sum operations
individually. The sum model, trained and tested solely on sum data, demonstrated slower learning
of the sum operation compared to the all3 model. Interestingly, the all3 model showed significantly
earlier learning of the sum operation, suggesting that the presence of max and med operations during
training may provide beneficial signals that accelerate the learning of sum. Right: Learning sum
by finetuning max,med: We train model much smaller than the sum-only learning transition (48
embedding). By switching the training data slowly from max+med to pure sum (never showing
expression mixing all three) the model is able to learn sum (blue) in much this low parameter regime.
In comparison, sum-only models (red) did not learn at this size.

this adjustment, we observe that all data points, regardless of the specific operation or combination
of operations, now follow approximately the same power-law curve. This refined plot reveals a
striking pattern: the relationship between task complexity (as measured by our revised KC) and the
model size required for learning (transition point) follows a consistent power law across all task
combinations. The fitted curve, given by KC ≈ 18n0.34

p , suggests a fundamental scaling relationship
between task complexity and required model capacity. It predicts a cubic growth in model size with
task complexity. Further studies would be needed to see if this relation extends to other datasets.

3.5 TEMPORAL DYNAMICS OF LEARNING AND TRANSFER

To further investigate our hypotheses about the nature of learning in single-task versus multi-task
settings, we conducted a series of experiments tracking the accuracy of models throughout their
training process. These experiments not only corroborated our earlier findings but also revealed
intriguing dynamics in how models acquire and transfer knowledge across tasks.

Rapid Multi-task Learning vs. Delayed Single-task Learning We trained twp models, one on
sum alone and one all3, at 128 embedding size, which is above transition point for both. The results,
illustrated in Figure 5, reveal striking differences in learning dynamics:

1. The all3 model demonstrated rapid acquisition of all three operations (max, med, sum)
within approximately 3000 training steps.

2. In contrast, the sum-only model exhibited a significant delay before showing any signs of
learning, with the lag varying across multiple runs.

Moreover, when evaluating the all3 model on individual tasks, we observed a subtle but important
sequence in learning: MAX was learned fastest, followed closely by MED, and then sum. Crucially,
the gaps between the learning of these operations were minimal, with the model beginning to grasp
sum while still perfecting MAX and MED.

These observations strongly support our hypothesis that the development of a robust, number-like
internal representation plays a pivotal role in facilitating rapid and efficient learning across multiple
operations.

Transfer Learning and Representation Stability To further explore this hypothesis, we designed
a transfer learning experiment: 1) We first trained a model (embedding size 48) on max and med
operations until proficiency. 2) We then gradually introduced sum operations, increasing their
proportion in the training data from 0% to 100% over 1000 steps, while simultaneously phasing out
max and med.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Key findings from this experiment include:

• The model began learning sum immediately upon its introduction, despite never seeing
mixed expressions (e.g., sum with max or med).

• Interestingly, the model started to forget max and med once these operations were no longer
present in the training data.

• Crucially, we verified that the model retained its number-like embedding structure even after
max and med were completely phased out.

Perhaps most strikingly, we found that even much smaller models (embedding size 24) could learn
sum perfectly using this hybrid approach, mirroring the efficiency of all3 models. This resulted in a
model capable of performing sum operations that was 7x smaller than the vanilla sum-only model,
while relying on a more sophisticated, number-like internal representation.

Attention and feedforward layers. To investigate the internal dynamics of the sum-only vs all3
models, we focused on the final layer of a 3-layer transformer network, featuring a single attention
head and an embedding dimension of 128 (Appendix I. We find:

1. In the attention sublayer, the ’all3’ model shows slightly higher ratio values, suggesting
that attention mechanisms play a more pronounced role when the model is trained
on diverse operations. This could indicate that the attention sublayer is capturing more
complex patterns or relationships necessary for handling multiple operations.

2. Conversely, in the feedforward sublayer, the ’sum’ model demonstrates significantly higher
ratio values. This suggests that when trained on ’sum’ alone, the model relies more
heavily on the feedforward network for computation. This could imply that the ’sum’
operation is being implemented more directly through feedforward transformations.

3. The larger effect size in the feedforward layer (-0.3379) compared to the attention layer
(0.1761) indicates that the difference in behavior is more pronounced in the feedforward
component.

These observations suggest a trade-off in how the network allocates its computational resources. The
’all3’ model appears to leverage its attention mechanism more, potentially to handle the diversity of
operations it was trained on. In contrast, the ’sum’ model seems to channel more of its computation
through the feedforward network, possibly developing a more specialized but less flexible approach
to solving the sum operation. We discuss further implications in Appendix J.

1.5 1.0 0.5 0.0 0.5 1.0
log ratio (layer_out / layer_in)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Layer attn ratio histogram

all3
sum
Diff. (all3-sum)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log ratio (layer_out / layer_in)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Layer ffwd ratio histogram

all3
sum
Diff. (all3-sum)

Figure 6: Comparison of layer output/input ratio distributions for models trained on all three
operations (all3) versus sum operation alone (sum). Left: Attention layer ratio histogram. Right:
Feedforward layer ratio histogram. The x-axis represents the log ratio of layer output norm to input
norm, while the y-axis shows the density. The black line represents the difference between the all3
and sum distributions (all3 - sum).

REFERENCES

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity scaling
laws. arXiv preprint arXiv:2404.05405, 2024.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/jax-ml/jax.

R Cilibrasi and PMB Vitanyi. Clustering by compression. IEEE Transaction on Information Theory,
51(4):1523–1545, 2005.

Neisarg Dave, Daniel Kifer, C Lee Giles, and Ankur Mali. Investigating symbolic capabilities of
large language models. arXiv preprint arXiv:2405.13209, 2024.

Kamaludin Dingle, Chico Q Camargo, and Ard A Louis. Input–output maps are strongly biased
towards simple outputs. Nature communications, 9(1):761, 2018.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Simon Frieder, Luca Pinchetti, Ryan-Rhys Griffiths, Tommaso Salvatori, Thomas Lukasiewicz,
Philipp Petersen, and Julius Berner. Mathematical capabilities of chatgpt. Advances in neural
information processing systems, 36, 2024.

Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory Diamos, Heewoo Jun, Hassan Kianinejad,
Md Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou. Deep learning scaling is predictable,
empirically. arXiv preprint arXiv:1712.00409, 2017.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al.
Training compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Andrej Karpathy. Nanogpt, 2023. URL https://github. com/karpathy/nanoGPT.

Andrej Karpathy. nanogpt. https://github.com/karpathy/nanoGPT, 2022. Accessed:
2024-09-24.

Andrei N Kolmogorov. Three approaches to the quantitative definition ofinformation’. Problems of
information transmission, 1(1):1–7, 1965.

Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul MB Vitányi. The similarity metric. IEEE transactions
on Information Theory, 50(12):3250–3264, 2004.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications, volume 3.
Springer, 2008.

Ziming Liu, Ouail Kitouni, Niklas S Nolte, Eric Michaud, Max Tegmark, and Mike Williams.
Towards understanding grokking: An effective theory of representation learning. Advances in
Neural Information Processing Systems, 35:34651–34663, 2022.

Niklas Muennighoff, Alexander Rush, Boaz Barak, Teven Le Scao, Nouamane Tazi, Aleksandra
Piktus, Sampo Pyysalo, Thomas Wolf, and Colin A Raffel. Scaling data-constrained language
models. Advances in Neural Information Processing Systems, 36, 2024.

Nikita Nangia and Samuel R Bowman. Listops: A diagnostic dataset for latent tree learning. arXiv
preprint arXiv:1804.06028, 2018.

Flavio Petruzzellis, Alberto Testolin, and Alessandro Sperduti. Benchmarking gpt-4 on algorithmic
problems: A systematic evaluation of prompting strategies. arXiv preprint arXiv:2402.17396,
2024.

Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-
eralization beyond overfitting on small algorithmic datasets. arXiv preprint arXiv:2201.02177,
2022.

Rylan Schaeffer, Brando Miranda, and Sanmi Koyejo. Are emergent abilities of large language
models a mirage? Advances in Neural Information Processing Systems, 36, 2024.

11

http://github.com/jax-ml/jax
https://github.com/karpathy/nanoGPT

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Hector Zenil, Fernando Soler-Toscano, Kamaludin Dingle, and Ard A Louis. Correlation of automor-
phism group size and topological properties with program-size complexity evaluations of graphs
and complex networks. Physica A: Statistical Mechanics and its Applications, 404:341–358, 2014.

Jacob Ziv and Abraham Lempel. A universal algorithm for sequential data compression. IEEE
Transactions on information theory, 23(3):337–343, 1977.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A RELATED WORKS

The scaling laws of language models describe how performance, measured by validation loss, varies
with model size (number of parameters) Hoffmann et al. (2022), computational cost (number of
FLOPs) Muennighoff et al. (2024), training dataset size (number of data point) Hestness et al. (2017),
and knowledge storage capacity (in bits) Allen-Zhu & Li (2024), providing a guideline for designing
new models. However, little is known about how the model size scales with the task complexity. There
is no consensus on how to measure task complexity in language tasks, and even simple mathematical
operations lack clear complexity metrics.

In general language models performs poorly on symbolic mathematical tasks Frieder et al. (2024);
Dziri et al. (2024); Dave et al. (2024) such as the ListOps dataset Nangia & Bowman (2018) used in
this study. Models often struggle with generalization, tending to memorize tasks rather than simulate
the underlying algorithms, akin to using look-up tables. While mathematical tasks prove challenging
for large language models to learn, they provide a controllable playground to test how models learn
different tasks and to evaluate their accuracy quantitatively. The complexity of a mathematical task
has been defined previously in various ways, such as the number of bits needed to memorize the
task Dave et al. (2024), the number of operands and nesting depth Petruzzellis et al. (2024), and the
computational graph Dziri et al. (2024). However, these metrics do not capture the true complexity of
the underlying task. Furthermore, it is difficult to determine the exact algorithm learned by the model.

Here, we analyze how language models learn mathematical tasks by training small models on the
ListOps dataset. The ListOps dataset allows us to measure model accuracy explicitly by asking
the model to solve mathematical equations. Using this bottom-up approach, we show that once the
number of trainable parameters in the model reaches a critical point, the model is able to learn the task.
When training models on datasets based on different levels of operation difficulty, this critical point
shifts according to the complexity of the task. Contradictorily, we find that combining operations
makes the task easier for the model than individual operations, suggesting that task diversity plays a
significant role.

B DESIGNING SOLUTION ALGORITHMS

C GROUND RULES FOR ALGORITHM DESIGN

To systematically analyze these possibilities, we establish two sets of ground rules for designing
algorithms in each category:

Rules for Purely Symbolic Algorithms:

• Use of if, else, and or conditions for comparing symbols is allowed
• Function definitions and calls are permitted
• For loops and lists of symbols can be used
• Comparing positions in a list is allowed (as it can be implemented with loops and condition-

als)
• No mathematical operations or direct comparison of numbers are allowed

Rules for Number-Based Algorithms:

• Direct mathematical operations (addition, subtraction, etc.) are not allowed
• Binary or representation and boolean bitwise operations are permitted
• All operations allowed in the symbolic case are also allowed here

C.1 EXAMPLE ALGORITHMS

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

103 104 105 106

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

no - CoT vs CoT
MAX - CoT
MAX - no CoT
MED - CoT
MED - no CoT
SUM - CoT
SUM - no CoT
MAX,MED,SUM - CoT
MAX,MED,SUM - no CoT

Figure 7: no - CoT vs. CoT.

103 104 105 106

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

Name
MAX,MED,SUM
MAX,MED,SUM-RANDOM
MAX,MED-RANDOM,SUM
MAX,MED-RANDOM,SUM-UINFORM
SUM
SUM-RANDOM
SUM-UNIFORM
n_layer
2
3
4
5
6
Training data type
CoT

Figure 8: Random sum table.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

D COMPLEXITY: NUMBER OF OPERANDS AND NESTING LEVEL.

