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ABSTRACT

Feature attribution is widely accepted as a form of explanation for reasoning ma-
chine decisions, indicating the proportion of each feature’s contribution to an
inquired decision. While most efforts have focused on determining attributions
through exact gradient measurements, recent work has adopted gradient estimation
to derive explanatory information requiring only query-level access – a restricted
yet more practical accessibility assumption known as the black-box setting. Follow-
ing this direction, this paper extends the idea of utilizing estimated gradients to a
broader framework and introduces GEFA ((Gradient-estimation-based Explanation
For All)). Unlike the previous attempt that focused on explaining image classifiers,
the proposed explainer derives feature attributions in a proxy space, making it
generally applicable to arbitrary black-box models, regardless of input type. In
addition to its close relationship with Integrated Gradients, we find, surprisingly,
that our approach – a path method built upon estimated gradients – outputs unbi-
ased estimates of Shapley Values. By avoiding the potential information waste
sourced from computing marginal contributions, it improves the quality of derived
explanations, as demonstrated by our quantitative evaluations.

1 INTRODUCTION

With the explosive growth of deep learning models, explainability has become an increasingly
important research topic. While data-driven models excel in performance, their opaque nature,
originating from the implicit learning processes, raises concerns and risks, particularly when deployed
in critical domains such as medical diagnosis, finance, and autonomous driving. The demand for
transparency has seen the development of various techniques, including feature attribution, which is
the focus of this work.

Current attempts to determine feature attribution typically fall into two categories depending on
the model accessibility assumption: the white-box and black-box methods. White-box approaches
assume full access to a model, deriving explanations by investigating in detail the model’s internal
workings through, for example, analysis of gradients (Simonyan et al., 2014; Sundararajan et al.,
2017) or supervision of information flow (Samek et al., 2021). Albeit beneficial to explanation
procedures, the full accessibility assumption limits the applicability of white-box approaches under
practical settings due to safety and security concerns. Models deployed for public use are usually
wrapped by limited APIs and accessible only via queries. On the other hand, the black-box explainers,
following the assumption of query-level access, determine feature attributions by analyzing the
correlation between input features and model outcomes (Ribeiro et al., 2016). As a trade-off for the
loosened accessibility assumption, black-box explanations tend to be less precise, especially when
explaining models operating in high-dimension feature spaces. This is because inferring explanatory
information indirectly from queries is computationally expensive, with the cost positively correlated
to the dimensionality of the feature space.

To combine the strengths of both categories, Cai & Wunder (2024) proposes GEEX, a path method
built upon gradient estimation. Focused on the problem of explaining image classifiers, GEEX
delivers gradient-like explanations under a black-box setting, achieving a performance that matches
white-box explainers. However, the discussion made is limited to models that take continuous features
as inputs, and the method struggles with discrete or categorical features like texts. This limitation
arises from GEEX’s reliance on path integral, which is not well-defined in discrete feature spaces.
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While applying GEEX at the embedding layer is indeed a reasonable circumvention, it is arguable
that transforming from the original feature space to some embedding space already accesses internal
model details, thereby violating the black box assumption.

Bridging the gap in the applicability to models operating on discrete data, this paper extends the
idea of gradient-estimation-based explanation and introduces GEFA1 (Gradient-estimation-based
Explanation For All), a general feature attribution framework built upon carefully designed proxy
variables. These proxy variables facilitate the implementation of gradient estimation and path
integral, regardless of input types or formats. The proposed method comes with strong theoretical
guarantees. First, GEFA is an unbiased calculator of Shapley Values (Shapley, 1953), which is
demonstrated through rigorous mathematical proof. Compared to previous attempts in computing
Shapley Values, GEFA reduces potential information waste in sampling-based estimations, which
compute marginal contributions Mitchell et al. (2022), and avoids calculations of factorials in the
kernel method (Lundberg & Lee, 2017) for determining sample weights. Second, we show that our
black-box explainer differs from Integrated Gradients (IG), a white-box approach by (Sundararajan
et al., 2017), in only the path choice. It is proved that the two approaches become equivalent when
their paths are aligned, emphasizing the connection between the gradient-estimation-based approach
and actual gradients. Finally, we design a simple control variate that is guaranteed to improve
explanation quality under a simple and realistic assumption. Its effectiveness is demonstrated through
quantitative experiments across various settings.

2 RELATED WORK

Gradients are widely used to allocate feature attributions in a white-box setting as they reveal a
model’s sensitivity to changes in feature values. In the early development of explainability, Simonyan
et al. (2014) and Smilkov et al. (2017) interpreted gradients directly as explanations. Their methods
retrieve explanatory information by tracing partial derivatives of a decision function with respect to
its input features. Although adopting vanilla gradients is a reasonable starting point, gradients by
themselves reflect local sensitivity and do not truthfully represent contributions of feature presence
without a proper definition of feature absence.

IG (Sundararajan et al., 2017) addresses the limitation of vanilla gradients with a baseline point
modeling feature absence. The approach integrates gradients over a straightline path connecting
the baseline and the explaining target, thereby capturing the overall impact of feature presence.
Following work by Sturmfels et al. (2020) explored the impact of baseline choice and suggested
adopting a distribution, rather than a deterministic instance, as the baseline (Erion et al., 2021). Other
extensions of IG include decomposing noise directions from the path integral (Yang et al., 2023),
refining explanations by filtering out high frequencies (Muzellec et al., 2024), and investigating
feature interactions through the integration of second-order derivatives (Janizek et al., 2021). Parallel
to these efforts in improving the explanation procedure, Decker et al. (2024) demonstrated that a
proper linear composition of explanations from various approaches yields provable improvements.
The family of propagation-based methods (Montavon, 2019) represents a significant alternative
white-box solution, which designs layer-wise back-propagation rules that explicitly utilize model
architecture information for the retrieval of explanatory information. As this paper focuses primarily
on gradient-based and gradient-like explanations, we refer interested readers to the survey by (Samek
et al., 2021) for further details on relevance propagation.

Unlike white-box methods, which have direct access to model details, black-box explainers de-
termine feature attributions by collecting and analyzing observations. The idea was proposed by
LIME (Ribeiro et al., 2016), which generates queries by altering feature values of the original input
and collects model responses to the perturbed instances. By solving a linear regression problem
with the observed input-output pairs, LIME derives regressor coefficients as feature attributions.
Subsequently, Lundberg & Lee (2017) proposed KernelSHAP, a kernel method that approximates
Shapley Values using weighted linear regression. Additionally, Lundberg & Lee (2017) formalized
the relationship between the feature attribution problem and cooperative game theory, strengthening
the importance of Shapley Values in explainability.

