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Abstract

Target Propagation (TP) algorithms compute targets instead of gradients along neural net-
works and propagate them backward in a way that is similar yet different than gradi-
ent back-propagation (BP). The idea was first presented as a perturbative alternative to
BP that may improve gradient evaluation accuracy when training multi-layer neural net-
works (LeCun, 1985) and has gained popularity as a biologically plausible counterpart of
BP. However, TP may have remained more of a template algorithm with many variations
than a well-identified algorithm. Revisiting insights of LeCun (1985); Lee et al. (2015), we
present a simple version of TP based on regularized inversions of network layers that sheds
light on the relevance of TP from an optimization viewpoint and is easily implementable in
a differentiable programming framework. We show how TP can be used to train recurrent
neural networks with long sequences on various sequence modeling problems and delineate
theoretically and empirically the regimes in which the computational complexity of TP can
be attractive compared to BP.

1 Introduction

Target Propagation (TP) algorithms can be seen as perturbative learning alternatives to the gradient back-
propagation algorithm, where virtual targets are propagated backward instead of gradients (LeCun, 1985;
Rohwer, 1989; Mirowski & LeCun, 2009; Bengio, 2014; Lee et al., 2015; Meulemans et al., 2020; Manchev
& Spratling, 2020). A high-level summary is presented in Fig. 1: while gradient back-propagation con-
siders storing intermediate gradients in a forward pass, TP algorithms proceed by computing and storing
approximate inverses. The approximate inverses are then used to pass targets backward along the graph of
computations to finally yield a weight update for stochastic learning.

TP aims to take advantage of the availability of approximate inverses to compute better descent directions
for the objective at hand. Bengio et al. (2013); Bengio (2020) argued that the approach could be relevant for
problems involving multiple compositions such as the training of Recurrent Neural Networks (RNNs), which
generally suffer from the phenomenon of exploding or vanishing gradients (Hochreiter, 1998; Bengio et al.,
1994; Schmidhuber, 1992). This perspective was studied theoretically for Difference Target Propagation
(DTP), a modern variant of TP, that was related to an approximate Gauss-Newton method, suggesting
interesting venues to explain the benefits of TP (Bengio, 2020; Meulemans et al., 2020; 2021; Ernoult et al.,
2022; Fairbank et al., 2022).

Another motivation for TP comes from neuroscience to propose biologically plausible learning processes in
the brain and overcome the biological implausibility of gradient Back-Propagation (BP) (Ernoult et al.,
2022). The biological plausibility of TP required its actual implementation to use several approximations
such as learning inverses with reverse layers (Lee et al., 2015; Manchev & Spratling, 2020). However, it is
unclear whether such reverse layers learn layer inverses during the training process, which hinders the study
of the original idea of using approximate inverses.

To promote the original idea of TP and guide its implementation from both a biological and an optimization
viewpoint, we develop here a simplified implementation of TP using analytical formulations. The proposed
approach formalizes several heuristics used in previous implementations to highlight the key components
that can make TP successful to, e.g., learn from long sequences. In our implementation, we consider ap-
proximating inverses via their variational formulation with analytic expressions. The analytic expression of
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Fig. 1: Our implementation of target propagation uses linearization of gradient inverses instead of gradients in a
backward pass akin to gradient back-propagation.

our approximate inverse sheds light on the relevance of a regularization term which can be interpreted as
inverting perturbed layers, an insight studied earlier by Lee et al. (2015); Manchev & Spratling (2020) when
learning reversed layers. In addition, by using analytical expressions, we can directly test recent interpreta-
tions of TP as an approximate Gauss-Newton method whose approximation comes from the learned reverse
layers (Bengio, 2020; Meulemans et al., 2020; Ernoult et al., 2022).

In this spirit, we also interpret the DTP formula (Lee et al., 2015) as a finite difference approximation of a
linearized regularized inverse. We propose a smoother formula that can directly be integrated into a differ-
entiable programming framework. We detail the computational complexity of the proposed implementation
of TP and compare it to the one of BP, showing that the additional cost of computing inverses can be
effectively amortized for very long sequences. Following the benchmark of Manchev & Spratling (2020), we
observe that the proposed implementation of TP can perform better than classical gradient-based methods
on several tasks involving RNNs. The code to reproduce the experiments is provided in the supplementary
material.

Related work. The use of the gradient Back-Propagation (BP) algorithm to train deep networks was popu-
larized by Rumelhart et al. (1986), though the algorithm had been used in several other fields before (Werbos,
1974; 1994; Griewank & Walther, 2008; Goodfellow et al., 2016). At the same time, alternatives to BP were
proposed by, e.g., (LeCun, 1985, Section 2.2), by using “ideal states" propagated through the transpose of
the weights and initialized at the desired outputs to define local learning objectives at each layer of the
network. This idea was further explored in two different ways: either by redefining the training problem
through the optimization of ideal states called “targets” as initiated by Rohwer (1989) or by redefining the
backward dynamics of BP to back-propagate the desired outputs through approximate inverses as developed
by, e.g., Bengio (2014); Lee et al. (2015).

Optimization in target space. The training of deep networks can be seen as an optimization problem over
both the weights of the layers and the intermediate states computed by the network, the two different sets
of variables being constrained by the dynamics of the network. For a given set of weights, the intermediate
states are entirely determined by the input of the network; that is the viewpoint adopted by BP by using
forward-backward passes on the network (Rumelhart et al., 1986). Rohwer (1989) proposed to consider the
intermediate states as the main variables of the network, which he called “targets”, by computing for a fix
set of targets the optimal weights such that the dynamics are approximately satisfied while the input and
output of the network are fixed at the values given by the training set. The overall training objective depends
only on targets that can be optimized by gradient descent on the error of reconstruction of the dynamics.

Such an approach has been re-proposed under different names by Atiya & Parlos (2000); Castillo et al. (2006)
and later cast as penalized formulation of the dynamical constraints by Carreira-Perpinan & Wang (2014)
who exploited the resulting unconstrained formulation to decouple the training of each layer by alternate
optimization. Taylor et al. (2016); Gotmare et al. (2018) considered tackling the dynamical constraints by
using a Lagrangian formulation of the problem and using an Alternative Direction Method of Multipliers
(ADMM). In this spirit, Wiseman et al. (2017) used an ADMM-like algorithm for language modeling and
reported disappointing experimental results.
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On the other hand, Fairbank et al. (2022) revisited the original approach of Rohwer (1989) by considering
a reconstruction error of the dynamics only based on its linear part and reported successful experimental
results on several architectures. The main difficulty of the optimization in target space is that the total
number of variables is a priori the number of training samples times the width and depth of the network.
This difficulty was overcome by Fairbank et al. (2022) by considering optimizing targets defined on a subset
of the training set, then propagating the information given by new samples by the chain rule. Taylor et al.
(2016) overcame this issue by simplifying the optimization of the targets as one coordinate descent pass on
the Lagrangian formulation which then resembles a back-propagation algorithm. In our work, we consider
back-propagating targets to update weights rather than considering directly the targets as variables.

Back-propagating targets or gradient surrogates. The original idea of LeCun (1985) to use back-propagation
mechanisms that could back-propagate ideal states through the network was revisited a few decades later
by Bengio (2014); Lee et al. (2015). Although directly using approximate inverses of the layers to back-
propagate targets appeared unsuccessful, a slight variant called Difference Target Propagation (DTP), which
stabilizes the inverses by means of finite difference scheme explained in Sec. 2.2, matched roughly the perfor-
mance of BP. We formalize this variant by using directly the Jacobian of the approximate inverse to test the
relevance of the approach from an optimization viewpoint. DTP has been recently interpreted theoretically
as an approximate Gauss-Newton method (Bengio, 2020; Meulemans et al., 2020; 2021), a viewpoint that
we discuss in detail in Appendix C. On a practical side, DTP was successfully implemented for recurrent
neural networks by Manchev & Spratling (2020). We follow the experimental benchmark done by Manchev
& Spratling (2020) while formalizing some of the mechanisms of DTP in our work. Recently, Ahmad et al.
(2020); Dalm et al. (2021) considered using analytical inverses to implement TP and blend it with what
they called a gradient-adjusted incremental formula. Yet, an additional orthogonality penalty is critical for
their approach to work, while our approach appears successful on recurrent neural networks without this
additional penalty.

The back-propagation of gradients has also been bypassed by approximating the sensitivity of the output of
the network to small perturbations by Le Cun et al. (1988) in order to update weights according to these
sensitivities. Alternatively, gradient surrogates were approximated with “synthetic gradients” by Jaderberg
et al. (2017); Czarnecki et al. (2017) to decouple the backward pass of feed-forward deep networks and
speed-up the training process. Roulet & Harchaoui (2022) considered computing gradients of the Moreau
envelope through the structure of the network and cast several previous works as instances of approximate
computations of the gradients of the Moreau envelope. Rather than modifying the backward operations in
the layers, one can also modify the weight updates for deep forward networks by using a regularized inverse
as successfully implemented by Frerix et al. (2018).

