
LAUGHING HYENA DISTILLERY
Extracting Compact Recurrences From Convolutions

Stefano Massaroli∗,1, Michael Poli∗,2, Daniel Y. Fu∗,2,
Hermann Kumbong2, Rom N. Parnichkun3, Aman Timalsina4,

David W. Romero5, Quinn McIntyre2, Beidi Chen6, Atri Rudra7, Ce Zhang8,
Christopher Re2,†, Stefano Ermon2,†, Yoshua Bengio1,†

∗Equal contribution. † Equal senior authorship. 1Mila and Université de Montréal. 2Stanford University.
3The University of Tokyo. 4Purdue University. 5Vrije Universiteit Amsterdam. 6Carnegie Mellon University

and Meta AI (FAIR). 7University of Buffalo, SUNY. 8University of Chicago and Together Computer.

Abstract
Recent advances in attention-free sequence models rely on convolutions as alternatives
to the attention operator at the core of Transformers. In particular, long convolution
sequence models have achieved state-of-the-art performance in many domains, but in-
cur a significant cost during auto-regressive inference workloads – naively requiring a
full pass (or caching of activations) over the input sequence for each generated token
– similarly to attention-based models. In this paper, we seek to enable O(1) compute
and memory cost per token in any pre-trained long convolution architecture to reduce
memory footprint and increase throughput during generation. Concretely, our methods
consist in extracting low-dimensional linear state-space models from each convolu-
tion layer, building upon rational interpolation and model-order reduction techniques.
We further introduce architectural improvements to convolution-based layers such as
Hyena: by weight-tying the filters across channels into heads, we achieve higher pre-
training quality and reduce the number of filters to be distilled. The resulting model
achieves 10× higher throughput than Transformers and 1.5× higher than Hyena at
1.3B parameters, without any loss in quality after distillation.

1 Introduction

Attention-free approaches such as long convolution sequence models (LCSMs), e.g., H3 [1], Hyena
[2], have shown promise in matching Transformer [3, 4] performance across a wide range of tasks,
with sub-quadratic complexity with respect to sequence length. Despite the improved efficiency during
training on long sequences, unless the convolution filters are either short or admit a low-dimensional
state-state-space realization, LCSMs still need to process the entire growing sequence at every step of
auto-regressive generation, similarly to Transformers.
In this work, we seek to refine LCSMs in both efficiency and quality. First, we study the inference stage,
and propose methods to enable a recurrent mode for auto-regressive generation. Recurrent modes pre-
scribe the existence of a state encoding the past information of the process in a fixed-dimension memory,
enabling constant per-step time and constant-memory in generation. Then, we draw upon an anal-
ysis of pre-trained models to develop architectural enhancements for the Hyena block, simultaneously
improving model quality and efficiency of the distillation procedure.

Distilling fast recurrences We introduce LaughingHyena, the first distillation approach for LCSMs
that enables recurrent inference without impacting downstream quality. LaughingHyena seeks compact
recurrences in the form of state-space models (SSMs) [5, 6] as the solution of a nonlinear interpolation
problem involving the convolution filters of a pre-trained model. Since the total memory cost of SSMs
grows linearly in the state dimension d, our distillation procedure enables high throughput by enabling
processing of large batches during generation. We identify and address three core challenges related to
distillation, including the identification of:

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

• Target state dimension: we identify candidate state dimensions of our distilled SSMs by analyzing
the spectrum of the Hankel operator associated with each convolution [7].

• Parametrization: we address issues with naive parametrizations by introducing a factorized modal
form, inspired by barycentric [8] and Prony-like [9] methods .

• Approximation metric: to ensure compatibility with any downstream task, we choose discrepancy
metrics on the convolution filter, rather than model outputs.

In auto-regressive workloads, LaughingHyena-distilled models with state dimension d can generate K
tokens in O(dK) time and with constant O(d) memory – improving over the O(K2) time and O(K)
memory usage of kv-cached Transformers and naively executed long convolutions. At model sizes
above one billion parameters, LaughingHyena achieves 10× higher peak throughput over comparable
Transformers (Figure 1.1), and can process larger batch sizes. Constant memory generation enables
larger K for a given a memory constraint e.g., generating 512 tokens with LaughingHyena requires
3× less memory than with a Transformer. At smaller batch sizes, latency of LaughingHyena is also
competitive with Transformers, reaching ≥ 2× speedups at longer prompt lengths.

100 200 300 400 500

0.2

0.4

0.6

0.8

1
·104

Batch SizeG
en
er
at
io
n
T
h
ro
u
g
h
p
u
t
[t
o
k/

s]

Laughing Hyena 1.3B Hyena 1.3B

Hybrid Attn. H3 1.3B Transformer 1.3B

Figure 1.1: Throughput (in generated tokens) of Trans-
formers, H3 and Hyena models. LaughingHyena is a re-
current model distilled from a pre-trained Hyena. Work-
load involves generating 256 tokens given a prompt of
length 512.

Improving pre-training quality We leverage
our analysis of the distillation process to open
up new avenues of improvement for LCSM ar-
chitectures. Indeed, the high compression rates
achievable through LaughingHyena hint at sub-
utilization of the convolution. We revisit the
multi-headed design of H3 [1]; tying weights
across channels pushes long convolution filters
towards larger effective dimension, and as an ad-
ditional advantage reduces the runtime of post-
training distillation and inference memory foot-
print. Further, multi-head Hyena models improve
on pre-training perplexity over regular Hyena and
GPT [10] architectures on the language dataset
THE PILE [11].

2 Preliminaries and Related Work
We discuss convolutions, state spaces and auto-regressive generation workloads for sequence models.

Convolutions Let ∗ denote the convolution operator. It is defined as the dual operation to point-
wise multiplication under Fourier transform. In signal processing and deep learning alike, one often
encounters the causal linear convolution of a filter h (which may extend indefinitely) with an input u of
length L:

(h ∗ u)t =
t∑

j=0

ht−juj . (2.1)

Generally, ut ∈ RD where D is the width of the signal – or in deep learning parlance – the number
of channels. Without loss of generality, we specialize our analysis to single input single output layers,
i.e. with D = 1. For the input-output relations of type (2.1), we use the terms convolution layer and
linear system interchangeably. Similarly, the function t 7→ ht is referred to as both the filter and the
impulse response of a linear system. Existing convolution sequence models can be classified in terms
of the parametrization used for their filters. The class of implicit convolutions represent the filter as a
parametric function γθ : t 7→ ht.

State-space realization One option is to select γθ as the impulse response function of a discrete linear
time-invariant system,

xt+1 = Axt + But

yt = Cxt + h0ut
, t 7→ ht =

{
h0 t = 0

CAt−1B t > 0
(2.2)

with state xt ∈ Rd, input ut ∈ R, and output yt ∈ R. The matrices A ∈ Rd×d, B ∈ Rd×1, C ∈ R1×d,
and h0 ∈ R are the learnable parameters of the model while the initial state x0 is usually set to zero
such that u 7→ y is a pure convolution. While linear systems (2.2) are the staple of signal processes
and control theory, their use as implicit parametrization of convolution filters in deep neural networks
have only recently emerged [12, 6]. Other parametrizations [13, 14, 2] select γθ(t) as different flavors

2

of implicit representation neural networks [15, 16]. The latter are generally more powerful in terms of
the class of filters they can represent and flexibility during training, at the cost of losing a fixed state
dimension.

2.1 Long Convolution Sequence Models
u

T(v)

T(k)

T(q)

Mk Th Mq

k

q

v y

Figure 2.1: H-block. T(q), T(k), T(v)

are short-convolution operators.

The H-family of convolution sequence models – H3 [1] and Hyena
[2] – relies on a combination of long convolutions and data-
controlled gating to replace attention with sub-quadratic scaling
in sequence length1. We use the deep learning convention of nam-
ing different projections as query q, key k and value v. Let Mq and
Mk be the L-by-L diagonal matrices whose respective main diagonal entries are the respective entries
of length-L sequences q and k. A H-block realizes a surrogate attention matrix with a data-controlled,
parameterized decomposition in three terms:

(q, k, v) 7→ H(q, k)v, H(q, k) = MqThMk (2.3)
where Th∈RL×L is the Toeplitz matrix constructed from the learnable long convolution filter h, i.e.,
Th=(hi−j)

L−1
i,j=0. The qkv-projections are themselves the output of a convolution between the input

sequence and three distinct short filters. The degrees of freedom in H-block design are the three short
filters2 and the long filter h. The long filter can be parameterized using an implicit neural represen-
tation [2], state-space model [1], or explicit values [17]. The threefold decomposition of the attention
operator, allows evaluation of (2.3) in just Õ(L) := O(L log2 L) time (two convolutions3 and two
element-wise products), yt=qt(h∗kv)t. The overall operator acts on an input u by constructing a third-
order multi-variate polynomial of u whose coefficients are controlled (nonlinearly) by parameters of the
block.

2.2 Auto-Regressive Generation
A typical workload for sequence models is auto-regressive generation. Given a length-T prompt u ∈
RT , the model is tasked with producing the following K additional outputs – one at a time – for a
resulting output sequence y of length L=T+K.

Convolution sequence models After processing the initial prompt in Õ(T) time and obtaining a
length-T output u 7→ y0, . . . , yT−1, a generic convolution layer can cache the output sequence
and generate any additional outputs using (2.1) auto-regressively, i.e. yt+1=

∑t
j=0 ht−jyj for

t=T−1, . . . , T+K−1. It is important to note that auto-regressive generation with generic long con-
volutions is expensive. It comes with a quadratic cost in the number K of tokens to be generated and
require storing a cache of length up to L.

Lemma 2.1. Generating K tokens with a long convolution layer (2.1) from a length-T prompt
has time complexity O(T log2 T + TK +K2) and requires O(L) memory.

State-space models When the linear system admits a state space realization (2.2), i.e. it is able to
switch between convolution and recurrent mode, the cost of auto-regressive generation can be dramat-
ically reduced. The memory footprint is O(d): all we need to cache is the state xt, a d-dimensional
vector. With some further machinery that we develop in next section, we can retain Õ(T) time and
O(T) memory to process the prompt4 and initialize the state xT−1. Each additional generation step
only requires O(d) time.

Lemma 2.2. Generating K tokens with a state-space model (2.2) from a length-T prompt has
time complexity O(T log2 T+dK) and requires O(T + d) memory.

Note that long filters h truncated to length d (i.e. ht=0 for t > d − 1) can also be interpreted as
d-dimensional SSMs (see Appendix A.7) where the state (a cache) coincides with the last d inputs.

Transformers Self-attention is certainly less efficient than long convolutions in processing the
prompt, coming with a hefty O(T 2) time complexity. However, Transformers can achieve a similar

1In this work, we consider second-order Hyena blocks [2] to automatically extend our findings to H3 [1].
2The short filters are explicitly parameterized, see [2].
3The qkv short convolutions can be evaluated in batch with a single pass. The second convolution is the one

with the long filter h and performed via Fast Fourier Transform (FFT), hence the Õ(L) complexity.
4In §3.4 we show that multiple pre-filling strategies exist, with different trade-offs in time and memory.

3

efficiency in auto-regressive generation by caching the sequences of past keys {kt} and values {vt}.
Specifically, from t=T−1 onward, the new projections (qt+1, kt+1, vt+1) are evaluated from the current
output yt, and the new output yt+1 can be computed in linear time with two reductions

yt+1 =

∑t+1
j=0 φ(qt+1kj)vj∑t+1
i=0 φ(qt+1kj)

where φ : R→ R is usually chosen as φ(x) = ex.

Lemma 2.3. Generating K tokens with self-attention from a length-T prompt has time complexity
O(T 2+TK+K2) and requires O(L) memory.

3 The Laughing Hyena Distillery
In this section, we introduce our distillation method. We discuss choosing an approximation objective,
a parametrization for the approximant and setting a target state dimension.
Given any pre-trained LCSM, the objective of the distillation procedure is to convert each pre-trained
convolution filter into a distinct state-space model (2.2). This should be achieved with the smallest
state dimension d which preserves, up to a certain tolerance, the input-output characteristics of the
convolution layer. Formally, given a filter h the distillation problem is defined as follows.

Given the sequence h1, . . . , hL, find a state-space model (2.2) of dimension d ≪ L, whose
input–output behavior approximates the one of the convolution with h over the largest class of
input sequences.