1Code for reproducibility can be found at: https://hide.for.anonymity
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Under the established framework of black-box approaches, succeeding works have aimed at improv-
ing query efficiency and explanation quality – long-standing challenges for black-box approaches.
For example, Dhurandhar et al. (2022) extended LIME with an adaptive neighborhood sampling
scheme that constrains sampling to locally linear regions based on the explicand. Petsiuk et al.
(2018) alleviated concerns about computational expenses by softly grouping input features via
mask resizing, effectively reducing the dimensionality of the feature space. Similarly, Shrotri et al.
(2022) and Dhurandhar et al. (2024) improved sampling efficiency by narrowing the search space.
Parallel to refining the sampling process, Frye et al. (2020) and Heskes et al. (2020) enhanced
explanation quality by incorporating prior causal knowledge into the SHAP framework. Okhrati
& Lipani (2021) leveraged the multilinear extension method from game theory literature (Owen,
1972) to develop a sampling-based explainer with reduced variance. More recently, Cai & Wunder
(2024) adopted gradient estimation and imitated IG under a black-box setting by integrating estimated
gradients, resulting in white-box-level performance with query-level access. However, this approach
is limited to continuous feature space, which is the gap addressed in the following sections.

3 PRELIMINARY

3.1 FEATURE ATTRIBUTION

Given a model function f(·), a target input (the explicand) x = (x1, x2, . . . , xp), and a predefined
baseline x̊ = (̊x1, x̊2, . . . , x̊p), an attribution method seeks a vector ξ ∈ Rp that decomposes the
total contribution to an inquired decision into feature attributions. Formally, this is represented as:

Af : (x, x̊) ↪→ (ξ1, ξ2, . . . , ξp)

Throughout the paper, we mark vectors in bold and denote scalars with plain symbols.

As a result of allocating feature contributions, the attribution scores ξi indicate the contribution of
each feature xi to the model outcome f(x), and they should sum up to the difference between the
model outcome with all features present and the outcome with full feature absence, which is modeled
by the baseline:

p∑
i=0

ξi = f(x)− f (̊x) (1)

Approaches complying with equation 1 are said to satisfy the property of Completeness – a fundamen-
tal aspect of feature attribution methods. Together with completeness, further properties are desired
for feature attribution methods, which upholds the practical meanings of feature attribution:

• Sensitivity: a feature should receive non-zero attribution if the difference of its value between
the explicand and the baseline induces a change in model outcomes

• Insensitivity: the attribution should be zero for any feature, on which the model is functionally
independent

• Linearity: the explanation for the linear composition of two functions should equal the
weighted sum of the separate explanations for them

• Symmetry: if a function is symmetric in two variables xi and xj , the attributions to the two
features should be the same when the explicand-baseline pair holds xi = xj and x̊i = x̊j

3.2 GRADIENT ESTIMATION UNDER A BLACK-BOX SETTING

In the context of feature attribution, a black box setting refers to query-level access, meaning that
the model to be explained can only be accessed via its input and output interfaces. Indeed, lacking
knowledge about the model’s internal details prohibits the application of attribution methods that
depend on exact measurements of gradients. However, gradients, which facilitate the derivation of
feature attributions, can still be estimated by evaluating model inputs and outputs. Defining a search
distribution π(·|x) parameterized by x, the expected model outcome over π(·|x) is given by:

J(x) := Eπ(z|x)[f(z)] =

∫
f(z)π(z|x) dz (2)
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where z indicates samples drawn from the search distribution. The gradient of the expected model
outcome with respect to x is:

∇xJ(x) = ∇x

∫
f(z)π(z|x) dz (3)

The above formula can be further simplified using the log-likelihood trick, under the assumption that
both f(·) and π(·|x) are continuously differentiable (Mohamed et al., 2020):

∇xJ(x) =

∫
[f(z) · ∇x logπ(z|x)]π(z|x) dz

= Eπ(z|x)[f(z) · ∇x logπ(z|x)] (4)

The integral can be empirically approximated with a Monte Carlo estimator with a set of queries
Z = {z|z ∼ π(·|x)}, leading to the typical score-function gradient estimator:

ηx(x) := ∇xJ(x) ≈
1

|Z|
∑
z∈Z

f(z) · ∇x logπ(z|x)

4 GRADIENT-ESTIMATION-BASED EXPLANATION FOR ALL

4.1 GRADIENT ESTIMATION WITH PROXY VARIABLES

Given the diverse nature of potential input features, sampling instances by perturbing feature values
is not always straightforward. Instead of altering feature values by applying noises, we define the
search distribution through a set of proxy variables α = (α1, α2, . . . , αp). The proxy vector α shares
the same size as the explicand, where each element αi configures the presence probability of the
corresponding explicand feature xi. Recalling that feature presence and absence are modeled by
feature values of the explicand and the baseline, respectively. A point x(α) in the continuous proxy
space of α ∈ [0, 1]

p describes a distribution, with each sample z ∼ x(α) is given by:

zi =

{
xi if ϵi = 1

x̊i if ϵi = 0
∀i ∈ {1, 2, . . . , p}

where ϵ = (ϵ1, ϵ2, . . . , ϵp) denotes a binary mask ϵ ∼ Bernoulli(α) sampled from a multivariate
Bernoulli distribution parameterized by α. For ease of notation, we denote the feature selection
process with a feature-wise combination operator ⊕, which indicates a feature zi in the sample z
takes the value of x when the corresponding mask component ϵi = 1, otherwise set to x̊i:

z = ϵ x⊕ ϵ̄ x̊, ϵ ∼ Bernoulli(α)

The vector ϵ̄ = 1p − ϵ is the complement of ϵ. The operator indicates the element-wise product,
where a feature value is selected if the mask component equals one, otherwise it remains undefined
until a value is assigned through the ⊕ operator. Please note that the feature selection operator does
not depend on feature types and is generally applicable as long as the explicand-baseline pair is
specified. Given an explicand-baseline pair, the sampling of a query z depends fully on the binary
mask ϵ, whose probability mass function is:

π(z|x(α)) = π(ϵ|α) = αϵ · (1p −α)
ϵ̄ (5)

Here, αϵ is a shorthand for (α1
ϵ1 , α2

ϵ2 , . . . , αp
ϵp). Substituting the distribution given by equation 5

for the search distribution π in equation 4 yields an estimator for the gradient of f(x(α)) w.r.t. the
proxy parameters α:

ηα(x(α)) = Eπ(z|x(α))[f(z) · ∇α logπ(z|x(α))]

= Eπ(ϵ|α)[f(ϵ x⊕ ϵ̄ x̊) · ∇α log(αϵ · (1p −α)
ϵ̄
)]

= Eπ(ϵ|α)[f(ϵ x⊕ ϵ̄ x̊) · ( ϵ
α

− ϵ̄

1p −α
)] (6)

When referring to the logarithm of the probability vector π, we specifically mean applying the
logarithm operation element-wise to each vector component. Given that α represents the probabilities
of feature presence, the output of ηα(x(α)) can be interpreted as the sensitivity of model outcomes
to changes in feature presence.
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4.2 DERIVATION OF GEFA

