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ABSTRACT

Monitoring and recognizing patterns in continuous sensing data is crucial for many
practical applications. These real-world time-series data are often nonstation-
ary, characterized by varying statistical and spectral properties over time. This
poses a significant challenge in developing learning models that can effectively
generalize across different distributions. In this work, based on our observation
that nonstationary statistics for time-series classification tasks are intrinsically
linked to the phase information, we propose a time-series domain generalization
framework, PhASER. It consists of three key elements: 1) Hilbert transform-based
phase augmentation that diversifies non-stationarity while preserving discrimina-
tory semantics, 2) separate magnitude-phase encoding by viewing time-varying
magnitude and phase as independent modalities, and 3) phase-residual feature
broadcasting by incorporating phase with a novel residual connection for inherent
regularization to enhance distribution invariant learning. Extensive evaluation on 5
datasets from sleep-stage classification, human activity recognition, and gesture
recognition against 13 state-of-the-art baseline methods demonstrate that PhASER
consistently outperforms the best baselines by an average of 5% and up to 11% in
some cases. Moreover, PhASER’s principles can also be applied broadly to boost
the generalizability of existing time-series classification models.

1 INTRODUCTION

Time-series data play a ubiquitous and crucial role in numerous real-world applications, such as
continuous monitoring for human activity recognition (Li et al., 2020), gesture identification (Ozdemir
et al., 2020), sleep tracking (Kemp et al., 2000), and more. Continuous time series often exhibit
non-stationarity, i.e., the statistical and spectral properties of the data evolve over time. Another
inherent challenge is the distribution shift due to the underlying sensing properties or subject-specific
attributes, commonly referred to as domain shift, which directly degrades the performance of time-
series models in real-world applications. Thus, developing methods for more generalizable pattern
recognition in nonstationary time series classification is crucial.

Most existing methods (Ragab et al., 2023a;b; He et al., 2023) tackle distribution shifts in time-series
applications via domain adaptation, assuming accessible target domain samples. Yet, obtaining data
from unseen distributions in advance is not always feasible. To overcome this challenge, a few
works (Gagnon-Audet et al., 2022; Xu et al., 2022) applied standard domain generalization (DG)
algorithms (Volpi et al., 2018; Sagawa et al., 2019; Parascandolo et al., 2020) to temporally-varying
time-series data, but reported a significant performance gap when compared with visual data. Recent
research on DG tailored for time series explores latent-domain characterization (Lu et al., 2023; Du
et al., 2021), augmentation strategies (Iwana & Uchida, 2021; Li et al., 2021), preservation of non-
stationarity dictionary (Liu et al., 2022; Kim et al., 2021c), and utilization of spectral characteristics of
time series (He et al., 2023; Yang & Hong, 2022; Kim et al., 2021a). While successful in some cases,
these methods have their limitations. Latent-domain characterization heavily relies on the hypotheses
of latent domains, limiting its broader applicability. Augmentation strategies (shift, jittering, masking,
etc.) for time series may not be universally applicable and can impair the task (Iwana & Uchida, 2021).
For instance, in physiological signal analysis, morphological alterations from augmentations are
harmful, and time-slicing is unsuitable for periodic signals. Advanced augmentation techniques like
spectral perturbations (time-frequency warping, decomposition techniques, etc.) are usually heavily
parametric (Wen et al., 2021) and application-specific. Other approaches specific to preserving
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Figure 1: PhASER’s components: I. Hilbert transform-based phase augmentation. II. Separate feature
encoding of time-varying phase and magnitude derived from Short-Term Fourier Transform (STFT)
using FMag and FPha. III. Key elements of the phase-residual broadcasting network, demonstrating
design of depth-wise feature encoder (FDep), temporal encoder (FTem), and incorporation of phase-
projection head’s output (gRes) for broadcasting (annotated dimensions of intermediate feature maps).
IV. Task-specific classification encoder (gCls).

non-stationarity are constrained by maintaining the same input-output space, making them unsuitable
for multivariate time-series classification tasks. While some works (He et al., 2023; Yang & Hong,
2022) focus on frequency domain representations for robustness to feature shifts, they overlook cases
with time-varying spectral responses. Another significant issue is that many of these studies rely
on domain identity, which in practice is expensive and intrusive to obtain, especially in healthcare
and finance (Yan et al., 2024; Bai et al., 2022). Thus, achieving domain-generalizable time-series
classification without access to unseen distributions and domain labels of available distributions
remains a challenging yet crucial pursuit.

Our Approach and Contributions. We propose a novel Phase-Augmented Separate Encoding and
Residual (PhASER) framework to achieve domain-generalizable classification for nonstationary
real-world time series. Figure 1 illustrates an overview of PhASER, which includes three key modules.
First, we diversify the non-stationarity of source domain data through an intra-instance phase shift,
by leveraging the generality and non-parametric nature of Hilbert Transform (HT) (King, 2009) to
introduce a phase-shift-based augmentation. Next, we apply a novel strategy to encode the time-
varying magnitude and phase responses separately for enhanced integration of the time-frequency
information. Finally, we design an effective broadcasting mechanism with a non-linear residual
connection between the phase-encoded embedding and the backbone representation to learn domain-
invariant and generalizable (He et al., 2020; Marion et al., 2023) task-specific features (He et al.,
2016). We experiment with 13 baselines on 5 datasets to quantitatively demonstrate PhASER’s
superiority in learning generalizable representations, even in challenging scenarios like transferring
from one domain to multiple domains. Additionally, we provide design insights through ablation
analysis, explore PhASER’s applicability to other architectures, and present qualitative visualizations
of its learned representations.

2 APPROACH

2.1 PROBLEM FORMULATION

Definition 2.1 (Nonstationary Time Series). Following the definition of mixed decomposition-based
nonstationary signals in Dama & Sinoquet (2021), we assume that a nonstationary time-series sample
x = {x0, ..., xt, ...} drawn from a domain Dx can be decomposed into components with mean µt

and variance σt (both µt and σt are not always zero) as:

Prx∼Dx(x)(t) = µt + σt × z, where∀L ≥ 1,∃t, [µt ̸= µt+L] ∨ [σt ̸= σt+L] , (1)

where z is a stationary stochastic component with a zero mean and a unit variance.

Definition 2.2 (Time-Series Domain Generalization). Suppose there is a dataset S={(xi, yi)}Mi=1

with M nonstationary time-series samples drawn from a set of NS source domains S = {Si}NS
i=1.

The joint distribution of S is Pr(XS,YS), i.e., xi ∼XS, yi ∼YS and xi ∈ RV×T , where V is the
number of time-series feature dimensions and T is the sequence length. yi ∈ R1×1 is the categorical
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label. Note that the joint distributions of different source domains are similar (with shared underlying
patterns) but domain-specific distinctions:

Pr(XSi ,YSi) ̸= Pr(XSj ,YSj ), 1 < i ̸= j ≤ NS . (2)

For any potential unseen target domain DU, its joint distribution remains distinct like Eq. (2). In
our problem, although the source dataset is assumed to contain multiple domains, the annotations
that specify the domain identity are unavailable. Our goal is to train a model consisting of a feature
extractor F and a classifier g using the given source dataset (F ◦ g : XS −→ YS), such that

min E
(x,y)∼DU

[L(g(F (x)), y)], (3)

where L(·) is a certain cost that measures the errors between model predictions and the ground truth.

Figure 2: Illustrative example of non-stationarity using a sample from a human activity recognition
dataset (HHAR) where (a) shows the temporal non-stationarity of a signal denoted by varying mean
µ and variance σ within a domain for three regions color-coded and denoted as I, II, and III. (b)
shows that the magnitude response (|DFT|) of the Discrete Fourier Transform (DFT) for each region
is distinct. There is a clear difference in the dominant frequency for each region. (c) shows the phase
responses (∠(DFT)) for each region. The ∠(DFT) of each region is also distinct.
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Figure 3: Comparison between PhASER
(Ours) and BCResNet with increasingly
nonstationary HHAR dataset.

Motivation. We motivate our study through a human activ-
ity recognition (HAR) application, where non-stationarity
is unavoidable due to changes in user behavior or sensor
characteristics (Bangaru et al., 2020). We illustrate an
instance of non-stationarity in Figure 2 (a), which visual-
izes a univariate accelerometer data sample from a dataset
called HHAR (Stisen et al., 2015) in the time domain. By
segmenting this sample into sequential windows and con-
ducting a Discrete Fourier Transform (DFT) to obtain its
magnitude and phase responses, as shown in Figures 2 (b)
and (c), we observe the shifts in the spectral domain that
correspond to non-stationarity.

The central question is: What is the impact of the non-
stationarity of time series on models’ generalization ability? We create a simple empirical study on
the HHAR dataset and update the sequence length to build various levels of non-stationarity, which is
measured by the Augmented Dickey-Fuller (ADF) statistics (a higher ADF value indicates greater
non-stationarity) (Said & Dickey, 1984). More details of the ADF test are provided in Section B of
the Appendix. We adopt Kim et al. (2021a)’s DG model, BCResNet, for time-series classification
to explore the relationship between the degree of non-stationarity and the model’s generalization
ability to unseen domains. Figure 3 shows an evident drop in the accuracy of BCResNet as the
non-stationarity increases, highlighting the importance of addressing non-stationarity for achieving
better generalization. In contrast, our proposed PhASER framework, as detailed below, consistently
performs well despite increasing non-stationarity.

Overview of PhASER. As shown before in Figure 1, our proposed PhASER framework begins with
an augmentation module that utilizes the Hilbert Transform to generate out-of-phase augmentations
for time series. These augmentations not only diversify non-stationarity (temporal data statistics)
but also preserve category-discriminatory semantics for classification tasks. Next, the short-term
Fourier Transform (STFT) is employed to obtain temporal magnitude and phase responses. Two
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separate encoders then process the magnitude and phase as distinct input modalities. Finally, PhASER
establishes a novel feature broadcasting mechanism to incorporate the phase information deeper
in the layers through residual connections. By fully leveraging the phase-related information, the
PhASER framework implicitly regularizes the representations against non-stationarity and offsets
any degradation to the desirable features. Consequently, the classifier learns domain-agnostic task-
discriminatory representations. In the following Sections 2.2 to 2.4, we will introduce the details
of these three novel elements in PhASER, and then discuss the theoretical insights that inspire our
design in Section 2.5.

2.2 HILBERT TRANSFORM BASED PHASE AUGMENTATION

Our motivating study depicted in Figure 3 demonstrated the importance of addressing non-stationarity
to enhance the generalization ability of models. An intuitive direction is to leverage data augmentation
to diversify the non-stationarity of training data. The optimal augmentation also needs to preserve the
discriminatory properties of the original data, which is essential for semantic differentiability.

Unlike most existing time-series augmentation techniques, we introduce a phase shift to a signal
while preserving the magnitude response, thereby offering an augmented view. This intra-sample
phase-augmentation technique is less studied in the context of time-series classification for domain
generalization (although some recent works like Demirel & Holz (2024) explore phase-mixup for
contrastive learning), we intuitively justify our design choice by exploring a question: Does shifting
the phase of time-series spectral response change its non-stationarity? Figure 1. I shows the result of
accurately shifting the phase of a nonstationary signal without altering the magnitude response in the
time domain and we can observe evident diversification of the non-stationarity statistics.