In previous studies, task complexity has been characterized through various measures, including the
number of bits required to memorize the task, which corresponds to the length of the expression
Dave et al. (2024), the number of operands and nesting depth Petruzzellis et al. (2024), and the
structure of the computational graph Dziri et al. (2024), which captures the number of nestings.
Here, we examine how the number of operands and nesting levels affect the learning ability of small
language models. Focusing on the all3 task, which combines max, med, and sum operations,
we manipulate complexity by varying the number of operands (arg = {3, 4, 5}) and nesting
depth (depth = {3, 4, 5}). The length of equations, measured by the number of characters,
depends on both the number of operands and the nesting level. We find that nesting has a greater
impact: increasing the nesting level from 3 to 4 results in longer equations than increasing the number
of operands from 3 to 5 at a fixed nesting level (Fig. 9). We train the GPT model on the all3
dataset with all combinations of arg (number of operands) and depth (nesting levels), finding that
the model’s performance correlates with the sum of operands and nesting levels (arg + depth).
Notably, transition points tend to group together for configurations with the same sum (Fig. 10, 11b).
While Fig. 11a demonstrates that the model requires more parameters to solve longer equations,
it also indicates that arg + depth serves as a reliable predictor of the transition point. We also
calculate the total complexity for each equation, which is a combined metric Ctotal = wCCharacter+
wCNesting + wCBranching + wCDiversity + wCOperationComplexity (Fig. 19), showing strong
correlation with equation length. In calculating Ctotal only the COperationComplexity term was
fixed to the all3 operation, demonstrating that the model’s ability to learn the task depends on the
number of operands and the nesting level (Fig. 10). However, the operation complexity, defined by
COperationComplexity represents an independent challenge and follows a different learning pattern,
as shown in the main paper.

101 102

Number of characters (no CoT)

100

101

102

103

104

arg-3, depth-3
arg-3, depth-4
arg-3, depth-5
arg-4, depth-3
arg-4, depth-4
arg-4, depth-5
arg-5, depth-3
arg-5, depth-4
arg-5, depth-5

(a) all3: Distribution of equations length.

3 4 5
Nesting depth

3
4

5
Nu

m
be

r o
f o

pe
ra

nd
s

11 14 16

12 16 19

13 18 23

Avg. equation length, no - CoT

12

14

16

18

20

22

(b) all3: Average equations length.

Figure 9: Equation length. Fixing the task to all3 and varying the number of operands (arg) and
nesting levels (depth), we generate 50,000 equations. (a) Distribution of equation lengths without
solution steps (no CoT), showing that equation length increases more rapidly with nesting level than
with the number of operands. (b) Heat map of average equation length as a function of nesting level
and number of operations.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

103 104 105 106

Number of parameters

20

40

60

80

100
Co

rre
ct

 a
ns

we
rs

 [%
]

Name
arg-3,depth-3
arg-3,depth-4
arg-3,depth-5
arg-4,depth-3
arg-4,depth-4
arg-4,depth-5
arg-5,depth-3
arg-5,depth-4
arg-5,depth-5
n_layer
2
3
4
5
6
Training data type
CoT

Figure 10: Learning all3 operations with varying numbers of operands and nesting levels. The
model requires more parameters as the number of operands and nesting levels increases. Higher
nesting levels particularly demand larger model sizes to learn the task. We present the average of
five simulations for each configuration and fit a sigmoid function, with the cross marking the middle
value (transition point). The transition points reveal an interesting pattern: the sum of the number
of operands and nesting levels groups together. For example, the transition points for arg-3,depth-4
(orange) and arg-4,depth-3 (red) are close to each other, as are those for arg-4,depth-5 (brown), and
arg-5,depth-4 (grey).

12 14 16 18 20 22
Avg. equation length, no CoT

105

Tr
an

sit
io

n
po

in
t (

pa

ra
m

et
er

s)

Number of operands
3.0
4.0
5.0
Nesting depth
3.0
4.0
5.0

(a) Average equation length vs. transition point.

3 4 5
Nesting depth

3
4

5
Nu

m
be

r o
f o

pe
ra

nd
s

14808 21277 30145

23156 32215 78564

27983 64418 192346

Transition point (# parameters)

20000

40000

60000

80000

100000

120000

140000

160000

180000

(b) Transition points.

Figure 11: Transition point. (a) Transition point in function of the average equation length. (b) Heat
plot of transition point in function number of operands and nesting depth.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30 35
Complexity

100

101

102

103

104
arg-3, depth-3
arg-3, depth-4
arg-3, depth-5
arg-4, depth-3
arg-4, depth-4
arg-4, depth-5
arg-5, depth-3
arg-5, depth-4
arg-5, depth-5

(a) Complexity distribution.

1.2 × 101 1.4 × 101 1.6 × 101 1.8 × 101 2 × 1012.2 × 101

Avg. equation length, no CoT

3.5

4.0

4.5

5.0

5.5

Co
m

pl
ex

ity

Number of operands
3.0
4.0
5.0
Nesting depth
3.0
4.0
5.0

(b) Equation length vs. Complexity.

Figure 12: Combined complexity. (a) Complexity distribution. Increasing depth results in increasing
complexity. (b) Complexity in the function of the average equation length.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

E EXPERIMENT SETTINGS.

1. Model: GPT model (Karpathy (2022))
2. Number of layers: 1, 2, 3, 4, 5, 6
3. Number of head: 1
4. Embedding dimension: 4, 8, 12, 16, 24, 32, 48, 64, 96, 128, 192, 256
5. Number of random seed: 5
6. Context window size: 128
7. Batch size: 128
8. Learning rate: 5e-4
9. Optimizer: Adam

10. Early Stopping criteria: minimum change in the average of the last 100 steps of the training
loss value ∆min = 2.5e-3 with 10 patience steps or increasing validation loss, checking after
2000 steps

11. Training data size: 50k equations (first 90% training data, the last 10% validation data, test
data sampled from the validation data set)

12. Fixed character map (19 tokens): s, e, (,), >, +, -, %, /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

F EXPERIMENTS ON LISTOPS.