Biological plausibility. A recurrent motivation for the development of TP algorithms has been the biolog-
ical implausibility of BP (Crick, 1989). We summarize here some of the arguments against the biological
plausibility of BP and refer the interested reader to, e.g., Bengio (2020); Manchev & Spratling (2020) for
a detailed discussion. First BP requires each neuron to emit two distinct signals (forward and backward)
which has not been observed neurophysiologically (Roelfsema & Ooyen, 2005). Another issue is that BP
solves the credit assignment problem (Minsky, 1961; Hinton et al., 1984) by using weight transport, imply-
ing a symmetric backward connectivity pattern, which is thought impossible in the brain (Lillicrap et al.,
2016). On the other hand, DTP may circumvent some of these issues such as weight transport by using
different dynamics forward and backward. The credit assignment problem and other biological constraints to
model learning schemes motivated several variations of TP or other learning schemes such as direct feedback
alignment (Nøkland, 2016; Bartunov et al., 2018; Crafton et al., 2019; Lansdell et al., 2019; Akrout et al.,
2019; Kunin et al., 2020; Ernoult et al., 2022). As mentioned earlier, our objective here is to complement
the biological viewpoint on TP by taking an optimization viewpoint to understand its relevance in training
performance and use these findings to serve as guidelines for biologically plausible implementations of TP.

Notation. For f : Rp × Rq→Rd, the partial derivative of f w.r.t. x on (x, y) ∈ Rp × Rq is denoted
∂xf(x, y) =

(
∂f j(x, y)/∂xi

)
i,j
∈ Rp×d.
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2 Target Propagation with Linearized Regularized Inverses

While TP was initially developed for multi-layer neural networks, we focus on its implementation for Re-
current Neural Networks (RNNs), as we shall follow the benchmark of Manchev & Spratling (2020) in the
experiments. RNNs are also a canonical family of neural networks in which interesting phenomena arise in
back-propagation algorithms.

Problem setting. A simple RNN parameterized by θ = (Whh,Wxh, bh,Why, by) maps a sequence of inputs
x1:τ = (x1, . . . , xτ ) to an output ŷ = Fθ(x1:τ ) by computing hidden states ht ∈ Rdh corresponding to the
inputs xt ∈ Rdx . Formally, the output ŷ and the hidden states ht are computed as an output operation
following transition operations

ŷ = gθ(hτ ) := s(Whyhτ + by),
ht = fθ,t(ht−1) := a(Wxhxt +Whhht−1 + bh) for t ∈ {1, . . . , τ},

where s is, e.g., the soft-max function for classification tasks, a is a non-linear operation such as the hyperbolic
tangent function, and the initial hidden state is generally fixed as h0 = 0. Given samples of sequence-output
pairs (x1:τ , y), the RNN is trained to minimize the error `(y, Fθ(x1:τ )) of predicting ŷ = Fθ(x1:τ ) instead of
y.

As one considers longer sequences, RNNs face the challenge of exploding/vanishing gradients
∂Fθ(x1:τ )/∂ht (Bengio & Frasconi, 1995); see Appendix A for more discussion. We acknowledge that specific
parameterization-based strategies have been proposed to address this issue of exploding/vanishing gradients,
such as orthonormal parameterizations of the weights (Arjovsky et al., 2016; Helfrich et al., 2018; Lezcano-
Casado & Martınez-Rubio, 2019). The focus here is to simplify and understand TP as a back-propagation-
type algorithm using RNNs as a workbench. Indeed, training RNNs is an optimization problem involving
multiple compositions for which approximate inverses can easily be available. The framework could also be
applied to, e.g., time-series or control models (Roulet et al., 2019).

Given the parametersWhh,Wxh, bh of the transition operations, we can get approximate inverses of fθ,t(ht−1)
for all t ∈ {1, . . . , τ}, that yield optimization surrogates that can be better performing than the ones cor-
responding to regular gradients. We present below a simple version of TP based on regularized analytic
inverses and inverse linearizations.

Back-propagating targets. The idea of TP is to compute virtual targets vt for each layer t = τ, . . . , 1
such that if the layers were able to match their corresponding target at time t, i.e., fθ,t(ht−1) ≈ vt, the
objective would decrease. The final target vτ is computed as a gradient step on the loss w.r.t. hτ . The
targets are then back-propagated using an approximate inverse f†θ,t of fθ,t at each time step. detailed in
Sec. 2.1.

Formally, consider an RNN that computed τ states h1, . . . , hτ from a sequence x1, . . . , xτ with associated
output y. For a given stepsize γh > 0, we propose to back-propagate targets by computing

vτ = hτ − γh∂h`(y, gθ(hτ )), (1)

vt−1 = ht−1 + ∂hf
†
θ,t(ht)

>
(vt − ht), for t ∈ {τ, . . . , 1}. (2)

The update rule (2) blends two ideas: i) regularized analytic inversions to approximate the inverse f−1
θ,t by

f†θ,t; ii) linear approximation, i.e., using the Jacobian of the approximate inverse instead of the difference
target propagation formula proposed by Lee et al. (2015, Eq. 15). We shall also show that the update (2)
puts in practice an insight from Bengio (2020) suggesting to use the inverse of the gradients in the spirit of
a Gauss-Newton method. Once all targets are computed, the parameters of the transition operations are
updated such that the outputs of fθ,t at each time step move closer to the given target.
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Formally, the update consists of a gradient step with stepsize γθ on the squared error between the targets
and the current outputs, i.e., for θh ∈ {Whh,Wxh, bh},

θnext
h = θh − γθ

τ∑
t=1

∂θh‖fθ,t(ht−1)− vt‖2
2/2. (3)

As for the parameters θy = (Why, by), they are updated by a simple gradient step on the loss with the
stepsize γθ.

2.1 Regularized Analytic Inversion

To explore further the ideas of LeCun (1985); Lee et al. (2015), we consider the variational definition of the
inverse,

f−1
θ,t (vt) = argmin

vt−1∈Rdh
‖fθ,t(vt−1)− vt‖2

2 = argmin
vt−1∈Rdh

‖a(Wxhxt +Whhvt−1 + bh)− vt‖2
2. (4)

As long as vt belongs to the image fθ,t(Rdh) of fθ,t, this definition recovers exactly the inverse of vt by fθ,t.
More generally, if vt 6∈ fθ,t(Rdh), Eq. (4) computes the best approximation of the inverse in the sense of the
Euclidean projection. For an injective activation function a and θh = (Whh,Wxh, bh), the solution of (4)
can easily be computed. Formally, for the sigmoid, the hyperbolic tangent or the ReLU, their inverse can be
obtained analytically for any vt ∈ a(Rdh). So for vt ∈ a(Rdh) and Whh full rank, we get

f−1
θ,t (vt) = (W>hhWhh)−1W>hh(a−1(vt)−Wxhxt − bh).

If vt 6∈ a(Rdh), the minimizer of (4) is obtained by first projecting vt onto a(Rdh), before inverting the linear
operation. To account for non-invertible matrices Whh, we also add a regularization in the computation of
the inverse. Overall we consider approximating the inverse of the layer by a regularized inverse of the form

f†θ,t(vt) = (W>hhWhh + r I)−1W>hh(a−1(π(vt))−Wxhxt − bh),

with a regularization parameter r > 0 and a projection π onto a(Rdh) detailed in Appendix B.

Analytic inversion vs. parameterized inversion. Bengio (2014); Manchev & Spratling (2020) param-
eterize the inverse as a reverse layer such that

f†θ,t(vt) = ψθ′,t(vt) := a(Wxhxt + V vt + c),

and learn the parameters θ′ = (V, c) for this reverse layer to approximate the inverse of the forward com-
putations. Learning good approximations comes with a computational cost that can be better controlled
by using analytic inversions presented above. The approach based on parameterized inverses may lack the-
oretical grounding, as pointed out by Bengio (2020), as we do not know how close the learned inverse is to
the actual inverse throughout the training process. In contrast, the analytic inversion (4) is less ad hoc, it
enables us to test directly the main idea of TP and it leads to competitive performance on real datasets.

The analytic formulation of the inverse gives simple insights on an approach with parameterized inverses.
Namely, the analytic formula suggests parameterizing the reverse layer such that (i) the reverse activation
is defined as the inverse of the activation, (ii) the layer uses a non-linear operation followed by a linear one
instead of a linear operation followed by a non-linear one as used by, e.g., Manchev & Spratling (2020).

Regularized inversion vs noise injection. A potential issue with learning parameterized inverses as
done by Manchev & Spratling (2020); Lee et al. (2015) is that the inverse depends a priori on the current
set of parameters of the transition function, which, in turn, change along the training process. Manchev
& Spratling (2020); Lee et al. (2015) considered then stabilizing the learning process of the parameterized
inverse by letting it minimize perturbed versions of the layers, an idea reminiscent of the early work of Le Cun
et al. (1988).
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Formally, the parameterized inverses are learned by performing gradient steps over θ′ on∑τ
t=1 ‖ψθ′,t(fθ,t(ht−1 + εt−1)) − (ht−1 + εt−1)‖2

2 for εt−1 ∼ N (0, σ2 I) and h0, . . . , hτ−1 given by a forward
pass on the RNN for a given sample and fixed parameters θ. Such a strategy led to performance gains in
the overall training (Manchev & Spratling, 2020, Section 3.1.2, Figure 7).