In addition to promoting the derivation of the gradient estimator, the introduction of proxy parameters
facilitates the integration of inputs with discrete features (e.g. text) when deriving feature attribution.
Formally, let α(·) = (α1, . . . , αp) : [0, 1] → [0, 1]

p be a path in the proxy space from the baseline
x(α(0)) = x(0p) = x̊ to the explicand x(α(1)) = x(1p) = x, feature attributions can be computed
by integrating the gradient estimator along the path α(γ) for γ ∈ [0, 1]. When taking the straightline
path α(γ) = γ · 1p, which is the only symmetry-preserving path (Sundararajan et al., 2017), the
GEFA explainer is derived as follows:

ξ :=

∫ 1

0

ηα(x(γ · 1p)) dγ

=

∫ 1

0

Eπ(ϵ|γ·1p)[f(ϵ x⊕ ϵ̄ x̊) · ( ϵ
γ
− ϵ̄

1− γ
)] dγ (7)

In practice, equation 7 can be approximated with a Monte-Carlo estimator, given a budget of n
queries:

ξ ≈ 1

n

∑
γ∼U[0,1]

∑
π(ϵ|γ·1)

f(ϵ x⊕ ϵ̄ x̊) · ( ϵ
γ
− ϵ̄

1− γ
) (8)

Theorem 1. GEFA satisfies the property of Completeness, Sensitivity, Insensitivity, Linearity, and
Symmetry.

Appendix A.2 details these properties and the corresponding proof derived from the gradient esti-
mation perspective following equation 7. On top of the proved properties, we surprisingly find that
GEFA, an approach derived from a proxy gradient estimator, is an alternative to compute Shapley
Values as stated in Theorem 2.
Theorem 2. Feature attributions determined by GEFA are exactly Shapley Values.

The claim in Theorem 2 is mathematically rigorously proved, please refer to Appendix A.1 for further
details. Being an unbiased calculator of Shapley Values also explains the many properties hold by
GEFA.

While also producing an unbiased approximation of Shapley Values, GEFA differs from other
sampling-based attempts by simplifying the sampling process. Concretely, the computation of equa-
tion 8 does not rely on marginal contributions, thus avoiding potential information wastes dur-
ing approximation. Let zS denote a query with S being the set of indices corresponding to the
present features. In GEFA, each query zS contributes to the attribution estimates of any feature
xi, ∀i ∈ {1, 2, . . . , p}, regardless of the existence of a paired sample zS∪{i} (for i /∈ S) or zS\{i}
(for i ∈ S) that would be required for computing marginal contributions. Algorithm 1 summarizes
the overall explanation scheme derived from equation 8.

Algorithm 1 GEFA Explanation Scheme

Input: x: the explicand; x̊: the baseline;
Output: ξ: feature attribution scores;

1: ξ = 0p # Estimator initialization
2: while Query budget available do
3: γ ∼ U[0,1] # Proxy path point sampling
4: ϵ ∼ π(·|γ · 1p) # Mask sampling
5: z = ϵ x⊕ ϵ̄ x̊ # Query construction
6: ξ = ξ + 1

n · f(z) · ( ϵγ − ϵ̄
1−γ ) # Observation collection

7: end while
8: return ξ

4.3 VARIANCE REDUCTION

Deriving the explainer from a score-function gradient estimator allows the application of variance
reduction techniques in the gradient estimation literature. Specifically, we construct a control

5
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variate that reduces the estimation variance under the assumption that the target model outcomes are
correlated with the number of present features, denoted by |ϵ| =

∑p
i=1 ϵi. Assumption 1 formally

states the condition required for the validity of the designed control variate.

Assumption 1. For any explicand-baseline pair that satisfies f(x) ̸= f (̊x), the correlation between
the number of present features and the corresponding model outcomes should be non-zero.

In practice, we argue that the above assumption generally holds for any properly trained model that
makes predictions based on (either appropriate or inappropriate Geirhos et al. (2020)) evidence from
its inputs. This is because a higher ratio of presented features induces a higher likelihood of including
relevant components, thus a convergence toward the prediction result f(x). Based on this assumption,
the control variate is constructed as a function of |ϵ|:

h(|ϵ|) =
{
0 if |ϵ| = p

|ϵ|/p else
(9)

Adding the control variate weighted by a fixed hyperparameter β to the target function gives:

f̃(ϵ x⊕ ϵ̄ x̊) = f(ϵ x⊕ ϵ̄ x̊)− β · h(|ϵ|) (10)

Replacing f(·) in equation 7 accordingly with the updated f̃(·) yields the variant ˜GEFA:

ξ̃ =

∫ 1

0

Eπ(ϵ|γ·1p)[f̃(ϵ x⊕ ϵ̄ x̊) · ( ϵ
γ
− ϵ̄

1− γ
)] dγ (11)

Theorem 3. The unbiasness of ξ̃ remains intact after the introduction of the control variate h(·).

Appendix A.3 provides the proof of Theorem 3, along with the derivation and further details
of h(·). The variance reduction effect is optimized when the weighting hyperparameter β =
Cov(f, h)/Var(h). While the variance of the control variate can be computed in closed form,
the covariance, albeit not explicitly given, can be empirically estimated (Mohamed et al., 2020) with
existing queries for attribution estimation.

4.4 RELATION TO INTEGRATED GRADIENTS

Since the proposed method is built upon estimated gradients, this section further explores its rela-
tionship to IG2 that utilizes actual gradients. The equivalence between GEFA and IG does not hold
when both take a straightline path, as GEFA’s path is constructed in the proxy space, which differs
from the original feature space. However, the relation becomes clearer when both explainers follow a
monotonic path along the edges of their respective spaces. Along an edge path, integration moves
step-by-step from one vertex zS in the feature/proxy space to an adjacent vertex zS∪{i} that differs
in only one feature.

Theorem 4. GEFA and IG are equivalent when taking the same edge path. Averaging their results
over all p! unique edge paths converges to the outcome of GEFA that follows the straightline path in
the proxy space.

It can be easily shown that, when following the same permutation order, GEFA and IG both compute
the marginal contribution of a feature xi, namely f(zS) − f(zS∪{i}), conditioned on a set of
present features {xj |j ∈ S}. Given the fact that GEFA is an unbiased estimator of Shapley Values,
concluding Theorem 4 is not surprising – averaging marginal contributions is the typical solution
for determining Shapley Values. Please refer to Appendix A.4 for the detailed proof. The close
relationship between IG and Shapley Values is consistent with previous claims by Sundararajan
& Najmi (2020). Furthermore, Theorem 4 motivates the choice of the straightline path along the
diagonal of the proxy space, converting the problem of averaging the estimates of several edge paths
to estimating attributions on one specific path.

2By considering IG, we omit the practical difficulty that discrete features are usually not differentiable in
their original forms, thus requiring additional pre-/post-processing steps.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETTING

To show GEFA’s applicability under various scenarios, we consider the most representative tasks
involving discrete and continuous features: text and image classifications.