The choice of approximation metrics and assumptions on the input sequences yield different distilla-
tion objectives. A distillation algorithm constitutes a systematic procedure for optimally choosing the
systems matrices with respect to a particular objective. In instances where the original filter h is itself the
impulse response of a finite-dimensional state-space model, e.g., when attempting distillation of H3 or
S4 [6] filters, the term distillation becomes analogous to model-order reduction. Hence, in such cases,
the distillation algorithm should yield a state-space representation of a lower order state-dimension.

There exist several algebraic solutions to the model reduction problem [18, 19, 20], typically seeking
low-rank structures of the state space by inspecting some invariant of the system, e.g. the Gramians in
balanced truncation [19, Ch. 7]. The lower-order system is then obtained as a projection of the system
dynamics onto the found subspace where the system retains desired characteristics, e.g., input-output
behavior, stability, etc.

Truncated filters In theory, implicitly parameterized convolution filters can represent arbitrarily long
signals. In practice, these filters are trained on a fixed maximum length L. At inference time the model
can then be evaluated for sequences longer than L. During distillation it is nonetheless reasonable to
treat the pre-trained filters as potentially very long (even beyond L) but finite impulse response functions
[21, 22, 23, 24]. We show how this choice is supported by empirical evidence displaying how pre-trained
filters typically decay to zero in finite time (see Appendix D).

Transfer function representation An alternative description of the system (2.2) is its transfer function
H , defined as the z-transform of the impulse response H(z)=

∑∞
t=0 htz

−t for all z∈C where the sum
converges. The transfer function is a proper rational function of z

H(z) = h0 + C(zI− A)−1B = h0 +
b1z

−1 + · · · + bdz
−d

1 + a1z−1 + · · · + adz−d
. (3.1)

In the z-domain, the transfer function defines the input-output map as Y (z) = H(z)U(z). Here,
H(z) is defined outside the C-plane circle of radius ρ(A), Dρ(A):={z ∈ C : |z| > ρ(A)} where
ρ(A) is the spectral radius of A, i.e. the amplitude of its largest eigenvalue. We can recover all
characteristics of a given system equivalently from either its transfer function or state-space rep-
resentations (see Appendix A.3 for further details and derivations). Notably, the transfer function
is an invariant of the system: if we apply a change of variables to the state, the transfer function
remains unchanged (Lemma A.3). This alone should discourage attempts at modeling filters by
learning dense state-space matrices A,B,C as such: there are infinitely many equivalent state-
space realizations that map to the same system. Starting from coefficients (ai) and (bi) of the ra-
tional transfer function (3.1), we can compute the impulse response in Õ(L) time (Lemma A.6).
Moreover, we can map back the transfer function to a special state-space realization – the com-
panion canonical form – whose recurrence has time complexityO(d) (Lemma A.7), compared to

4

Sequence
Dataset

Pretrain
Conv. Model

h

Hankel
SVD

candidate
state dim d

Distill
State-Space

A,B,C, h0
Compose
Recurrence

Compute
Transfer Function

Deployment

- Downstream eval.
- Fine tuning

Get initial value h0

Figure 3.1: The LaughingHyena long convolution sequence model distillation blueprint.

the O(d2) of dense state-space matrices. From Lemmas A.3 and A.7 we can also prove that any
stable state-space model can be converted by canonicalization into its companion form, and thus
can be equipped with an efficient recurrence (Thm. A.8).

The distillation problem presents several challenges:
1. Defining the distillation objective. A primary decision involves selecting a distillation objective.

We are primarily interested in metrics of pure discrepancy between each filter of a pre-trained deep
model and its approximator, rather than the expected input-output loss over a distribution of inputs.

2. Choosing a state-space parametrization. It is crucial to determine a suitable parametrization of
the distilled state-space realization. Once this is decided, the task is to identify the parameters that
minimize the distillation desiderata, which can involve challenging optimization problems in itself.

3. Selecting the target state dimension. Lastly, a challenge is to estimate the degree to which the
model’s order can be reduced. In other words, we must select the target state dimension of the
distillation process to identify the right trade-off between efficiency and accuracy.

In the following, we address each of these challenges, and provide a comprehensive approach (summa-
rized in Figure 3.1) to distill recurrences from convolution-based architectures.

3.1 Data-Free Distillation Objectives
We focus on distillation objectives that are independent of the training data and the overall architecture
of the neural network under consideration. The distillation loss should be chosen as a pure measure of
discrepancy between each convolution filter ht of the model and their finite-dimensional approxima-
tions ĥt = CAt−1B. This approach ensures that we do not require a full sequential inference pass over
the pre-trained model at each step of distillation procedure and the distilled model can be more broadly
applied to downstream tasks. This choice is supported by Young’s convolution inequality [25, 26],
which indicates that the output approximation error has a bound ∥y− ŷ∥r ≤ ∥h− ĥ∥q∥u∥p for properly
chosen norms5. For maximum numerical stability and freedom of parametrization for the approximants,
we favor modern unconstrained gradient-based approaches to then solve the resulting distillation pro-
gram6. We design distillation algorithms which either match filters in time domain minimizing the ℓ2
error (∥h∥2 := [

∑
t∈Z |ht|2]1/2) or match their transfer functions optimally with respect to theH2 norm

(∥H∥2 := [(1/2π)
∫ π

−π
|H(eiω)|2dω1/2)7. As the distillation is carried out via gradient methods, ℓ2

is a natural candidate. H2 error minimization can instead be used to uniformy bound the worst-case
discrepancy as ∥h− ĥ∥∞ ≤ ∥H − Ĥ∥2 (see Appendix A.2 for further details).

3.2 Making Hyena Laugh with Modal Interpolation
Our degrees of freedoms to solve the distillation problem are the matrices A, B, and C of the state-space
realization, which determine the filter for all t > 0. In distilled SSMs, the passthrough (residual) term
cannot be freely assigned: it is simply h0, the value of the original filter at zero. Alternatively, given its

5p, q, r > 0 should satisfy 1/q + 1/p = 1/r + 1. In the case of infinite sequences defined on the all Z, the
norms are taken in a ℓp, ℓq, ℓr sense, respectively. The bound is potentially sharp [27, 28]

6For completeness, we also test balanced and modal truncation techniques on a suite of pre-trained H3 and
Hyena models in Appendix E.3.

7Such norms are always well-defined for finite sequences of interest which are in ℓ∞.

5

appealing invariance properties, we can parametrize a proper rational function Ĥ(z) (3.1) and fit it to
the (truncated) transfer function8 of the original filter HL(z):=

∑L
t=0 htz

−t (see Appendix B.2).

Modal canonical form Optimizing the full transfer function can be numerically challenging for sev-
eral reasons e.g., ensuring stability9, and ill-posedness for high-order polynomials. A natural solution,
inspired by barycentric approaches to rational function approximation [29, 8], is to assume d distinct
roots λn in the denominator’s polynomial, λn ∈ roots(poly(a)).

Proposition 3.1 ([5]). If poly(a) has distinct roots {λn ∈ C}, then the transfer function of the
system can be factorized as Ĥ(z)=

∑d
n=1 Rn/(z − λn), ∀z ∈ Dρ(A) where {Rn ∈ C} is the

residue associated with the pole λn.

Computing the inverse transform of the expanded transfer function via, e.g., the Cauchy residue theorem
[30], shows that the resulting impulse response ĥ corresponds to a truncated basis of exponentially
decaying complex sinusoids

ĥt =

d∑
n=1

Rnλ
t−1
n , Rn, λn ∈ C, t > 0. (3.2)

In practice, this corresponds to the impulse response of state-space model with diagonal matrix A =
diag(λ1, . . . , λd) and such that BiCi = Ri for all i = 1, . . . , d. The distillation problem can be
then defined in terms of the L-point nonlinear least squares interpolation error (squared ℓ2) between
h1, . . . , hL and (3.2) evaluated for t=1, . . . , L: min{λn,Rn} ∥ĥ − h∥22. Note that in case of the target
filter h being real-valued, the objective can be replaced by ∥R[ĥ]− h∥22.

0 20 40 60 80 100 120

−0.5

0

0.5

1

t

h
t

Modal Interpolation

Rnλ
t−1
n ht ĥt

Figure 3.2: Example of modal interpolation. The
approximant is a linear combination of exponentially-
decaying complex exponential basis functions with
learned decay rate.

Although we find solutions of the distillation (in-
terpolation) problem via modern gradient-based op-
timization techniques, it is worth mentioning that
Prony showed how the nonlinear least square solu-
tion can be computed solving two linear problems
[9]. However, similar to Padé’s method for rational
approximation [31], these techniques can be numer-
ically unstable. We opt for a parametrization similar
to [32, 33] where each eigenvalue is parameterized
in polar form λn:=Ane

iθn and the residues in carte-
sian form10. Note that, with this parametrization we
have R[ĥt] =

∑
n A

t−1
n [R(Rn) cos(θn(t− 1)) −

I(Rn) sin(θn(t− 1))]. We can also solve the distil-
lation problem in theH2 sense by evaluating ĥt and
ht at t = 0, . . . , L − 1 and taking their respective

(discrete) Fourier transform before computing the objective. Efficient evaluation of (3.2) is crucial for
distillation. In particular we show the following:

Lemma 3.1. Evaluation of (ĥt)
L−1
t=0 (3.2) can be done in O(dL) time from its modal form and in

Õ(L) time from its proper rational form.

3.3 Minimal Distillation Orders
Distilling into lower-dimensional systems is always desirable as they require fewer parameters to be
optimized and they yield recurrences that are (linearly) more efficient in terms of time and memory
complexity in post-distillation auto-regressive inference workloads. The dimension of the smallest pos-
sible state-space model with impulse response exactly {ht}t∈N is the so-called McMillan degree [34]:

d⋆ = argmin
d

d : ∃A ∈ Cd×d,B ∈ Cd×1,C ∈ C1×d with ht = CAt−1B, ∀t > 0 (3.3)

Theorem 3.1 (Ho-Kalman [35, Theorem 2, Corollary]). Let S be the (infinite) Hankel matrix
constructed with h, i.e. S := (hi+j)

∞
i,j=1. Then, d⋆ = rank(S).

8As already partially discussed in [6], the truncation introduces a correction term in the approximant transfer
function. See Appendix A.4.

9i.e normalizing denominator polynomial coefficients to constrain roots within the unit circle.
10We report additional details on the nuances of the parametrization in Appendix B.1.

6

A lower bound for d⋆ can be estimated from a truncated filter of length L by constructing the L × L
principal sub-matrix SL and using the fact that rank(S) ≥ rank(SL). Inspecting how fast the Hankel
singular values (σn)

L
n=1 decay in pre-trained convolution models can be predictive of the approximation

quality at a fixed dimension. As a rule of thumb, d needs to be sufficiently large for σd+1 to be suffi-
ciently small11. Specifically, we can prove that the last singular value σd determines the upper bound
of distillation quality with a SSM of dimension d, in terms of the Hankel norm [19]. This is a direct
consequence of Adamjan-Arov-Krein theorem [7] and can be informally stated as follows.

Theorem 3.2 (Informal). Let h be a length-L filter, ĥ a distilled filter of order d < L and let
SL, ŜL be the respective Hankel matrices. Then inf ŜL

∥SL − ŜL∥2 = σd.

3.4 Deploying the Recurrence
Once all the filters of a pre-trained model have been distilled with the proposed modal interpolation
technique described above, the model unlocks a recurrent mode which allocates a state xt ∈ Cd for each
filter and enables fast auto-regressive inference. Deployment of distilled model involves two critical
steps: the pre-filling and the recurrent update rule itself.

Fast pre-filling During auto-regressive generation, when a length-T prompt is fed to the model, we
need to compute the state xT to start generating new tokens. Using the recurrence, the time complexity
of initializing xT would be O(dT) with a O(d) memory footprint. One can alternatively distribute the
computation on d processors with a parallel scan operation [37, 38] to reach a parallel time complexity
O(d log2 T) while incurring in an increased memory requirement of O(dT)12. A third option is to use
a single FFT convolution to obtain xT in Õ(T) time and O(T) memory.

Proposition 3.2. xT = (νT , . . . , νT−d) where νt = (g ∗ u)t and g is the filter whose transfer
function is 1/den(Ĥ)(z) and can be evaluated in Õ(T).

Note that, the fast pre-filling algorithm established by this result requires evaluating the denominator
polynomial of Ĥ from its roots before deployment. This is equivalent to converting the transfer function
from its factorized representation to its rational form (3.1).