In our formulation, the regularization can be seen as a counterpart of the noise injection. Namely, consider
the inverse of averaged perturbed layers, i.e, the minimizer in vt−1 of Ez∼N (0,σ2 I)‖fθ+z,t(vt−1) − vt‖2

2. As
shown in Appendix C, the regularized inverse f†θ,t minimizes an upper-bound of this objective, namely, for
σ2 = r/dh and vt ∈ a(Rdh),

f†θ,t(vt) = argmin
vt−1∈Rdh

Ez∼N (0,σ2 I)‖a−1(fθ+z,t(vt−1))− a−1(vt)‖2
2,

where Ez∼N (0,σ2 I)‖a−1(fθ+z,t(vt−1)) − a−1(vt)‖2
2 ≤ `aEz∼N (0,σ2 I)‖fθ+z,t(vt−1) − vt‖2

2 for a `a-Lipschitz-
continuous activation a and the approximation error of using the upper-bound is quantified in Appendix C.

The regularization r can then be interpreted as an hyper-parameter that ensures that the inverses computed
for the current parameters are also approximately valid for the updated parameters as long as ‖θnext

h −θh‖2
2 ≤

σ2 = r/dh, which hints that the regularization r may be chosen such that r is larger than a constant times
γθ.

2.2 Linearized Inversion

Earlier instances of TP used directly approximate inverses of the network layers such that the TP update
formula would read vt−1 = f†θ,t(vt) in (2). Yet, we are unaware of a successful implementation of TP using
directly the inverses. To circumvent this issue, Lee et al. (2015) proposed the Difference Target Propagation
(DTP) formula

vt−1 = ht−1 + f†θ,t(vt)− f
†
θ,t(ht).

If the inverses were exact, the DTP formula would reduce to vt−1 = f−1
θ,t (vt). Lee et al. (2015) introduced

the DTP formula to mitigate the approximation error of the inverses by parameterized layers. The DTP
formula was recently interpreted as an approximate Gauss-Newton method (Meulemans et al., 2020; Bengio,
2020) by observing that it can be approximated by the linearization of the inverse as

f†θ,t(vt)− f
†
θ,t(ht) = ∂hf

†
θ,t(ht)

>
(vt − ht) +O(‖vt − ht‖2

2).

Our implementation puts in practice this insight. We show in Appendix D that the linearization we pro-
pose (2) leads to slightly better training curves than the finite-difference approximation. Moreover our
linearized formula enables a simple implementation of TP in a differentiable programming framework and
simplifies its comparison with gradient back-propagation from a computational viewpoint.

3 Gradient Back-Propagation versus Target Propagation

Graph of computations. Gradient back-propagation and target propagation both compute an update
direction for the objective at hand. The difference lies in the oracles computed and stored in the forward
pass, while the graph of computations remains the same. To clarify this view, we reformulate TP in terms
of displacements λt = vt − ht such that Eq. (1), (2) and (3) read

λτ = −γh∂h`(y, gθ(hτ )), λt−1 = ∂hf
†
θ,t(ht)

>
λt, for t ∈ {τ, . . . , 1},

uθh =
τ∑
t=1

∂θhfθ,t(ht−1)λt, θnext
h = θh + γhuθh .

TP amounts then to computing an update direction uθh for the parameters θh with a graph of computations,
illustrated in Fig. 2, analogous to that of BP illustrated in Appendix A. The difference lies in the use of the
Jacobian of the inverse

∂hf
†
θ,t(ht)

>
instead of ∂hfθ,t(ht−1).
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Fig. 2: The graph of computations of target propagation is the same as the one of gradient back-propagation except
that f† needs to be computed and Jacobian of the inverses, ∂hf† > are used instead of gradients ∂hf in the transition
operations.

The implementation of TP with the formula (2) can be done in a differentiable programming framework,
where, rather than computing the gradient of the layer, one evaluates the inverse and keep the Jacobian of
the inverse. With the precise graph of computation of TP and BP, we can compare their computational
complexity explicitly and bound the difference in the directions they output.

Arithmetic complexity. Clearly, the space complexities of BP and our implementation of TP are the
same since the Jacobians of the inverse and the original gradients have the same size. In terms of time
complexity, TP appears at first glance to introduce an important overhead since it requires the computation
of some inverses. However, a close inspection of the formula of the regularized inverse reveals that a matrix
inversion needs to be computed only once for all time steps. Therefore the cost of the inversion may be
amortized if the length of the sequence is particularly long.

Formally, the time complexity of the forward-backward pass of gradient back-propagation is essentially driven
by matrix-vector products, i.e.,

TBP =
τ∑
t=1

T (fθ,t) + T (∂hfθ,t) + T (∂θhfθ,t)︸ ︷︷ ︸
Forward

+ T (∂hfθ,t(ht−1)) + T (∂θhfθ,t(ht−1))︸ ︷︷ ︸
Backward


≈ τ(dxdh + dh

2) + τdh
2,

where dx is the dimension of the inputs xt, dh is the dimension of the hidden states ht, for a function f we
denote by T (f) the time complexity to evaluate f and we consider, e.g., ∂θfθ,t(ht−1) as the linear function
λ→ ∂θfθ,t(ht−1))λ.

On the other hand, the time complexity of target propagation is

TTP =
τ∑
t=1

T (fθ,t)+T (f†θ,t)+T (∂θhfθ,t) +T (∂hf†θ,t)︸ ︷︷ ︸
Forward

+ T (∂hf†θ,t(ht)
>)+T (∂θhfθ,t(ht−1))︸ ︷︷ ︸
Backward

+ P(f†θ,t),

where P(f†θ,t) is the cost of encoding the inverse, which, in our case, amounts to the cost of encoding
cθ : z → (W>hhWhh+r I)−1W>hhz, such that our regularized inverse can be computed as f†θ,t(vt) = cθ(a−1(vt)−
Wxhxt+bh). Encoding cθ comes at the cost of inverting one matrix of size dh. Therefore, the time-complexity
of TP can be estimated as

TTP ≈ dh3 + τ(dxdh + dh
2) + τdh

2 ≈ TBP if τ ≥ dh.
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So for long sequences whose length is larger than the dimension of the hidden states, the cost of TP with
regularized inverses is approximately the same as the cost of BP. If a parameterized inverse was used rather
than a regularized inverse, the cost of encoding the inverse would correspond to the cost of updating the
reverse layers by, e.g., a stochastic gradient descent. This update has a cost similar to BP. However, it is
unclear whether these updates get us close to the actual inverses.

Bounding the difference between target propagation and gradient back-propagation. As the
computational graphs of BP and TP are the same, we can bound the difference between the oracles returned
by both methods. First, note that the updates of the parameters of the output functions are the same since,
in TP, gradients steps of the loss are used to update these parameters. The difference between TP and BP
lies in the updates with respect to the parameters of the transition operations.

For BP, the update direction is computed by chain rule as

∂θh` (y, Fθ(x1:τ )) =
τ∑
t=1

∂θhfθ,t(ht−1)∂hτ
∂ht

∂hτ `(y, gθ(hτ )),

where the term ∂hτ/∂ht decomposes along the time steps as ∂hτ/∂ht =
∏τ
s=t+1 ∂hs−1fθ,s(hs−1). The

direction computed by TP has the same structure, namely it can be decomposed for γh = 1 as

uθh =
τ∑
t=1

∂θhfθ,t(ht−1) ∂̂hτ
∂̂ht

∂hτ `(y, gθ(hτ )),

where ∂̂hτ/∂̂ht =
∏τ
s=t+1 ∂hsf

†
θ,s(hs)

>
. We can then bound the difference between the directions given by

BP or TP as formally stated in the following lemma.
Lemma 3.1. The difference between the oracle returned by gradient back-propagation ∂θh` (y, Fθ(x1:τ )) and
the oracle returned by target propagation uθh can be bounded as

‖∂θh` (y, Fθ(x1:τ ))− uθh‖ ≤ c‖∂θhfθ,t(ht−1)‖‖∂hτ `(y, gθ(hτ ))‖ sup
t=1,...,τ

‖∂ht−1fθ,t(ht−1)− ∂htf
†
θ,t(ht)

>
‖,

where c =
∑τ
t=1
∑t−1
s=0 a

sbt−1−s with a = supt=1,...τ ‖∂ht−1fθ,t(ht−1)‖, b = supt=1,...τ ‖∂htf
†
θ,t(ht)

>
‖.

For regularized inverses, we have, denoting zt = Wxhxt +Whhht−1 + bh,

‖∂ht−1fθ,t(ht−1)− ∂htf
†
θ,t(ht)

>
‖ ≤ ‖W>hh‖

(
‖∇a(zt)−∇a(zt)−1‖+ ‖ I−(W>hhWhh + r I)−1‖‖∇a(zt)−1‖

)
.