1. no CoT/CoT: MAX, MED, SUM, MAX/MED/SUM
2. all combination: MAX, MIN, MED, SUM
3. random operation tables: MAX/MED/SUM-RANDOM, MAX/MED-RANDOM/SUM-

UNIFORM-MAP, SUM-RANDOM, SUM-UNIFORM-MAP, PRODUCT
4. training size: MAX/MED/SUM with 2 layers and 128 embedding dimensions
5. training data complexity: MAX/MED/SUM, all combination of 3,4,5 maximum nesting

level and 3,4,5 maximum number of operands
6. context window size: MAX/MED/SUM with 2 layers and 128 hidden dimensions for a

maximum of 3 nesting levels + 3 operands, and a maximum of 5 nesting levels + 5 operands
7. training accuracy: MAX, MED, SUM, MAX/MED/SUM 1,2,3 layers and 128 embedding

dimensions - model saved each 100 steps.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

G EXPERIMENTAL SETUP

In our experiments, we employed a series of tiny GPT models inspired by the nanoGPT architecture
(Karpathy, 2022). These models were specifically designed to be minimal yet functional implementa-
tions of the GPT architecture, allowing us to explore the relationship between model size and task
performance with fine-grained control. Each model in our study uses a single attention head. We
set the feedforward hidden dimension to four times the embedding dimension. This 4:1 ratio is a
common practice in transformer architectures, providing sufficient complexity in the feedforward
networks while keeping the model size constrained. By varying the embedding dimension and the
number of transformer layers, we were able to create a range of models with different parameter
counts. This approach of using scaled-down GPT models enabled us to conduct a detailed analysis of
emergent abilities and multitask learning dynamics in a computationally efficient manner

In the scaling experiments, we consider three ListOps datasets: one whose equations consist of
MAX/MED/SUM operations, one whose equations consist of MAX/MED operations, and one whose
equations contain only only the SUM operation. All 3 datasets consist of 51k unique CoT examples,
with-holding 1k samples as the test dataset on which we evaluate the model’s generation accuracy.
The remaining 50k samples were partitioned into a training set consisting of 45k (90%) samples, and
a validation set consisting of 5k (10%) samples.

We sweep across GPT models the size of our transformer across embedding sizes of ’[256, 192, 128,
96, 64, 48, 32, 16, 8, 4]’ and layers ’[2,3,4,5,6]’, allowing a diverse range of models with different
parameter counts. Each experimental configuration is repeated 5 times using different random seeds.
Across all experiments, MLP-hidden-size:embed-size ratio is set to 4:1 and a single attention head is
used. Each model is trained for 50k training steps with no dropout. Learning rate starts at 1e-4 and is
exponentially decayed to 1e-5 over the course of training. Gradients are clipped to be norm 1, and we
use the ADAM optimizer with weight_decay set to 1e-2. We use a mini-batch size of 64 each having
128 tokens which is the maximum context window for the models.

Each experiment used a single GPU on a machine consisting of 8x NVIDIA A40s. To accelerate the
training speed of these experiments, we re-implemented the nanoGPT repository in JAX Bradbury
et al. (2018).

To support our hypothesis that the MAX/MED operations assist smaller models to learn the more
complex SUM operation, we fine-tuned models that were initially trained on MAX or MED operations
on the SUM operation. These results are reported in . Experimental details are described below.

We consider only shallow 2-layer models configured at embedding sizes ’[128, 32, 24]’. In this
experiment, we use four ListOps CoT generated datasets, each consisting of 26k samples (after 1k
of these is withheld as test data to evaluate generation accuracy, 90% is used as training and 10% is
used as validation as before):

1. MAX-only operations

2. MED-only operations

3. MAX/MED operations

4. SUM-only operations (Baseline)

For all non-baseline experiments, an early stopping criteria is established that flags when validation
loss starts increasing and/or the training loss stops decreasing. At this point, we slowly introduce
SUM-only examples into each mini-batch containing SUM-only operations over 2000 training
iterations, after which only SUM operations are used to train the model. For the baseline experiment,
we train on examples containing only the SUM operation throughout training.

Each experimental configuration is repeated for 5 different random seeds. Checkpoints are saved and
evaluated every 1k steps throughout training.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

103 104 105

Number of parameters

0.6

0.8

1.0

1.2

1.4

Va
lid

at
io

n
Lo

ss

Name
MAX
MAX,MED
MAX,MED,SUM
MAX,MIN
MAX,MIN,MED
MAX,MIN,MED,SUM
MAX,MIN,SUM
MAX,SUM
MED
MED,SUM
MIN
MIN,MED
MIN,MED,SUM
MIN,SUM
SUM
n_layer
4

Figure 13: Number of parameters vs Validation loss. This plot illustrates the validation loss across
all possible configurations with four layers. The curves converge at distinct points, corresponding
to the number of operations being learned, with a smooth transition observed as the number of
parameters increases.

H DATA AND PROCESSING

H.1 DATASET NOTATION

ListOps consists of nested mathematical equations involving operations such as min, max, median,
and sum modulo 10 applied to single-digit numbers (0-9). It uses the Polish notation: (operation,
[inputs]) For example: max(3,min(7,4,9))=4.

max(3,min(7,4,9))=4 ⇒ Polish: (max,3,(min,7,4,9))=4

To disentangle any complexity arising from tokenization we further simplify these expression by
representing the by symbols: ’+’ for max, ’−’ for min, ’/’ for median, and ’%’ for sum modulo 10.
For example:

(max,3,(min,7,4,9))=4 ⇒ Our notation: s(+3(-749))=4e

In this notation, ’s’ denotes the start of the expression, ’e’ marks the end, and parentheses indicate
nesting levels.

H.2 TOKENIZATION

We employ a character-based tokenization strategy for processing ListOps expressions. This approach
offers several advantages:

1. Simplicity: Character-level tokenization eliminates the need for complex tokenization rules
or a large vocabulary.

2. Generalizability: It allows the model to potentially generalize to unseen number combina-
tions or deeper nesting levels.

3. Alignment with Task Structure: The character-by-character nature of the tokenization
matches the step-by-step problem-solving process we aim to induce in the model.