Recurrent step The update rule is diagonal, thus efficiently evaluated in O(d) time and memory:

Proposition 3.3. The filter (3.2) has a state space matrices A = diag(λ1, . . . , λd) ∈ Cd×d, B =
(1, . . . , 1)⊤ ∈ Cd×1, C = (R1, . . . , Rd) ∈ C1×d whose step can be evaluated in O(d) time and
memory.

As we generally want the output yt to be real-valued, we can simply update the complex state xt+1 =
Axt + But and then take the real part of the output, yt = R[Cxt] + h0ut.

4 Multi-head Long Convolutions
We can leverage the Hankel spectrum analysis discussed in Section 3.3 to study the dynamics of the
effective dimensionality of each convolution filter during LCSMs pre-training. We find that, at ini-
tialization, filters correspond to high-dimensional SSMs, and gradually converge to lower-dimensional
representations during training. See Appendix E.2 for examples on Hyena and H3 models.
This observation leads to the question: is it advantageous to perform independent long convolutions on
each channel, or can we reduce the total number of filters without loss in quality? To answer this, we
adapt the multi-head layer design proposed by H3 [1] to Hyena [2]:

1. Given the projections q, k, v ∈ RL×D, we split them into M chunks of size N=D/M ,
qm, km, vm ∈ RL×N .

2. Each chunk is processed by a modified Hyena operator: first, we perform the outer product of km
and vm along the spatial dimension, zm:=km ⊗ vm ∈ RL×N×N , apply a long convolution with
filter hm to all N×N elements independently, then compute ymt =(hm ∗ zm)tq

m
t , ym ∈ RL×N as

shown in Figure 4.
3. Finally, we compose y1, . . . , ym into a single output y ∈ RL×D via concatenation.

11Formally, this is related to low-rank approximation characteristics of the Hankel operator; rigorous bounds
can be constructed by application of the Eckart–Young–Mirsky theorem [36].

12This strategy can also be use to evaluate the filter ĥ alternatively to the standard O(dL) method

7

vm

km

qm

outer Tm
h dot

Figure 4.1: A single head of a multi-head
Hyena.

An instance of a MultiHyena is equipped with M < D dis-
tinct long convolution filters, which leads to (a) faster dis-
tillation, with less filters to approximate, (b) lower memory
footprint, via a total reduction of the states to cache dur-
ing generation and (c) faster filter generation, by tying the
weights of filter parameters. We note that tying weights of
key-value projections has also been shown to be an effective
technique to reduce memory cost in Transformers [39, 40].
Crucially, the multi-head structure of MultiHyena enables us to prove favorable scaling in the associa-
tive recall synthetic task, which was shown in [2] to be predictive of performance at scale. In associative
recall, the model is given a sequence of key-value pairs and a query, and is tasked with matching the
query to a key in the sequence by returning its associated value. The difficulty of the task grows with
the vocabulary size s: larger vocabularies necessitate wider models.

Theorem 4.1. The MultiHyena layer, withO(log s) heads and model sizeO(√s log s) can solve
the associative recall problem, where s denotes the vocabulary size.

In Appendix E.1, we empirically verify improved scaling in vocabulary size with multiple heads.

5 Experiments
• Pretraining: We pretrain a suite of MultiHyena language models on The Pile [11], investigating

scaling of perplexity with different amounts of total tokens (5, 10, 15 billion), as well as larger
training runs for 300 billion tokens. MultiHyena outperforms Transformers and Hyena.

• Distillation analysis: We investigate the relation between optimal distillation orders, Hankel spec-
trum, and errors on the logits of distilled models.

• Post-distillation downstreams: We evaluate the downstream impact of distilling long convolutional
language models, reporting HELM [41] and LM-Eval-Harness [42] results.

• Benchmarking: We benchmark latency, throughput and memory along the different axes of batch
size, sequence length, number of generated tokens. We include base models, distilled models and
equivalent Transformers.

5.1 Pre-training
To validate the multi-head formulation, we train 150 and 350 million parameter MultiHyena models on
The Pile [11] using 8 heads and otherwise the same architecture as equivalent Hyena models, following
the setup of [2]. Via the multi-head structure introduced in 4, MultiHyena outperforms both Hyena and
Transformers, including on data scaling runs with increasing numbers of tokens and full 300B tokens
runs (Table 5.1).

5.2 Distillation Analysis
Next, we verify whether Hankel singular values are predictive of downstream errors, and whether large
models can be distilled without loss in quality. We apply LaughingHyena distillation to pre-trained
MultiHyena, Hyena and H3 of different sizes. Concretely, for each layer and channel of a model, we
parametrize the poles {λn} of the modal canonical forms (Section 3.2) at different orders d, and solve
for each ℓ2 approximation problem.

Approximation errors and spectrum We investigate the magnitude of approximation errors intro-
duced by LaughingHyena distillation. Given a pretrained MultiHyena model, we compute the errors
between original and distilled filters at each layer, averaged across channels. We repeat this process for
different distillation orders (state dimension of the model form of Section 3.2). Figure 5.2 visualizes

Model PERP.

GPT 9.3
Hyena 9.3

MultiHyena 8.7

Model 5B 10B 15B

GPT (125M) 13.3 11.9 11.2
Hyena (153M) 13.3 11.8 11.1

MultiHyena (153M) 12.1 11.0 10.6

Model 5B 10B 15B

GPT (355M) 11.4 9.8 9.1
Hyena (355M) 11.3 9.8 9.2

MultiHyena (355M) 10.6 9.4 8.9

Table 5.1: [Left] Perplexity of small models on THE PILE, after pre-training for 300 billion tokens. [Center and
Right] Perplexity on THE PILE for models trained until a total number of tokens e.g., 5 billion (different runs for
each token total).

8

1 10000 20000 30000 40000 50000
−1

0

1

2

er
ro
r

Relative ℓ1 Error on Logits
d = 8

1 200 400 600 800

10−1

100

Error Inset
d = 8

1 10000 20000 30000 40000 50000
−1

0

1

2

Sorted Logits

er
ro
r

d = 16

1 200 400 600 800

10−3

10−2

10−1

Sorted Logits

d = 16

Figure 5.1: Errors between logits of pretrained and distilled MultiHyena. In blue, we plot (ordered) logits, in
light blue the cumulative distribution function, and in black the relative errors. The green dotted line indicates the
99.99% percentile. As the errors grow slowly as function of the percentiles, model outputs do not diverge from the
base model.

minimum, maximum and average errors, per-layer errors and the distribution of the singular values of
the Hankel operator associated to each filter. We observe distillation orders (> 16) that yield smalls
errors to be predicted by the distribution of singular values. Thus, analysis of the Hankel operator’s
spectrum is verified to be an effective approach to direct estimation of the optimal distillation order. We
also note that the optimal order changes across layers, offering options for further optimization.

Output errors Next, we compute relative ℓ1 error between output logits of pre-trained and distilled
models to ensure LaughingHyena can be used in generation workloads. The optimal minimal distillation
order estimated via Hankel operators (16) is sufficient to keep the output distribution over the vocabulary
(> 50k entries) close to the pre-trained model, as shown in Figure 5.2. Inspecting the error profile
over logits sorted by magnitude reveals our approach to be robust to different sampling strategies for
generation, including greedy decoding, top-k, top-p [43]. Indeed, the relative errors are < 10−2 up to
and including the 99.99% percentile of the distribution, meaning e.g., a top-p sampling strategy with
large p can be used on a distilled model without drift in outputs (mis-classified tokens). We note that the
relative errors are maximum on small-norm logits, which are not required by most sampling strategies.
In Appendix D.2, we provide a similar distillation error analysis for Hyena and H3 models. We find that
Hyena and can be distilled with less than 32 orders and H3 with less than 8.

5.3 Downstream Evaluation
We check how distillation affects downstream performance on language benchmarks. We apply distil-
lation of order 8, 16 and 32 to our THE PILE-pretrained MultiHyena language model and benchmark
(Table 5.3) its performance on a suite of canonical (zero shot) tasks from LM-Eval-Harness [42] and
HELM [41]. The results are consistent with our error analysis: distillation orders equal or greater to 16
introduce little-to-no quality degradation.

Model LAMBADA Winogrande PIQA HellaSwag OpenbookQA
acc acc acc acc norm. acc norm.

Pythia (160M) 32.8 53.1 61.6 31.6 29.2
MultiHyena (154M) 43.2 52.7 64.6 34.1 29.0
LaughingHyena-16 43.1 52.6 64.7 34.1 28.9
LaughingHyena-8 0.0 51.8 51.5 32.7 28.2
LaughingHyena-4 0.0 49.6 53.7 26.4 26.4

Table 5.2: Evaluation of LaughingHyena-distilled models pre and post modal distillation. We test on LM-Eval-
Harness [42] and HELM [41] tasks, reporting Pythia [44] performance as a Transformer baseline trained on the
same data. LaughingHyena-d is a MultiHyena model with each filter distilled of order d.

9

2
1

2
3

2
5

2
7

0

0.1

0.2

er
ro
r

ℓ1 Error

2
1

2
3

2
5

2
7

0

1

2

3

er
ro
r

ℓ2 Error

2
1

2
3

2
5

2
7

0

10

20

er
ro
r

ℓ∞ Error

2
0

2
2

2
4

2
6

0

2

4

6

·102

si
n
g
u
la
r
va
lu
e

Hankel Singular Values

2 3 4 5 6 8

1
0

1
2

1
6

2
0

3
2

6
4

1
2
8

1

3

5

7

9

11

13

15

17

order

d
ep
th

0.1 0.2

2 3 4 5 6 8

1
0

1
2

1
6

2
0

3
2

6
4

1
2
8

1

3

5

7

9

11

13

15

17

order

d
ep
th

0 1 2 3

2 3 4 5 6 8

1
0

1
2

1
6

2
0

3
2

6
4

1
2
8

1

3

5

7

9

11

13

15

17

order

d
ep
th

5 10 15 20

4

1
6

3
2

6
4

1

3

5

7

9

11

13

15

17

singular value index

d
ep
th

0 25 > 50

Figure 5.2: Approximation error profiles (min, max, average) on the filters of MultiHyena model after distillation
at different orders. We also visualize the distribution of Hankel singular values: if the spectrum decays after n
singular values, order n distillation yields low errors.

5.4 Benchmarking
We measure throughput, latency and memory usage of LaughingHyena for auto-regressive generation
workloads, with initial prompt length T and number of generated tokens K. The throughput is computed
as number of generated tokens over latency. For each setting (and additional benchmarks), we provide
details in Appendix D.4.

Peak throughput Distilled models do not need kv-caches. This reduces memory requirement dur-
ing generation, enabling higher peak throughput in large-batch workloads. We achieve 10× higher
throughput than Transformers at size 1.3 billion parameters (Figure 1.1). Throughput is higher than
Transformers even at fixed batch sizes, indicating lower latency.

SSM state dimension and throughput For typical distillation orders (< 100), peak throughput is not
greatly affected. We measure a 2% reduction in throughput from 32 to 64.

Prompt length The throughput of LaughingHyena-distilled models is 4× larger than Transformers at
fixed batch size 64 and prompt length 1536 (Figure 5.3). As prompt length increases, the runtime gap
between pre-filling via convolutions in LCSMs and pre-filling in Transformers widens (e.g., Õ(T) as
detailed in Section 3.4, compared to O(T 2)).

Memory footprint Recurrent models do not require kv-caches and use constant memory for genera-
tion of an arbitrary number of tokens (Figure 5.4).

6 Conclusion
We study the efficiency and quality of state-of-the-art long convolutional sequence models. First, we
introduce LaughingHyena, a novel distillation method inspired by rational function approximation and
model-order reduction techniques. LaughingHyena can be applied after training to extract compact
state-space models from each convolutional filter, without loss of quality. Distilled models achieve
higher throughput than equivalently-sized Transformers, and can perform auto-regressive generation in
constant memory by sidestepping the need to cache previous outputs. We theoretically and empirically
investigate the trade-offs of different strategies for fast inference of recurrent models, and introduce
architectural improvements to Hyena that improve pretraining quality.

512 1,024 1,536

1,000

2,000

3,000

Prompt Length

T
h
ro
u
g
h
p
u
t
[t
o
k/

s]

Laughing Hyena 1.3B Hyena 1.3B

Transformer 1.3B H3 1.3B

Figure 5.3: Scaling in prompt T .

64 256 512

10

20

30

Generation Length

M
em

or
y
[G
B
s]

Laughing Hyena 1.3B Hyena 1.3B

Transformer 1.3B H3 1.3B

Figure 5.4: Peak GPU memory for generation.