For the two oracles to be close, we need the preactivation zt = Wxhxt + Whhht−1 + bh to lie in the region
of the activation function that is close to being linear s.t. ∇a(zt) ≈ I. We also need (W>hhWhh + r I)−1 to
be close to the identity which can be the case if, e.g., r = 0 and the weight matrices Whh were orthonormal.
By initializing the weight matrices as orthonormal matrices, the differences between the two oracles can be
closer in the first iterations. However, in the long term, target propagation appears to give potentially better
oracles, as shown in the experiments below. On a theoretical standpoint, the above lemma can be use to
obtain convergence guarantees to stationary points of TP up to the approximation error of BP by TP as
shown in Appendix C.

Testing the interpretation of TP as a Gauss-Newton method Recently target propagation has
been interpreted as an approximate Gauss-Newton (GN) method, by considering that the DTP formula
approximates the linearization of the inverse, which itself is a priori equal to the inverse of the gradi-
ents (Bengio, 2020; Meulemans et al., 2020; 2021). Namely, provided that f†θ,t(fθ,t(ht−1)) ≈ ht−1 such that
∂ht−1fθ,t(ht−1)∂htf

†
θ,t(ht) ≈ I, we have

∂htf
†
θ,t(ht) ≈

(
∂ht−1fθ,t(ht−1)

)−1
.

8
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Fig. 3: Temporal order problem T = 60, Temporal order problem T = 120, Adding problem T = 30.

By composing the inverses of the gradients, we get an update similar to the one of GN. Namely, recall that if n
invertible functions f1, . . . , fn were composed to solve a least square problem of the form ‖fn◦. . .◦f1(x)−y‖2

2,
a GN update would take the form x(k+1) = x(k)−∂x0f1(x0)−> . . . ∂xn−1f(xn−1)−>(xn−y), where xt is defined
iteratively as x0 = x(k), xt+1 = ft(xt). In other words, GN and TP share the idea of composing the inverse
of gradients. However, numerous differences remain as detailed in Appendix C such as the fact that the
gradient of the layer with respect to its parameters is not inverted in the usual implementation of TP and
that the approximation error of GN by TP may grow exponentially with the length of the network. Note that
even if TP was approximating GN, it is unclear whether GN updates are adapted to stochastic problems.

In any case, by using an analytical formula for the inverse, we can test this interpretation by using non-
regularized inverses, which would amount to directly using the inverses of the gradients as in a GN method.
If the success of TP could be explained by its interpretation as a GN method, we should observe efficient
training curves when no regularization is added.

4 Experiments

In the following, we compare our simple TP approach, which we shall refer to as TP, to gradient Back-
Propagation referred to as BP. We follow the experimental benchmark of Manchev & Spratling (2020) to
which we add results for RNNs on CIFAR and for GRU networks on FashionMNIST. Additional experimental,
details on the initialization and the hyper-parameter selection can be found in Appendix D.

Data. We consider two synthetic datasets generated to present training difficulties for RNNs and several
real datasets consisting of scanning images pixel by pixel to classify them (Hochreiter & Schmidhuber, 1997;
Le et al., 2015; Manchev & Spratling, 2020).

Temporal order problem. A sequence of length T is generated using a set of randomly chosen sym-
bols {a, b, c, d}. Two additional symbols X and Y are added at positions t1 ∈ [T/10, 2T/10] and
t2 ∈ [4T/10, 5T/10]. The network must predict the correct order of appearance of X and Y out of four
possible choices {XX,XY, Y X, Y Y }.

Adding problem. The input consists of two sequences: one is made of randomly chosen numbers from [0, 1],
and the other one is a binary sequence full of zeros except at positions t1 ∈ [1, T/10] and t2 ∈ [T/10, T/2].
The second position acts as a marker for the time steps t1 and t2. The goal of the network is to output the
mean of the two random numbers of the first sequence (Xt1 +Xt2)/2.

9
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Fig. 4: Image classification pixel by pixel. From left to right: MNIST, MNIST with permuted images,
CIFAR10, FashionMNIST with GRU.

Image classification pixel by pixel. The inputs are images of (i) grayscale handwritten digits given in the
database MNIST (LeCun & Cortes, 1998), (ii) colored objects from the database CIFAR10 (Krizhevsky,
2009) or (iii) grayscale images of clothes from the database FashionMNIST (Xiao et al., 2017). The images
are scanned pixel by pixel and channel by channel for CIFAR10, and fed to a sequential network such as a
simple RNN or a GRU network (Cho et al., 2014). The inputs are then sequences of 28 × 28 = 784 pixels
for MNIST or FashionMNIST and 32× 32× 3 = 3072 pixels for CIFAR with a very long-range dependency
problem. We also consider permuting the images of MNIST by a fixed permutation before feeding them into
the network, which gives potentially longer dependencies in the data.

Model. In both synthetic settings, we consider randomly generated mini-batches of size 20, a simple RNN
with hidden states of dimension 100, and hyperbolic tangent activation. For the temporal order problem,
the output function uses a soft-max function on top of a linear operation, and the loss is the cross-entropy.
For the adding problem, the output function is linear, the loss is the mean-squared error, and a sample is
considered to be accurately predicted if the mean squared error is less than 0.04 as done by (Manchev &
Spratling, 2020).

For the classification of images with sequential networks, we consider mini-batches of size 16 and a cross-
entropy loss. For MNIST and CIFAR, we consider a simple RNN with hidden states of dimension 100,
hyperbolic tangent activation, and a softmax output. For FashionMNIST, we consider a GRU network and
adapted our implementation of target propagation to that case while using hidden states of dimension 100
and a softmax output, see Appendix B for the detailed implementation of TP for GRU networks.

Target propagation can tackle long sequences better than gradient back-propagation. In Fig. 3,
we observe that TP performs better than BP on the temporal ordering problem: it is able to reach 100%
accuracy in fewer iterations than BP for sequences of length 60 and, for sequences of length 120, it is still
able to reach 100% accuracy in fewer than 40 000 iterations while BP is not. On the other hand, for the
adding problem, TP performs less well than BP. The contrast in performance between the two synthetic tasks
was also observed by (Manchev & Spratling, 2020) using difference target propagation with parameterized
inverses. The main difference between these tasks is the different nature of the outputs, which are binary
for the temporal problem and continuous for the adding problem.

In Fig. 4, we observe that TP generally performs better or as well as BP for image classification tasks.
For the MNIST dataset, it reaches around 74% accuracy after 4 · 104 iterations. This phenomenon is also
observed with permuted images, where the optimization appears smoother, and TP obtains around 86%
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accuracy after 4 · 104 iterations and is still slightly faster than BP. On the CIFAR dataset, no algorithms
appear to reach a significant accuracy, though TP is still faster. On the FashionMNIST dataset, where a
GRU network is used, our implementation of TP performs on par with BP, which shows that our approach
can be generalized to more complex networks than a simple RNN.

Target propagation requires a non-zero regularization term. As mentioned in Sec. 3, by using
an analytical formula to compute the inverse of the layers, we can question the interpretation of TP as a
Gauss-Newton method, which would amount to TP without regularization. To understand the effect of the
regularization term, we computed the area under the training loss curve of TP for 400 iterations on a log10
grid of varying step-sizes γθ and regularizations r for a fixed stepsize γh = 10−3. The results are presented
in Fig. 5, where the smaller the area, the brighter the point and the absence of dots in the grid means that
the algorithm diverged. Fig. 5 shows that without regularization we were not able to obtain convergence
of the algorithm. Simply using the gradients of the inverse as in a Gauss-Newton method may not directly
work for RNNs. Additional modifications of the method could be added to make target propagation closer to
Gauss-Newton, such as inverting the layers with respect to their parameters as proposed by Bengio (2020).
For now, the regularization appears to successfully handle the rationale of target propagation.

Target propagation is adapted for long sequences. In Fig. 6, we compare the performance of BP and
TP in terms of accuracy after 400 iterations on the MNIST problem for various widths determined by the size
of the hidden states and various lengths determined by the size of the inputs (i.e., we feed the RNN with k
pixels at a time, which gives a length 784/k). Fig. 6 shows that TP is generally appropriate for long sequences,
while BP remains more efficient for short sequences. TP may then be seen as an interesting alternative for
dynamical problems which involve many discretization steps as in RNNs and related architectures.

Conclusion

We proposed a simple target propagation approach grounded in two important computational components,
regularized inversion, and linearized propagation. The proposed approach also sheds light on previous insights
and successful rules for target propagation. The code is available to facilitate the reproduction of the results.
We have used target propagation within a stochastic gradient outer loop to train neural networks for a fair
comparison to stochastic gradient using gradient backpropagation. Developing adaptive stochastic gradient
algorithms in the spirit of Adam that lead to boosts in performance when using target propagation instead
of gradient backpropagation is an interesting avenue for future work. Continuous counterparts of target
propagation in a neural ODE spirit is also an interesting avenue for future work.
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Appendix Plan

The Appendix is organized as follows.

1. Sec. A recalls how gradient back-propagation works for RNNs.
2. Sec. B details the implementation of target propagation.
3. Sec. C details (i) the interpretation of the regularization as a counterpart of the noise injection, (ii)

the differences between TP and BP, (iii) the interpretation of TP as a Gauss-Newton method.
4. Sec. D details the parameters used in our experiments and presents additional experiments.