Dataset: The Amazon reviews polarity (McAuley & Leskovec, 2013) is adopted for setting up a
sentiment analysis task for text classification. The review texts in the dataset include customer
reviews of products with a maximal length of 512 tokens, labeled as either positive or negative. As for
image classification, we consider ImageNet (Russakovsky et al., 2015), a dataset sets up a multi-class
classification task in high-dimensional input feature space, posing challenges to black-box explainers
that derives feature attributions by querying.

Classifier: We fine-tune a publicly available pretrained version of BERT 3 on the Amazon review
dataset. For ImageNet, a pre-trained version of InceptionV34 is adopted without further training.
The choice of the two models involves attention mechanisms and the traditional convolution layer,
which are the most popular components in current neural network designs but have very different
architectures from each other, with the purpose of demonstrating that GEFA’s explanation quality is
independent of specific model structures.

Evaluation via manipulation: Despite explainability being a widely studied topic, there is yet
no consent for the quantitative evaluation of explanation quality due to the lack of ground truth
explanations (which we are seeking). Compromising to the practical difficulty, a popular evaluation
scheme, evaluation via deletion (Samek et al., 2016), quantifies explainer’s performance indirectly by
summarizing the effectiveness of feature removal guided by explanations. Following the intuition
that deleting relevant features should induce significant changes in prediction results, the evaluation
scheme repeatedly removes features in descending order according to their attribution scores. The
area over the curve drawn by the sequence of prediction outcomes quantifies explanation quality. A
larger area indicates a more informative explanation that boosts the impact of the deletion process.
Formally, let x(k) denote a manipulated version of the explicand with a number of k features removed,
the normalized AOPC (area over perturbation curve) is computed by:

nAOPC =
1

p

p∑
k=1

(1− f(x(k))

f(x)
)

Competitors: We consider several feature attribution methods closely related to the proposed method,
including two gradient-based approaches assuming white-box access and three black-box explainers:

• VG (Vanilla Gradient): an approach interpreting raw gradients directly as explanations
• IG (Integrated Gradients): a method integrating actual gradients along a straightline path
• KSHAP (KernelSHAP): a Shapley Value estimator built upon weighted linear regression
• PSHAP (PartitionSHAP): a variant of sampling-based estimator computing Shapley Values

recursively through a hierarchy of features (Chen et al., 2023)
• GEEX (Gradient-Estimation-based Explanation): a black-box approach deriving explana-

tions based on estimated gradients

The selected competitors are evaluated following the above evaluation scheme and compared to
the two variants of the proposed methods: GEFA and ˜GEFA, denoting the version without and
with the control variate respectively. In addition to the listed explainers, a random feature remover
(abbreviated as Random) is considered a baseline competitor. It removes features on a random basis
imitating that there is no explanatory information. Any explainer that delivers valid explanations
should achieve a higher nAOPC score than random removal. While evaluation via deletion has been
a widely adopted scheme for assessing explanation quality, concerns have been raised regarding the
validity of its results as the recursive deletion process may shift the manipulated explicand away from
the target data manifold (Hooker et al., 2019; Jethani et al., 2021). In Appendix B, we provide a more

3https://huggingface.co/docs/transformers/model doc/bert
4https://pytorch.org/vision/stable/models/inception.html
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detailed discussion on the validity of the adopted evaluation scheme and demonstrate its alignment
with the retraining scheme (Hooker et al., 2019), which circumvents the out-of-distribution concern.

5.2 EXPLAINING TEXT CLASSIFIER

When applying feature attributions to text classifiers, black-box approaches like GEFA are more
flexible in terms of representing feature absence, as they construct synthetic instances in the original
text space for querying. Unlike models for other classification tasks, text classifiers commonly accept
inputs with variable lengths, simplifying the definition of absence. When taking an empty token as
the baseline, feature absence is represented by the removal of a corresponding feature, providing
a more explicit representation of feature absence – a feature is not part of the input – instead of
replacing the original value with some manually defined baseline value.

On the other hand, the white-box approaches relying on back-propagation stick to the absence
definition as the replacement by some default value, because back-propagation for exact gradient
measurement always requires a placeholder in the input as the destination of the propagation process.
Specifically, feature absence is modeled by a zero embedding vector for both VG and IG. Furthermore,
given texts as sequences of discrete features are not directly differentiable, approaches based on actual
gradients require at least one pre-processing step to acquire the embeddings for back-propagation and
summarize the embedding-level attributions in the form of token-level results through post-processing
for deriving human-comprehensible explanations.

We employ two deletion operations for the evaluation scheme: embedding reset and token removal,
corresponding to the distinct representations of feature absence during the explanation processes.
Embedding reset conducts deletion by setting the embedding vector of a token being removed to a
zero vector, aligning with the absence representation adopted by back-propagation-based methods.
Token removal wipes the presence of a token completely by replacing it with an empty token. Table 1
presents the nAOPC scores of the competitors tested with both deletion operations. Each row in the
table corresponds to the nAOPCs for the respective deletion type indicated in the first column. For the
black-box explainers, given the relatively smaller feature space, we empirically set a query budget of
500. In the case of IG, the gradient is integrated over 50 interpolated points in the embedding space.
Please note that GEEX is excluded from this part of the evaluation due to its incompatibility with
models operating on discrete feature space, as previously discussed in Section 1.

Notably, the explanations by VG barely deliver any valid information as evidenced by its performance,
which is at the level of random removal in both deletion settings. This observation suggests that
directly interpreting gradients as explanations is inappropriate since the raw gradient itself only
reveals a model’s local sensitivity to a feature, which does not necessarily associate with the feature’s
contribution to a prediction. The qualitative example in Figure 1 showcases the failure of VG to
capture relevant features in contrast to IG and ˜GEFA. While there are disagreements in attributions
between IG and ˜GEFA, their explanations agree on the main evidence for a positive prediction;
whereas VG produces a contradictory result by identifying ’pain’ as a positively contributing feature
and puts a stop word ’that’ as import evidence in sentiment analysis, which appears less sensical.

Among the group of black-box explainers, ˜GEFA achieves the best performance over other sampling-
based Shapley Value estimators. We attribute the improvement to the information waste minimization
during the estimation and the variance reduction led by the designed control variate. The comparison
between both GEFA variants highlights the effectiveness of the control variate, which follows a
simple intuition. Parallel to the comparison among black-box approaches, ˜GEFA, despite being
constrained with query-level access, demonstrates performance comparable to IG in the embedding
reset setting and even surpasses the white-box explainer when tested with token removal. Given

˜GEFA’s improved performance through variance reduction, it is reasonable to infer that the proposed
method could outperform IG in both settings if the estimator can be further strengthened, for instance,
by increasing the query budget. The distinct absence representations is considered the main source
of the observed performance differences. We argue that setting a feature to a default value does not
faithfully reflect the status of a feature being absent, as the specific choice of baseline can introduce
inductive bias. This concern is particularly relevant to feature absence modeling in language models,
where a natural definition of absence – token removal – is easily accessible.