10

Acknowledgments
We would like to thank Together Computer for providing the compute used to train models in this
paper. We gratefully acknowledge the support of NIH under No. U54EB020405 (Mobilize), NSF un-
der Nos. CCF1763315 (Beyond Sparsity), CCF1563078 (Volume to Velocity), and 1937301 (RTML);
US DEVCOM ARL under No. W911NF-21-2-0251 (Interactive Human-AI Teaming); ONR under
No. N000141712266 (Unifying Weak Supervision); ONR N00014-20-1-2480: Understanding and Ap-
plying Non-Euclidean Geometry in Machine Learning; N000142012275 (NEPTUNE); NXP, Xilinx,
LETI-CEA, Intel, IBM, Microsoft, NEC, Toshiba, TSMC, ARM, Hitachi, BASF, Accenture, Ericsson,
Qualcomm, Analog Devices, Google Cloud, Salesforce, Total, the HAI-GCP Cloud Credits for Re-
search program, the Stanford Data Science Initiative (SDSI), Department of Defense (DoD) through
the National Defense Science and Engineering Graduate Fellowship (NDSEG) Program, and mem-
bers of the Stanford DAWN project: Facebook, Google, and VMWare. This work is supported by NSF
(1651565), AFOSR (FA95501910024), ARO (W911NF-21-1-0125), ONR, DOE (DE-SC0022222), CZ
Biohub, and Sloan Fellowship. The U.S. Government is authorized to reproduce and distribute reprints
for Governmental purposes notwithstanding any copyright notation thereon. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of the authors and do not nec-
essarily reflect the views, policies, or endorsements, either expressed or implied, of NIH, ONR, or the
U.S. Government. AR’s work is supported by NSF grant# CCF-2247014.

Broader Impact
In this work, we focus on advances related to efficient models for long sequences.

Efficiency Our distillation methods for constant-memory, high throughput inference in long convo-
lution sequence models (LCSMs) can lead to energy savings during model deployement, enabling pro-
cessing of longer-form content at a fraction of the cost and reducing environmental impact. Improved
efficiency may also affect other aspects of AI safety, as it may make it easier produce malicious or
harmful content.

Accessibility By improving the efficiency of training and generation,LCSMs and LaughingHyena may
contribute to increased accessibility of large language models, lowering the hardware barrier to entry
for individuals and organizations with limited resources.

Steerability New method based on LCSMs enable sequence models to process long-form prompts
previously inaccessible by Transformers, which may lead to increased control over models via e.g.,
conditioning on additional instructions [45].

11

References
[1] Daniel Y Fu et al. “Hungry Hungry Hippos: Towards Language Modeling with State Space Mod-

els”. In: 2023 (cit. on pp. 1–3, 7, 23).
[2] Michael Poli et al. “Hyena Hierarchy: Towards Larger Convolutional Language Models”. In:

(2023). arXiv: 2302.10866 (cit. on pp. 1–3, 7, 8, 31, 35, 43).
[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. “Neural machine translation by jointly

learning to align and translate”. In: (2014). arXiv: 1409.0473 (cit. on p. 1).
[4] Ashish Vaswani et al. “Attention is all you need”. In: Advances in neural information processing

systems 30 (2017) (cit. on p. 1).
[5] Chi-Tsong Chen. Linear system theory and design. Saunders college publishing, 1984 (cit. on

pp. 1, 6, 19, 21).
[6] Albert Gu, Karan Goel, and Christopher Ré. “Efficiently modeling long sequences with structured

state spaces”. In: (2021). arXiv: 2111.00396 (cit. on pp. 1, 2, 4, 6, 20, 24).
[7] Vadim Movsesovich Adamyan, Damir Zyamovich Arov, and Mark Grigor’evich Krein. “Analytic

properties of Schmidt pairs for a Hankel operator and the generalized Schur–Takagi problem”.
In: Matematicheskii Sbornik 128.1 (1971), pp. 34–75 (cit. on pp. 2, 7, 29).

[8] Yuji Nakatsukasa, Olivier Sète, and Lloyd N Trefethen. “The AAA algorithm for rational approx-
imation”. In: SIAM Journal on Scientific Computing 40.3 (2018), A1494–A1522 (cit. on pp. 2,
6).

[9] GRB Prony. “Essai experimental et analytique sur les lois de la dilatalrlite de fluids elastiques et
sur cells de la vapeur de l’alcool, à différents tempoeratures”. In: Journal de l’Ecole Polytech-
nique (París) 1 (1795), pp. 24–76 (cit. on pp. 2, 6).

[10] Alec Radford et al. “Language models are unsupervised multitask learners”. In: OpenAI blog 1.8
(2019), p. 9 (cit. on p. 2).

[11] Leo Gao et al. “The pile: An 800gb dataset of diverse text for language modeling”. In: (2020).
arXiv: 2101.00027 (cit. on pp. 2, 8, 35).

[12] Albert Gu et al. “Hippo: Recurrent memory with optimal polynomial projections”. In: Advances
in Neural Information Processing Systems 33 (2020), pp. 1474–1487 (cit. on pp. 2, 24).

[13] David W Romero et al. “Ckconv: Continuous kernel convolution for sequential data”. In: (2021).
arXiv: 2102.02611 (cit. on p. 2).

[14] David W Romero et al. “Flexconv: Continuous kernel convolutions with differentiable kernel
sizes”. In: (2021). arXiv: 2110.08059 (cit. on p. 2).

[15] Vincent Sitzmann et al. “Implicit neural representations with periodic activation functions”. In:
Advances in neural information processing systems 33 (2020), pp. 7462–7473 (cit. on p. 3).

[16] Rizal Fathony et al. “Multiplicative filter networks”. In: International Conference on Learning
Representations. 2020 (cit. on p. 3).

[17] Daniel Y. Fu et al. “Simple Hardware-Efficient Long Convolutions for Sequence Modeling”. In:
International Conference on Machine Learning (2023) (cit. on pp. 3, 24).

[18] Kemin Zhou and John Comstock Doyle. Essentials of robust control. Vol. 104. Prentice hall
Upper Saddle River, NJ, 1998 (cit. on p. 4).

[19] Athanasios C Antoulas. Approximation of large-scale dynamical systems. SIAM, 2005 (cit. on
pp. 4, 7, 29).

[20] Wilhelmus HA Schilders, Henk A Van der Vorst, and Joost Rommes. Model order reduction:
theory, research aspects and applications. Vol. 13. Springer, 2008 (cit. on p. 4).

[21] Sun-Yuan Kung. “A new identification and model reduction algorithm via singular value decom-
position”. In: Proc. 12th Asilomar Conf. on Circuits, Systems and Computer. 1978, pp. 705–714
(cit. on p. 4).

[22] D Friedman. “On approximating an FIR filter using discrete orthonormal exponentials”. In: IEEE
Transactions on Acoustics, Speech, and Signal Processing 29.4 (1981), pp. 923–926 (cit. on p. 4).

[23] J Bednar. “On the approximation of FIR by IIR digital filters”. In: IEEE Transactions on Acous-
tics, Speech, and Signal Processing 31.1 (1983), pp. 28–34 (cit. on p. 4).

[24] Bartlomiej Beliczynski, Izzet Kale, and Gerald D Cain. “Approximation of FIR by IIR digital
filters: An algorithm based on balanced model reduction”. In: IEEE Transactions on Signal Pro-
cessing 40.3 (1992), pp. 532–542 (cit. on pp. 4, 44).

12

https://arxiv.org/abs/2302.10866
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/2111.00396
https://arxiv.org/abs/2101.00027
https://arxiv.org/abs/2102.02611
https://arxiv.org/abs/2110.08059

[25] William Henry Young. “On the multiplication of successions of Fourier constants”. In: Proceed-
ings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical
Character 87.596 (1912), pp. 331–339 (cit. on p. 5).

[26] William Beckner. “Inequalities in Fourier analysis on Rn”. In: Proceedings of the National
Academy of Sciences 72.2 (1975), pp. 638–641 (cit. on p. 5).

[27] John Fournier. “Sharpness in Young’s inequality for convolution”. In: Pacific Journal of Mathe-
matics 72.2 (1977), pp. 383–397 (cit. on p. 5).

[28] Tong S Quek and Leonard YH Yap. “Sharpness of Young’s inequality for convolution”. In: Math-
ematica Scandinavica 53.2 (1983), pp. 221–237 (cit. on p. 5).

[29] Jean-Paul Berrut and Lloyd N Trefethen. “Barycentric lagrange interpolation”. In: SIAM review
46.3 (2004), pp. 501–517 (cit. on p. 6).

[30] Marcos Vicente Moreira and João Carlos Basilio. “Fair and Square Computation of Inverse Z-
Transforms of Rational Functions”. In: IEEE Transactions on Education 55.2 (2011), pp. 285–
290 (cit. on p. 6).

[31] Henri Padé. “Sur la représentation approchée d’une fonction par des fractions rationnelles”. In:
Annales scientifiques de l’Ecole normale supérieure. Vol. 9. 1892, pp. 3–93 (cit. on pp. 6, 27).

[32] Ankit Gupta, Albert Gu, and Jonathan Berant. “Diagonal state spaces are as effective as structured
state spaces”. In: Advances in Neural Information Processing Systems 35 (2022), pp. 22982–
22994 (cit. on pp. 6, 24).

[33] Antonio Orvieto et al. “Resurrecting Recurrent Neural Networks for Long Sequences”. In:
(2023). arXiv: 2303.06349 (cit. on pp. 6, 24, 26).

[34] Jeffrey M Hokanson. “A data-driven McMillan degree lower bound”. In: SIAM Journal on Sci-
entific Computing 42.5 (2020), A3447–A3461 (cit. on p. 6).

[35] L Ho and Rudolf E Kalman. “Effective construction of linear state-variable models from in-
put/output functions”. In: at-Automatisierungstechnik 14.1-12 (1966), pp. 545–548 (cit. on p. 6).

[36] Carl Eckart and Gale Young. “The approximation of one matrix by another of lower rank”. In:
Psychometrika 1.3 (1936), pp. 211–218 (cit. on p. 7).

[37] Guy E Blelloch. “Prefix sums and their applications”. In: (1990) (cit. on p. 7).
[38] Jimmy TH Smith, Andrew Warrington, and Scott W Linderman. “Simplified state space layers

for sequence modeling”. In: (2022). arXiv: 2208.04933 (cit. on p. 7).
[39] Noam Shazeer. “Fast transformer decoding: One write-head is all you need”. In: (2019). arXiv:

1911.02150 (cit. on p. 8).
[40] Joshua Ainslie et al. “GQA: Training Generalized Multi-Query Transformer Models from Multi-

Head Checkpoints”. In: (2023). arXiv: 2305.13245 (cit. on p. 8).
[41] Percy Liang et al. “Holistic evaluation of language models”. In: (2022). arXiv: 2211.09110 (cit.

on pp. 8, 9, 36).
[42] Leo Gao et al. A framework for few-shot language model evaluation. Version v0.0.1. Sept. 2021.

DOI: 10.5281/zenodo.5371628. URL: https://doi.org/10.5281/zenodo.5371628
(cit. on pp. 8, 9, 36).

[43] Ari Holtzman et al. “The curious case of neural text degeneration”. In: (2019). arXiv: 1904.
09751 (cit. on p. 9).

[44] Stella Biderman et al. “Pythia: A suite for analyzing large language models across training and
scaling”. In: (2023). arXiv: 2304.01373 (cit. on pp. 9, 36).

[45] Yuntao Bai et al. “Constitutional AI: Harmlessness from AI Feedback”. In: (2022). arXiv: 2212.
08073 (cit. on p. 11).

[46] Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999 (cit. on
p. 21).

[47] Lennart Ljung. System identification. Springer, 1998 (cit. on p. 21).
[48] RP Guidorzi. “Certain models from uncertain data: the algebraic case”. In: Systems & control

letters 17.6 (1991), pp. 415–424 (cit. on p. 21).
[49] Irwin W Sandberg. “On the theory of linear multi-loop feedback systems”. In: Bell System Tech-

nical Journal 42.2 (1963), pp. 355–382 (cit. on p. 22).
[50] Michael Zhang et al. “Effectively Modeling Time Series with Simple Discrete State Spaces”. In:

(2023). arXiv: 2303.09489 (cit. on p. 24).