Each character in the ListOps expression, including digits, operation symbols, and structural elements
(parentheses, ’s’, ’e’), is treated as a separate token. This granular representation enables the model
to learn the syntactic structure of the expressions alongside their semantic content.

H.3 CHAIN OF THOUGHT IMPLEMENTATION

We find that directly solving nested ListOps in one step can be quite challenging for transformer
model (Fig. 7) Even with a maximum of three nesting levels with three operands (inputs) we
find that GPT models with over 10 million parameters still fail to learn the task. To enhance model
performance, particularly on more complex operations like sum modulo 10, we introduced a chain of

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

1.5 1.0 0.5 0.0 0.5 1.0
log ratio (layer_out / layer_in)

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2
Layer attn ratio histogram

all3
sum
Diff. (all3-sum)

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0
log ratio (layer_out / layer_in)

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6
Layer ffwd ratio histogram

all3
sum
Diff. (all3-sum)

Figure 14: Comparison of layer output/input ratio distributions for models trained on all three
operations (all3) versus sum operation alone (sum). Left: Attention layer ratio histogram. Right:
Feedforward layer ratio histogram. The x-axis represents the log ratio of layer output norm to input
norm, while the y-axis shows the density. The black line represents the difference between the all3
and sum distributions (all3 - sum). These plots illustrate distinct operational patterns between the two
models, with the attention layer showing increased activity in the all3 model and the feedforward
layer demonstrating higher ratios in the sum model.

thought (CoT) approach in our training data. This method involves providing step-by-step solutions
that resolve the deepest nesting level at each step. For example:

s(%12(%34))>(%127)>0=0e

In this CoT representation:

• The initial expression is s(%12(%34))

• The first step resolves the innermost operation: (%34) becomes ‘7‘

• The intermediate result is shown: s(%12(7))>(%127)

• The process continues until the final result is reached: s(%12(7))>(%127)>0=0e

This CoT approach serves multiple purposes: 1. It guides the model through the problem-solving
process, mimicking human-like reasoning. 2. It provides more granular supervision, potentially
aiding in learning complex operations. 3. It allows us to study how models learn to break down and
solve nested problems. Our experiments show that this CoT method significantly improves model
performance, particularly for the challenging sum modulo 10 operation (Fig. 7).

I OBSERVATIONS FROM THE NORM OF ATTENTION AND FEEDFORWARD
OUTPUTS

To investigate the internal dynamics of our models, we focused on the final layer of a 3-layer
transformer network, featuring a single attention head and an embedding dimension of 128. Our
analysis centered on comparing the behavior of models trained on “All3” operations (max, median,
sum) versus those trained solely on the sum operation.

We introduced a novel metric to quantify the impact of different components within the network:
the ratio of output to input norms for both the self-attention (SA) and feedforward (FFN) sublayers.
Specifically, we computed:

1. Attention ratio: rattn = ∥SA(LN1(x))∥
∥x∥

2. Feedforward ratio: rffwd = ∥FFN(LN2(x1))∥
∥x1∥

where LN1 and LN2 are layer normalization operations, and x1 is the output of the self-attention
sublayer. These ratios provide insight into how much each component modifies its input, serving as
a proxy for the component’s impact on the overall computation.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 15: Attention patterns and layer dynamics in SUM vs ALL3 models. Each panel shows
(CoT) solution to a SUM modulo 10 problem, where ’>’ indicates solution steps. The first row
shows the input sequence, with curved lines representing attention weights from Layer 2 in a 3-layer
network. Black lines highlight attention patterns for a specific digit (shown in orange). Below are
shown various layer metrics including the ratio of self-attention to feedforward norms (sa/ffwd),
self-attention output norms (sa_out), feedforward output norms (ffwd_out), and ratios of layer
outputs to inputs (sa_out/x, ffwd/x). Top: Model trained only on SUM operations shows
attention primarily focused on parentheses and structural elements. Bottom: Model trained on
MAX, MED, and SUM (ALL3) shows attention strongly connecting to digits being combined in each
CoT step, suggesting direct involvement in numerical computation. These distinct patterns suggest
fundamentally different algorithms learned by each model.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We analyzed the distribution of these ratios across a test set consisting of sum operations for both
the ’All3’ and ’Sum’ models. Kernel Density Estimation (KDE) plots were used to visualize the
distributions, and we employed several statistical measures to quantify the differences.

Attention Sublayer The attention sublayer showed moderate but statistically significant differences
between the ’All3’ and ’Sum’ models:

• Kolmogorov-Smirnov test: statistic = 0.1592, p-value < 0.0001

• Jensen-Shannon divergence: 0.1591

• Wasserstein distance: 0.0696

• Effect size (Cohen’s d): 0.1761

• 95% CI for mean difference: (0.0466, 0.0860)

The KDE plot revealed that the ’All3’ model’s attention ratio distribution was more concentrated and
peaked higher than the ’Sum’ model’s distribution. The positive effect size and confidence interval
indicate that the ’All3’ model generally had higher attention ratios.

Feedforward Sublayer The feedforward sublayer exhibited more pronounced differences:

• Kolmogorov-Smirnov test: statistic = 0.2461, p-value < 0.0001

• Jensen-Shannon divergence: 0.1617

• Wasserstein distance: 0.2830

• Effect size (Cohen’s d): -0.3379

• 95% CI for mean difference: (-0.3042, -0.2226)

The KDE plot for the feedforward ratios showed a clear shift between the two distributions. The
’Sum’ model’s distribution was shifted towards higher values, as confirmed by the negative effect
size and confidence interval.

Interpretation These results reveal distinct operational patterns between models trained on ’All3’
operations versus those trained solely on ’Sum’:

1. In the attention sublayer, the ’All3’ model shows slightly higher ratio values, suggesting
that attention mechanisms play a more pronounced role when the model is trained
on diverse operations. This could indicate that the attention sublayer is capturing more
complex patterns or relationships necessary for handling multiple operations.