We propose a simple but effective data augmentation technique based on the Hilbert Transform
(HT) to diversify the non-stationarity and preserve discriminatory features. Specifically, for
each time-series sample x in the source dataset S, we can assume it is a real-valued signal
x = {x0, ..., xt, ...} ∈ R that is characterized by a deterministic function xt = x(t). Then,
HT(x(t)) = x̂(t) =

∫∞
−∞ x(τ) 1

π(t−τ)dτ . HT can be easily interpreted in the frequency domain via
Fourier analysis:

fx(ξ) = F{x(t)} =

∫ ∞

−∞
x(t)ei2πξtdt,−∞ < ξ < ∞,

x(t) = F−1{fx(ξ)} =

∫ ∞

−∞
fx(ξ)e

i2πξtdξ,−∞ < t < ∞,

where F ,F−1 denote the Fourier transform and inverse, and ξ is the frequency variable. To interpret
x̂ in the frequency domain, the negative frequency spectrum of fx(ξ) needs to multiply with the
imaginary unit i, while the positive spectrum needs to multiple with −i. Then we have:

HT(x(t)) = x̂(t) = F−1{−i · sgn(ξ)fx(ξ)}, (4)

where sgn(·) is a sign function. Applying HT on a signal results in a phase shift of −π/2, yielding
a new out-of-phase signal. After obtaining the transformed x̂ for across all feature dimensions, we
merge the augmented dataset Ŝ and the original S to form a new larger dataset S′ = Ŝ ∪ S. For the
rest of the design, there is no distinction among the samples in S′, whether they belong to Ŝ or S.

2.3 MAGNITUDE-PHASE SEPARATE ENCODING

After augmenting the source domain with phase-shift using HT, next, we identify optimal ways
to encode time series for generalization. While employing spectral transformation is a common
approach, our perspective diverges from most existing methods which typically focus on separating
time and frequency information. Rather, we unify the time and frequency context, and instead
consider the magnitude and phase information as distinct modalities of the original signals.

As we address the non-stationarity of time series, we adopt STFT rather than DFT. DFT is usually
applicable to signals that are stationary and periodic over time, and not suitable for analyzing time-
varying signals. STFT is obtained by applying DFT sequentially with a specified window through
the entire length of the time series. Specifically, for each training sample x ∈ S′ with a continuous
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time function x(t), sampling it at a fixed rate generates a discrete time series denoted as x[n] with a
sequence length N , we have:

fx[n, k] =

n∑
m=n−(W−1)

w[n−m]x[m]eiξkm. (5)

The STFT of x[n], fx[n, k], is a function of both discrete time n and frequency bin indices k with
lengths Ñ and Ξ, respectively. ξk is a digital frequency variable given by ξk = 2πk

Ξ and w[·] is a
window function. Without losing generality, we adopt the Hanning window with window length
W , i.e., w[n] = 0.5(1 − cos 2πn

W−1 ) where 0 ≤ n ≤ W − 1. Note that the length and shape of the
window determine the time-frequency resolution. A larger W provides better frequency resolution
and a smaller W gives a better temporal scale. We set W to be randomly sampled powers of 2 for
each time-series feature, i.e., Wi = 2pi ≤ Ξ, pi ∼ U ∈ Z+

0 , i ∈ [1, V ], where U denotes a uniform
distribution for integers. After obtaining fx[n, k], we can compute its magnitude and phase as:

Mag(x) =
√

Re(fx[n, k])2 + Im(fx[n, k])2,Pha(x) = arctan 2 (Im(fx[n]),Re(fx[n, k])) , (6)

where Im(·) and Re(·) indicate imaginary and real parts of a complex number, and arctan 2(·) is the
two-argument form of arctan. Then we take Mag(x),Pha(x) ∈ RV×Ξ×Ñ as inputs of two separate
encoders FMag and FPha. This approach is motivated by the viability of reconstructing a time-series
signal using phase and magnitude responses (Hayes et al., 1980; Jacques & Feuillen, 2020), which is
supported by our study below.

Table 1: Comparison of various time-
frequency input configurations.

Input Modality Accuracy

Only Magnitude (Mag) 0.81 ± 0.03
Only Phase (Pha) 0.62 ± 0.03
Mag-Pha Concatenate 0.73 ± 0.03
Mag-Pha Separate 0.85 ± 0.01

Intuition of treating phase and magnitude as separate
modalities. Building on insights from prior studies (He
et al., 2023; Kim et al., 2021a) highlighting the impor-
tance of spectral input in generalizable learning, we con-
duct a small-scale empirical study on the WISDM HAR
dataset (Kwapisz et al., 2011) to explore optimal time-
frequency input methods. Specifically, we compare four
approaches: magnitude-only, phase-only, concatenated
magnitude and phase, and separate encoders for magni-
tude and phase. Results (see Table 1) demonstrate that using only phase input yields inferior
performance compared to magnitude-only input, suggesting the latter contains more discriminative
information for classification tasks. Here the phase-only features achieve an accuracy of 0.62 in
a six-class classification task – significantly higher than chance accuracy (0.17) – supporting the
presence of task-discriminating but time-varying attributes in the phase response; motivating us to use
it as an approximate proxy for signal’s nonstationarity in PhASER. Also, concatenating magnitude
and phase does not improve performance, whereas separate encoding followed by late fusion proves
superior in this case. This may be attributed to 1) the independent selection of high-level features
from the magnitude and phase for the task of classification, and 2) the learning about non-stationarity
from the phase information.

Before fusing the extracted embeddings of FMag and FPha, we incorporate sub-feature normalization
proposed by Chang et al. (2021). Specifically, the embeddings of FMag and FPha are divided into B
sub-feature spaces. We apply normalization in each sub-feature space for each time-series variate,

FMag(x) =
{
FMag(x)b :=

FMag(x)b−FMag(x)b
σ(FMag(x)b)

}B

b=1
, where (·) and σ(·) denote the computation of

the mean and variance of the given input. The same sub-feature normalization is also conducted
on FPha(x). Then, both FMag(x) and FPha(x) are fused along the variate axis by multiplying
with 2D convolution kernels denoted as a fusing encoder FFus. The fused embeddings rFus =
FFus(FMag(x), FPha(x)) are then fed into the following modules.

2.4 PHASE-RESIDUAL FEATURE BROADCASTING

Lastly, we outline our phase-based broadcasting approach to achieve domain generalizable repre-
sentation learning. It starts with a depthwise feature encoder, FDep, which transforms the fused
embeddings, rFus, into 1D feature maps, rDep, along the temporal dimension, given as:

RC(rFus)×D(rFus)×T (rFus) → RC(rFus)×1×T (rFus),
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where C(·), D(·), and T (·) represent the channel number, the feature dimensions, and the temporal
dimensions of an embedding. FDep is implemented as several convolution layers followed by an
average pooling operation to unify all features at each temporal index. Once the 1D feature map
is obtained, we attach a sequence-to-sequence (the dimension format of the feature map remains
intact) temporal encoder, FTem, to characterize its temporal dependency and semantics. The choice
of backbone for FTem is not central to our design and a suitable sequence-to-sequence encoder can be
chosen. Here we leverage convolution layers to form FTem, and we have also tested other architectures
(please refer to Section B in the Appendix for details). We adopt this feature consolidation approach
to enable specialized learning of spectral attributes by FDep and global temporal dependencies using
FTem, resulting in a more valuable overall semantic characterization.

We now introduce a non-linear projection of FPha(x) as a shortcut through FDep to FTem. To suitably
broadcast with the output dimensions of FTem, we use a projection head, gRes for the transformation:

RC(FPha(x))×D(FPha(x))×T (FPha(x)) → RC(rFus)×D(FPha(x))×T (rFus).

After the projection, we can broadcast the output of FTem to form the final representation r that is
intended to learn discriminatory characteristics despite non-stationarity:

r = FTem(rDep) + gRes(FPha(Pha(x))). (7)
After these efforts to preserve and enhance the discriminatory characteristics amid input’s non-
stationarity, we now optimize for semantic distinction. This optimization is achieved with a
Cross-Entropy Loss applied to a classification head gCls, which is attached to FTem as LCE =
1

NB

∑NB

i=1 yi log gCls(r), where NB is the size of a batch in the mini-batch training, and yi is the
one-hot form of the label yi.

2.5 THEORETICAL INSIGHTS

Here we provide some theoretical insights to demonstrate that our method design is rigorously
motivated. Detailed definitions and proofs are provided in Section A of the Appendix.
Definition 2.3 (β-Divergence). Suppose two data domains D1, D2 are built on input variable x and
label variable y. Let q > 0 be a constant. The β-Divergence between D1 and D2 is defined as:

βq(D1∥D2) =

[
E(x,y)∼D2

(
D1(x, y)

D2(x, y)

)q] 1
q

. (8)

Per the definition in (Germain et al., 2016), β-Divergence can be linked to the Rényi Diver-
gence (Van Erven & Harremos, 2014) RDq(·) as:

βq(D1∥D2) = 2
q−1
q RDq(D1∥D2). (9)

Lemma 2.4 (Bounding β-Divergence in A Convex Hull). Let S be a set of source domains,
denoted as S = {Si}NS

i=1. A convex hull ΛS considered here consists of a mixture distributions
ΛS = {S̄ : S̄(·) =

∑NS

i=1 πiSi(·), πi ∈ ∆NS−1}, where ∆NS−1 is the (NS−1)-th dimensional
simplex. Let βq(Si∥Sj) ≤ ϵ for ∀i, j ∈ [NS ], and then we have the following relation for the
β-Divergence between any pair of two domains D′, D′′ ∈ ΛS in the convex hull:

βq(D′∥D′′) ≤ ϵ. (10)
Theorem 2.5 (Risk of An Unseen Time-Series Domain). Let H be a hypothesis space built
from a set of source time-series domains, denoted as S = {Si}NS

i=1 with the same value range
(i.e., the supports of these source domains are the same). Suppose q > 0 is a constant. For any
unseen time-series domain DU from the convex hull ΛS , we have its closest element DŪ in ΛS , i.e.,
DŪ = arg min

π1,...,πNS

βq(DŪ∥
∑NS

i=1 πiSi). Then the risk of DU on any ρ in H is:

RDU
[ρ] ≤ 1

2
dDU

(ρ) + ϵ ·
[
eDŪ

(ρ)
]1− 1

q , (11)

where dD(ρ) and eD(ρ) are an expected disagreement and an expected joint error of a domain D,
respectively. The ϵ is a value larger than the maximum β-Divergence in ΛS:

ϵ ≥ max
i,j∈[NS ],i̸=j,t∈[0,+∞)

2
q−1
q RDq(Si(t)∥Sj(t)), (12)

where RDq(Si(t)∥Sj(t)) =
q(µj,t − µi,t)

2

2(1− q)σ2
i,t + 2σ2

j,t

+
ln

√
(1−q)σ2

i,t+σ2
j,t

σ1−q
i,t σq

j,t

1− q
. (13)
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Insights. Theorem 2.5 indicates potential efforts to reduce the generalization risk of an unseen target
domain. According to Eq. (11), the risk is bounded by two terms. The first term dDU

(ρ) is the
expected disagreement of DU and we are unable to conduct any approximation without accessing
the data from DU. Regarding the second term, the coefficient ϵ can be viewed as the maximum β-
Divergence of source domains, and according to Eq. (13), the nonstationary statistics of time series are
arguments of the β-Divergence. We regard the β-Divergence as a proxy for non-stationarity. However,
since directly approximating it in the raw feature space is infeasible, we instead approximate the
β-Divergence in the representation space. Specifically, we perform this approximation at two levels:
the low-level representation space extracted by the phase feature encoder FPha and the high-level
representation space extracted by the temporal feature encoder FTem. To effectively minimize these
approximations, we introduce a residual connection that links these two levels of representation,
facilitating a better alignment and reduction of non-stationarity. Besides, eDŪ

(ρ) shows that the
empirical risks of source domains need to be minimized. Such insights are well reflected in PhASER.