A Gradient Back-Propagation in Recurrent Neural Networks

Given differentiable activation functions a, the training of recurrent neural networks is amenable to opti-
mization by gradient descent. The gradients can be computed by gradient back-propagation implemented
in modern differentiable programming software (Rumelhart et al., 1986; Werbos, 1994; Paszke et al., 2019;
Abadi et al., 2015). The gradient back-propagation algorithm is illustrated in Fig. 7. Formally, the gradients
are computed by the chain rule such that, for a sample (y, x1:τ ), θh = (Whh,Wxh, bh), and ŷ = Fθ(x1:τ ) the
predicted output,

∂` (y, ŷ)
∂θh

=
τ∑
t=1

∂ht
∂θh

∂hτ
∂ht

∂ŷ

∂hτ

∂`

∂ŷ
.

The term ∂hτ/∂ht decomposes along the time steps as

∂hτ
∂ht

=
τ∏

s=t+1

∂hs
∂hs−1

.

As τ grows, the norm of the term ∂hτ/∂ht may then either increase to infinity (exploding gradients) or
exponentially decrease to 0 (vanishing gradients). This phenomenon may prevent the RNN from learning
from dependencies between temporally distant events (Hochreiter, 1998). Several solutions were proposed to
tackle this issue, including changing the network architecture (Hochreiter & Schmidhuber, 1997), Hessian-
free optimization (Sutskever et al., 2011), gradient clipping and regularization (Pascanu et al., 2012), or
orthonormal parametrizations (Arjovsky et al., 2016; Helfrich et al., 2018; Lezcano-Casado & Martınez-
Rubio, 2019). We consider here propagating targets instead of gradients as first presented by LeCun (1985)
and recently revisited by Bengio (2014); Lee et al. (2015).

B Detailed Implementation

B.1 Target Propagation for RNNs

As detailed in Sec. 3, target propagation with linearized regularized inverses amounts to move along an
update direction computed by a forward-backward algorithm akin to gradient propagation. The iterations
of linearized target propagation are then summarized in Algo. 1 and Algo. 2.

In the implementation of the regularized inverses, since the inverses of activation functions such as the
sigmoid or the tangent hyperbolic are numerically unstable, we consider projecting on a subset of a(Rdh).
For the hyperbolic tangent, we clip the target to [−1 + ε, 1− ε] for ε = 10−3. Concretely, for an hyperbolic
tangent activation function, the projection is then π(v) = (min(max(vi,−1 + ε), 1− ε))dhi=1 for v ∈ Rdh . To
read Algo. 2, we recall our notations for θ = (Whh,Wxh, bh,Why, by):

gθ(hτ ) = s(Whyhτ + by), (5)
fθ,t(ht−1) = a(Wxhxt +Whhht−1 + bh), (6)

f†θ,t(vt) = (W>hhWhh + r I)−1W>hh(a−1(π(vt))−Wxhxt − bh). (7)

Note that Algo. 2 can also be used for mini-batches of sequence-output pairs since all operations are either
element-wise or linear with respect to the sample of sequence-output pair.
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Fig. 7: Gradient back-propagation for RNNs.

Algorithm 1 Stochastic learning with target propagation
1: Inputs: Initial parameters θ(0) = (Whh,Wxh, bh,Why, by) of an RNN defined by Eq. (5) and (6), stepsize
γθ, total number of iterations K

2: for k = 1 . . .K do
3: Draw a sample or a mini-batch of sequences-output pairs (x1:τ , y).
4: Compute

uθ = (uθh , uθy ) = TP(θ(k−1), x1:τ , y),

where TP is Algo. 2
5: Update the parameters as θ(k) = θ(k−1) + γθuθ.
6: end for

B.2 Target Propagation for GRU Networks

B.2.1 Formulation

Starting from h0 = 0, given an input sequence x1, . . . , xτ , the GRU network (as implemented in Py-
torch1 (Paszke et al., 2019)), iterates for t = 1, . . . , τ ,

mt = fm,t(ht−1) := σ(Wimxt +Whmht−1 + bm) (8)
zt = fz,t(ht−1) := σ(Wizxt +Whzht−1 + bz) (9)
nt = fn,t(ht−1,mt) := tanh(Winxt + bin +mt � (Whnht−1 + bhn)) (10)
ht = fh,t(ht−1, zt, nt) := (1− zt)� ht−1 + zt � nt, (11)

where � is the Hadamard product, σ is the sigmoid function. In the following, we will denote simply
θ = (θm, θz, θn) the parameters of the network with

θm = (Wim,Whm, bm), θz = (Wiz,Whz, bz), θn = (Win, bin,Whn, bhn).

The output of the network is, e.g., a soft-max operation on the hidden state computed at the last step (if
applied to an image scanned pixel by pixel for example). See the main paper for the expression of the output
in that case.

B.2.2 Modifying the Chain Rule

The underlying idea of our implementation of target propagation in a differentiable programming framework
is to mix classical gradients and Jacobians of the inverse of the functions. Denote for a given output loss L

1Compared to https://pytorch.org/docs/stable/generated/torch.nn.GRU.html, we used a single variable bm =
bim + bhm, same for bz .
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Algorithm 2 Proposed target propagation algorithm
1: Parameters: π a projection onto a susbet of a(Rdh), stepsize γh, regularization r.
2: Inputs: Current parameters θ = (θh, θy) with θh = (Whh,Wxh, bh), θy = (Why, by) of the RNN, sample

of sequences-output pairs (x1:τ , y).
3: Forward Pass:
4: Compute and store V = (W>hhWhh + r I)−1W>hh giving access to f†θ,t(vt) defined in Eq. (7).
5: Initialize h0 = 0.
6: for t = 1, . . . , τ do
7: Compute and store ht = fθ,t(ht−1), ∂θhfθ,t(ht−1), ∂htf

†
θ,t(ht).

8: end for
9: Compute and store `(y, gθ(hτ )), ∂∂hτ `(y, gθ(hτ )), ∂θy`(y, gθ(hτ )).

10: Backward Pass:
11: Define λτ = −γh∂hτ `(y, gθ(hτ )), uθy = −∂θy`(y, gθ(hτ )).
12: for t = τ, . . . , 1 do
13: Compute λt−1 = ∂htf

†
θ,t(ht)>λt.

14: end for
15: Outputs: Update directions for θh, θy:

uθh =
τ∑
t=1

∂θhfθ,t(ht−1)λt, uθy = −∂θy`(y, gθ(hτ )).

computed on a given mini-batch with the current parameters θ, ∂̂L/∂̂ht the direction back-propagated by
our implementation of target propagation until the step ht. The directions for the parameters of the network
can be output as

∂̂L
∂̂θ

=
τ∑
t=1

∂ht
∂θ

∂̂L
∂̂ht

.

The main task is to define ∂̂L/∂̂ht−1 given ∂̂L/∂̂ht and appropriate regularized inverses. For that, we start
with the chain rule for ∂ht/∂ht−1 and we will replace some of the gradients by Jacobians of regularized
inverses at some places.

Classical chain rule. We have
∂ht
∂ht−1

=
(
− ∂zt
∂ht−1

)
diag(ht−1) + I diag(1− zt) + ∂zt

∂ht−1
diag(nt) + ∂nt

∂ht−1
diag(zt) (12)

= diag(1− zt) + ∂zt
∂ht−1

(diag(nt)− diag(ht−1)) + ∂nt
∂ht−1

diag(zt). (13)

Now for ∂nt/∂ht−1, we further decompose the function fn,t(ht−1) as fn,t(ht−1) = gt(mt � at), with gt(u) =
tanh(Winxt + bin + u) and at = `(ht−1) := Whnht−1 + bhn. We then have, denoting p = mt � at

∂nt
∂ht−1

=
(
∂mt

∂ht−1
diag(at) + ∂at

∂ht−1
diag(mt)

)
∇gt(p), (14)

with ∇gt(p) = diag(tanh′(Winxt + bin + p)).

Inverses. Now, the variables zt,mt and at are functions of ht that incorporate a linear operation and that
can be inverted. Namely, we can define the following regularized inverses

f†m,t(vt) = (W>hmWhm + r I)−1W>hm(σ−1(vt)−Wirxt − bm)

f†z,t(vt) = (W>hzWhz + r I)−1W>hz(σ−1(vt)−Wizxt − bz)
`†(vt) = (W>hnWhn + r I)−1W>hn(vt − bhn).
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We can then do the following substitutions in Eq.(12) and (14),

∂mt

∂ht−1
← ∂̂mt

∂̂ht−1
= ∂f†m,t(mt)>,

∂zt
∂ht−1

← ∂̂zt

∂̂ht−1
= ∂f†z,t(zt)>,

∂at
∂ht−1

← ∂̂at

∂̂ht−1
= ∂`†(at)>,

to define the quantity back-propagated by target propagation.

Note that by taking the gradient of the inverse we can ignore the biases and the inputs. Namely, we have
for example ∂f†m,t(mt) = diag((σ−1)′(mt))Whm(W>hmWhm + r I)−1, hence

∂f†m,t(mt)> = (W>hmWhm + r I)−1W>hm diag((σ−1)′(mt)).

The expression for ∂f†z,t(zt) is identical. Since ` is affine, we have simply ∂`†(at)> = (W>hnWhn + r I)−1W>hn.