2. Conversely, in the feedforward sublayer, the ’Sum’ model demonstrates significantly higher
ratio values. This suggests that when trained on ’Sum’ alone, the model relies more
heavily on the feedforward network for computation. This could imply that the ’Sum’
operation is being implemented more directly through feedforward transformations.

3. The larger effect size in the feedforward layer (-0.3379) compared to the attention layer
(0.1761) indicates that the difference in behavior is more pronounced in the feedforward
component.

These observations suggest a trade-off in how the network allocates its computational resources. The
’All3’ model appears to leverage its attention mechanism more, potentially to handle the diversity of
operations it was trained on. In contrast, the ’Sum’ model seems to channel more of its computation
through the feedforward network, possibly developing a more specialized but less flexible approach
to solving the sum operation.

This analysis provides evidence that the internal dynamics of transformer models adapt significantly
based on the diversity of tasks they are trained on, even when evaluated on the same type of operation
(’Sum’). It highlights the importance of considering task diversity in understanding and optimizing
neural network architectures.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

J DISCUSSION

Implications for Algorithm Learning and Model Efficiency These findings have several impor-
tant implications:

1. Efficient Algorithm Discovery: The success of the hybrid training approach suggests that
in the vast search space of possible algorithms, number-based algorithms for SUM may
be challenging to discover without an informative representation of numbers. Training on
MAX and MED appears to constrain this search space by fostering the development of
crucial number properties in the embedding space.

2. Analytical vs. Memorization-based Learning: The stark difference in model size and
learning dynamics between the hybrid-trained and vanilla SUM models suggests that the
former learns a more analytical, generalizable approach, while the latter may rely more
heavily on memorization.

3. Representation Transfer: The retention of number-like embeddings even after MAX and
MED are no longer trained on demonstrates the stability and transferability of learned
representations.

4. Multi-task Synergy: The rapid, near-simultaneous learning of multiple operations in the
All3 model underscores the synergistic benefits of multi-task learning in developing rich,
generalizable internal representations.

Implications and Ramifications

1. Algorithm Inference: Our findings suggest that the structure of the embedding space, as
captured by the cosine correlation matrix, can serve as a powerful tool for inferring the type
of algorithm a model has learned.

2. Task Complexity Estimation: The revised KC calculation method, which takes into account
the model’s potential numerical understanding, provides a more accurate measure of task
complexity.

3. Unified Scaling Law: The emergence of a consistent power-law relationship between KC
and transition point across all task combinations suggests a fundamental principle in how
neural networks scale with task complexity.

4. Multi-task Synergy: The fact that models trained on multiple operations often outperform
those trained on individual tasks (particularly SUM) underscores the potential benefits of
multi-task learning in developing more efficient and generalizable representations.

5. Rethinking Complexity Measures: Our results highlight the importance of considering the
learned representations when estimating task complexity.

6. Insights into Model Capacity: The power-law relationship provides a quantitative frame-
work for understanding how model capacity relates to task complexity, potentially guiding
more efficient model design and training strategies.

These findings not only provide a more coherent understanding of the relationship between task
complexity and model learning in our ListOps experiments but also open up new avenues for research
in neural network scaling laws, multi-task learning, and the development of more interpretable AI
systems. Future work could explore whether similar principles hold across other domains and model
architectures, potentially leading to more general theories of neural network learning and capacity.

To further validate these insights and assess the degree to which smaller, hybrid-trained models employ
more "analytical" approaches compared to larger, single-task models, we conducted additional probing
experiments. These involved evaluating models on holdout datasets and analyzing the distribution
of outputs from their attention and feed-forward modules, which we will explore in detail in the
following section.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

103 104 105 106

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

MAX, MED, SUM and MAX,MED,SUM
Name
MAX
MED
SUM
MAX,MED,SUM
n_layer
2
3
4
5
6
Training data type
CoT

Figure 16: Operations.

103 104 105 106

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

Name
MAX,MED,SUM
MAX,MED,SUM-RANDOM
MAX,MED-RANDOM,SUM
MAX,MED-RANDOM,SUM-UINFORM
SUM
SUM-RANDOM
SUM-UNIFORM
n_layer
2
3
4
5
6
Training data type
CoT

Figure 17: Random sum table.

M
od

el
 A

ll3
Su

m
 +

 o
rd

er

Whittaker-Shannon number rep for cyclic sum mod 10

Figure 18: Evidence for numbers.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

K ABLATION STUDIES

L MIXING COMPLEXITY

Where does the complexity come from? There are multiple metrics to determine the complexity of
a LisOps equation such as the number of characters (CCharacter), the nesting level (CNesting), the
number of operands, the number of branching (CBranching), operation diversity (CDiversity), or the
type operation itself (COperationComplexity). Here we introduce a metric that takes the weighted sum
of all these metrics with equal weight (w = 0.2):
Ctotal = wCCharacter+wCNesting+wCBranching+wCDiversity+wCOperationComplexity (1)

We calculate the operation complexity (COperationComplexity) based on the Kolmogorov complexity
of each operation (KC·) separately and weighted with the number of operations (N·):

COperationComplexity = N−KC− +N+KC+ +N/KC/ +N%KC% (2)
The Kolmogorov complexity is defined as the length of the shortest code or algorithm capable of
generating a given output. In Python, we approximate this complexity by implementing each operation
individually, using a parser to solve the equation without relying on built-in Python functions, and then
measuring the length of the compressed file. Assuming that the model recognizes numbers as symbols
we implement the max, min, and med operations using a sorted list of symbols e.g. 0 < 1 < 2 < 3 <
. . . and the sum module 10 operation using a character table e.g. [[(0, 0), 0], [(0, 1), 1], . . . [(9, 9), 8]].