8
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Table 1: The nAOPCs reported on BERT fine-tuned for Amazon reviews, higher is better.

Deletion Type VG IG KSHAP PSHAP GEFA ˜GEFA Random

Embed. reset 0.2129 0.6622 0.5446 0.6358 0.6275 0.6482 0.2113
Token removal 0.1823 0.6677 0.6014 0.6592 0.7120 0.7366 0.1908
∗The overall best performances are in bold and the highest scores among black-box explainers are underlined.

ive got a lamp in the corner of my room
behind my desk thats a complete pain
in the arse to turn on and off. ive been
using this with the lamp for a month now
and it works perfectly. added a little ve
lcro and now i have a light switch where
ever i want. under my desk, shelf, etc. 

(a) VG

ive got a lamp in the corner of my room
behind my desk thats a complete pain
in the arse to turn on and off. ive been
using this with the lamp for a month now
and it works perfectly. added a little ve
lcro and now i have a light switch where
ever i want. under my desk, shelf, etc. 

(b) IG

ive got a lamp in the corner of my room
behind my desk thats a complete pain
in the arse to turn on and off. ive been
using this with the lamp for a month now
and it works perfectly. added a little ve
lcro and now i have a light switch where
ever i want. under my desk, shelf, etc. 

(c) GEFA

Figure 1: Feature attributions for BERT derived from three selected explainers. The results are
visualized by attribution maps, where a blue/red background color indicates a contribution to the
positive/negative sentiment with the color intensity reflecting the amplitude of the attribution score.

5.3 EXPLAINING IMAGE CLASSIFIER

We repeat the same evaluation to assess the quality of explanations for image classification results.
The query budget of the black-box approaches is increased to 5000 due to the considerably larger
input feature space, having a size of 299×299. KSHAP is excluded from this part of the evaluation as
solving the linear regression requires a query budget matching the dimensionality of the input feature
space, which is less practical for models taking high-dimensional inputs. Since image classifiers
cannot process incomplete inputs, feature absence in this context is represented by replacing features
with a baseline value. In accordance with the suggestion by Sturmfels et al. (2020), we use a blurred
version of the explicand as the baseline.

As shown in Table 2, the performance and relative ranking of the competitors are consistent with
the observation from the previous experiment. ˜GEFA retains competitive performance in the high-
dimensional setting compared to the best-performing white-box approach. It is noteworthy that,
when explaining the image classifier, the control variate yields a larger performance improvement for

˜GEFA than in the setting of sentiment analysis. This is found to be caused by a stronger correlation
between the control variate and the decision function. In image classification, each feature – a
pixel – contributes minorly to the overall prediction and typically possesses less semantic weight
contradictory to features in sentiment analysis, where contextual dependencies on specific tokens
(such as negation or irony) undermine the validity of Assumption 1 to some extent. With the variance
of the control variate remaining constant, the increased amplitude of the covariance between f(·)
and h(·) contributes positively to variance reduction as detailed in Appendix A.3, thus enhancing the
overall quality of explanations.

Additionally, the comparison between the proposed approach and GEEX, the other gradient-
estimation-based method, is worth mentioning. Queries by GEFA, constructed through binarized
feature value sampling, induce more significant prediction changes than those created by adding small
Gaussian noises, which facilitates more effective gradient estimation. In the experiments, we find that
explanations by GEEX are more sensitive to low-level features that are generally informative, such as
contours of objects, but they struggle to differentiate which specific class those features contribute
to. Examples listed in Figure 2 demonstrate that ˜GEFA distinguishes features relevant to specific
classes, whereas GEEX fails to do so. In the “dog-cat” example, although there are differences in
GEEX’s explanations between the selected classes, pixels relevant to “dog” are consistently high-
lighted, whose relationship to the diverse predictions is difficult to comprehend. On the contrary, the
explanations by GEFA clearly differentiate the contributions of the same features in different contexts,
as indicated by the coloring of the pixels. The pixels representing “dog” and “cat” show conflicting
contributions, which is a result of the softmax layer concatenated before the final output layer – the
probability increase for one class undermines the other. Similar observations can be obtained in the
“rooster-hen” example, where GEEX concentrates on one object and overlooks the fact that the model
can distinguish between a rooster and a hen, as demonstrated by GEFA.
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Table 2: The nAOPCs reported on InceptionV3 for ImageNet, higher is better.

Deletion Type VG IG PSHAP GEEX GEFA ˜GEFA Random

Pixel reset 0.4570 0.8805 0.7753 0.7952 0.8352 0.8747 0.4003

Attribution map for "Dog"

Explicand GEFA GEEX GEFA GEEX

Attribution map for "Cat"

Attribution map for "Rooster"Attribution map for "Hen"

Figure 2: Feature attribution for InceptionV3 showing evidence for prediction as a specific class.
Pixels colored in red support the prediction of the targeted class, whereas blue pixels against the
prediction. Color intensity indicates the amplitude of attributions.

6 CONCLUSION

In this paper, we propose GEFA, a model-agnostic feature attribution framework based on a proxy
gradient estimator. By structuring the explanation process in the proxy space, GEFA is generally
applicable for explaining arbitrary classifiers, regardless of their input feature types. Backed by
rigorous theoretical analysis, the proposed method significantly improves the quality of black-box
explanations and, in certain circumstances, even surpasses white-box approaches with a limited
query budget. As a general framework, GEFA holds significant potential for integration with existing
techniques, further enhancing sampling efficiency (Shrotri et al., 2022; Dhurandhar et al., 2024) and
explanation quality (Frye et al., 2020; Heskes et al., 2020).

Although our current focus is on feature attribution for classification tasks, the versatility of
GEFA opens avenues for future work, particularly in adapting it to more complicated scenarios, such
as explaining multi-modal models like CLIP (Radford et al., 2021) and large language models. These
potential adaptions would primarily require reformatting the loss function to handle more complex
model outcomes, while the core of the explanation framework remains unchanged.
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Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpreting and
understanding deep neural networks. Digital signal processing, 73:1–15, 2018.

Sabine Muzellec, Thomas Fel, Victor Boutin, Léo Andéol, Rufin Vanrullen, and Thomas Serre.
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Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and Klaus-Robert
Müller. Evaluating the visualization of what a deep neural network has learned. IEEE Transactions
on Neural Networks and Learning Systems, 28(11):2660–2673, 2016.
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A MATHEMATICAL PROOFS

A.1 PROOF OF GEFA’S EQUIVALENCE TO SHAPLEY VALUES

We start with proving Theorem 2, as the notations introduced during the proof facilitate the proof of
the properties listed in Theorem 1. To show that the attributions delivered by GEFA are exact Shapley
Values, the goal is to demonstrate the following equivalence:

ξi =
∑

S⊆{1,2,...,p}\{i}

|S|!(p− |S| − 1)!

p!
· (f(zS∪{i})− f(zS)) = Shi

where zS denotes a query with S being the set of indices corresponding to the present features.