Theorem 2.6 (Non-stationarity Change of Hilbert Transform). Suppose there are MD sam-
ples (observations) available for a nonstationary time-series domain Dx, and each sample
xi = {xi,0, ..., xi,t, ...} is characterized by its deterministic function, i.e., xi(t) = xi,t = xi(t),
i ∈ [1,MD]. If we apply Hilbert Transformation HT(x(t)) = x̂(t) =

∫∞
−∞ x(τ) 1

π(t−τ)dτ to aug-
ment these time-series samples, the nonstationary statistics of augmented samples are different from
the original ones, Prx∼D̂x

(x)(t) ̸= Prx∼Dx(x)(t).

Insights. This theorem illustrates that HT does change the nonstationary statistics of time series,
proving that our phase augmentation can diversify the non-stationarity of time series.

3 EXPERIMENTS

We extensively evaluate our proposed PhASER framework against 13 state-of-the-art approaches
(including a large foundation time-series model), on 5 datasets across three time-series applications.
Our evaluation metric is per-segment accuracy. More implementation-specific details are provided in
Section D of the Appendix. Our source codes are provided in the Supplementary Materials.

Datasets. We conduct experiments on three common time-series applications – Human Activity
Recognition (HAR), Sleep-Stage Classification (SSC), and Gesture Recognition (GR). For HAR, we
use 3 benchmark datasets: WISDM (Kwapisz et al., 2011) collected from 36 different users with 3
univariate dimensions, UCIHAR (Bulbul et al., 2018) collected from 30 people with 9 variates, and
HHAR (Stisen et al., 2015) collected from 9 users with 3 feature dimensions, comprising 6 distinct
activities with a sequence length of 128. For SSC, the dataset (Goldberger et al., 2000) consists of
single-channel EEG data from 20 healthy individuals with a sequence length of 3000. For GR, the
dataset (Lobov et al., 2018) is 8-channel EMG data for 6 different gestures, with a sequence length
of 200, prepared similarly as in (Lu et al., 2022b). We follow the setup of ADATime (Ragab et al.,
2023a) for HAR and SSC. More data-specific details are provided in Table 8 of the Appendix.

Experimental Setup. Each dataset is divided into four distinct non-overlapping cross-domain
scenarios, following the approach in (Lu et al., 2023). Details are provided in Section D.1 of the

Table 2: Classification accuracy of Target 1∼4 scenarios for cross-person generalization in Human
Activity Recognition on WISDM, HHAR, and UCIHAR (Best in bold, second-best underlined).

Dataset WISDM HHAR UCIHAR HAR

Target 1 2 3 4 Avg. 1 2 3 4 Avg. 1 2 3 4 Avg. Avg.

ERM 0.57 0.50 0.51 0.55 0.53 0.49 0.46 0.45 0.47 0.47 0.72 0.64 0.70 0.72 0.70 0.57
GroupDRO 0.71 0.67 0.60 0.67 0.66 0.60 0.53 0.59 0.64 0.59 0.91 0.84 0.89 0.85 0.87 0.71
DANN 0.71 0.65 0.65 0.70 0.68 0.66 0.71 0.67 0.69 0.68 0.84 0.79 0.81 0.86 0.83 0.73
RSC 0.69 0.71 0.64 0.61 0.66 0.52 0.49 0.44 0.47 0.48 0.82 0.73 0.74 0.81 0.78 0.64
ANDMask 0.74 0.73 0.69 0.69 0.71 0.63 0.64 0.66 0.69 0.66 0.86 0.80 0.76 0.78 0.80 0.72
InceptionTime 0.83 0.82 0.80 0.77 0.81 0.77 0.80 0.82 0.83 0.80 0.91 0.82 0.88 0.91 0.88 0.82
BCResNet 0.83 0.79 0.75 0.78 0.79 0.66 0.70 0.75 0.68 0.70 0.81 0.77 0.78 0.83 0.80 0.76
NSTrans 0.43 0.40 0.37 0.37 0.40 0.21 0.22 0.27 0.28 0.24 0.35 0.35 0.51 0.47 0.42 0.35
Koopa 0.63 0.61 0.72 0.57 0.63 0.72 0.63 0.72 0.69 0.69 0.81 0.72 0.81 0.77 0.78 0.70
MAPU 0.75 0.69 0.79 0.79 0.75 0.73 0.72 0.81 0.78 0.76 0.85 0.80 0.85 0.82 0.83 0.78
Diversify 0.82 0.82 0.84 0.81 0.82 0.82 0.76 0.82 0.68 0.77 0.89 0.84 0.93 0.90 0.89 0.83
Chronos 0.71 0.66 0.65 0.62 0.66 0.66 0.73 0.75 0.66 0.72 0.56 0.57 0.50 0.82 0.61 0.67

Ours+RevIN* 0.86 0.85 0.84 0.84 0.85 0.82 0.82 0.92 0.85 0.85 0.96 0.90 0.93 0.97 0.94 0.88
Ours 0.86 0.85 0.85 0.82 0.85 0.83 0.83 0.94 0.88 0.87 0.96 0.91 0.95 0.97 0.95 0.89
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Table 3: Classification accuracy with Source
0∼8 person for one-person-to-another gener-
alization on the HHAR dataset (Best in bold,
second-best underlined).

Source 0 1 2 3 4 5 6 7 8 Avg.

ERM 0.27 0.40 0.41 0.44 0.42 0.44 0.45 0.44 0.48 0.42
GroupDRO 0.33 0.53 0.38 0.48 0.47 0.51 0.47 0.48 0.49 0.46
DANN 0.32 0.44 0.42 0.45 0.42 0.48 0.49 0.45 0.51 0.44
RSC 0.27 0.45 0.38 0.45 0.40 0.47 0.50 0.44 0.53 0.43
ANDMask 0.34 0.50 0.37 0.43 0.46 0.51 0.46 0.47 0.52 0.45
InceptionTime 0.52 0.62 0.44 0.69 0.60 0.57 0.66 0.64 0.61 0.59
BCResNet 0.28 0.48 0.32 0.47 0.42 0.52 0.44 0.45 0.49 0.43
NSTrans 0.20 0.22 0.17 0.20 0.21 0.22 0.26 0.17 0.20 0.21
Koopa 0.32 0.42 0.37 0.40 0.42 0.45 0.35 0.43 0.48 0.40
MAPU 0.39 0.57 0.35 0.52 0.49 0.54 0.49 0.50 0.52 0.49
Diversify 0.42 0.62 0.32 0.62 0.56 0.61 0.53 0.52 0.61 0.53
Chronos 0.32 0.23 0.26 0.25 0.27 0.23 0.21 0.24 0.25 0.25

Ours 0.53 0.70 0.63 0.66 0.64 0.67 0.65 0.67 0.62 0.64

Table 4: Classification accuracy for cross-person
generalization (Target 1∼4) Sleep-Stage Classi-
fication (EEG) and Gesture Recognition (EMG)
(Best in bold, second-best underlined).

Application Sleep-Stage Classification Gesture Recognition

Target 1 2 3 4 Avg. 1 2 3 4 Avg.

ERM 0.50 0.46 0.49 0.45 0.47 0.45 0.58 0.57 0.54 0.54
GroupDRO 0.57 0.56 0.55 0.59 0.57 0.53 0.36 0.59 0.45 0.48
DANN 0.64 0.63 0.69 0.63 0.65 0.60 0.66 0.65 0.64 0.64
RSC 0.50 0.48 0.52 0.46 0.49 0.50 0.66 0.64 0.56 0.59
ANDMask 0.55 0.50 0.54 0.57 0.54 0.41 0.54 0.45 0.39 0.45
InceptionTime 0.74 0.78 0.72 0.80 0.76 0.68 0.70 0.72 0.69 0.70
BCResNet 0.79 0.82 0.79 0.81 0.80 0.62 0.67 0.65 0.61 0.64
NSTrans 0.43 0.37 0.42 0.35 0.39 0.31 0.34 0.34 0.32 0.33
Koopa 0.58 0.62 0.53 0.49 0.56 0.47 0.54 0.60 0.70 0.58
MAPU 0.69 0.68 0.65 0.69 0.68 0.64 0.69 0.71 0.68 0.68
Diversify 0.73 0.76 0.68 0.77 0.73 0.68 0.80 0.75 0.76 0.75
Chronos 0.53 0.47 0.47 0.57 0.51 0.49 0.54 0.51 0.48 0.51

Ours 0.85 0.80 0.79 0.83 0.82 0.70 0.82 0.77 0.75 0.76

Appendix. 20% of the training data is reserved for validation. Mean results from three trials are
reported in the main text, with full statistics in Section E of the Appendix.

Comparison Baselines. We conduct comparison with state-of-the-art approaches including domain
generalization algorithms – ERM, DANN (Ganin et al., 2016), GroupDRO (Sagawa et al., 2019),
RSC (Huang et al., 2020) and ANDMask (Parascandolo et al., 2020) implemented based on the
DomainBed benchmarking suite (Gulrajani & Lopez-Paz, 2020); an audio domain generalization
method BCResNet (Kim et al., 2021b); a time-series representation learning method MAPU (Ragab
et al., 2023b); a strong deep-learning time-series classification model (top ranked by Middlehurst
et al. (2024)), InceptionTime (Ismail Fawaz et al., 2020), a time-series domain generalizable learning
method Diversify (Lu et al., 2022b); and a large time-series foundation model Chronos (Ansari et al.,
2024). We also adapt the time-series forecasting models Nonstationary Transformer (NSTrans) (Liu
et al., 2022) and Koopa (Liu et al., 2024), and integrate a network-agnostic statistical technique
RevIN (Kim et al., 2021c) with our method (denoted as Ours+RevIN*). We follow the default setups
of these works and only conduct necessary modification for our problem setting. Details are in
Sections D.2 and D.6 of the Appendix.