When does the model learn? We analyze the learning capabilities of a small GPT-style model,
which is based on the transformer architecture Vaswani et al. (2017); Karpathy, utilizing the ListOps
dataset (maximum 3 nesting levels and 3 arguments). The model is built on a single-layer transformer
block paired with an MLP layer, allowing us to control the number of trainable parameters by tuning
the embedding dimension (from 4 to 256) and the number of layers (from 1 to 6). We train each
model on all possible operation combinations and measure their performance in terms of accuracy,
observing that models with a critical number of trainable parameters (ncritical) successfully learn the
task (Fig. 19). ncritical highly depends on the operation combinations, meaning the task complexity,
is low for simple operations such as min or max, and high for more complex operations like sum.
Surprisingly, we observe that combining the sum task with any other operation(s) in the training data
makes it easier to learn for the model. Also, we find that applying our extensive complexity metric
(Ctotal) 2 on the training data and calculating the average complexity for each operation combination
the sum task has the highest complexity and the diversified task are less complex showing a strong
correlation between complexity and the critical number of parameters required for successful learning
(Fig. 19b).

103 104 105 106

Number of parameters

20

40

60

80

100

Co
rre

ct
 a

ns
we

rs
 [%

]

Name
MAX
MIN
MAX,MIN
MAX,MIN,MED
MIN,MED
MAX,MED
MED
MAX,MIN,MED,SUM
MAX,MIN,SUM
MIN,MED,SUM
MAX,MED,SUM
MAX,SUM
MIN,SUM
MED,SUM
SUM
n_layer
2
3
4
5
6
Training data type
CoT

(a) Operation combinations.

104 105 106

Number of parameters (transition point)

3.2

3.4

3.6

3.8

4.0

4.2

4.4

4.6

Av
g.

 c
om

pl
ex

ity

Name
SUM
MED,SUM
MIN,SUM
MAX,SUM
MAX,MED,SUM
MIN,MED,SUM
MAX,MIN,SUM
MAX,MIN,MED,SUM
MED
MAX,MED
MIN,MED
MAX,MIN,MED
MAX,MIN
MIN
MAX

(b) Operation complexity.

Figure 19

What does the model learn? Number or not number? This observation raises the question: What
exactly is the model learning?

Our initial hypothesis suggests that by combining the max, median, and sum operations, the model
may learn some underlying rules about the symbols, effectively recognizing them as numbers, thereby

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

simplifying the calculations. To explore this hypothesis, we examine the embeddings of the trained
model and calculate the cosine similarity between each character’s embedding. Notably, in the cases
of the max and median operations, the cosine similarity matrix reveals a strong correlation between
sequential numbers, indicating that the model has indeed learned the correct numerical order. While
the cosine similarity matrix for the sum operation alone does not exhibit this correlation, combining
operations results in a strong correlation, suggesting that diversifying the task enhances the model’s
understanding of numerical relationships.

Our secondary hypothesis is that if no inherent numerical relationships exist between tasks, the
learning process should become more challenging, requiring a higher number of parameters for the
model to learn the tasks. To falsify or strengthen the number hypothesis we generate randomly sorted
symbol lists for the max and median calculations, as well as a randomly generated character table for
the sum modulo 10 operation.

L.1 CODE COMPLEXITY

Listing 1: MAX,MIN,MED,SUM symbolic algorithm based on lookup table
1 d = [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
2

3 u = [[(’0’, ’0’), ’0’], [(’0’, ’1’), ’1’], [(’0’, ’2’), ’2’],[(’0’, ’3’),
’3’], [(’0’, ’4’), ’4’],

4 [(’0’, ’5’), ’5’], [(’0’, ’6’), ’6’], [(’0’, ’7’), ’7’], [(’0’, ’8’), ’8
’], [(’0’, ’9’), ’9’], [(’1’, ’0’), ’1’],

5 [(’1’, ’1’), ’2’], [(’1’, ’2’), ’3’], [(’1’, ’3’), ’4’], [(’1’, ’4’), ’5
’], [(’1’, ’5’), ’6’], [(’1’, ’6’), ’7’],

6 [(’1’, ’7’), ’8’], [(’1’, ’8’), ’9’], [(’1’, ’9’), ’0’], [(’2’, ’0’), ’2
’], [(’2’, ’1’), ’3’], [(’2’, ’2’), ’4’],

7 [(’2’, ’3’), ’5’], [(’2’, ’4’), ’6’], [(’2’, ’5’), ’7’], [(’2’, ’6’), ’8
’], [(’2’, ’7’), ’9’], [(’2’, ’8’), ’0’],

8 [(’2’, ’9’), ’1’], [(’3’, ’0’), ’3’], [(’3’, ’1’), ’4’], [(’3’, ’2’), ’5
’], [(’3’, ’3’), ’6’], [(’3’, ’4’), ’7’],

9 [(’3’, ’5’), ’8’], [(’3’, ’6’), ’9’], [(’3’, ’7’), ’0’], [(’3’, ’8’), ’1
’], [(’3’, ’9’), ’2’], [(’4’, ’0’), ’4’],

10 [(’4’, ’1’), ’5’], [(’4’, ’2’), ’6’], [(’4’, ’3’), ’7’], [(’4’, ’4’), ’8
’], [(’4’, ’5’), ’9’], [(’4’, ’6’), ’0’],

11 [(’4’, ’7’), ’1’], [(’4’, ’8’), ’2’], [(’4’, ’9’), ’3’], [(’5’, ’0’), ’5
’], [(’5’, ’1’), ’6’], [(’5’, ’2’), ’7’],

12 [(’5’, ’3’), ’8’], [(’5’, ’4’), ’9’], [(’5’, ’5’), ’0’], [(’5’, ’6’), ’1
’], [(’5’, ’7’), ’2’], [(’5’, ’8’), ’3’],

13 [(’5’, ’9’), ’4’], [(’6’, ’0’), ’6’], [(’6’, ’1’), ’7’], [(’6’, ’2’), ’8
’], [(’6’, ’3’), ’9’], [(’6’, ’4’), ’0’],

14 [(’6’, ’5’), ’1’], [(’6’, ’6’), ’2’], [(’6’, ’7’), ’3’], [(’6’, ’8’), ’4
’], [(’6’, ’9’), ’5’], [(’7’, ’0’), ’7’],

15 [(’7’, ’1’), ’8’], [(’7’, ’2’), ’9’], [(’7’, ’3’), ’0’], [(’7’, ’4’), ’1
’], [(’7’, ’5’), ’2’], [(’7’, ’6’), ’3’],