Proof of Theorem 2. Let zS be a query, the probability of sampling zS over the integration path is:

p(zS |x) =
∫ 1

0

γ|S| · (1− γ)
(p−|S|)

dγ

For a feature xi, where i /∈ S, the contribution of the query to the computation of the corresponding
attribution, noted as wzS

i , is:

wzS
i =

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · f(zS) · (

0

γ
+

1− 0

1− γ
) dγ

= −
∫ 1

0

γ|S| · (1− γ)
(p−|S|−1) · f(zS) dγ

= −|S|!(p− |S| − 1)!

p!
· f(zS) (Beta-function)

Similarly, the weight of the query zS∪{i} that differs from zS only in the i-th feature is:

w
zS∪{i}
i =

∫ 1

0

γ|S|+1 · (1− γ)
(p−|S|−1) · f(zS∪{i}) · (

1

γ
+

1− 1

1− γ
) dγ

=
|S|!(p− |S| − 1)!

p!
· f(zS∪{i})

Summing over all possible combinations of feature presences (excluding xi), yields ξi:

ξi =
∑

S⊆{1,2,...,p}\{i}

wzS
i + w

zS∪{i}
i

=
∑

S⊆{1,2,...,p}\{i}

|S|!(p− |S| − 1)!

p!
· (f(zS∪{i})− f(zS))

⇔ Shi

A.2 PROOFS OF CLAIMED PROPERTIES

It is not surprising that GEFA aligns with the properties held by Shapley Values as an unbiased
calculator. This section details the proof of these properties from the gradient estimator perspective
as an alternative to the derivation from the typical computation of Shapley Values in the form of
marginal contributions.

A.2.1 COMPLETENESS AND SENSITIVITY

Completeness requires the equivalence between the sum of allocated feature attributions and the
difference in prediction results made by full feature presence as stated in equation 1.
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Proof of Completeness. The contribution of a sample zS to attribution estimation in GEFA can be
divided into two parts, the contribution with a positive sign wi∈S to the present features {xi|i ∈ S},
and the contribution with a negative sign wı/∈S to the absent features. According to equation 8, the
contribution is computed by:

wi∈S = f(zS) ·
1

γ

wi/∈S = −f(zS) ·
1

1− γ

Considering the likelihood of zS being sampled, the total positive contribution w⊕
S can be computed

by:

w⊕
S =

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · (

∑
i∈S

wi∈S) dγ

=

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · f(zS) ·

|S|
γ

dγ

=
(|S| − 1)!(p− |S|)!

p!
· f(zS) · |S| (Beta-function)

=
|S|!(p− |S|)!

p!
· f(zS)

Similarly, the total negative contribution is:

w⊖
S = −

∫ 1

0

γ|S| · (1− γ)
(p−|S|) · f(zS) ·

p− |S|
1− γ

dγ

= − (|S|)!(p− |S| − 1)!

p!
· f(zS) · (p− |S|)

= −|S|!(p− |S|)!
p!

· f(zS)

The two parts of contributions cancel out as w⊕
S + w⊖

S = 0, with the only two exceptions when
S = ∅ or S = {1, 2, . . . , p}, whose contribution only has the negative/positive part:

w⊕
∅ + w⊖

∅ = 0− f (̊x)

w⊕
{1,2,...,p} + w⊕

{1,2,...,p} = f(x)− 0

Computing the sum of feature attributions by summarizing sample contributions results in:

p∑
i=1

ξ =
∑

S⊆{1,2,...,p}

(w⊕
S + w⊖

S ) = f(x)− f (̊x)

Sensitivity is guaranteed by the satisfaction of completeness.

A.2.2 INSENSITIVITY

Insensitivity is also known as Dummy, which requires the attribution score to be zero for any feature
on which the target model is not functionally dependent. Definition 1 formally describes functional
independence.

Definition 1. A function is said to be functionally independent of a feature if the prediction results
are always the same for any sample pair that differs only in that feature.
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Proof of Insensitivity. Let xi be the dummy feature, the proxy gradient estimator of that feature on
the straightline path is:

ηαi
(x(γ · 1p)) = Eπ(ϵ|γ·1p)[f(ϵ x⊕ ϵ̄ x̊) · (ϵi

γ
− ϵ̄i

1− γ
)]

Using π(ϵ\i|γ ·1p−1) as a shorthand for the feature value sampling process excluding the i-th feature,
the expectation can be expanded to the following form due to the independent sampling processes of
different features:

ηαi(x(α)) = Eπ(ϵ\i|γ·1p−1)

[
Eπ(ϵi|γ)[f(ϵ x⊕ ϵ̄ x̊) · (ϵi

γ
− ϵ̄i

1− γ
)]
]

The condition of functional independence of xi yields:

ηαi(x(α)) = Eπ(ϵ\i|γ·1p−1)

[
Eπ(ϵi|γ)[f(ϵ x⊕ ϵ̄ x̊)] · Eπ(ϵi|γ)[(

ϵi
γ
− ϵ̄i

1− γ
)]︸ ︷︷ ︸

=0

]
= 0

The explainer integrating over ηαi(x(α)) also produces zero, namely ξi = 0.

A.2.3 LINEARITY

For any two functions f1(·) and f2(·), Linearity requires the explanation for the linear composition
of the two functions equaling the weighted sum of the separate explanations for them:

ξ(af1+bf2)) = a · ξ(f1) + b · ξ(f2)

Proof of Linearity.

ξ(af1+bf2)) =

∫ 1

0

Eπ(ϵ|γ·1p)

[
[af1(ϵ x⊕ ϵ̄ x̊) + bf2(ϵ x⊕ ϵ̄ x̊)] · ( ϵ

γ
− ϵ̄

1− γ
)
]
dγ

= a ·
∫ 1

0

Eπ(ϵ|γ·1p)

[
f1(ϵ x⊕ ϵ̄ x̊) · ( ϵ

γ
− ϵ̄

1− γ
)
]
dγ +

b ·
∫ 1

0

Eπ(ϵ|γ·1p)

[
f2(ϵ x⊕ ϵ̄ x̊) · ( ϵ

γ
− ϵ̄

1− γ
)
]
dγ

]
=a · ξ(f1) + b · ξ(f2)

A.2.4 SYMMETRY

In context of feature attribution, Symmetry states: given a function f(·) that is symmetric in two
variables xi and xj , the attribution scores of the two features satisfies ξi = ξj when the explicand-
baseline pair holds xi = xj and x̊i = x̊j .