Summary. Combined together, we get, denoting dt = ∂̂L
∂̂ht

,

∂̂L
∂̂ht−1

= (1− zt)� dt + ∂f†z,t(zt)>((nt − ht−1)� dt)

+ ∂f†m,t(mt)>(at � tanh′(Winxt + bin + u)� zt � dt)
+ ∂`†(at)>(mt � tanh′(Winxt + bin + u)� zt � dt)

= (1− zt)� dt + (W>hzWhz + r I)−1W>hz
(
(σ−1)′(zt)� (nt − ht−1)� dt

)
+ (W>hmWhm + r I)−1W>hm

(
(σ−1)′(mt)� at � tanh′(Winxt + bin + u)� zt � dt

)
+ (W>hnWhn + r I)−1W>hn(mt � tanh′(Winxt + bin + u)� zt � dt).

This provides a rule to propagate targets through linearized regularized inverses.

C Theoretical Insights

C.1 Regularization and Noise Injection

In Section 2, we mentioned how the regularization used in the analytic formulation of the inverse layers
could be interpreted as a counterpart of the noise injection heuristic used to learn parameterized inverses.
We formalize this statement below. Recall that the transition functions take the form

fθ,t(ht) = a(Wxhxt +Whhht + bh). (15)

Perturbed versions of this transition function read

fθ+z,t(ht) = a((Wxh + Zxh)xt + (Whh + Zhh)ht−1 + bh + zh),

for z ∼ N (0, σ2 I) decomposed into independent Gaussian random matrices Zxh, Zhh and random vector zh,
all of which having independent Gaussian random entries with mean zero and variance σ2.
Lemma C.1. For vt ∈ a(Rdh) and provided that the activation function a is `a-Lipschitz-continuous, the
regularized inversion f†θ,t(vt) = (W>hhWhh + r I)−1W>hh(a−1(vt) −Wxhxt − bh) of fθ,t defined in (15) min-
imizes an upper-bound on the variational formulation of the inverse subject to random perturbations, i.e.,
minvt−1 Ez∼N (0,σ2 I)‖fθ+z,t(vt−1)− vt‖2

2 for σ2 = r/dh.

Proof. We have for vt ∈ a(Rdh) and a, `a-Lipschitz-continuous,

‖fθ+z,t(vt−1)− vt‖2
2 = EZxh,Zhh,zh‖a ((Wxh + Zxh)xt + (Whh + Zhh)vt−1 + bh + zh)− vt‖2

2

≤ `aEZxh,Zhh,zh‖(Wxh + Zxh)xt + (Whh + Zhh)vt−1 + bh + zh − a−1(vt)‖2
2,
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The minimizer of the above upper bound is then

v̂t−1 = argmin
vt−1∈Rdh

EZxh,Zhh,zh‖(Wxh + Zxh)xt + (Whh + Zhh)vt−1 + bh + zh − a−1(vt)‖2
2

= argmin
vt−1∈Rdh

EZxh,Zhh,zh
[1

2v
>
t−1(Whh + Zhh)>(Whh + Zhh)vt−1

− v>t−1(Whh + Zhh)>(a−1(vt)− (Wxh + Zxh)xt − bh − zh)
]

= argmin
vt−1∈Rdh

{
1
2v
>
t−1(W>hhWhh + E[Z>hhZhh])vt−1 − v>t−1W

>
hh(a−1(vt)−Wxhxt − bh)

}
= (W>hhWhh + dhσ

2 I)−1W>hh(a−1(vt)−Wxhxt − bh) = f†θ,t(vt),

for f†θ,t(vt) the regularized inversion used in our implementation with r = dhσ
2.

If the activation function is the identity, the regularized inversion f†θ,t is the exact minimizer of the variational
formulation of the inverse subject to random perturbations. If the activation function is not the identity, we
can still quantify the approximation used by using regularized inverses as shown below.
Lemma C.2. Consider an injective and `a-Lipschitz continuous activation function. For vt ∈ a(Rdh),
denote the objective of the variational formulation of the inverse subject to random perturbations as F (v) =
Ez∼N (0,σ2 I)‖fθ+z,t(v) − vt‖2

2 and denote v̂ = f†θ,t(vt) the approximate minimizer given by the regularized
inversion for r = dhσ

2. We have that

F (v̂)− min
v∈Rdh

F (v) ≤
(

1− ma,δ

`a

)
F (v̂) +ma,δεδ,

where, for v∗ ∈ argminv∈Rdh F (v), denoting φθ,t(v) = Wxhxt +Whhv + bh, we defined for any δ > 0,

ma,δ = inf
u=φθ+z,t(v∗),‖z‖2≤δ

w=a−1(vt)

‖a(u)− a(w)‖2

‖u− w‖2
, εδ =

∫
‖z‖2≥δ

‖φθ+z,t(v∗)− a−1(vt)‖2
2e
−‖z‖2

2/2σ2
dz.

such that ma,δ > 0 since a is injective and εδ vanishing for δ → +∞.

Proof. Decompose the transition function fθ,t as fθ,t = a ◦ φθ,t, where φθ,t(v) = Wxhxt + Whhv + bh and
φθ+z,t(v) = (Wxh + Zxh)xt + (Whh + Zhh)ht−1 + bh + zh. Denote v∗ ∈ argminv∈Rdh F (v). We have

F (v∗) =
∫
‖z‖2≤δ

‖a(φθ+z,t(v∗))− vt‖2
2e
−‖z‖2

2/2σ2
dz +

∫
‖z‖2≥δ

‖a(φθ+z,t(v∗))− vt‖2
2e
−‖z‖2

2/2σ2
dz

≥
∫
‖z‖2≤δ

‖a(φθ+z,t(v∗))− vt‖2
2e
−‖z‖2

2/2σ2
dz

≥
∫
‖z‖2≤δ

ma,δ‖φθ+z,t(v∗)− a−1(vt)‖2
2e
−‖z‖2

2/2σ2
dz

≥ ma,δ

∫
‖φθ+z,t(v∗)− a−1(vt)‖2

2e
−‖z‖2

2/2σ2
dz −ma,δεδ

(i)
≥ ma,δ

∫
‖φθ+z,t(v̂)− a−1(vt)‖2

2e
−‖z‖2

2/2σ2
dz −ma,δεδ

≥ ma,δ`
−1
a F (v̂)−ma,δεδ,

where in (i) we used that v̂ = argminv Ez ‖φθ+z,t(v)− a−1(vt)‖2
2 and we defined

ma,δ = inf
u=φθ+z,t(v∗),‖z‖2≤δ

w=a−1(vt)

‖a(u)− a(w)‖2

‖u− w‖2
, εδ =

∫
‖z‖2≥δ

‖φθ+z,t(v∗)− a−1(vt)‖2
2e
−‖z‖2

2/2σ2
dz.
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Lemma C.2 shows that if the solution of the variational formulation of the inverse subject to random pertur-
bations is in a region of the activation function where the activation function is nearly the identity, i.e., such
that ma,δ ≈ 1 for, e.g., δ = 3σ such that εδ � 1, then the regularized inversion of the transition function
we propose nearly minimizes the objective of the variational formulation of the inverse subject to random
perturbations.

C.2 Gradient Back-Propagation vs Target Propagation

Lemma 3.1. The difference between the oracle returned by gradient back-propagation ∂θh` (y, Fθ(x1:τ )) and
the oracle returned by target propagation uθh can be bounded as

‖∂θh` (y, Fθ(x1:τ ))− uθh‖ ≤ c‖∂θhfθ,t(ht−1)‖‖∂hτ `(y, gθ(hτ ))‖ sup
t=1,...,τ

‖∂ht−1fθ,t(ht−1)− ∂htf
†
θ,t(ht)

>
‖,

where c =
∑τ
t=1
∑t−1
s=0 a

sbt−1−s with a = supt=1,...τ ‖∂ht−1fθ,t(ht−1)‖, b = supt=1,...τ ‖∂htf
†
θ,t(ht)

>
‖.

For regularized inverses, we have, denoting zt = Wxhxt +Whhht−1 + bh,

‖∂ht−1fθ,t(ht−1)− ∂htf
†
θ,t(ht)

>
‖ ≤ ‖W>hh‖

(
‖∇a(zt)−∇a(zt)−1‖+ ‖ I−(W>hhWhh + r I)−1‖‖∇a(zt)−1‖

)
.

Proof. The first claim is a direct application of Lemma C.3 and the second claim follows from the formulation
of the regularized inverse, using that ∇a−1(ht) = ∇a(a−1(ht))−1 = ∇a(zt)−1.

Lemma C.3. Given A1, . . . , An, B1, . . . , Bn ∈ Rp×p, for any sub-multiplicative matrix norm ‖ · ‖, and any
1 ≤ t ≤ n, ∥∥∥∥∥

t∏
i=1

Ai −
t∏
i=1

Bi

∥∥∥∥∥ ≤ δ
t−1∑
i=0

aibt−1−i,

where a = supi=1,...,n ‖Ai‖, b = supi=1,...n ‖Bi‖ and δ = supi=1,...,n ‖Ai −Bi‖.