13

https://arxiv.org/abs/2303.06349
https://arxiv.org/abs/2208.04933
https://arxiv.org/abs/1911.02150
https://arxiv.org/abs/2305.13245
https://arxiv.org/abs/2211.09110
https://doi.org/10.5281/zenodo.5371628
https://doi.org/10.5281/zenodo.5371628
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/1904.09751
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2212.08073
https://arxiv.org/abs/2303.09489

[51] Luca Perotti and Michał Wojtylak. “Matrix methods for Padé approximation: Numerical calcula-
tion of poles, zeros and residues”. In: Linear Algebra and its Applications 548 (2018), pp. 95–122
(cit. on p. 27).

[52] Amer Abu-Omar and Fuad Kittaneh. “Estimates for the numerical radius and the spectral radius
of the Frobenius companion matrix and bounds for the zeros of polynomials”. In: Annals of
Functional Analysis 5.1 (2014), pp. 56–62 (cit. on p. 27).

[53] Julia Eaton et al. “Polynomial root radius optimization with affine constraints”. In: Mathematical
Programming 165 (2017), pp. 509–528 (cit. on p. 27).

[54] Gerlind Plonka and Vlada Pototskaia. “Application of the AAK theory for sparse approximation
of exponential sums”. In: (2016). arXiv: 1609.09603 (cit. on p. 29).

[55] Jimmy Ba et al. “Using fast weights to attend to the recent past”. In: Advances in neural infor-
mation processing systems 29 (2016) (cit. on p. 31).

[56] William B Johnson. “Extensions of Lipschitz mappings into a Hilbert space”. In: Contemp. Math.
26 (1984), pp. 189–206 (cit. on p. 31).

[57] Devdatt P Dubhashi and Alessandro Panconesi. Concentration of measure for the analysis of
randomized algorithms. Cambridge University Press, 2009 (cit. on p. 34).

[58] Ilya Loshchilov and Frank Hutter. “Decoupled weight decay regularization”. In: (2017). arXiv:
1711.05101 (cit. on p. 35).

[59] Dale F. Enns. “Model reduction with balanced realizations: An error bound and a frequency
weighted generalization”. In: The 23rd IEEE Conference on Decision and Control (1984),
pp. 127–132 (cit. on p. 44).

14

https://arxiv.org/abs/1609.09603
https://arxiv.org/abs/1711.05101

LAUGHING HYENA DISTILLERY

Supplementary Material

Contents

1 Introduction 1

2 Preliminaries and Related Work 2
2.1 Long Convolution Sequence Models . 3
2.2 Auto-Regressive Generation . 3

3 The Laughing Hyena Distillery 4
3.1 Data-Free Distillation Objectives . 5
3.2 Making Hyena Laugh with Modal Interpolation . 5
3.3 Minimal Distillation Orders . 6
3.4 Deploying the Recurrence . 7

4 Multi-head Long Convolutions 7

5 Experiments 8
5.1 Pre-training . 8
5.2 Distillation Analysis . 8
5.3 Downstream Evaluation . 9
5.4 Benchmarking . 10

6 Conclusion 10

A Linear Systems 17
A.1 Extended Notation and System Theory Preliminaries 17
A.2 Systems Norms . 17
A.3 Transfer Function of State-Space Models . 18
A.4 Truncated Transfer Functions . 19
A.5 From Transfer Function to State-Space . 20

A.5.1 Isolating the h0-term from Transfer Function by Long division 21
A.5.2 Construction of the State-Space from the Transfer Function 21

A.6 From State-Space to Transfer Function . 22
A.7 State-Space Representation of Truncated Filters. 23
A.8 Efficient Computation of State-Space Models . 23

A.8.1 Fast Evaluation of the Transfer Function . 23
A.8.2 Fast Companion Recurrence . 24
A.8.3 Canonization of State-Space Models . 24

B LaughingHyena: Further Details 26
B.1 Parametrization of Modal Interpolators . 26
B.2 Distillation as Rational Interpolation . 26

C Proofs 28
C.1 Proof of Lemma 2.1 . 28
C.2 Proof of Lemma 2.2 . 28
C.3 Proof of Lemma 2.3 . 28
C.4 Proof of Proposition 3.1 . 28
C.5 Proof of Lemma 3.1 . 29
C.6 Proof of Theorem 3.2 . 29
C.7 Proof of Proposition 3.3 . 29
C.8 Proof of Proposition 3.2 . 30
C.9 Proof of Theorem 4.1 . 31

15

D Experimental Details 35
D.1 Pre-training . 35
D.2 Distillation Analysis . 35

D.2.1 Pretrained Filters: Effective Dimension . 35
D.3 Downstream Evaluation . 36
D.4 Benchmarking . 36

E Additional Experiments 43
E.1 Associative Recall with MultiHyena . 43
E.2 Analysis of Hankel Singular Values of Pretrained Large Convolution Sequence Models 43
E.3 Model Order Reduction of H3 . 43

E.3.1 Modal Truncation . 43
E.3.2 Balanced Truncation . 44

Authors Contribution
S.M. Conceptualized the research; coordinated collaborations;

lead theory development; conducted distillation experiments.
M.P. Conceptualized the research; coordinated collaborations;

lead the experimental (model pre-training, distillation, benchmarks,
downstream evaluation) efforts; coordinated writing and conference submission;
optimized inference stack.

D.Y.F. Assisted in development of MultiHyena; assisted in pre-training and
subsequent benchmarking of distilled models; assisted in writing.

H.K. Developed benchmarking suite and interpreted results;
assisted in writing.

R.N.P. Assisted in theory and algorithmic development;
performed model-order reduction experiments of H3 models;
assisted in writing.

A.T. Conceived and proved Theorem 4.1;
assisted in writing.

D.W.R. Assisted in Hankel operator spectral analysis;
Assisted in writing.

Q.M. Assisted in theory development.
B.C. Supervised development of benchmarking suite and model deployment.
A.R. Supervised theory development (solving associative recall

with MultiHyena, Th. 4.1).
C.Z. Supervised research; secured compute resources.
C.R. Supervised research; reviewed manuscript;

secured compute resources.
S.E. Supervised research; reviewed manuscript.
Y.B. Supervised research; reviewed manuscript.

Stefano Massaroli, Michael Poli, and Dan Fu contributed equally to this work. Christopher Ré, Stefano
Ermon, and Yoshua Bengio share equal senior authorship.
All authors read and approved the final manuscript.

16

A Linear Systems

A.1 Extended Notation and System Theory Preliminaries

We first introduce the notation and some mathematical concepts that will be used throughout the paper.
By Z we denote the set of integers, by R the set of reals, and by C the set of complex numbers.
The variable t stands for time. ℓp(Z) denotes the Banach space of complex-valued sequences (xt)t∈Z
with finite energy, i.e. ∥x∥p := [

∑
t∈Z |xt|p]1/p < ∞ for some 1 ≤ p < ∞. ℓ∞(Z) is instead

is the space of sequences for which ∥x∥∞ := supt∈Z |xt| < ∞. With S denoting the unit circle in
the complex plane, S := {z ∈ C : |z| = 1} we define Hp(S) as the space of functions X from
C to itself such that ∥X∥p := [(1/2π)

∫ π

−π
|X(eiω)|pdω]1/p < ∞ and H∞(S) the space for which

∥X∥∞ := supz∈S |X(z)| < ∞. Particularly, K2(S) is a Hilbert space with inner product ⟨X,Y ⟩ :=
(1/2π)

∫ π

−π
X(eiω)Y ∗(eiω)dω where “∗” denotes complex conjugation. Although we acknowledge we

are using the same notation for norms in both ℓp(Z) andHp(S), the correct meaning will always be made
clear by the context. The Z-transform of a sequence x = (xt)t∈Z is X(z) = Z[x](z) :=∑t∈Z xtz

−t.
We embrace the system theory convention of using capital letters to identify transformed sequences.
The Z-transform is a projection of the sequence onto a basis of powers et = r−teiωt. This basis is
not orthogonal unless r = 1. That is the basis of the discrete-time Fourier transform F . Hence, F is
defined as F [x](eiω) = X(eiω) :=

∑
t∈Z xte

−iωt. The discrete-time Fourier transform is an isometric
isomorphism between ℓ2(Z) and L2(S). We say that sequences live in the time domain and their Z (or
F) transforms in the frequency domain.
A linear system is a linear operator transforming an input sequence u to an output sequence y. If the
sequences have continuous support, i.e. t ranges over a continuous set (e.g. R), we have a continuous-
time system. Conversely, if the sequences have discrete support, i.e. t ranges over a discrete set (e.g. Z),
we have a discrete-time or digital system. In this manuscript we restrict ourselves to discrete-time
systems. Systems can be single-input single-output (SISO) if u and y are scalar functions or multi-
input multi-output if either u or y are vector-valued. We limit our discussion to SISO systems. The
impulse response of a system is the output sequence y when the input sequence u is the Kronecker delta
function δt and is usually denoted by the letter h. The values ht of the impulse response sequence are
also known as the Markov parameters of the system. The most common mathematical representation of
a linear system is its convolution form: y = h ∗ u, i.e. yt =

∑
j∈Z ht−juj =

∑
j∈Z hjut−j , t ∈ Z. In

matrix form the input-output relation is given by the Toeplitz operator Th corresponding to the (possibly
infinitely long) sequence h, i.e. y = Thu. Taking the Z-transforms, we can write the input-output
relation as Y (z) = H(z)U(z) (this is just the Fourier convolution theorem extended outside the unit
circle). H(z) is called the transfer function of the system. When z = eiω , H(eiω) is just the discrete-
time Fourier transform of h which is called the frequency response of the system. A linear system is
causal if ht = 0 for t < 0. A system is called stable if the Th is a bounded operator. If u, y ∈ ℓ2(Z),
then stability implies h ∈ ℓ∞. In the following, we mainly focus on causal stable systems.

A.2 Systems Norms

When quantitatively characterizing linear systems, several norms play a crucial role. These norms
provide measures of various characteristics of the systems, which are essential in both analysis and
filter design.

The ℓ2 andH2 norms As defined above, the ℓ2 norm represents the energy of a signal h,
∥h∥2 :=

[∑
t∈Z
|h|2t
]1/2

whileH2 is the energy of the (continuous) spectrum of h,

∥H∥2 :=
[1

2π

∫ π

−π

|X(eiω)|2dω]1/2

By Parseval’s theorem, the ℓ2 and H2 norms are equal, ∥h∥2 = ∥H∥2. Further these norms are useful
to study the approximation of convolutional filter. The following holds:

Lemma A.1 (ℓ∞ output error). Consider the class of ℓ2 measurable inputs such that ∥u∥2 ≤ ζ,
then for all H, Ĥ ∈ H2,

∥y − ŷ∥∞ ≤ ζ∥H − Ĥ∥2

17

Proof.

sup
t>0
|yt − ŷt| = sup

t>0

∣∣∣∣ 12π
∫ π

−π

[
Y (eiω)− Ŷ (eiω)

]
eiωtdω

∣∣∣∣
≤ 1

2π

∫ π

−π

|Y (eiω)− Ŷ (eiω)|dω

=
1

2π

∫ π

π

|H(eiω)− Ĥ(eiω)|U(eiω)|dω

≤
[
1

2π

∫ π

−π

|H(eiω)− Ĥ(eiω)|2dω
]1/2 [

1

2π

∫ π

−π

|U(eiω)|2dω
]1/2

Hölder Inequality

≤
[
1

2π

∫ π

−π

|H(eiω)− Ĥ(eiω)|2dω
]1/2
∥u∥2 Parseval Theorem

≤ ζ∥H − Ĥ∥H2

If u is the unit impulse function ut = δt then ζ = 1. The results also holds for finite sequences of length
L using the discrete Fourier transform.

Lemma A.2 (Impulse response error on finite sequences). Consider filters h, ĥ with finite length
L. Then, the following holds.

∥h− ĥ∥∞ ≤ ∥H − Ĥ∥2
where H and Ĥ denote the discrete Fourier transforms of h and ĥ, respectively.

Proof.