Proof of Symmetry. Similar to the proof of Insensitivity, the Symmetry of GEFA originates from the
proxy gradient estimator. Let xi and xj denote the two symmetric features, their gradient estimators
are:

ηαi
(x(γ · 1p)) = Eπ(ϵi|γ)

[
Eπ(ϵ\i|γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)] · (ϵi

γ
− ϵ̄i

1− γ
)
]

ηαj
(x(γ · 1p)) = Eπ(ϵj |γ)

[
Eπ(ϵ\j |γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)] · (ϵi

γ
− ϵ̄i

1− γ
)
]

Given the symmetry between xi and xj , the inner expectations satisfy:

Eπ(ϵ\i|γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)] = Eπ(ϵ\j |γ·1p−1)[f(ϵ x⊕ ϵ̄ x̊)], when ϵi = ϵj

It is not difficult to show that sampling of the two features following the same distribution given
xi = xj and x̊i = x̊j , which induces:

ηαi(x(γ · 1p)) = ηαj (x(γ · 1p))
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Integrating the estimators having the same outputs along the symmetric path concludes the proof by
showing:

ξi =

∫ 1

0

ηαi
(x(γ · 1p)) dγ =

∫ 1

0

ηαj
(x(γ · 1p)) dγ = ξj

A.3 CONTROL VARIATE

To prove the unbiasedness of ξ̃, we need to show ξ̃ = ξ. Applying Linearity, we can rewrite ξ̃ as:

ξ̃ = ξ(f) + β · ξ(h) = ξ + β · ξ(h)

Now, the goal of the proof can be transformed to:

ξ̃ = ξ ⇐⇒ ξ(h) = 0p

Proof of Theorem 3. The attribution of the control variate to the i-th feature is:

ξ
(h)
i =

∫ 1

0

Eπ(ϵ|γ·1p)[h(ϵ) · (
ϵi
γ
− ϵ̄i

1− γ
)] dγ

=
∑

ϵ∈{0,1}p:ϵi=0

|ϵ|!(p− |ϵ| − 1)!

p!
·
(
h(|ϵ|+ 1)− h(|ϵ|)

)
(Theorem 2)

=

p−1∑
|ϵ|=0

(
p− 1

|ϵ|

)
· |ϵ|!(p− |ϵ| − 1)!

p!
·
(
h(|ϵ|+ 1)− h(|ϵ|)

)

=

p−1∑
|ϵ|=0

1

p
·
(
h(|ϵ|+ 1)− h(|ϵ|)

)
=

1

p
·
(
h(p− 1 + 1)− h(0)

)
(Telescoping series)

= 0

The zero-ness of feature attribution ξ
(h)
i concludes the proof:

ξ
(h)
i = 0, ∀i ∈ {1, 2, . . . , p} =⇒ ξ(h) = 0p

While constructing the control variate for GEFA, we first initialize it as h(|ϵ|) = |ϵ|/p based on
Assumption 1. To strictly follow the property of unbiasedness, the above analysis derives an additional
requirement for the control variate, namely:

h(p) = h(0)

Integrating the constraint into the control variate delivers the function stated in equation 9. In addition
to the selected control variate, Theorem 1 applies to the broader group of functions, which depends
solely on |ϵ| and at the same time satisfies h(p) = h(0). When there are further assumptions to make
on the target function, the shape of h(·) can be fine-tuned for a stronger covariance in relation to f(·).
Next, we show the variance reduction effect of the control variate is optimized when:

β∗ = Cov(f, h)/Var(h)

where the optimal choice of the weighting term is denoted as β∗.

Proof of Optimality of β∗. Denoting the variance of a gradient estimator for a feature xi as Var(ξi),
the variance of the estimator after the introduction of a control variate is:

Var(ξ̃i) = Var(ξi) + β2Var(ξ
(h)
i )− 2β · Cov(ξi, ξ(h)i )
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The optimal variance reduction effect for ξi is achieved when:

β = Cov(ξi, ξ
(h)
i )/Var(ξ

(h)
i ) (12)

Alternative to a feature-specific optimal value, we are also interested in a single value for β that
maximizes the overall variance reduction effect. To acquire the overall optimum, we first expand the
covariance in equation 12:

Cov(ξi, ξ
(h)
i ) = E[ξi · ξ(h)i ]− E[ξi] · E[ξ(h)i ]

= Eαi

[
Eϵi [f(z) · h(z) · (∇xi log π(ϵi|αi))

2
]
]
− E[ξi] · 0 (Unbiasedness of ξ(h))

Please note that we omit the distribution that αi and ϵi should follow as it does not affect the result of
the derivation. For high-dimensional input, the functions f(·) and h(·) have trivial dependencies on a
specific feature xi:

Cov(ξi, ξ
(h)
i ) ≈ Eαi

[
Eϵi [f(z) · h(z)]

]
· Eαi

[
Eϵi [(∇xi

log π(ϵi|αi))
2
]
]

Similarly, the variance of the control variate estimator can be written as:

Var(ξ
(h)
i ) ≈ Eαi

[
Eϵi [h(z)

2
]
]
· Eαi

[
Eϵi [(∇xi

log π(ϵi|αi))
2
]
]

Putting together yields the overall optimal value β∗:

β∗ =
Eαi

[
Eϵi [f(z) · h(z)]

]
· Eαi

[
Eϵi [(∇xi

log π(ϵi|αi))
2
]
]

Eαi

[
Eϵi [h(z)

2
]
]
· Eαi

[
Eϵi [(∇xi

log π(ϵi|αi))
2
]
]

=
Eαi

[
Eϵi [f(z) · h(z)]

]
− 0

Eαi

[
Eϵi [h(z)

2
]
]
− 0

= Cov(f, h)/Var(h)

Taking the optimal β∗, the variance reduction effect depends on the covariance between f(·) and
h(·), which motivates Assumption 1:

Var(ξi)−Var(ξ̃i) = Cov(f, h)

A.4 EQUIVALENCE TO IG

Proof of Theorem 4. To complete the proof, we first show that both GEFA and IG produce marginal
contributions along edge paths.

Recalling that an edge path always moves from one vertex zS to an adjacent vertex that differs
zS∪{i} in only the i-th feature along edges, the goal is simplified prove that they are calculators of
the marginal contribution conditioned on the presence of features {xj |j ∈ S} for each segment of a
path. For the i-th segment on an edge path with S denoting the preceding vertices, IG produces:

ξIGi =

∫ zS∪{i}

zS

∂f(x)

∂xi
dx

= f(zS∪{i})− f(S)

As the path for GEFA is created in the proxy space, we denote the two proxy vertices on the i-th
segment by x(αS) and x(αS∪{i}) for preciseness. The notation αS is analogous to zS , which
represents:

αi =

{
1 ifi ∈ S

0 ifi /∈ S

17
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When following the same permutation order, GEFA produces the same marginal contribution as IG
for the i-th segment:

ξGEFA
i =

∫ αS∪{i}

αS

Eπ(ϵi|αi)[f(z) · (
ϵi
αi

− ϵ̄i
1− αi

)] dα

= f(zS∪{i})− f(zS)

⇔ ξIGi

Please note that, for GEFA, the only feature value in z that may vary during the sampling on the i-th
segment is zi. The remaining features are deterministic as their corresponding proxy variables are
either 0 or 1 depending on whether they are included in the preceding vertices S, namely to take
either the baseline or explicand value with hundred percent probability.