3.1 EFFECTIVENESS OF PHASER ACROSS APPLICATIONS

Human Activity Recognition. We assess the generalization ability of PhASER framework in two
settings: 1) cross-person generalization, where the model is trained on NS (NS > 1) source domains
and evaluated on unseen target domains, and 2) one-person-to-another, where the model is trained
on one person (NS = 1) and evaluated on another person. In the cross-person setting, as shown in
Table 2, we find that existing state-of-the-art domain generalization methods, popular in vision-based
domains, do not perform as well in time-series classification (such observation is consistent with
previous works (Gagnon-Audet et al., 2022; Lu et al., 2022b)). PhASER achieves superior out-of-
domain generalization performance across all cases, notably outperforming the best baseline
on WISDM, HHAR, and UCIHAR by 3%, 9%, and 6%, respectively. In the more challenging
one-person-to-another setting, as shown in Table 3, we select the HHAR dataset due to its high
non-stationarity, and the results show that PhASER excels in this setting as well, outperforming
Diversify by almost 20% and InceptionTime by almost 8%.

Sleep-Stage Classification. Next, we evaluate PhASER for cross-person generalization in five
types of sleep-stage classification using EEG. Past methods (Ragab et al., 2023a; He et al., 2023)
generally report the lowest performance in their respective settings for SSC tasks indicating its
inherent complexity. The results in Table 4 (left) show that PhASER provides the best performance
in all cases, outperforming the best baseline (BCResNet) by 2% and the time-series domain
generalization baseline (Diversify) by almost 11%.

Gesture Recognition. In GR, the used bio-electronic signals are heavily influenced by user behavior
and sensor time-varying properties, which correspond to natural non-stationarity. We follow the
approach in (Lu et al., 2023) to use 6 common classes when conducting evaluations in a cross-person
setting. The results in Table 4 (right) show that PhASER again offers the best overall performance.
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Phase Separate FPha Accuracy
Augmentation Encoders Residual WISDM GR

1 ✓ ✓ ✓ 0.86±0.02 0.70±0.01

2 ✗ ✓ ✓ 0.81±0.01 0.61±0.01

3 ✓ ✓ ✗(FMag Res.) 0.82±0.01 0.55±0.01

4 ✓ ✓ ✗(FFus Res.) 0.84±0.01 0.60±0.01

5 ✓ ✓ ✗ 0.82±0.01 0.65±0.01

6 ✓ ✗(Mag Only) ✗ 0.73±0.01 0.59±0.03

7 ✓ ✗(Mag Only) ✗(FMag Res.) 0.83±0.01 0.66±0.02

Table 5: Ablation of PhASER on WISDM
and GR. The inclusion of a component is de-
noted as ✓ and exclusion as ✗ (modification).

Figure 4: Improvement in average cross-person
generalization performance of NSTrans in (a)
WISDM from 0.40 to 0.83 and (b) HHAR from
0.25 to 0.78, with our phase-driven approach.

3.2 FURTHER ANALYSIS

Ablation Study. We examine the impact of our proposed design components in two cases: WISDM
and GR (Table 5). The first row represents the performance of the complete PhASER framework,
with subsequent rows showing performance with specific components detached or modified (details
in Section D of the Appendix). When phase augmentation is omitted (row 2), performance notably
decreases (by 11.6% on WISDM and 5.8% on GR). Comparing the results of row 6 with that of row
5 confirms the importance of separate phase-magnitude encoding, aligning with findings from our
motivation study in Table 1. Under identical conditions (comparing row 5 with row 1), phase-residual
broadcasting boosts the performance of PhASER by 4%, aligning well with our design motivation
that phase can be considered a proxy for non-stationarity. Reintroducing this phase-dictionary
deeper in the layers enables the model to learn task-specific representations that are more robust to
non-stationarity, making it better equipped to handle unseen non-stationarity in the target domains.
Removing the phase-based residual and separate encoding structure (rows 3-7 in Table 5) results in
average performance drops of 10.6% and 13.7%, respectively. This demonstrates the value of all
the components in PhASER.

General Applicability of PhASER. Table 2 shows that existing time-series classification models like
RevIN can be seamlessly integrated into PhASER and achieve good results (also see Tables 13 and 14
in the Appendix). Moreover, we demonstrate the general applicability and flexibility of PhASER by
incorporating three proposed design elements into the NSTrans model for classification: phase-based
augmentation for non-stationarity diversification, separate magnitude-phase feature encoding, and
phase incorporation with a residual connection. Significant performance improvements on WISDM
and HHAR (Figure 4) highlight the effectiveness of these designs and the flexibility of PhASER with
different backbone models. Further details are provided in Section D.4 of the Appendix.

Figure 5: A brief comparison between different
augmentation strategies with PhASER.

PhASERwith Other Augmentation Strategies.
Here, we explore a random phase augmentation-
variant using Hilbert Transform under certain
signal periodicity assumptions (more details in
Section D.7.2 in the Appendix). Additionally,
we adopt traditional augmentations like rotation,
permutation, and circular time-shift as proposed
by past works (Qin et al., 2023; Um et al., 2017);
on the HHAR dataset with the PhASER frame-
work. The results are illustrated in Figure 5
and implementation details are provided in Sec-
tion D.7 of the Appendix. The rotation and
permutation augmentations perform 5% worse
than the no augmentation scenario in this case.
Time-shift may be viewed as a linear phase shift
for a pure sinusoid (for example, for an input
x(t) = sin(ωt), a time-shifted version by T time units is given by x(t− T ) = sin(ω(t− T )) which
incurs a phase shift ϕ = ωT ), however, most real-world signals are not stationary or pure tone. In
such a case, a time shift introduces varied phase shifts for each frequency, and past works like Uma-
pathy et al. (2010) expose the difficulty in the correct choice of a time-shift amount for retaining
the signal’s spectral properties of interest. This highlights the superiority of Hilbert Transform to
provide an accurate phase shift of all frequency components by -π/2 without any explicit signal

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

characterization. Our exploration to induce random phase shift using HT does not show any particular
advantage, hence we stick to the choice of using the fixed phase-shift augmentation followed by other
phase-anchored components for domain generalization in nonstationary time-series classification
tasks in the proposed PhASER framework.

Visualization. We provide t-SNE visualizations of our method (PhASER), Diversify, and BCResNet
on the HHAR dataset for left-out domains in scenario 1 (Figure 6). The plots depict out-of-domain
data, with colors representing the six activity classes, showcasing PhASER’s superior separability
without domain labels or target domain data. Further details are in Section D.8 of the Appendix.

Figure 6: t-sne visualization for (a) PhASER, (b) Diversify, and (c) BCResNet for HHAR scenario 1.

4 RELATED WORKS

Nonstationary Time-Series Analysis. In real-world scenarios, nonstationary time-series data pose
challenges for forecasting and classification (Esling & Agon, 2012; Ismail Fawaz et al., 2019; Dama &
Sinoquet, 2021). While various solutions exist, including Bayesian models, normalization techniques,
recurrent neural networks, and transformers, systematic works addressing non-stationarity’s impact
on time-series classification are limited (Liang, 2005; Chen & Sun, 2021; Liu et al., 2023b; Chang
et al., 2021; Passalis et al., 2019; Tang et al., 2021; Du et al., 2021; Liu et al., 2022; Wang et al.,
2022a). Our study is the first to rigorously address the impact of non-stationarity on time-series
out-of-distribution classification, complementing empirical findings from prior works (Zhao et al.,
2020; Tonekaboni et al., 2020; Eldele et al., 2023).
Domain Generalizable Learning. While domain generalizable learning is well-established in visual
data (Wang et al., 2022b), applying it to time-series data poses unique challenges. Traditional ap-
proaches like data augmentation (Wang et al., 2021) and domain discrepancy minimization (Zhang &
Chen, 2023; Li et al., 2018) face limitations in time series due to less flexible augmentation and broader
domain concepts (Wen et al., 2021; Wilson et al., 2020). Some studies explore domain-invariant
representation learning (Lu et al., 2023; Wang et al., 2023) and learnable data transformation (Qin
et al., 2023). We highlight the non-stationarity of time series and its role in domain discrepancy,
drawing on evidence from the visual domain regarding the importance of phase (Kim et al., 2023;
Xu et al., 2021). A handful of works hint at phase’s role in domain-invariant learning in time-series
applications (Lu et al., 2022a), and there is evidence in traditional signal processing that phase-only
information is sufficient to reconstruct a signal (Masuyama et al., 2023; Jacques & Feuillen, 2020;
2021). Inspired by these insights, we propose a novel phase-driven framework with an augmentation
module and a phase-anchored representation learning to address non-stationarity and minimize
domain discrepancy.

5 LIMITATIONS AND FUTURE WORK

PhASER achieves domain generalization without explicit domain characterization or accessing target
domain samples, by diversifying non-stationarity and anchoring design to signal phase information.
Our evaluation is currently limited to categorical tasks due to a scarcity of publicly available datasets
with distinct domain definitions for continuous tasks like regression. Our future work aims to develop
a universal representation for generalization across various tasks in dynamic conditions.

6 CONCLUSION

We address the generalization problem for nonstationary time-series classification using a phase-
driven approach without accessing domain labels of source domains or samples from unseen distribu-
tions. Our approach conducts phase-based augmentation, treats time-varying magnitude and phase as
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separate modalities, and incorporates a phase-derived residual connection in the network. We support
our design choices with rigorous theoretical and empirical evidence. Our method demonstrates
significant improvement over baselines across 13 benchmarks on 5 real-world datasets.

REPRODUCIBILITY STATEMENT

All source codes to reproduce experiment results (with instructions for running the code) have been
provided in the Supplementary Materials. We use public datasets and provide implementation details
in the following Appendix.
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APPENDIX

This Appendix includes additional details for the paper“Phase-driven Domain Generalizable Learn-
ing for Nonstationary Time Series”, including the reproducibility statement, theoretical proofs
(Section A), additional details of PhASER (Section B), detailed dataset introduction (Section C),
implementation details (Section D), and detailed results (Section E) of main experiments.

A THEORETICAL PROOFS

Lemma 2.4. Let a set S of source domains S = {Si}NS
i=1. A convex hull ΛS is considered here that

consists of mixture distributions ΛS = {S̄ : S̄(·) =
∑NS

i=1 πiSi(·), πi ∈ ∆NS−1}, where ∆NS−1 is
the (NS−1)-th dimensional simplex. Let βq(Si∥Sj) ≤ ϵ for ∀i, j ∈ [NS ], we have the following
relation for the β-Divergence between any pair of two domains D′, D′′ ∈ ΛS in the convex hull,

βq(D′∥D′′) ≤ ϵ. (14)

Proof. Suppose two unseen domains D′ and D′′ on the convex hull ΛS of NS source domains with
support Ω. More specifically, let these two domains be D′ =

∑NS

k=1 πkSk(·) and D′′ =
∑NS

l=1 πlSl(·),
then the β-Divergence between D′ and D′′ is

βq(D′∥D′′) = 2
q−1
q RDq(D′∥D′′). (15)

Let us consider the part of Rényi Divergence as follows,

RDq(D′∥D′′) =
1

q − 1
ln

∫
Ω

[D′(x)]
q
[D′′(x)]

1−q
dx

=
1

q − 1
ln

∫
Ω

[
NS∑
k=1

πkSk(x)

]q [NS∑
l=1

πlSl(x)

]1−q

dx

=
1

q − 1
ln

∫
Ω

[
NS∑
k=1

NS∑
l=1

πkπlSk(x)

]q [NS∑
k=1

NS∑
l=1

πkπlSl(x)

]1−q

dx

=
1

q − 1
ln

NS∑
k=1

NS∑
l=1

πkπl

∫
Ω

[Sk(x)]
q
[Sl(x)]

1−q
dx

≤ 1

q − 1
ln

NS∑
k=1

NS∑
l=1

πkπl max
k,l∈[NS ]

∫
Ω

[Sk(x)]
q
[Sl(x)]

1−q
dx

=
1

q − 1
ln max

k,l∈[NS ]

∫
Ω

[Sk(x)]
q
[Sl(x)]

1−q
dx.