∥y − ŷ∥∞ := sup
t>0
|yt − ŷt| = sup

t>0

∣∣∣∣∣ 12π
L−1∑
n=0

[
Yn − Ŷn

]
ei2πnt/L

∣∣∣∣∣
≤ 1

2π

L−1∑
n=0

|Yn − Ŷn|

=
1

2π

L−1∑
n=0

|Hn − Ĥn||Un|

≤
[

1

2π

L−1∑
n=0

(Hn − Ĥn)
2

]1/2 [
1

2π

L−1∑
n=0

U2
n

]1/2
Hölder Inequality

≤
[

1

2π

L−1∑
n=0

(Hn − Ĥn)
2

]1/2
∥u∥2 Parseval Theorem

= ∥H − Ĥ∥2 using ∥u∥2 = 1

A.3 Transfer Function of State-Space Models
The transfer function (3.1) is derived by taking the z-transform of input and state, U(z) =
Z[u](z), X(z) = Z[x](z). Plugging U(z), X(z) in the state equation (2.2), it holds

zX(z) = AX(z) + BU(z) ⇔ X(z) = (zI− A)−1BU(z)
Substituting in the output equation yields

Y (z) = C(zI− A)−1BU(z) + h0U(z)
The transfer function is then defined as

H(z) =
Y (z)

U(z)
= C(zI− A)−1B+ h0. (A.1)

Alternative derivation The transfer function can also be derived by direct z-transform of the impulse
response ht of the system. This derivation is useful to highlight the region of convergence of the transfer

18

function.

H(z) = h0 +

∞∑
t=1

z−tCAt−1B h0 is pulled out via h0z
0 = h0

= h0 + C

[∞∑
t=1

z−tAt−1

]
B multiplication distributes over sum.

= h0 + z−1C

[∞∑
t=1

z−(t−1)At−1

]
B multiply by z/z

= h0 + z−1C

[∞∑
t=0

(z−1A)t

]
B change of index and collect like terms

(A.2)

We look at the convergence of the series
∑∞

t=0 ∥z−1A∥t2. We have
∥z−1A∥2 ≤ ∥z−1∥2∥A∥2

= ∥r−1e−iω∥2∥A∥2 using z := reiω ∈ C, r, ω ∈ R
≤ r−1∥A∥2 = r−1ρ(A)

The series converges to 1/(1 − r−1ρ(A)) if and only if r−1ρ(A) < 1 i.e. for r > ρ(A). Thus, in the
exterior of the disk with radius ρ(A), Dρ(A) := {z ∈ C : |z| > ρ(A)}, ∑∞

t=0(z
−1A)t converges to

(I− z−1A)−1 and
z ∈ Dρ(A) ⇒ H(z) = h0 + z−1C(I− z−1A)−1B = h0 + C(zI− A)−1B

The transfer function H(z) = h0 + C(zI − A)−1B of a stable lumped discrete-time system is defined
outside the disc in the complex plane that encloses all the eigenvalues of A.

Invariance of the transfer function H(z) as defined in (A.1) is a proper13 rational function of z. In
case h0 = 0, H(z) is strictly proper and the denominator is monic:

H(z) =
b1z

−1 + · · ·+ bdz
−d

1 + a1z−1 + · · ·+ adz−d
(A.3)

Specifically, the denominator could be derived from A with det(zI− A), and the numerator is det(zI−
A + BC) + det(zI − A). We provide a detailed derivation below in Section A.6. While state-space
representation involves the analysis and synthesis of model matrices A,B,C, the transfer function is
entirely characterized by the coefficients a = (an)

d
n=1, b = (bn)

d
n=1 of numerator and denominator

polynomials. Notably, the transfer function is an invariant of the system: if we apply a change of
variables to the state, the transfer function remains unchanged.

Lemma A.3. Coefficients a, b are invariant under any invertible change of variables.

Proof. The proof can be found in [5, pp.95] and follows from the definition of equivalence transforma-
tion. Consider the state-space matrices of under change of variables x̂ = Kx,

Â = KAK−1, B̂ = KB, Ĉ = CK−1, ĥ0 = h0.
The resulting transfer function H(z) can then be computed as

Ĥ(z) = Ĉ(zI− Â)−1B̂+ ĥ0 = CK−1[K(zI− A)K−1]−1KB+ h0 = H(z)

A.4 Truncated Transfer Functions
In the case of generic truncated (finite) impulse response filters, such that ht = 0 for all t greater than a
certain value L (which we refer to as the length of the filter), the transfer function is simply a polynomial
in the complex variable z of order L, i.e.

H(z) =

∞∑
t=0

htz
−t =

L∑
t=0

htz
−t = h0 + h1z

−1 + · · ·+ hLz
−L (A.4)

In case the filter is generated by a finite dimensional (lumped parameters) system, i.e. ht = CAt−1B
t = 1, . . . , L, then (A.4) can still be represented exactly by a rational function of order d.

13i.e. such that the denominator’s order is not less than the numerator’s one.

19

Lemma A.4 (Truncated rational transfer functions). Consider the L-truncated impulse response
ht ∈ ℓ2(N) of a lumped-parameter filter (A,B,C, h0),

ht =


h0 t = 0

CAt−1B 1 ≤ t ≤ L

0 t > L

.

Then its truncated transfer function is
HL(z) = Z{h}(z) = h0 + C(I− z−LAL)(zI− A)−1B

Proof. By definition of z-transform we have

HT (z) =

∞∑
t=0

htz
−t = h0 +

L∑
t=1

z−tCAt−1B

= h0 + C

[
L∑

t=1

z−tAt−1

]
B = h0 + z−1C

[
L−1∑
t=0

(z−1A)t

]
B

(A.5)

The sum
∑L−1

t=0 (z
−1A)t is a partial Neumann series and can be manipulated as follows.

L−1∑
t=0

(z−1A)t(I− z−1A) =
L−1∑
t=0

(z−1A)t −
L−1∑
t=0

(z−1A)t+1

= I− (z−1A)L.
Thus,

L−1∑
t=0

(z−1A)t = (I− z−LAL)(I− z−1A)−1,

which plugged in (A.5) gives HL(z) = h0 + C(I− z−LAL)(zI− A)−1B, proving the result.

Because of truncation, evaluating the transfer function HL(z) on the L roots of unity z = eiωk , wk =
2πk/T for k = 0, . . . L gives the length-L discrete Fourier transform (DFT) of the filter:

H̄k := HL(e
iωk) =

L−1∑
t=0

hte
−i2πk/L, k = 0, . . . , L− 1.

In practice, this means that H̄ ∈ CL is the FFT of h, H̄ = FFTL[h]. If we can find an efficient and
stable algorithm to evaluate H̄ from the system matrices (A,B,C, h0), then the FFT-based convolution
of truncated filter with an input sequence u ∈ RL can be evaluated in Õ(L) time.

Reparametrization Assume training a LCSM equipped with SSM filters with input/target sequences
to be all of length L (smaller sequences can be padded with zeros to the maximum length). Thus, for
training purposes, we are only interested in evaluating H̄ for the FFT-based convolution.
The truncated transfer function HL is equal to the original one with a correction term I − z−LAL on
the numerator polynomial. As already noted in S4 [6], z−L is conveniently equal to one on the roots
of unity, ziωkL = e−i2πk = 1 for all k = 0, . . . , L − 1. Hence, the correction term due to truncation
becomes constant: Hk = C(I − AL)(exp(−i2πk/L)I − A)−1B; in DFT domain the truncated filter
behaves as the infinitely long one with a perturbed C matrix

C̄ = C− CAL

If –as assumed– the SSM is stable ρ(A) < 1, (i) the transfer function is defined on the unit circle,
term CAL will go to zero exponentially fast as L → ∞ and C̄ = C (as expected). As advised in [6],
it is desirable to parametrize directly C̄; the expensive computation of the correction term C(I− AL) is
never carried out during training. Instead, the real C matrix can be retrieved for recurrent inference by
inverting the correction term C = C̄(I − AL)−1, always invertible for stable systems although possibly
ill conditioned by eigenvalues too close to the stability margin (the unit circle).

A.5 From Transfer Function to State-Space
Suppose the coefficients of the numerator and denominator polynomials of a proper transfer function H
is given:

H(z) =
b0 + b1z

−1 + · · · + bdz
−d

1 + a1z−1 + · · · + adz−d
. (A.6)

A state-space representation of the form (2.2) can be rapidly realized in two steps:

20

1. Get delay-free path From (A.6) we first notice that the bias term h0 is h0 = b0. We thus want
to isolate b0 from the rest of the numerator. This can be obtained via long division (see §A.5.1)
and results in

H(z) =
β1z

−1 + · · · + βNz−d

1 + a1z−1 + · · · + adz−d
+ b0, βn = bn − b0an (A.7)

2. Get state-space matrices Given the transfer function H(z) with the isolated pass-through
coeffient b0 as in (A.7), we can construct the state-space matrices by companion canonical
realization:

[
A B
C h0

]
=



−a1 −a2 · · · −ad−1 −ad
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

1
0
0
...
0

β1 β2 · · · βd−1 βd b0

 (A.8)

Details on the complete a la [5] derivation can be found in §A.5.2. A linear system with finite-
dimensional state can be equivalently characterized: by its state-space matrices (A,B,C, h0), by its
impulse response function h, or by the coefficients a, b (or β) of the transfer function. A fourth repre-
sentation is its linear-constant-coefficients difference equation form

yt =

d∑
j=0

bjut−j −
d∑

n=1

ajyt−j ,

typically used in signal processing literature in the theory of infinite impulse response filters (see [46])
and known, in the context of system identification of error-in-variables models, as auto-regressive
moving-average filters [47, 48].

A.5.1 Isolating the h0-term from Transfer Function by Long division
If the rational transfer function H(z) accounts for the h0 term, then it is simply proper (order of nu-
merator equals the order of denominator), h0 is necessarily h0 = b0 (the delay-free path). Given the
transfer function in this form, we can isolate the b0 term and the strictly rational term of (A.3) by long
division. We start by expanding the fraction as

H(z) =
q(z)

p(z)
=

b0
p(z)

+
b1z

−1 + · · · + bdz
−d

p(z)
.

and
b0
p(z)

=
b0z

d

zd + a1zd−1 + · · · + ad
We then use the long division method to compute b0/p(z):

b0
zd + a1z

d−1 + · · · + ad))b0zd

b0z
d + b0a1z

d−1 + · · · + b0ad
− b0a1z

d−1 − · · · − b0ad (reminder)
to finally get

H(z) = b0 −
b0a1z

d−1 + · · · + b0ad
zd + a1zd−1 + · · · + ad

+
b1z

−1 + · · · + bdz
−d

p(z)

= b0 +
(b1 − b0a1)z

−1 + · · · + (bd − b0ad)z
−d

1 + a1z−1 + · · · + adz−d

Note that the coefficients bn in (A.3) correspond to bn− b0an in (A.6), bn ← bn− b0an. It is indifferent
to parameterize the coefficients of the transfer function in either forms. However, if we choose the
simply proper representation (A.6), we need to apply the derived correction factor to the numerator
coefficients when we separate the h0 term and strictly proper part of H(z).

A.5.2 Construction of the State-Space from the Transfer Function
Chen’s derivation The derivation is based on the steps reported for the continuous-time multi-input
multi-output case in [5]. First, we define a pseudo-state v such that

p(z)V (z) = U(z) ⇔ V (z) =
1

p(z)
U(z). (A.9)

21

Then, we define the state xt := (x1
t , . . . , x

d
t) ∈ Rd as

xt = (vt−1, vt−2, · · · , vt−d) ⇔ Z{x}(z) = X(z) =

z
−1

...
z−d

V (z). (A.10)

From (A.9) we have
V (z) + a1z

−1V (z) + · · ·+ adz
−dV (z) = U(z) ⇔

V (z) = −a1z−1V (z)− · · · − adz
−dV (z) + U(z) ⇔

vt = −a1vt−1 − · · · − advt−d + ut ⇔ time-delay prop. of Z-transform

x1
t+1 = −a1x1

t − · · · − adx
d
t + ut ⇔ by def. of state (A.10).

Thus, we have the overall recurrence
x1
t+1 = −a1x1

t − · · · − adx
d
t + ut

x2
t+1 = x1

t

...

xd
t+1 = xd−1

t
which can be written in matrix form as

xt+1 =


−a1 −a2 · · · −aN
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

xt +


1
0
...
0
0

ut

The output spectrum is then given by

Y (z) = H(z)U(z) =
q(z)

p(z)
U(z) + b0U(z)

= q(z)V (z) + b0U(z) by def. of V (z).
Therefore,

Y (z) = q(z)V (z) + b0U(z) = [β1 β2 · · · βN]


z−1

z−2

...
z−d

V (z) + b0U(z)

= [β1 β2 · · · βd]X(z) + b0U(z)
and the output equation in time-domain is given by

yt = [β1 β2 · · · βd]xt + b0ut.
yielding state-space matrices (A.8).