Proof. Define for t ≥ 1, δt = ‖
∏t
i=1 Ai −

∏t
i=1 Bi‖, we have

δt ≤

∥∥∥∥∥At
(
t−1∏
i=1

Ai −
t−1∏
i=1

Bi

)
+ (At −Bt)

t−1∏
i=1

Bi

∥∥∥∥∥ ≤ aδt−1 + δbt−1 ≤ δ
t−1∑
i=0

aibt−1−i.

A convergence to a stationary point for TP can be derived from classical results on an approximate gradient
descent detailed below (the proof is akin to the results of Devolder et al. (2014)).
Corollary C.4 (Corollary of Lemma C.5). Denote εk a bound on the difference between the oracle returned
by gradient back-propagation and by target-propagation both applied to the whole dataset. Provided that the
objective is L-smooth and the stepsizes of TP are chosen such that γ = γhγy < 1/L, after K iterations, we
get

min
k∈{0,...,K−1}

‖∇L(θ(k))‖2
2 ≤

2
(
L(θ(0))−minθ∈Rd L(θ)

)
γK

) + 1
K

K−1∑
k=0

ε2
k.

where L(θ) = 1
n

∑n
i=1 `(Fθ(x1:τ,i), yi) with Fθ(x1:τ,i) the output of the RNN on a sample (x1:τ,i, yi) and ` the

chosen loss.
Lemma C.5. Let f : Rp → R be an L-smooth function. Consider an approximate gradient descent on f
with step size 0 ≤ γ ≤ 1/L, i.e., θ(k+1) = θ(k) − γ∇̂f(θ(k)), where ‖∇̂f(θ(k)) − ∇f(θ(k))‖2 ≤ εk. After K
iterations, this method satisfies,

min
k∈{0,...,K−1}

‖∇f(θ(k))‖2
2 ≤

2(f(θ(0))−minθ∈Rp f(θ))
γK

+ 1
K

K−1∑
k=0

ε2
k.
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Proof. Denote g(k) = ∇̂f(θ(k))−∇f(θ(k)) for all k ≥ 0. By L-smoothness of the objective, the iterations of
the approximate gradient descent satisfy, using in (i) that Lγ ≤ 1,

f(θ(k+1)) ≤ f(θ(k)) +∇f(θ(k))>(θ(k+1) − θ(k)) + L

2 ‖θ
(k+1) − θ(k)‖2

2

= f(θ(k))− γ‖∇f(θ(k))‖2
2 − γ∇f(θ(k))>g(k) + Lγ2

2 ‖∇f(θ(k)) + g(k)‖2
2

= f(θ(k))− γ
(

1− Lγ

2

)
‖∇f(θ(k))‖2

2 + Lγ2

2 ‖g
(k)‖2

2 + γ(Lγ − 1)∇f(θ(k))>g(k)

(i)
≤ f(θ(k))− γ

(
1− Lγ

2

)
‖∇f(θ(k))‖2

2 + Lγ2

2 ‖g
(k)‖2

2 + γ(1− Lγ)‖∇f(θ(k))‖2‖g(k)‖2

≤ f(θ(k))− γ
(

1− Lγ

2

)
‖∇f(θ(k))‖2

2 + Lγ2

2 ‖g
(k)‖2

2 + γ(1− Lγ)
2 (‖∇f(θ(k))‖2

2 + ‖g(k)‖2
2)

≤ f(θ(k))− γ

2 ‖∇f(θ(k))‖2
2 + γ

2 ‖g
(k)‖2

2.

Summing from k = 0 to K − 1 and rearranging the terms, we get
K−1∑
k=0
‖∇f(θ(k))‖2

2 ≤
2(f(θ(0))−minθ∈Rp f(θ))

γ
+
K−1∑
k=0

ε2
k.

Taking the minimum of ‖∇f(θ(k))‖2
2 and dividing by K we get the result.

C.3 Target Propagation vs Gauss-Newton updates

We discuss the interpretation of Target Propagation (TP) as a Gauss-Newton (GN) method which was
proposed by Bengio (2020); Meulemans et al. (2020). As already mentioned in Sec. 3, the main similarity
between TP and GN is the fact that both TP and GN use the inverse of the gradients or approximations
thereof. In this section, we shall discuss this interpretation for feed-forward networks to follow the claims
of Meulemans et al. (2020). Namely, we consider here a network defined by L weights W1, . . . ,WL and L
activation functions a1, . . . , aL which transform an input x0 into an output xL by computing (no biases were
considered by Meulemans et al. (2020)),

xt = ft(xt−1) = at(Wtxt−1) for t ∈ {1, . . . , L}

Denoting φ(x, θ) the output of the network for an input x = x0, with θ = (W1, . . . ,WL) being the parameters
of the network, the objective consists in minimizing the loss between the outputs of the network and the
sample outputs, i.e., minimizing L(y, φ(x, θ)) for pairs of input-output samples (x, y).

GN step. Recall first the rationale of a GN step for such feed-forward networks with a squared-loss, which
amount to solving

min
θ∈Rp

1
n

n∑
i=1
‖φ(xi, θ)− yi‖2

2.

A GN step amounts to linearize the non-linear function φ around a current set of parameters θ(k) and solve
the corresponding least-square problems to define the next set of parameters, i.e,

θ(k+1) = argmin
θ

1
n

n∑
i=1
‖φ(xi, θ(k)) + ∂θφ(xi, θ(k))>(θ − θ(k))− yi‖2

2

= θ(k) −

(
n∑
i=1

∂θφ(xi, θ(k))∂θφ(xi, θ(k))>
)−1( n∑

i=1
∂θφ(xi, θ(k))

(
φ(xi, θ(k))− yi

))
.

To consider TP as an approximate GN method we need the following considerations.
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1. Consider the iteration on a mini-batch of size 1, s.t.

θ(k+1) = θ(k) −
(
∂θφ(xi, θ(k))∂θφ(xi, θ(k))>

)−1 (
∂θφ(xi, θ(k))

(
φ(xi, θ(k))− yi

))
.

2. Consider that the gradients of the networks are invertible, s.t.

θ(k+1) = θ(k) −
(
∂θφ(xi, θ(k))

)−> (
φ(xi, θ(k))− yi

)
.

3. Consider updating only one set of parameters θl = Wl , s.t.,

θ
(k+1)
l = θ

(k)
l −

(
∂θlφ(xi, θ(k))

)−> (
φ(xi, θ(k))− yi

)
.

with
∂θlφ(xi, θ(k)) = ∂θlfl(xl−1)∂xfl+1(xl) . . . ∂xfL(xL−1)

so that, provided that all matrices inside the matrix multiplication are invertible, we get

∂θlφ(xi, θ(k))−T = ∂θlfl(xl−1)−T∂xfl+1(xl)−T . . . ∂xfL(xL−1)−T

4. Finally, ignore the last inversion and replace it by the gradient on the parameters θl, then we get an
iteration similar to TP, with

θ
(k+1)
l = θ

(k)
l − ∂θlfl(xl−1)∂xfl+1(xl)−T . . . ∂xfL(xL−1)−T∂xLL(y, xL)

for L a squared loss. Namely, we keep the inversion of the gradients of the intermediate functions.

Our objective here is to question whether viewing TP as a GN step with the approximations explained above
is meaningful or not.

Does the original TP formulation approximate GN? Meulemans et al. (2020) start by considering
the original TP formulation, i.e., targets computed as vt = ψt(vt+1) for ψt an approximate inverse of ft and
with vL = xL − η∂xL`(y, xL). Meulemans et al. (2020, Lemma 1) show then that, provided that we use the
exact inverse, ψt = f−1

t ,

∆xt = vt − xt = −η
L−1∏
s=t

∂xsfs+1(xs)−>∂xL`(y, xL) +O(η2).

(Meulemans et al., 2020, Theorem 2) conclude that (i) for mini-batches of size 1, (ii) for a squared loss, (iii)
for invertible ft, as η → 0, TP uses a Gauss-Newton optimization with block diagonal approximation to
compute the targets in the sense that as η → 0,

∆xt ≈ −η∂xt(ft+1 ◦ . . . ◦ fL)−>(xt).

As the stepsize of any optimization algorithm tends to 0, they all are the same, since the update would be 0
in all cases. To make the claim of Meulemans et al. (2020) more precise, the constants hidden in O(η2) need
to be detailed in order to understand in which regimes of the stepsize the approximation is meaningful.

Assuming the inverses ψt to be `ψ Lipschitz continuous and Lψ-smooth (i.e. with Lψ-Lipschitz continuous
gradients), a quick look at the proof of Lemma 1 of Meulemans et al. (2020) shows that

vt − xt = −η
L−1∏
s=t

∂xsfs+1(xs)−>∂xL`(y, xL) + ξt

‖ξt‖2 ≤ δt
δs ≤ Lψδ2

s+1 + `ψδs+1 + Lψ`
2
ψη

2‖∂xL`(y, xL)‖2
2 for s ∈ {t, . . . , L− 1}

δL ≤
Lψ
2 η2‖∂xL`(y, xL)‖2

2.
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Hence the approximation error is then of the order of ‖ξt‖2 ≤ Lψ‖∂xL`(y, xL)‖2
2(
∑L−t
s=0 `

s
ψ)η2 + o(η2), that is

the approximation error may be valid for η ≤ (Lψ‖∂xL`(y, xL)‖2
2(
∑L−t
s=0 `

s
ψ))−1/2. Yet, in practice, TP does

not appear to use very small stepsizes. Moreover, if the similarity of TP with GN could explain its efficiency,
then by the reasoning of Meulemans et al. (2020), the original TP formulation should be efficient. Yet, the
original TP formulation has never been shown to produce satisfying results.