(16)

According to the given assumption that βq(Si∥Sj) ≤ ϵ for ∀i, j ∈ [NS ], we have,

RDq(D′∥D′′) ≤ 1

q − 1
ln max

k,l∈[NS ]

∫
Ω

[Sk(x)]
q
[Sl(x)]

1−q
dx = max

k,l∈[NS ]
RDq(Sk∥Sl) ≤

q

q − 1
log2 ϵ.

(17)

Thus βq(D′∥D′′) ≤ ϵ.

Theorem 2.5. Let H be a hypothesis space built from a set of source time-series domains S =
{Si}NS

i=1 with the same value range (i.e., the supports of these source domains are the same). Suppose
q > 0 is a constant, for any unseen time-series domain DU from the convex hull ΛS , we have its
closest element DŪ in ΛS , i.e., DŪ = arg min

π1,...,πNS

βq(DŪ∥
∑NS

i=1 πiSi). Then the risk of DU on any

ρ in H is,

RDU
[ρ] ≤ 1

2
dDU

(ρ) + ϵ ·
[
eDŪ

(ρ)
]1− 1

q , (18)
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where dD(ρ) and eD(ρ) are an expected disagreement and an expected joint error of a domain D,
respectively, and they are defined as follows,

dD(ρ) = Ex∼DxEh∼ρEh′∼ρI[h(x) ̸= h′(x)], (19)

eD(ρ) = E(x,y)∼DEh∼ρEh′∼ρI[h(x) ̸= y]I[h′(x) ̸= y], (20)

where I[·] is an indicator function with I[True] = 1 and I[False] = 0. The ϵ in Eq. (11) is a value
larger than the maximum β-Divergence in ΛS ,

ϵ ≥ max
i,j∈[NS ],i̸=j,t∈[0,+∞)

2
q−1
q RDq(Si(t)∥Sj(t)), (21)

where

RDq(Si(t)∥Sj(t)) =
q(µj,t − µi,t)

2

2(1− q)σ2
i,t + 2σ2

j,t

+
ln

√
(1−q)σ2

i,t+σ2
j,t

σ1−q
i,t σq

j,t

1− q
(22)

Proof. According to Theorem 3 of Germain et al. (2016), if H is a hypothesis space, and S, T
respectively are the source and target domains. For all ρ in H,

RT [ρ] ≤
1

2
dT (ρ) + βq(T ∥S) · [eS(ρ)]1−

1
q + ηT \S , (23)

where ηT \S denotes the distribution of (x, y) ∼ T conditional to (x, y) ∈ SUPP(S). But because it
is hardly conceivable to estimate the joint error eT \S(ρ) without making extra assumptions, Germain
et al. (2016) defines the worst risk for this unknown area,

ηT \S = Pr(x,y)∼T [(x, y) /∈ SUPP(S)] sup
h∈H

RT \S [h]. (24)

In Theorem 2.5, all domains from the convex hull ΛS have the same value range, in other words,
their supports are continuous and fully overlapped. In this case, Pr(x,y)∼T [(x, y) /∈ SUPP(S)] = 0,
i.e., ηT \S = 0.

With Eq. (23), if the target domain T is assumed as an unseen domain DU from the convex hull ΛS ,
and we select its closest element DŪ = arg min

π1,...,πNS

βq(DŪ∥
∑NS

i=1 πiSi) and regard it as the source

domain, we can derive Eq. (23) into

RDU
[ρ] ≤ 1

2
dDU

(ρ) + βq(DU∥DŪ) ·
[
eDŪ

(ρ)
]1− 1

q + 0. (25)

Then according to Lemma 2.4, as both DU and DŪ are from the convex hull ΛS , βq(DU∥DŪ) ≤ ϵ.
As for acquiring Eq. (13), we only need to substitute the time series domains in the form of random
variable distributions into the Rényi Divergence.

Theorem 2.6. Suppose there are MD samples (observations) available for a non-stationary time-
series domain Dx, and each sample xi = {xi,0, ..., xi,t, ...} is characterized by its deterministic
function, i.e., xi(t) = xi,t = xi(t), i ∈ [1,MD]. If we apply Hilbert Transformation HT(x(t)) =
x̂(t) =

∫∞
−∞ x(τ) 1

π(t−τ)dτ to augment these time-series samples, the non-stationary statistics of
augmented samples are different from the original ones,

Prx∼D̂x
(x)(t) ̸= Prx∼Dx(x)(t). (26)

Proof. According to Definition 2.1, the statistics of the non-stationary time-series domain consist of
non-stationary mean and variance. To prove Theorem 2.6, we only need to prove that the mean of the
time-series domain changes after applying Hilbert Transformation (HT). HT can only be conducted
on deterministic signals, thus we use the empirical statistics of MD samples to approximate the real
statistics,

Ex∼D̂x
(x)(t) =

MD∑
i=1

x̂i(t) = µ̂t, Ex∼Dx(x)(t) =

MD∑
i=1

xi(t) = µt. (27)
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According to the standard definition of HT (King, 2009) and the linear property of integral operation,
we have

Ex∼D̂x
(x)(t) =

MD∑
i=1

x̂i(t) =

MD∑
i=1

∫ ∞

−∞
xi(τ)

1

π(t− τ)
dτ =

∫ ∞

−∞

MD∑
i=1

[
xi(τ)

1

π(t− τ)
dτ

]
=

1

π

∫ ∞

−∞

µτ

t− τ
dτ.

(28)

To interpret Eq. (28), we can assume there is a new signal s = {µ0, ..., µt, ...} with the deter-
ministic function µt = u(t), and we next apply proof by contradiction for the following proof.
Suppose the non-stationary statistics of the original and HT-transformed samples are identical, i.e.,
Ex∼D̂x

(x)(t) = Ex∼Dx(x)(t), we can derive the following formula,

1

π

∫ ∞

−∞

u(τ)

t− τ
dτ = u(t), (29)

which indicates that the HT-transformed ŝ is identical to the original s. HT has a property called
Orthogonality (King, 2009): if x(t) is a real-valued energy signal, then x(t) and its HT-transformed
signal x̂(t) are orthogonal, i.e., ∫ ∞

−∞
x(t)x̂(t)dt = 0. (30)

To prove the property of Orthogonality, we need to use Plancherel’s Formula,

Theorem A.1 (Plancherel’s Formula (Lang & Lang, 1985)). Suppose that u, v ∈ L1(R) ∩ L2(R),
then ∫ ∞

−∞
u(t)v(t)dt =

1

2π

∫ ∞

−∞
Fu(ω)Fv(ω)dω, (31)

where L1(·), L2(·) denote the Lp spaces with p = 1, p = 2 respectively, R represents the real-valued
space, and F denotes the Plancherel transformation.

With Plancherel’s Formula, we can prove the property of Orthogonality as follows,∫ ∞

−∞
x(t)x̂(t)dt =

1

2π

∫ ∞

−∞
F(ω)(−i sgn(ω)F(ω))∗dω

=
i

2π

∫ ∞

−∞
sgn(ω)F(ω)F∗(ω)dω

=
i

2π

∫ ∞

−∞
sgn(ω)|F(ω)|2dω

= 0,

(32)

where sgn(·) is a sign function. After proving the Orthogonality, we can use it with the condition of
Eq. (29), i.e., ∫ ∞

−∞
u(t)û(t)dt =

∫ ∞

−∞
u2(t)dt = 0. (33)

Eq. (33) holds true only if ∀t ∈ [0,+∞),u(t) = 0, which is contradict to our initial assumption that
µt = u(t) is not always zero in Definition 2.1. As a result, the assumption of µ̂t = µt is false.

B ADDITIONAL DETAILS ON PHASER

Augmented Dickey Fuller (ADF) Test. This is a statistical tool to assess the non-stationarity of a
given time-series signal. This test operates under a null hypothesis H0 where the signal has a unit-root.
The existence of unit-root is a guarantee that the signal is non-stationary (Said & Dickey, 1984). To
reject H0, the statistic value of the ADF test should be less than the critical values associated with a
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significance level of 0.05 (denoted by p, the probability of observing such a test statistic under the
null hypothesis). Throughout the paper, for multivariate time series, the average ADF statistics across
all variates are reported. Besides, since this is a statistical tool to evaluate non-stationarity for each
instance of time-series data, we provide an average of this number across a dataset to give the reader
a view of the degree of non-stationarity.

Phase Augmentation. In this work, we are particularly interested in learning representations robust
to temporal distribution shifts. Incorporating a phase shift in a signal is a less-studied augmentation
technique. One of the main challenges is that real-world signals are not composed of a single
frequency component and accurately estimating and controlling the shifting of the phase while
retaining the magnitude spectrum of a signal is difficult. To solve this, we leverage the analytic
transformation of a signal using the Hilbert Transform. The key advantages of this technique
are maintaining global temporal dependencies and magnitude spectrum, no exploration of design
parameters and being extendible to non-stationary and periodic time series.

Lets walk through a simple example for a signal, x(t) = 2cos(w0t) which can be written in
the polar coordinates as x(t) = eiw0t + e−iw0t. Applying the HT conditions from Equation 4,
HT(x(t)) = 2sin(w0t). Essentially, HT shifts the signal by π/2 radians. We conduct this instance-
level augmentation for each variate of the time series input. The aim is to diversify the phase
representation. We use the scipy (Virtanen et al., 2020) library to implement this augmentation.

STFT Specifications. Non-stationary signals contain time-varying spectral properties. We use STFT
to capture these magnitude and phase responses in both time and frequency domains. There are
three main arguments to compute STFT - length of each segment (characterized by the window size
and the ratio for overlap), the number of frequency bins, and the sampling rate. We use the scipy
library to implement this operation and use a k < 1 as a multiplier to the length of the window W to
give the segment length as k ×W with no overlap between segments. The complete list of STFT
specifications is given in Table 6. We also demonstrate a sensitivity analysis concerning the number
of frequency bins and the segment length in Figure 7.

Figure 7: Illustration of the sensitivity of performance to the design choices of STFT by varying a)
the number of frequency bins with a fixed segment length of 4 and b) by varying the segment lengths
with a 1024 frequency bins.

Table 6: Arguments for STFT computation
Dataset Sampling Rate Sequence Length STFT segment length Number of frequency bins
WISDM 20 Hz 128 4 1024
HHAR 100 Hz 128 4 1024

UCIHAR 50 Hz 128 4 1024
SSC 100 Hz 3000 16 1024
GR 200 Hz 200 4 1024

Note: It is tempting to use an empirical mode transformation and then apply a Hilbert-Huang transfor-
mation to obtain an instantaneous phase and amplitude response in the case of non-stationary signals.
It absolves us from a finite time-frequency resolution for the STFT spectra. However, our initial
results indicate a high dependence on the choice of the number of intrinsic mode functions (Huang,
2014) for signal decomposition. Hence, for a generalizable approach, we choose STFT as the tool for
the time-frequency spectrum.