A.6 From State-Space to Transfer Function

We detail an implementation oriented method to compute the coefficients (an)dn=1, (bn)
d
n=0 of a SSM’s

transfer function. Recall that

H(z) = C[zI− A]−1B+ h0 =
CAdj(zI− A)B+ det(zI− A)h0

det(zI− A)
(A.11)

Hence, the denominator coefficients (an)dn=1 are simply the coefficients of the characteristic polynomial
of matrix A. They can be easily obtained by 1. computing the eigenvalues of A and 2. calculating the
coefficients of the polynomial whose roots are such eigenvalues. On the other hand, the numerator
apparently involves more complex symbolic manipulation. This can be simplified recalling a classic
matrix-determinant identity:

Lemma A.5 ([49]). Let M, B, and C respectively denote matrices of orders d × d, d × 1, and
1× d. Then,

det(M+ BC) = det(M) + CAdj(M)B.

Applying Lemma A.5 to (A.11) we obtain

H(z) =
det(zI− A+ BC) + det(zI− A)(h0 − 1)

det(zI− A)
.

22

Let poly(r) denote the coefficients of the polynomials with roots r = (r1, . . . , rd). Then a =
poly(eig(A)). Since A and A− BC are of equal dimension, their characteristic polynomials have equal
order and therefore

b = poly(eig(A− BC)) + poly(eig(A))(h0 − 1)

Listing 1: State-space→ transfer function conversion code

def get_tf_from_ss(A,B,C,h0):
a = poly(eig(A))
b = poly(eig(A − outer(B,C))) + (h0−1)*a
return a, b

A.7 State-Space Representation of Truncated Filters.
A truncated filter h0, . . . , hL – as the ones found in any standard convolutional neural network – can
be represented by a L-dimensional companion canonical SSM. The filter’s transfer function H(z) =
h0 + h1z

−1 + · · · + hLz
−L is polynomial, i.e. a rational function with the denominator’s coefficients

set to zero. Following the canonical realization process detailed in Section A.5, the truncated filter has
state-space form:

xt+1 =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

xt +


1
0
...
0
0

ut

yt = [h1 h2 · · · hL]xt + h0ut.
If x0 = 0L and ut = 0 for negative t, then at each t > 0 the state is a shifted copy of the input sequence
xt = (ut−1, . . . , ut−L) ∈ RL. Nonetheless, the asymptotic complexity of computing one recurrent step
is O(L) as it requires only a shift operation and a length-L dot product

x1
t+1 = ut

x2:L
t+1 = shift(xt)

yt = ⟨h1:L, xt⟩+ h0ut.

(A.12)

The memory footprint is also O(L). In [1] it is proposed the use of shift-type SSMs to parametrize one
of the filters of the H3 block.

A.8 Efficient Computation of State-Space Models
A.8.1 Fast Evaluation of the Transfer Function
Computing H(z) at any point z ∈ C concerns the evaluation of the d-order polynomial of numerator
and denominator,

H(z) =
q(z)

p(z)
=

∑d
n=1 bnz

−n

1 +
∑d

n=1 anz
−n

In practice, we are mainly interested in a fast algorithm that allows computing H on the L roots of unity
to obtain the DFT of the filter. The DFT of the filter can be then readily used to perform a FFT-based
convolution with a length-L input sequence u or to recover the impulse response function via inverse
DFT. We prove the following:

Lemma A.6. Given the coefficients a, b of the transfer function, the frequency and impulse re-
sponse of the filter can be evaluated in Õ(L) time.

Proof. The result is proven showing that the transfer function can be evaluated in Õ(L) time on the L
roots of unity. The fastest method to evaluate polynomials on L arbitrary points z of the complex plane
is generally the Horner’s scheme. This method is based on a sequence of nested multiplications and
computes the polynomial from its vector of coefficients, delivering a time complexity of O(dL). More
explicitly, Horner’s scheme determines p(z) as p(z) = ((· · · ((adz−1 + ad−1)z

−1 + ad−2) · · ·)z−1 +
a2)z

−1+a1)z
−1+1. Each step involves a multiplication and an addition, making a total of 2d operations

per evaluation point. Thus, for L points, the total number of operations amounts to O(dL).
Effectively, Horner’s approach implements the matrix-vector product of an L-by-(d+ 1) Vandermonde
matrix V ∈ CL×(d+1) constructed by L evaluation points (z0, . . . , zL−1) with the vector of coefficients

23

a = (1, a1, . . . , ad)
⊤:

p(z0)
p(z1)

...
p(zL−1)

 =


1 z−1

0 z−2
0 · · · z−d

0

1 z−1
1 z−2

1 · · · z−d
1

...
...

...
. . .

...
1 z−1

L−1 z−2
L−1 · · · z−d

L−1



1
a1
...
ad

 = Va

Significantly, if the polynomial is required to be evaluated at the roots of unity, the Vandermonde matrix
simplifies corresponds to the L × (d + 1) DFT matrix. Further, zero-padding the coefficient vector to
length L, enables the use a single length-L FFT to compute the matrix-vector product in Õ(L) time.
Thus, the numerator and denominator polynomials of the transfer function can be evaluated, on the
roots of unity, in Õ(L) time by taking the FFT of the padded numerator / denominator coefficients
a, b and subsequently dividing element-wise the two sequences as FFTL[b]/FFTL[a]. The overall time
complexity to obtain the impulse response is also Õ(L) since h can be recovered taking an inverse FFT
of the frequency response.

A.8.2 Fast Companion Recurrence
The recurrent step of a generic SSM (2.2) with dense system matrices usually requiresO(d2) operations
due to the matrix-vector product Axt. We show how the recurrence of SSMs in companion canonical
form, i.e. with system’s matrices (A.8), requires only O(d) operations.

Lemma A.7. The recurrent step of a state-space model in companion canonical form (A.8) can
be evaluated in O(d) time and memory.

Proof. The companion state matrix A can be broken down into a lower shift matrix LN and a low-rank
term. Particularly, with e1 the first element of the canonical basis of RN and α = (a1, . . . , aN), we
have

A = LN − e1 ⊗ α.
It follows that the recurrent update can be simplified to

xt+1 = (LN − e1 ⊗ α)xt + But

yt = Cxt + b0ut

The peculiarity of this formulation is that we never need to construct the matrices to perform the recur-
rence. In particular we have:

x1
t+1 = ut − α⊤xt

x2:N
t+1 = shift(xt)

yt = β⊤xt + b0ut

Thus, each step only requires two inner products (d multiplications and d sums each) and one shift
operation, totaling O(d) operations.

The proof of Lemma A.7 yields the practical implementation of the recurrence:

Listing 2: Python implementation of the companion canonical recurrence

def step(x, u, alpha, beta, b0):
y = dot(beta, x) + b0 * u
lr = u − dot(alpha, x)
x = roll(x)
x[0] = lr
return x, y

A.8.3 Canonization of State-Space Models
The companion canonical form discussed in Section A.5 is the ideal representation to deploy SSM-based
convolutional layers: i) it comes with a O(d) fast recurrence and ii) allows to swiftly switch between
time and frequency domains with a direct mapping between state-space matrices and coefficient of the
transfer function (which in turn allow Õ(L) fast convolutions).
Aside from [50], which directly parametrizes S4 layers in companion canonical form, all the other
parameterizations [12, 6, 32, 17, 33] can be converted (canonized), under mild assumptions.

24

Lemma A.8 (Canonization of SSMs). Any state-space model (2.2) with proper transfer function
can be converted in companion canonical form.

Proof. The result can be proved following the two-step conversion process.

1. Get the coefficients of the transfer function: Given the original state-space matrices
(A,B,C, h0), the transfer function is given by H(z) = C(zI − A)−1B + h0. A proper ra-
tional function has the form H(z) = q(z)/p(z) where the numerator q(z) has coefficients
b = (bn)

d
n=0 and the denominator has coefficients a = (an)

d
n=0 (a0 = 1 since p is monic). As

shown in Section A.6, the coefficients of the transfer function can be extracted in closed-form
as b = poly(eig(A− BC)) + poly(eig(A))(1− h0) and a = poly(eig(A))14;

2. Construct companion matrices Given the coefficients a and b a new set of canonical state-
space matrices which realize the transfer function can be obtained following the recipe of
Section A.5.

The resulting companion SSM is equivalent the the original one since they share the same transfer
function.

14eig(A) contains the eigenvalues of A. poly(r) yields the coefficients of the polynomial whose roots are the
elements of r ∈ Cd.

25

B LaughingHyena: Further Details

B.1 Parametrization of Modal Interpolators
Complex-conjugate states Assuming even distilling dimension d, we pick poles λn and residues Rn

in complex-conjugate pairs:
A = diag(λ1, · · · , λd/2, λ

∗
1, · · · , λ∗

d/2)

C =
1

2
[R1, · · · , Rd/2, R

∗
1, · · · , R∗

d/2]
(B.1)

which allow partitioning the state-space matrices as

A =

[
λ

λ∗

]
, C =

1

2
[R R∗] , (B.2)

where
λ = diag(λ1, · · · , λd/2) and R = [R1, · · · , Rd/2]. (B.3)

If we also partition the state as x = (x̄, x̃), x̄, x̃ ∈ Cd/2, the resulting recurrence has the form
x̄t+1 = λx̄t + 1d/2 ut

x̃t+1 = λ∗x̃t + 1d/2 ut
(B.4)

We have

x̄t = λtx̄0 +
t−1∑
j=0

λt−j−11d/2ut, x̃t = [λ∗]tx̃0 +

t−1∑
j=0

[λ∗]t−j−11d/2ut (B.5)

Thus, if x̃0 = x̄∗
0, then x̃t = x̄∗

t for all t > 0. Hence, at inference time we only need to propagate
forward half of the state – say x̄ – and then compute the output as

yt = Dut +
1

2
(Rx̄t +R∗x̄∗

t)

= Dut +R{Rx̄t}
= Dut +R{R}R{x̄t} − I{R}I{x̄t}

(B.6)

This parametrization allows to update only half of the state, reducing the time and memory cost com-
pared to an unconstrained linear system with complex coefficients. However, the implicitly achieved
realness of the output (assuming D = h0 ∈ R and ut ∈ R) comes at a cost of expressivity: such a
system is equivalent to an unconstrained complex linear system of dimension d/2 of which we only
keep the real part of the output.

Poles and residues For the modal interpolation, the parametrization is analogous to the one of a
diagonal state space model [33]. Poles λn and residues Rn need both to be complex numbers. In [33] the
authors suggest parametrizing real and imaginary components of B and C matrices while representing
the eigenvalues λn in polar form, λn = rne

iαn with rn and αn being themselves exponential functions
of the actual trainable parameters, rn = e−eνn , αn = eζn leading to

λn = exp{− exp{νn}+ i exp{ζn}}, νn, ζn ∈ R (B.7)
This ensures stability of the poles |λn| < 1 and positive-only phases αn. For the purpose of distillation
we propose a simplified parametrization as follows:

1. We only parametrize the C vector. Parametrizing both B and C is redundant and increases the
computational cost of performing each step of the recurrence. The residues Rn correspond in
fact to Rn = CnBn of a diagonal state space model. Setting B = 1d saves parameters without
harming expressivity. Further if B is different from 1k it needs to be multiplied to ut at each
recurrence step. Cn = Rn = R[Rn] + iI[Rn] and R[Rn], I[Rn] are the trainable parameters
of the residue.

2. For the purpose of distillation we have no benefit in forcing the eigenvalues of the model to
be stable, i.e. constrained to lie strictly inside the unit circle. Instead, such constrain may
actually harm the expressivity of the approximant. We choose the the simpler parametrization
λn = rne

iαn , rn, αn ∈ R.

B.2 Distillation as Rational Interpolation
Distillation as rational interpolation Approximating a filter with an SSM can be thus achieved
by fitting a proper rational function to the (truncated) transfer function of the original filter
HL(z):=

∑L
t=0 htz

−t. That is,

26

Find a, b such that h0 + h1z
−1 + · · ·+ hLz

−L ≈ h0 +Qb(z)/Pa(z). (B.8)

A modern15 way to solve this problem byH2 error minimization via gradient descent16. We can use the
Fast Fourier Transform (FFT) to evaluate both the target and distilled transfer functions and solve:

min
a,b∈Rd

L∑
k=0

|FFTL[h]k − h0 − FFTL[b]k/FFTL[a]k|2. (B.9)

To ensure stability of the distilled filters and well-conditioned gradient descent dynamics, the roots of
the denominator polynomial must strictly lie inside the unit circle (ρ(A) < 1). This, in turn, requires
constraining the coefficients a into the region {a : poly(a) is stable} which is by itself an open research
problem [52, 53]. Experimentally, we observe that standard coefficient normalization techniques overly
restrict the parameters space and lead to poor distillation performances at reasonable order.