16 [(’7’, ’7’), ’4’], [(’7’, ’8’), ’5’], [(’7’, ’9’), ’6’], [(’8’, ’0’), ’8
’], [(’8’, ’1’), ’9’], [(’8’, ’2’), ’0’],

17 [(’8’, ’3’), ’1’], [(’8’, ’4’), ’2’], [(’8’, ’5’), ’3’], [(’8’, ’6’), ’4
’], [(’8’, ’7’), ’5’], [(’8’, ’8’), ’6’],

18 [(’8’, ’9’), ’7’], [(’9’, ’0’), ’9’], [(’9’, ’1’), ’0’], [(’9’, ’2’), ’1
’], [(’9’, ’3’), ’2’], [(’9’, ’4’), ’3’],

19 [(’9’, ’5’), ’4’], [(’9’, ’6’), ’5’], [(’9’, ’7’), ’6’], [(’9’, ’8’), ’7
’], [(’9’, ’9’), ’8’]]

20

21 def ind(l, u):
22 for i in range(len(u)):
23 if u[i][0] == l:
24 return i
25 return -1
26

27 def sum(l, u):
28 if len(l) == 1:
29 return l[0]

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

30 else:
31 s_ = u[ind((l[0], l[1]), u)][1]
32 for i in l[2:]:
33 s_ = u[ind((s_, i), u)][1]
34 return s_
35

36 def max(l, d):
37 m_ = l[0]
38 for i in l:
39 if d.index(i) > d.index(m_):
40 m_ = i
41 return m_
42

43

44 def sort(l, d):
45 for i in range(len(l)):
46 for j in range(i+1, len(l)):
47 if d.index(l[i]) > d.index(l[j]):
48 s = l[i]
49 l[i] = l[j]
50 l[j] = s
51 return l
52

53 def med(l, d):
54 l = sort(l, d)
55 n = len(l)
56 return l[n//2]
57

58

59 def solve(e, ordered_min=d, ordered_max=d, ordered_median=d, sum_table=u)
:

60 open_parenthesis = []
61 for en, i in enumerate(e):
62 if i == ’(’:
63 open_parenthesis.append(en)
64 if i == ’)’:
65 start = open_parenthesis.pop()
66

67 elements = [j for j in e[start+2:en]]
68 if e[start+1] == ’+’:
69 e = e[:start] + str(max(elements, ordered_max)) + e[en

+1:]
70 break
71 elif e[start+1] == ’%’:
72 e = e[:start] + str(sum(elements, sum_table)) + e[en+1:]
73 break
74 elif e[start+1] == ’/’:
75 e = e[:start] + str(med(elements, ordered_median)) + e[en

+1:]
76 break
77

78 return solve(e, ordered_min, ordered_max, ordered_median, sum_table)
if ’(’ in e else e

Listing 2: MAX,MIN,MED,SUM number based algorithm - binary opeartion
1 d = [’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
2

3 def ba(a, b):
4 while b != 0:
5 carry = a & b
6 a = a ^ b
7 b = carry << 1
8 return a
9

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

10 def bs(a, b):
11 while b != 0:
12 borrow = (~a) & b
13 a = a ^ b
14 b = borrow << 1
15 return a
16

17 def s(a, b):
18 sr = ba(a, b)
19 while sr >= 10:
20 sr = bs(sr, 10)
21 return sr
22

23

24 def sum(l, d):
25 if len(l) == 1:
26 return l[0]
27 else:
28 s_ = s(d.index(l[0]),d.index(l[1]))
29 for i in l[2:]:
30 s_ = s(d.index(s_) + d.index(i))
31 return s_
32

33 def max(l, d):
34 m_ = l[0]
35 for i in l:
36 if d.index(i) > d.index(m_):
37 m_ = i
38 return m_
39

40 def min(l, d):
41 m_ = l[0]
42 for i in l:
43 if d.index(i) < d.index(m_):
44 m_ = i
45 return m_
46

47 def sort(l, d):
48 for i in range(len(l)):
49 for j in range(i+1, len(l)):
50 if d.index(l[i]) > d.index(l[j]):
51 s = l[i]
52 l[i] = l[j]
53 l[j] = s
54 return l
55

56 def med(l, d):
57 l = sort(l, d)
58 n = len(l)
59 return l[n//2]
60

61

62 def solve(e, ordered_min=d, ordered_max=d, ordered_med=d, sum_table=d):
63 open_parenthesis = []
64 for en, i in enumerate(e):
65 if i == ’(’:
66 open_parenthesis.append(en)
67 if i == ’)’:
68 start = open_parenthesis.pop()
69

70 elements = [j for j in e[start+2:en]]
71 if e[start+1] == ’+’:
72 e = e[:start] + str(max(elements, ordered_max)) + e[en

+1:]
73 break

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

74 elif e[start+1] == ’-’:
75 e = e[:start] + str(min(elements, ordered_min)) + e[en

+1:]
76 break
77 elif e[start+1] == ’%’:
78 e = e[:start] + str(sum(elements, sum_table)) + e[en+1:]
79 break
80 elif e[start+1] == ’/’:
81 e = e[:start] + str(med(elements, ordered_med)) + e[en

+1:]
82 break
83

84 return solve(e, ordered_min, ordered_max, ordered_med, sum_table) if
’(’ in e else e

30

	Introduction
	Methodology
	Kolmogorov Complexity and Its Approximation
	Experimental Setup

	Results
	Ambiguities in Kolmogorov Complexity
	Joint training on multiple tasks
	Embedding Analysis: Uncovering Number Representations
	Refining Complexity Estimates: From Symbolic to Numerical Algorithms
	Temporal Dynamics of Learning and Transfer

	Related works
	Designing solution algorithms
	Ground Rules for Algorithm Design
	Example Algorithms

	Complexity: Number of operands and nesting level.
	Experiment settings.
	Experiments on ListOps.
	Experimental Setup
	Data and processing
	Dataset Notation
	Tokenization
	Chain of Thought Implementation

	Observations from the norm of Attention and Feedforward outputs
	Discussion
	Ablation studies
	Mixing complexity
	Code complexity