Backbones for Temporal Encoder. The choice of temporal encoder, FTem, is not central to our
design. Table 7 demonstrates the performance of PhASER under the identical settings for four cross-
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person settings using WISDM datasets using different backbones for FTem. For the convolution-based
self-attention (second row in Table 7) we use three encoders to compute query (Wq), key (Wk),
and value(V ) matrices for rDep following the guidelines from Vaswani et al. (2017). Then we

compute self-attention as, A = softmax

(
QKT

√
dk

)
V , where dk is the temporal dimension of rDep.

Subsequently, we use r̂Dep = rDep +A, as the input to FTem. For more details on the convolution
and transformer backbones refer to Section D.3.

Table 7: Results for 4 different cross-person settings for WISDM dataset.
Backbones for FTem 1 2 3 4

2D Convolution based 0.86 0.85 0.86 0.84
2D Convolution based with self-attention 0.88 0.83 0.84 0.81

Transformer 0.87 0.84 0.87 0.84

C DATASET DETAILS

Past works (Gagnon-Audet et al., 2022; Ragab et al., 2023a) have shown that the datasets used in
our work suffer from a distribution shift across users and also within the same user temporally. This
makes them suitable for evaluating the efficacy of our framework. In this section, we provide more
details on the datasets. Table 8 summarizes the average ADF statistics of the datasets along with their
variates and their number of classes and domains.

Table 8: Summary of the dataset attributes. Higher value of ADF stat indicates greater non-stationarity
within a signal.

Category Dataset Representative ADF-Statistic
(mean across all variates) Variates Domains Classes

Human Activity recognition UCIHAR -2.58 (0.044) 9 31 6
Human Activity recognition HHAR -1.74 (0.062) 3 9 6
Human Activity recognition WISDM -0.78 (0.051) 3 36 6

Gesture Recognition EMG -33.14 (0.011) 8 36 6
Sleep Stage Classification EEG -3.7 (0.047) 1 20 5

WISDM (Kwapisz et al., 2011): It originally consists of 51 subjects performing 18 activities but
we follow the ADATime (Ragab et al., 2023a) suite to utilize 36 subjects comprising of 6 activity
classes given as walking, climbing upstairs, climbing downstairs, sitting, standing, and lying down.
The dataset consists of 3-axis accelerometer measurements sampled at 20 Hz to predict the activity of
each participant for a segment of 128-time steps. According to Ragab et al. (2023a), this is the most
challenging dataset suffering from the highest degree of class imbalance.

HHAR (Stisen et al., 2015): To remain consistent with the existing AdaTime benchmark we leverage
the Samsung Galaxy recordings of this dataset from 9 participants from a 3-axis accelerometer
sampled at 100 Hz. The 6 activity classes, in this case, are - biking, sitting, standing, walking,
climbing up the stairs, and climbing down the stairs.

UCIHAR (Bulbul et al., 2018): This dataset is collected from 30 participants using 9-axis inertial
motion unit using a waist-mounted cellular device sampled at 50 Hz. The six activity classes are the
same as WISDM dataset.

SSC (Goldberger et al., 2000): This is a single channel EEG dataset collected from 20 subjects
to classify five sleep stages - wake, non-rapid eye movement stages - N1, N2, N3, and rapid-eye-
movement.

GR (Lobov et al., 2018): For surface-EMG based gesture recognition we follow Lu et al. (2023)’s
preprocessing and use an 8-channel data recorded from 36 participants for six types of gestures
sampled at 200 Hz. Note, that this is the least stationary dataset (see Table 8, yet PhASER performs
as well as or better than the stat-of-the-art techniques as shown in Table 4 in the main paper.
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Figure 8: Class Distributions of the datasets used for evaluation.

D IMPLEMENTATION DETAILS

All experiments are performed on an Ubuntu OS server equipped with NVIDIA TITAN RTX GPU
cards using PyTorch framework. Every experiment is carried out with 3 different seeds (2711, 2712,
2713). During model training, we use Adam optimizer (Kingma et al., 2020) with a learning rate
from 1e-5 to 1e-3 and maximum number of epochs is set to 150 based on the suitability of each
setting. We tune these optimization-related hyperparameters for each setting and save the best model
checkpoint based on early exit based on the minimum value of the loss function achieved on the
validation set.

D.1 DATASET CONFIGURATION

There is no standard benchmarking for domain generalization for time-series where the domain labels
and target samples are inaccessible. We leverage past works of Ragab et al. (2023a); Lu et al. (2023)
for preprocessing steps. For each dataset, we use a cross-person setting in four scenarios. The details
of the target domains chosen in each scenario are given in Table 9, the rest are used as source domains.
Note for GR we use the same splits as Lu et al. (2023). Our method is not influenced by domain
labels as we do not require them for our optimization.

Table 9: Target domain splits for 4 scenarios of each dataset.
Target

Domains Scenario 1 Scenario 2 Scenario 3 Scenario 4

WISDM 0-9 10-17 18-27 28-35
HHAR 0,1 2,3 4,5 6-8

UCIHAR 0-7 8-15 16-23 24-29
GR 0-8 9-17 18-26 27-35
SSC 0-5 5-9 10-14 15-20

Figure D.1 illustrates the class distribution for each dataset. Only the WISDM and Sleep Stage
Classification (SSC) datasets exhibit notable imbalances among certain classes. To validate the
consistency of our conclusions, we compare the Area Under the Curve (AUC) with the adopted
accuracy metric in Figure D.1. Generally, past works (Lu et al., 2023; Gagnon-Audet et al., 2022),
utilizing these datasets have adopted accuracy as the primary performance metric, and we follow the
same approach.

D.2 BASELINE METHODS

General Domain Generalization Methods. For all the standard domain generalization baselines we
use conv2D layers for feature transformation of multivariate time series. It is worth mentioning that
DANN is actually a domain adaptation study, which requires access to certain unlabeled target domain
data. For cross-person generalization, the source domain consists of data from multiple people, in
which we divide the source domain data into two parts with equal size and view one of them as the
target domain to leverage DANN for domain-invariant training. As for one-person-to-another cases,
we randomly sample a small number of unlabeled instances from each target person and merge them
into the target set that is needed for running DANN.

BCResNet. This is a competitive benchmark for several audio-scene recognition challenges and
demonstrates many useful techniques for domain generalization. BCResNet originally required
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Figure 9: Illustration of additional performance metric, Area Under the ROC Curve (AUC), along
with Accuracy—for Scenario 1 of the WISDM dataset, for the top-performing baselines. These
metrics demonstrate consistency and justify our choice of accuracy as the primary evaluation metric.

mel-frequency-cepstral-coefficients but it is not suitable for time-series, hence, we use standard STFT
of the multivariate-time series as input in this case.

Non-Stationary Transformer and Koopa. These are forecasting baselines that particularly address
non-stationarity in short-term time sequences, Non-stationary transformer (NSTrans) (Liu et al., 2022)
and Koopa (Liu et al., 2024). To adapt it to our setting we use the encoder part of NSTrans followed
by a classification head composed of fully connected layers. We simply average the encoder’s output
from all time steps and feed it to this classifier head.

Ours+RevIN. Further, we demonstrate that statistical techniques like Reversible Instance Normal-
ization (RevIN) (Kim et al., 2021c) may be used as a plug-and-play module with our framework.
One limitation of using RevIN is that the input and output dimensions of this module must have the
same dimensions to de-normalize the instance in the feature space. This may limit the usability of the
module, however, we find that applying this module around the fusion encoder specifying the same
number of input and output channels in the 2D convolution layer is suitable. We do not observe any
significant benefit of incorporating this module from the experiments, however, if an application can
specifically benefit from such RevIN, PhASER framework can support it.

Diversify. The goal of this design is to characterize the latent domains and use a proxy-training
schema to assign pseudo-domain labels to the samples to learn generalizable representations. It is an
end-to-end version of the adaptive RNN (Du et al., 2021) method which also proposes to identify sub-
domains within a domain for generalization. It is interesting to note that for time-series generalizable
representation viewing the non-stationarity or intra-domain shifts is crucial. Both diversify and
PhASER address this problem from completely different approaches and demonstrate improvement
over other standard methods or even domain adaptation methods that have the advantage of accessing
samples from unseen distributions. While diversify aims to characterize latent distributions and uses
a parametric setting, PhASER forces the model to learn domain-invariant features by anchoring the
design to the phase which is intricately tied to non-stationarity. It also highlights that time-series
domain generalization is a unique problem (compared to the more popular visual domain) and
dedicated frameworks need to be designed in this case.

MAPU. MAPU is the state-of-the-art source-free domain adaptation study for time series, thus, in
fact, it does not apply to the time-series domain generalizable learning problem. However, we still
view it as an effective approach that can address distribution shifts and achieve domain-invariant
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learning. In our implementation, in addition to the source domain data, we still provide MAPU with
the unlabeled target domain data for both cross-person generalization and one-person-to-another
cases. The training procedure is identical to the default MAPU design, which is to pre-train the model
on labeled source domain data and then conduct the training on unlabeled target domain data.

Chronos. Large foundation models are a sought-after approach in many domains and Chronos is one
such most recent candidate for time-series. It is trained on 42 datasets and presents impressive zero-
shot and few-shot abilities. Although it is largely targeted as a forecasting tool, the authors indicate
its universal representation ability for a variety of tasks. Four variants of Chronos model checkpoints
are available ranging from 20M to 70M parameters and embedding sizes from 256 to 1024. Based
on pilot testing with scenario 1 on WISDM dataset (accuracies with a 1M parameter downstream
model for the three variants: tiny-0.65, base-0.41, large-0.36), we find that the smallest version of the
model, Chronos-tiny best suits our conservative dataset sizes for downstream fine-tuning. We use a
few layers of 2D convolution layers with max-pooling to reduce the feature size which is dependent
of the length of the sequence and then flatten and input to fully-connected layers as our downstream
model.

Note: A few works (Jin et al., 2024; Liu et al., 2023a) use large language models directly to analyze
raw time-series despite the obvious modality gap and can report comparable performance. However,
our preliminary testing with ChatGPT (Radford et al., 2019) with in-context-learning by prompting
similar to Jin et. al (Jin et al., 2024) using the HHAR dataset does not provide satisfactory results
and we do not pursue that direction. Instead, we use a domain-specific large foundation model like
Chronos as a fair baseline.

Table 10: Complete set of results from three trials on each baseline for WISDM cross-person
generalization setting.

Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4
Mean Std Mean Std Mean Std Mean Std

ERM 0.57 0.02 0.50 0.02 0.51 0.02 0.55 0.02
GroupDRO 0.71 0.06 0.67 0.06 0.60 0.07 0.67 0.04

DANN 0.71 0.02 0.65 0.01 0.65 0.06 0.70 0.03
RSC 0.69 0.05 0.71 0.07 0.64 0.10 0.61 0.11

ANDMask 0.74 0.01 0.73 0.03 0.69 0.06 0.69 0.03
BCResNet 0.83 0.00 0.79 0.04 0.75 0.04 0.78 0.04
NSTrans 0.43 0.02 0.40 0.01 0.37 0.02 0.37 0.03
Koopa 0.63 0.02 0.61 0.04 0.72 0.03 0.57 0.01
MAPU 0.75 0.02 0.69 0.04 0.79 0.06 0.79 0.03

Diversify 0.82 0.01 0.82 0.01 0.84 0.01 0.81 0.01
Chronos 0.71 0.01 0.67 0.01 0.65 0.01 0.62 0.01

Ours + RevIN* 0.86 0.01 0.85 0.01 0.84 0 0.84 0.03
Ours 0.86 0.01 0.85 0.01 0.85 0.01 0.82 0.02

D.3 IMPLEMENTATION DETAILS OF PHASER

The magnitude and phase encoders, FMag and FPha are implemented using 2D convolution layers
with the number of input channels equal to the variates, V , and the out channels as 2c with (5× 5)
kernels. c is a hyperparameter used to conveniently control the size of the overall network. For all
HAR and GR models we adopt c as 1 and for SSC c is 4. For more specific details please refer to our
code. The sub-spectral feature normalization uses a group number of 3 and follows Equation 2.3 for
operation. This is inspired by Chang et. al (Chang et al., 2021) subspectral normalization for audio
applications with a frequency spectrum input. The key idea is to conduct sub-band normalization
(across a fixed set of frequency bins along time and examples for each channel). We find merit in using
this technique for domain generalizable applications, as it can help overcome the low-frequency drifts
arising due to device differences (for eg. DC drifts in various sensors). One implementation-specific
modification we carried out to ensure a generalizable framework is that if the number of sub-bands
is not divisible by the total number of features then we choose to apply the remainder bands with
batch-normalization. The output from the respective encoders is then fused along the channel/variate
axis by multiplying with 2D convolution kernels to provide a new feature map which is the input to
our phase-driven residual network. The FFus similarly is implemented using 2D convolution layers
with the number of input channels as 4c and output channels to be 2c.
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Table 11: Complete set of results from three trials on each baseline for HHAR cross-person general-
ization setting.

Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4
Mean Std Mean Std Mean Std Mean Std

ERM 0.49 0.05 0.46 0.01 0.45 0.02 0.47 0.03
GroupDRO 0.60 0.01 0.53 0.02 0.59 0.02 0.64 0.03

DANN 0.66 0.01 0.71 0.01 0.67 0.09 0.69 0.03
RSC 0.52 0.05 0.49 0.04 0.44 0.03 0.47 0.03

ANDMask 0.63 0.02 0.64 0.06 0.66 0.11 0.69 0.05
BCResNet 0.66 0.05 0.70 0.06 0.75 0.04 0.68 0.04
NSTrans 0.21 0.02 0.22 0.03 0.27 0.04 0.28 0.02
Koopa 0.72 0.04 0.63 0.03 0.72 0.05 0.69 0.02
MAPU 0.73 0.02 0.72 0.03 0.81 0.01 0.78 0.03

Diversify 0.82 0.01 0.76 0.01 0.82 0.01 0.68 0.01
Chronos 0.73 0.04 0.75 0.03 0.73 0.01 0.66 0.12

Ours + RevIN* 0.82 0.05 0.82 0.02 0.92 0.04 0.85 0.03
Ours 0.83 0.02 0.83 0.02 0.94 0.03 0.88 0.02

Table 12: Complete set of results from three trials on each baseline for UCIHAR cross-person
generalization setting.

Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4
Mean Std Mean Std Mean Std Mean Std

ERM 0.72 0.09 0.64 0.05 0.70 0.01 0.72 0.03
GroupDRO 0.91 0.02 0.84 0.01 0.89 0.04 0.85 0.07

DANN 0.84 0.02 0.79 0.01 0.81 0.02 0.86 0.03
RSC 0.82 0.13 0.73 0.07 0.74 0.03 0.81 0.06

ANDMask 0.86 0.08 0.80 0.06 0.76 0.13 0.78 0.09
BCResNet 0.81 0.02 0.77 0.02 0.78 0.02 0.83 0.02
NSTrans 0.35 0.02 0.35 0.01 0.51 0.02 0.47 0.01
Koopa 0.81 0.02 0.72 0.05 0.81 0.06 0.77 0.03
MAPU 0.85 0.03 0.80 0.01 0.85 0.02 0.82 0.03

Diversify 0.89 0.03 0.84 0.04 0.93 0.02 0.90 0.02
Chronos 0.56 0.05 0.57 0.01 0.50 0.02 0.82 0.13

Ours + RevIN* 0.96 0.01 0.90 0.01 0.93 0.03 0.97 0.01
Ours 0.96 0.01 0.91 0.01 0.95 0 0.97 0.01

Subsequently for the depth-wise encoder, FDep, we use 2D convolution layers with batch normal-
ization and SiLU (Elfwing et al., 2018) activation function. This style of architecture is closely
adapted from the basic building blocks in BCResNet (Kim et al., 2021a). After average pooling
the FTem can assume any backbone as per the requirements of the application. As demonstrated
previously in Section B, the choice of backbone is not central to our design here. We find that some
applications(like WISDM and GR) benefit from attention-based temporal encoding more than others.
For the attention-based version of FTem we used a multi-headed attention based on a transformer
encoder (Vaswani et al., 2017). Regarding positional encoding, we used a simple sinusoid-based
encoding and added it to the sequence representation rDep. However, arriving at the best positional
encoding for numerical time-series data is an active area of research (Kazemi et al., 2019; Tang et al.,
2023; Mohapatra et al., 2023) given its uniqueness compared to typical natural language inputs and
further optimizations can be carried out. For the the convolution-based FTem we simply use a kernel
of size (1× 3) in a 2D convolution layer to conduct temporal convolutions.

For the classification head, gCls, we apply 2D convolution layers to have the number of output channels
equal to the number of classes in an application, followed by softmax operation. Interestingly, if the
choice of FTem remains convolutional the entire network can be implemented in a purely convolutional
form allowing applicability to real-time problems. The model sizes across the different datasets range
from 40k-100k trainable parameters (based on the number of variates, temporal encoding etc.) which
is modest and can be further tuned for resource-constrained applications by adjusting the c parameter.
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Table 13: Complete set of results from three trials on each baseline for SSC cross-person generaliza-
tion setting.

Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4
Mean Std Mean Std Mean Std Mean Std

ERM 0.50 0.05 0.46 0.04 0.49 0.02 0.45 0.03
GroupDRO 0.57 0.07 0.56 0.03 0.55 0.05 0.59 0.06

DANN 0.64 0.02 0.63 0.02 0.69 0.03 0.63 0.04
RSC 0.50 0.09 0.48 0.02 0.52 0.07 0.46 0.01

ANDMask 0.55 0.10 0.50 0.09 0.54 0.07 0.57 0.08
BCResNet 0.79 0 0.82 0.01 0.79 0.01 0.81 0
NSTrans 0.43 0.02 0.37 0.04 0.42 0.06 0.35 0.03
Koopa 0.58 0.02 0.62 0.01 0.53 0.04 0.49 0.06
MAPU 0.69 0.01 0.68 0.01 0.65 0.03 0.69 0.02

Diversify 0.73 0.03 0.76 0.02 0.68 0.05 0.77 0.02
Chronos 0.53 0.04 0.47 0.04 0.47 0.01 0.57 0.03

Ours + RevIN* 0.82 0.01 0.79 0.02 0.78 0.01 0.81 0.01
Ours 0.85 0.01 0.80 0.01 0.79 0.01 0.83 0.01

Table 14: Complete set of results from three trials on each baseline for GR cross-person generalization
setting.

Baselines Scenario 1 Scenario 2 Scenario 3 Scenario 4
Mean Std Mean Std Mean Std Mean Std

ERM 0.45 0.02 0.58 0.03 0.57 0.03 0.54 0.04
GroupDRO 0.53 0.08 0.36 0.11 0.59 0.05 0.45 0.13

DANN 0.60 0.01 0.66 0.04 0.65 0.02 0.64 0.03
RSC 0.50 0.10 0.66 0.05 0.64 0.03 0.56 0.03

ANDMask 0.41 0.13 0.54 0.20 0.45 0.15 0.39 0.12
BCResNet 0.62 0.06 0.67 0.09 0.65 0.05 0.61 0.07
NSTrans 0.31 0.01 0.34 0.01 0.34 0.01 0.32 0.02
Koopa 0.47 0.03 0.54 0.02 0.60 0.05 0.70 0.06
MAPU 0.64 0.02 0.69 0.03 0.71 0.01 0.68 0.04

Diversify 0.69 0.01 0.80 0.01 0.76 0.02 0.76 0.01
Chronos 0.49 0.01 0.54 0.03 0.51 0.05 0.48 0.02

Ours + RevIN* 0.68 0.03 0.81 0.04 0.77 0.03 0.76 0.02
Ours 0.70 0.02 0.82 0.02 0.77 0.04 0.75 0.01

Table 15: Complete set of results from three trials on each baseline for HHAR one-person-to-another
setting.

Baselines 0 1 2 3 4 5 6 7 8
Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

ERM 0.27 0.01 0.40 0.05 0.41 0.05 0.44 0.05 0.42 0.08 0.44 0.01 0.45 0.04 0.44 0.04 0.48 0.02
GroupDRO 0.33 0.02 0.53 0.02 0.38 0.05 0.48 0.04 0.47 0.04 0.51 0.08 0.47 0.03 0.48 0.02 0.49 0.05

DANN 0.32 0.03 0.44 0.05 0.42 0.03 0.45 0.06 0.42 0.03 0.48 0.04 0.49 0.02 0.45 0.05 0.51 0.01
RSC 0.27 0.03 0.45 0.06 0.38 0.05 0.45 0.09 0.40 0.08 0.47 0.02 0.50 0.06 0.44 0.08 0.53 0.01

ANDMask 0.34 0.06 0.50 0.03 0.37 0.04 0.43 0.05 0.46 0.04 0.51 0.07 0.46 0.03 0.47 0.02 0.52 0.03
BCResNet 0.28 0.03 0.48 0.08 0.32 0.04 0.47 0.03 0.42 0.06 0.52 0.05 0.44 0.02 0.45 0.02 0.49 0.06
NSTrans 0.20 0.01 0.22 0.02 0.17 0.02 0.20 0.01 0.21 0.01 0.22 0.01 0.26 0.07 0.17 0.05 0.20 0.01
Koopa 0.32 0.02 0.42 0.04 0.37 0.01 0.40 0.01 0.42 0.02 0.45 0.05 0.35 0.02 0.43 0.03 0.48 0.02
MAPU 0.39 0.05 0.57 0.05 0.35 0.06 0.52 0.03 0.49 0.04 0.54 0.02 0.49 0.01 0.50 0.06 0.52 0.04

Diversify 0.42 0.04 0.62 0.04 0.32 0.09 0.62 0.01 0.56 0.03 0.61 0.01 0.53 0.04 0.52 0.10 0.61 0.05
Chronos 0.32 0.03 0.23 0.05 0.26 0.04 0.25 0.03 0.27 0.09 0.23 0.08 0.24 0.06 0.21 0.08 0.24 0.05

Ours + RevIN* 0.48 0.02 0.66 0.08 0.57 0.05 0.65 0.03 0.61 0.04 0.64 0.05 0.65 0.06 0.64 0.01 0.63 0.03
Ours 0.53 0.04 0.70 0.03 0.63 0.01 0.66 0.03 0.64 0.06 0.67 0.01 0.65 0.03 0.67 0.04 0.62 0.02
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D.4 ABLATION DETAILS OF PHASER

For row 1 in Table 5, the modification to PhASER is straightforward by simply omitted the Hilbert
transformation during data preprocessing. When the separate encoders are not used (rows 6 and 7 in
Table 5), we only use FMag and connect the output of the sub-feature normalization block directly
to the FDep. When the residual is removed entirely (rows 5 and 6 in Table 5), we cannot broadcast
the 1D input to 2D anymore so we take the mean across all the temporal indices of FTem(rDep) and
flatten it to input to fully connected layers. Based on the dataset we choose a few fully connected
layers truncating to the number of classes finally.