Does TP with the difference target propagation approximate GN? Meulemans et al. (2020) make
a similar claim for TP with the Difference Target Propagation formula, i.e., vt = xt + ψt(vt+1) − ψt(xt+1).
Namely, Meulemans et al. (2020, Lemma 3) show that

∆xt = vt − xt = −η
L−1∏
s=t

∂xsψs(xs)>∂xL`(y, xL) +O(η2).

Once again, for the claim to be meaningful beyond infinitesimal stepsizes, the terms in O(η2) need to be
detailed. If we use a linearized version of the difference target propagation formula as presented in (2),
namely vt − xt = ∂xt+1ψt(xt+1)>(vt+1 − xt+1) , then we have the equality

∆xt = vt − xt = −η
L−1∏
s=t

∂xsψs(xs)>∂xL`(y, xL)

and the idea that TP could be seen as an approximate GN method may be pursued in a meaningful way.
However the error of approximation of the inverse of the gradients must be taken into account in order to
understand the validity of the approach.

Propagating the approximation error of the gradient inverses. We compute the approximation
error incurred by composing gradients of the inverse instead of inverses of gradients. Formally, the approxi-
mation error for one layer can be estimated under the assumption that

ψt(ft(xt−1)) = xt−1 + e(xt−1), (16)

with e an ε-Lipschitz continuous function and the assumption that the minimal singular value σ of ∂xtft(xt−1)
is positive.

The function e a priori depends on the parameters of the layer; we ignore this dependency and simply
consider e to be ε-Lipschitz continuous for all θ. For a function e, its Lipschitz continuity constant is
ε = supx sup‖λ‖2≤1 ‖∂xe(x)>λ‖2 = supx ‖∂xe(x)‖, where ‖ · ‖ denotes the spectral norm. By differentiating
both sides of Eq. (16), we get

∂xft(xt−1)∂xψt(xt) = I +∂xe(xt−1).

By assuming the minimal singular value σ of ∂xft(xt−1) to be positive, we get that ∂xft(xt−1) is invertible
and so

∂xψt(xt) = ∂xft(xt−1)−1(I +∂xe(xt−1)).

Hence ∂xψt(xt) is σ−1(1 + ε) Lipschitz-continuous and

‖ (∂xft(xt−1))−1 − ∂xψt(xt)‖ ≤
ε

σ
. (17)

Now for multiple compositions, using Lemma C.3, we get

‖ (∂xf1(x0))−1
. . . (∂xfL(xL−1))−1 − ∂xψ1(x1) . . . ∂xψL(xL)‖ ≤ (1 + ε)L

σL
.

Therefore the accumulation error diverges with the length L of the network as soon as ε ≥ σ − 1.
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Testing the hypothesis that TP could be interpreted as using GN updates directions. Here
we come back to the setting of RNNs presented in the paper. In this case the length of the compositions
of layers is τ and according to the previous discussion, the error of approximation of the product of the
inverse of the gradients by the product of the gradients of the approximate inverses could easily diverge as τ
grows (long sequences). Nevertheless, by using analytical formulas for the inverses, we can ensure that the
approximation error is zero, which would correspond then to the ideal setting where TP uses GN update
directions for the hidden states.

Formally, in the context of RNNs, a Gauss-Newton update direction for the hidden states is given as (ignoring
the inverse of the output function)

−γh
τ−1∏
s=t+1

(∂hft+1,θ(ht))−> ∂h`(y, gθ(hτ )),

If no regularization is used in the definition of the regularized inverse, i.e., if we use

f−1
θ,t (ht) = (W>hhWhh)−1W>hh(a−1(ht)−Wxhxt − bh),

which requires the inverse of Whh to be well defined, we would get

∂f−1
θ,t (ht) = ∂hft+1,θ(ht)−1.

The updates of TP using the formula (2) would then be exactly the ones of a GN on the hidden states as
presented by Meulemans et al. (2020), i.e.,

vt − ht = −γh
τ−1∏
s=t+1

(∂hft+1,θ(ht))−> ∂h`(y, gθ(hτ )).

So by considering our implementation without regularization, we can test whether the interpretation of TP
as an approximate GN method is meaningful in terms of optimization convergence. As shown in Fig. 6, it
appears that regularizing the inverses is necessary to obtain convergence, hence the interpretation of TP as
GN may not be sufficient to explain why TP can converge.

D Experimental Details

D.1 Initialization and Hyper-Parameters

Initialization and data generation. In all experiments, the weights of the RNN are initialized as random
orthogonal matrices, and the biases are initialized as 0 as presented by Le et al. (2015) and Manchev &
Spratling (2020). For all experiments, the data was not normalized, as done by Manchev & Spratling (2020).
We kept a setting as similar as possible as the one of Manchev & Spratling (2020) to be able to compare
target propagation with regularized or parameterized inverses.

Hyper-parameters. In the synthetic tasks, for BP we used a momentum of 0.9 with Nesterov accelerated
gradient scheme as done by Manchev & Spratling (2020). Otherwise, we did not use any momentum for
the experiment on MNIST pixel by pixel presented in the main paper. The learning rates of BP and the
parameters of TP were found by a grid-search on a log10 basis and are presented in Table 1. We did not add
a regularization term in the training of the RNNs.

For Fig. 6, we used batch sizes of size 512 and performed a grid search for the stepsizes of BP and for the
stepsizes γh of TP while keeping the same regularization r and stepsize γθ to the parameters found for the
length 784.

Software. We used Python 3.8 and PyTorch 1.6. The RNN was coded using the cuDNN implementation
available in PyTorch that is highly optimized for computing forward-backward passes on RNNs for gradient
back-propagation.
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BP TP

γ γh γθ κ

Temporal order problem length 60 10−5 10−2 10−1 10

Temporal order problem length 120 10−5 10−2 10−2 1

Adding problem 10−3 10−1 10−1 1

MNIST pixel by pixel 10−6 10−4 10−1 1

MNIST pixel by pixel permuted 10−4 10−4 10−1 1

CIFAR 10−3 10−2 10−2 10

FashionMNIST with GRU 10−2 10−1 10−2 1

Table 1: Hyper-parameters chosen for Fig. 3 and 4.

Hardware. All experiments were performed on GPUs using Nvidia GeForce GTX 1080 Ti (12G memory).
Each experiment only used one gpu at a time (clock speed 1.5 Ghz).

Time evaluation. On our GPU, we observed that for the MNIST pixel by pixel experiment, 200 iterations
(each iteration considering 16 samples) were taking approximately 60s for BP and 800s for TP. Note that
with larger batch-sizes the cost of the regularized inversion would be amortized by the fact that more samples
are treated simultaneously. We kept the setting of Manchev and Spartling (Manchev & Spratling, 2020) for
ease of comparison.

D.2 Additional Experiments

The overhead of TP can be worth its performance. To account for the additional cost of inversion
for each mini-batch, we consider the convergence of the algorithms in time rather than in iterations. We
found that, on average, 1 iteration of BP takes approximately 13 times less time than one iteration of TP
in our implementation (note that BP benefits from highly optimized implementations for GPU machines,
and TP could potentially also benefit from the same optimized implementations). Therefore we ran BP for
13 times more iterations than TP and multiplied the number of iterations by the approximate time needed
for each iteration for all algorithms. In the right panel of Fig. 8, we observe that in time too, TP performs
better than BP, which stays stuck at an accuracy of approximately 22%.

Regularized inverses outperform parameterized inverses. We evaluate the impact of using regular-
ized inverses as opposed to parameterized inverse and linearized propagation as opposed to finite-difference-
based propagation. The variant of target propagation with parameterized inverse and finite-difference prop-
agation corresponds to the approach of Lee et al. (2015) recently implemented by Manchev & Spratling
(2020) and referred to in Fig. 8 as DTP-PI. The variant of target propagation with regularized inverse and
finite-difference propagation is referred to in Fig. 8 as DTP-RI. Recall that our approach involves regular-
ized inverses and linearized propagation, referred as TP. In Fig. 8, we observe that both TP and DTP-RI
outperform DTP-PI, demonstrating the benefits of using regularized inverses. On the other hand, both TP
and DTP-RI perform on par overall, with the former being slightly better for the given parameters.
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Fig. 8: Left: MNIST in time. Right: Comparison of different implementations of TP.
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Fig. 9: MNIST for varying γh and fixed γθ = 1, r = 1.

Target propagation is robust to the choice of the target stepsize γh. In Fig. 5, we observed how
the convergence could be affected by the choice of the regularization and the step-size γθ. In the left panel
of Fig. 9, we observe that varying γh does not lead to significant changes in the convergence behavior.
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