As both explainers deliver marginal contributions along edge paths, the claim in Theorem 4 becomes
obvious as it describes the typical computation of Shapley Values.

B VALIDITY OF THE EVALUATION SCHEME

In this work, we adopted the evaluation via deletion approach, a commonly used method for accessing
explanation quality. The employment of this evaluation scheme spans from the early stages of
explainability research (Samek et al., 2016; Montavon et al., 2018) to the most recent studies (Cai &
Wunder, 2024; Muzellec et al., 2024). One of its key advantages is that it does not require retraining
during evaluation, thereby offering a static environment for efficient explanation quality assessment.
While the out-of-distribution issue raises concern about the validity of the evaluation results, our
results regarding the performance of the random feature remover, as reported in Table 1 and Table 2,
alleviate this concern. The significantly lower nAOPC scores of random removal demonstrate that
simply shifting the input away from the underlying data manifold does not effectively affect model
performance.

Hooker et al. (2019) highlighted the issue that out-of-distribution manipulations can trigger unex-
pected model behaviors. As an alternative to the traditional deletion scheme, they proposed the
remove and retraining (ROAR) scheme. This approach involves removing a proportion of features
with the highest attribution scores for each instance in the dataset, followed by retraining the model
on the manipulated dataset. The resulting model performance is then used as a reflection of the
explainer’s effectiveness. ROAR assessments reported that many popular attribution methods “are
not better than a random designation of feature importance”, contradicting the conclusions drawn
from the traditional deletion scheme. This conflict with the widely approved effectiveness of the
tested approaches, such as IG, prompted our further investigation, which revealed the following:

• The root cause of the misalignment between observations from different evaluation perspec-
tives is the presence of residual features with negative attributions during the retraining
process;

• After a single justified adjustment to ROAR, the two evaluation schemes yield consistent
results.

B.1 THE “SIGN” ISSUE

In the context of feature attribution, a positive attribution score indicates a positive contribution
to the prediction result, whereas a negative score, rather than indicating irrelevance, represents a
negative association with the decision. Failing to remove negatively contributing features preserves
task-relevant information, which the model can reorganize during retraining to improve accuracy. A
qualitative example of residual “negative” information in ROAR is illustrated through the visualized
pixel removal process of IG in Figure 1 by Hooker et al. (2019). This “sign” issue also explains
the effective manipulation by SG-SQ and VarGrad, as these methods provide unsigned attributions,
thereby ensuring the removal of all informative features.

To mitigate the assessment distortion caused by retained negative information, we argue that a
modification to ROAR is necessary for a more faithful reflection of explainer performance: instead of

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 3: Performance of explainers in different settings

Competitors In Accuracy (%) nAOPC
ROAR ROAR-abs KEAR

IG 77.20 62.80 89.60 40.82
PSHAP 79.25 76.75 84.30 39.56
GEFA 82.35 68.45 89.95 40.79

Random 71.30 71.30 71.30 35.07
: lower is better; : higher is better

removing features for retraining, the top-ranked features should be retained. This “keep and retrain”
(KEAR) approach reframes the evaluation question as:

• “Does an explanation method effectively identify relevant features?”

An effective explanation method should capture the relevant information learned by the target model,
facilitating higher accuracy of the retrained model with the same portion of retained information.

B.2 RESULTS ON ROAR AND KEAR

To verify the above discussion, we conducted experiments following the retraining scheme. Specifi-
cally, we fine-tuned EfficientNet-B05 on the Cats vs Dogs dataset (Elson et al., 2007) and created
copies of the dataset with explanation-guided manipulation. These manipulated datasets were then
used for retraining the pre-trained model to assess the quality of explanations. Without loss of gener-
ality, we downsampled the dataset into 2000/400/400 partitions for training, validation, and test sets
for efficiency. EfficientNet-B0 achieved an accuracy of 99.40% on the downsampled dataset after
fine-tuning. Based on the fine-tuned EfficientNet-B0, we derived explanations for images in all three
partitions with three competitors: IG, PSHAP, and GEFA. Features for each instance were ranked in
descending order according to their attribution scores. Similar to the traditional deletion scheme, we
adopted the random feature remover as a baseline reference for evaluating the effectiveness of the
competitors.

The top 90% of features were removed for the ROAR test, whereas the top 10% of features were
kept for the KEAR test. To highlight the “sign” issue, we also performed feature ranking based on
the absolute values of their attribution scores for the removal test, referred to as ROAR-abs (remove
and retrain — based on absolute attribution score). To minimize the potential impact of randomness
during the training process, we independently retrained 5 models on each manipulated dataset and
reported the averaged accuracies of the five models under different settings. It is noteworthy that lower
retraining accuracy indicates better explanation quality in the removal tests (ROAR and ROAR-abs),
whereas higher accuracy reflects superior explainer performance in KEAR. Results from the desgiend
experiments are presented in Table 3. For random removal, the same figures are reported across the
three retraining settings as the proportions of remaining features are identical in all cases, i.e. 10%.

In the ROAR test, all explanation methods show minor manipulation impacts due to the previously
discussed “sign” issue and fail to excel random removal. By contrast, the ROAR-abs test demonstrates
that removing residual negative information enhances the effectiveness of manipulation, providing
indirect evidence for the “sign” issue. However, the origin of negative attributions is complex and
influenced by various factors, e.g. the baseline choice and a feature’s association with the prediction
function. Ranking features based on the absolute value of their attribution scores may unnecessarily
include irrelevant features, as it cannot distinguish between the different causes of a negative sign,
rendering this approach a suboptimal solution.

After addressing the distortion caused by residual information, the KEAR test offers a more faithful
assessment of explanation quality. The success of the explainers in identifying the most informative
features results in relatively high classification accuracy with only 10% of features retained. Notably,
our findings closely align with the observations by Hooker et al. (2019). Their results of exactly
the same experiment, presented in Table 2 on page 17 (the first four columns), also demonstrate the

5https://pytorch.org/vision/main/models/efficientnet.html
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superiority of IG, consistent with its widely recognized effectiveness under the traditional deletion
scheme. The last column of Table 3 presents the nAOPC scores obtained following the traditional
deletion approach. The KEAR results, alongside the nAOPCs, show that the retraining scheme and
recursive deletion scheme are parallel evaluation options rather than contradictory approaches. While
the metrics employed by the two schemes differ in scale, leading to difficulties in direct numerical
comparisons, the consistency in relative rankings within each test provides a meaningful reference of
nAOPC as a valid metric.
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