D.5 PHASE-DRIVEN NSTRANS

Non-stationary transformer, NSTrans (Liu et al., 2022), applies a destationarizing attention around
the transformer block. Since it is typically used for forecasting tasks, it comprises of encoder
and a decoder module. For adapting this model to classification we update the design to conduct
normalization and denormalization around the encoder block. We use this modified version of
NSTrans as the FTem module in PhASER and observe significant improvement in performance as
shown in Figure 4.

Note: The poor performance of the Nonstationary transformer can be attributed to two main reasons:

(1) Originally, the Nonstationary transformer was designed for forecasting time-series tasks and
employs an encoder-decoder style architecture. To successfully apply the core module of the
Nonstationary transformer (Liu et al., 2022), stationarization-destationarization, the input-output
space needs to remain consistent. This consistency is naturally ensured in an encoder-decoder
design. However, in our classification applications, we only utilize the encoder module. Although we
maintain the input-output dimensions, the semantics of the latent space and input space are not the
same. Hence, destationarization is not very successful.

(2) Nonstationary transformer inputs consist of raw time-series data with positional encoding. Given
the fine-grained nature of current tasks, such an approach can be more data-hungry as they try
to establish a relation (attention) among every time step. Therefore, it may not perform well on
short-range classification tasks that focus on domain generalization. This indicates a limitation in
its direct usage for optimizing a categorical objective function using only the encoder part with a
classification head.

D.6 COMPUTATIONAL ANALYSES

To assess the resource utilization of PhASER against other baselines, we offer two metrics - 1)
Number of Multiply and Accumulate operations per sample (MACs) for approximate computational
complexity at run-time and 2) Number of trainable parameters to determine the memory footprint. We
compute these for the HHAR dataset in Table 16 (these metrics are dependent on input dimensions,
hence different choices of dataset, sequence length, and modalities can yield different numbers).

Table 16: Model comparison based on MACs and number of trainable parameters.
Model MACs (×106) Trainable Parameters (×103)

ERM 19.5 98.1
GroupDRO 19.5 98.1
DANN 21.7 102.9
RSC 19.5 98.1
ANDMask 19.5 98.1
BCResNet 55.3 154.7
NSTrans 35.3 75.6
Koopa 32.7 118.7
MAPU 46.9 128.3
Diversify 35.7 922.9
Chronos 345.5 1049.8
Ours 48.6 81.4
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Our computation cost is comparable to the other methods, achieving much better performance. We
also determine the asymptotic time complexity of the PhASER modules in Table 17. For multi-layer
neural network modules, the representative time complexity for one layer is provided (rows 3-7).

Table 17: Complexity per module and input notation for each module.
Module Complexity

1 Hilbert augmentation (using Fast-Fourier transform) O(V ·N logN)
2 Short-Term Fourier Transform O(V ·N ·W logW )
3 Magnitude Encoder (FMag), Phase Encoder (FPha), Phase Projec-

tion Head (gRes) - 2D Convolution Layers
O(k2 ·N · d · cin · cout)

4 Depthwise Feature Encoder (FDep) - 2D Convolution Layers with
average pooling along feature axis

O(k2 ·N · d · cin · cout) +O(d)

5 Temporal Encoder (FTem) - (worst case backbone) Transformer
Encoder

O(N · d)

6 Classification Encoder (gCls) - fully connected layers O(d · h)

D.7 ADDITIONAL ANALYSES

D.7.1 TRADITIONAL AUGMENTATION

For time series, brute augmentations like scaling, reverting, cropping, and jittering may not be always
suitable as they may alter the morphological properties that are important for the task. Even more
advanced techniques like frequency-time warping and additive noise, need deliberate characterization
of the signal’s frequency response to meaningfully provide an augmented view while retaining the
task-relevant semantics. This is one of the key motivating factors for us to explore a general-purpose
augmentation strategy that diversifies the non-stationarity in a signal without altering its task-specific
semantics (magnitude and frequency responses).

To demonstrate the use of traditional augmentations with PhASER for human-activity recognition,
we incorporate the following augmentations proposed by past works (Qin et al., 2023; Um et al.,
2017) on the HHAR dataset.

• Rotation - incorporating arbitrary rotation matrices to simulate different sensor locations.
• Permutation - random temporal perturbation for fixed window within each sample (Um

et al., 2017).
• Circular Time-shift - shifting the signal by a random time interval, constrained by a pre-

defined maximum time-shift parameter (20% of the sample length in this case) for each
sample. The shifted time points from the trailing edge are wrapped around and padded to
the leading edge of the signal

We incorporate these augmentations in place of the Hilbert augmentation and apply the PhASER. We
also run an experiment with identical settings with no augmentations and illustrate in Figure 5. These
results are indicative that arbitrary augmentations in the time domain do not necessarily diversify
the non-stationarity of a signal. Hence, PhASER principles like residual connections to re-introduce
nonstationary dictionary as phase-projection and broadcasting (using gRes) do not bode well here,
and even the performance of a no-augmentation scenario is sometimes better than the traditional
temporal augmentations for domain-generalization tasks in this case. However, in the future, we
may encounter applications where established augmentation strategies, in combination with Hilbert
augmentation, might be the best choice. In this work, we aim to propose a more generic framework
that can benefit most time-series classification tasks to achieve better generalizability.

D.7.2 RANDOM PHASE AUGMENTATION USING HILBERT TRANSFORM

We aimed to explore a random phase augmentation while ensuring minimal distortion to the signal’s
magnitude response to preserve important task-relevant properties. To achieve this, we leverage an
adaptation of the Hilbert Transform. We illustrate our approach using a simple example: let the
input signal be x(t) = sin(ωt), and its Hilbert Transform be HT(x(t)) = x̂(t) = − cos(ωt). For an
arbitrary phase shift ϕ, the following trigonometric identity holds:
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sin(ωt+ ϕ) = sin(ωt) cos(ϕ) + cos(ωt) sin(ϕ). (34)

This gives us the desired randomly phase-shifted version of x(t), expressed as y(t) = ax(t)− bx̂(t),
where a = cos(ϕ) and b = sin(ϕ). The following constraint is imposed on the scalars a and b:

a2 + b2 = 1, (35)

which defines a valid phase shift ϕ as:

ϕ = arctan

(
b

a

)
. (36)

We solve for a and b, and apply them as shown in Figure 10 to obtain an approximately identical
random phase shift across all frequency components of a nonstationary signal. The desired ϕ is
randomly sampled from the range [−π/2, π/2].

Figure 10: Schema illustrating the process for obtaining random phase augmentation by leveraging
the Hilbert Transform of the original input x(t).

As shown in Figure 5, we observe no significant benefit from this randomization on the generalization
performance of the current classification tasks. However, we are interested in exploring this direction
in future by imposing additional constraints inspired by underlying processes for other time-series
tasks.

D.8 VISUALIZATION

We present some visualizations using the t-distributed stochastic neighbor embedding (t-sne) analyses
on our PhASER, Diversify, and BCResNet for the HHAR dataset for the left-out domains in scenario
1 in Figure 6. We illustrate the t-sne plots for in-domain and out-of-domain data and the different
colors indicate the six activity classes of this dataset. In all the cases, we only make necessary
modifications to extract the embeddings from the last layer of the network before categorical score
assignment and tune the perplexity parameters during the t-sne plotting for optimal 2-dimensional
projection. Figure 11. (a,d) shows that the clustering for each class is distinct and clearly separable for
both in-domain and out-of-domain data using PhASER. The accuracy disparity for unseen domains
is also very low, 0.97 for in-domain PhASER accuracy and 0.94 for out-of-domain, which justifies
the overall strong generalization ability of PhASER without access to any target domain samples. We
would also like to point out that t-sne plots are susceptible to hyperparameters, hence, even though
the accuracy of Diversify is better than BCResnet for out-of-domain data, visually Figure 11. (f) may
convey better separation between classes than Figure 11. (e).

E SUPPLEMENTARY OF MAIN RESULTS

We conduct all experiments with three random seeds (2711, 2712, 2713), and present the error range
in this section. Tables 10, 11 and 12 represent the mean and standard deviation corresponding to the
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Figure 11: t-sne plots for visualizations using embeddings from HHAR scenario 1 for in-domain
samples in (a) PhASER with an in-domain-accuracy of 0.97, (b) Diversify with in-domain accuracy of
0.82 and (c) BCResNet with in-domain accuracy of 0.78; and out-of-domain samples in (c) PhASER
with accuracy of 0.94, (d) Diversify with accuracy of 0.77 and (e) BCResNet with accuracy of 0.74.

main paper’s Table 2 for the WISDM, HHAR and UCIHAR datasets respectively. Tables 13 and 14
are the complete representations of all the runs corresponding to Table 4 in the main paper for sleep
stage classification and gesture recognition respectively. Table 15 corresponds to the Table 3 in the
main paper for the complete performance statistics for one person to another generalization using
HHAR dataset.

F BROADER IMPACTS

PhASER, with its advanced approach to time-series domain-generalizable learning, offers significant
societal benefits to various fields and domains, such as healthcare, environment monitoring, and
manufacturing domains, by enabling more precise and dependable data analysis. While PhASER itself
does not directly cause negative social impacts, its application within these critical areas necessitates
a thoughtful examination of ethical concerns. In healthcare, the application of PhASER could usher
in a new era of patient monitoring and treatment, leading to improved experiences and outcomes for
individuals across diverse demographics. Its robust generalization capabilities, even with limited
access to source domains (see Table 3), offer the potential to bridge gaps and foster inclusivity,
particularly in minority communities, while enabling insights from rare occurrences. Moreover,
for applications in environmental monitoring—ranging from continuous sensing of ambient living
conditions to remote and sporadic sensing of inaccessible geological sites—PhASER’s principles
hold promise for sample-efficient, generalizable analysis. Similarly, in manufacturing applications,
PhASER can be deployed for both qualitative and quantitative analyses of physical components, as
well as for enhancing workers’ safety through continuous sensing instrumentation. However, the
implementation of PhASER in such vital areas brings to the forefront ethical considerations like data
privacy, bias prevention, and the careful management of automation reliance. Addressing these issues
is important to leverage PhASER’s benefits across these domains while ensuring ethical integrity and
maintaining public trust in these areas.
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