15In the late 19th century, Henri Padé had already proposed a closed-form solution of the above problem that
achieves o(z−L) error for z → ∞ using L=2d samples of the impulse response. His method [31] solves a L-
dimensional linear problem that, however, is known to often become numerically ill-conditioned even with small d
[51]

16In the case of finite sequences, the H2 norm becomes the standard Euclidean metric evaluated on the L+1

roots of unity,i.e. (
∑L

k=0 |H(ei2πk/(L+1))|2)1/2.

27

C Proofs
C.1 Proof of Lemma 2.1

Generating K tokens with a long convolution layer (2.1) from a length-T prompt has time com-
plexity O(T log2 T+TK+K2) and requires O(L) memory.

Proof. We compute the time complexity memory of a length-T prompt processing (pre-filling) and
subsequent auto-regressive decoding of K tokens. The auto-regressive generation of long convolution
computes the next token as by

t = T, . . . , T +K − 1 ⇒ yt =

t−1∑
j=0

ht−jyj (C.1)

The pre-filling step is needed to prime this recurrence by computing the first T outputs till yT−1 from the
length-T prompt u. This is just a convolution between two length-T signal and requires O(T log2 T)
time and linear memory. The auto-regressive decoding of K tokens requires K steps (C.1) with the
length of the sequences increasing by 1 at each step. Thus we have a total asymptotic complexity of

K−1∑
k=0

(T + k) = TK +
1

2
K(K + 1). (C.2)

and requires at worst (k = K − 1) to store the length T + K = L generated output sequence, i.e.
O(L) memory. In the limit we thus have a total time complexity ofO(T log2 T +TK+K2) andO(L)
memory.

C.2 Proof of Lemma 2.2

Generating K tokens with a SSM (2.2) from a length-T prompt has time complexity
O(T log2 T+dK) and requires O(d) memory.

Proof. In autoregressive mode, the cost of generating one token is the cost of evaluating the state re-
currence (2.2). Each step then requires O(d) time and memory for the class of SSMs considered in this
work (see Lemma A.8). Hence, generating K tokens costs O(dK) time and constant O(d) memory
(we only need to store the current state).
The recurrence is initialized for autoregressive generation with the post-prompt state xT−1 and output
yT−1. The latter can be recovered in linear time and memoryO(T) by definition yT−1 =

∑T−1
j=0 ht−juj

(assuming to have the impulse response h available) and state xT−1 in O(dT) time and d memory
through the recurrence. The overall asymptotic cost is therefore O(dL) time and O(d) memory.

Note that, for prompts and SSMs of practical sizes we usually have d > log2 T . In such a case the state
xT−1 can be computed in T log2 T time rather than dT by Proposition 3.2.

C.3 Proof of Lemma 2.3

Generating K tokens with self-attention from a length-T prompt has time complexity
O(T 2+TK+K2) and requires O(L) memory.

Proof. The proof is identical to the one of Lemma 2.1, with the only difference of a quadratic asymptotic
cost O(T 2) to process the prompt obtain the kv cache.

Self-attention suffers with long contexts: it is significantly more expensive in prefilling than long convo-
lutions and SSMs due to its quadratic cost. Nonetheless, in autoregressive mode, self-attention reaches
the same overall asymptotic complexityO(TK+K2) as long convolutions (with the memory overhead
of having to cache k and v).

C.4 Proof of Proposition 3.1

If A has semi-simple eigenvalues λn ∈ C, then the transfer function of the system can be de-
composed as Ĥ(z)=

∑d
n=1 Rn/(z − λn) where Rn ∈ C is the residue associated with the pole

λn.

28

Proof. If A is semi-simple, then it is diagonalized by a basis V of eigenvectors; it admits an eigenvalue
decomposition diag(λ) = VAV−1 where λ = (λ1, . . . , λd) ∈ Cd contains the eigenvalues of A. Pro-
jecting the state onto the basis of eigenvectors, s := Vx, the state space model is is transformed into
modal form:

st+1 = VAV−1st + VBut

yt = CV−1st
⇔

st+1 = diag(λ)st + B̃ut

yt = C̃st
where B̃ := VB = (b̃n)

d
n=1 and C̃ := CV−1 = (c̃n)

d
n=1. In modal form, the state equations are

decoupled, i.e.
snt+1 = λns

n
t + b̃nut

yt =

d∑
n=1

c̃ns
n
t .

Taking the z-transform of the output equation and each state equation yields

Sn(z) = Z[sn](z) =
b̃n

z − λn
U(z) n = 1, . . . , d

Y (z) =

d∑
n=1

c̃nSn(z)

Thus, the overall transfer function is

H(z) =
Y (z)

U(z)
=

d∑
n=1

b̃nc̃n
z − λn

Letting Rn = b̃nc̃n, proves the result.

C.5 Proof of Lemma 3.1

The distilled filter ĥ in modal form (3.2) can be computed in O(dL) time from its modal form
and in Õ(L) from its rational form.

Recalling (3.2), ĥt =
∑d

n=1 Rnλ
t−1
n , Rn, λn ∈ C, t > 0, the O(dL) complexity of the impulse

response is apparent: for each of the t = 1, . . . , L, ĥt can be computed in O(d) time.
The Õ(L) cost from the rational form follows by Lemma A.6.

C.6 Proof of Theorem 3.2

Let h be a length-L filter, ĥ a distilled filter of order d < L and let SL, ŜL be the respective
Hankel matrices. Then inf ŜL

∥SL − ŜL∥2 = σd.

Proof. The theorem characterizes the best-case scenario in terms of approximation error of the distilled
SSMs or a certain order d where it is clear that rank Ŝ ≤ d. This theorem is a direct application of the
Adamyan-Arov-Krein (AAK) theory of infinite Hankel operators [7]. Let Ŝ∗L = arg inf ŜL

∥SL − ŜL∥2;
the AAK theorem says that every causal system can be optimally approximated by another causal system
of lower dimension. Optimal here means

inf ∥SL − Ŝ∗L∥ = inf ∥SL − K∥
where the first infimum is taken over all Hankel matrices S∗L and the second over all arbitrary matrices
K (see [19, Chapter 8] and [54] for further details and references).

C.7 Proof of Proposition 3.3

The filter (3.2) has a state space matrices A = diag(λ1, . . . , λd) ∈ Cd×d, B = (1, . . . , 1)⊤ ∈
Cd×1, C = (R1, . . . , Rd) ∈ C1×d, D = h0 whose step can be evaluated in O(d) time and
memory.

29

D is set to h0 by default. The result is proven showing that (3.2) can be written in the form ĥt = CAt−1B
for t > 0. If we choose A = diag(λ) then the impulse response becomes

ĥt =

d∑
n=1

Rnλ
t−1
n = C[diag(λ)]t−1B =

d∑
n=1

CnBnλ
t−1
n

The choice Bn = 1 for all n = 1, . . . , d, B = 1d and Cn = Rn finalizes a modal canonical state-
space realization of the distilled filter. The O(d) time complexity of the corresponding recurrent step is
guaranteed by the decoupling of each state equation from another,

xn
t+1 = λnx

n
t + ut n = 1, . . . , d

yt =

d∑
n=1

Rnx
n
t + h0ut.

Each of the d state equations can be computed (in parallel) in O(1) time. The output equation is a dot
product requiring d multiplications and d additions, hence the O(d) time compexity of the recurrence.

C.8 Proof of Proposition 3.2

xT = (vT , . . . , vT−d) where v = g ∗u and g is the filter whose transfer function is 1/den(Ĥ)(z)

and can be evaluated in Õ(T).
Without loss of generality, let us assume to have converted the distilled filter in canonical form (i.e. we
have unrestricted access to the coefficients of the rational transfer function) and let D = 0. We use the
notation of Section A.5. In z-domain, the state-to-input relation is given by

Y (z) = CX(z) = [β1 · · · βd]X(z)

On the other hand Y (z) = Ĥ(z)U(z) = q(z)/p(z)U(z). Therefore,

[β1 · · · βd]X(z) =
q(z)

p(z)
U(z)

⇔ [β1 · · · βd]X(z) = [β1 · · · βd]

z
−1

...
z−d

 1

p(z)
U(z)

⇔ X(z) =

z
−1

...
z−d

 1

p(z)
U(z)

Let V (z) = U(z)/p(z). From the shift property of the z-transform it holds,

Z{x}(z) = X(z) =

z
−1

...
z−d

V (z) ⇔ xt = (vt−1, vt−2, · · · , vt−d) ∀t > 0.

v can be obtained in Õ(L) time via an FFT-convolution of the input u and g, the filter resulting from
inverse transforming 1/p(z). The proof is convoluded setting t = L

30

C.9 Proof of Theorem 4.1
Notation. We will be denoting the all 1 row vector of size k, given by [1 1 . . . 1 1], and the all 0
row vector of size k, given by [0 0 . . . 0 0], as 1k and 0k, respectively. We will also construe the
standard basis vector ei as a column vector in these notes. Next, we will adhere to the following matrix
indexing convention: Aij is the entry in the ith row and the jth column, A[i, :] ∈ F1×n denotes the ith
row, and A[:, j] ∈ Fm×1 denotes the jth column of A ∈ Fm×n. Here, we also use 0m×n ∈ Rm×n and
In to denote the matrix of all zeros and the identity matrix of dimension n, respectively. Moreover, we
extend the outer product between two vectors to a tensor product using the symbol ⊗, the computation
of which is carried out batch-wise with some dimension of one or both of the input tensors. Finally, we
express the binary encoding of i ∈ [n] in a row vector form, given by Bi ∈ ZPn

2 , where Pn is the closest
power of 2 to n.

Language and Model Description. The language Λ has s keys and s values: LK :=
{k1, . . . , ks}, LV := {v1, . . . , vs}. Formally, the language Λ consists of sequences x ∈ (LK × LV)

s×
LK , where there is an associated mapping fx : LK → LV . For each sequence, the odd indices in [L]
belong to LK , for x1, x3, . . . , xL, and we define

x2·i = fx(x2·i−1) (C.3)
The last item xL ∈ {x1, x3, . . . , xL−1}, called the query, must be one of the keys that has appeared in
x already. Our goal is to produce fx(xL) at the end of the sequence, which we refer as the associated
value. This problem is termed as the associative recall problem [55].
We will now outline the Hyena layer [2] with multiple heads as follows.

Algorithm 1 Hyena

Require: Input sequence u ∈ RL×D from the previous layer, long convolution filter Th, number of
heads M .

1: qm, km, vm ← Projection(u) for m ∈ [M].
2: for m = 1, . . . ,M do
3: Perform the outer product zm ← km ⊗ vm ∈ RL×N×N , where N := D/M .
4: Apply the convolution independently and compute ymt ← Th(z

m
t)qmt ∈ RL×N

5: Average the output y ← (
∑

m) ym/M
6: Retrieve the value f(kL) of the key kL from y[L, :].

In order to prove Theorem 4.1, we need the following technical statement concerning sparse recovery
of a heavy-hitter.

Proposition C.1 (Heavy-Hitter Recovery). Let x ∈ Rs be a vector with one entry bounded by 1 ±
1

3 4
√
s
—referred as the heavy-hitter—and the rest of the entries bounded by ± 1

3 4
√
s
. Then, there exists a

matrix S(m) ∈ Rs×O(
√
s log s) such that the position of the heavy-hitter in x can be inferred from the

average of M measurements with S(m) given by
(∑

m xS(m)
)
/M with probability of error ≤ 1

s .

Before presenting the proof of Proposition C.1, we use it to prove Theorem 4.1 as follows.

Proof of Theorem 4.1. We take D = O(
√
s log2 s) and M = 243 · log s so that N = O(

√
s log s) and

use the same projections and filters for each head. We will start by describing the projections of the
input. To this end, let E : [L] → 2s define a map from the row indices of u to the keys ki and values
fx(ki) given by

E(t) =

{
i, t odd, xt = ki,

i+ s, t even, xt−1 = ki,
(C.4)

Here, we note that we also have
E(t) = E(t− 1) + s, t even (C.5)

as the even indices are defined as xt = fx(xt−1) for t even (C.3), whence xt−1 ∈ LK as t− 1 is odd.
Next, we can separate the keys q, queries q and values v from the input sequence u. For keys and
queries, we will be using the Johnson-Lindenstrauss embedding [56]. We state its guarantee here.

For a set of points P ⊆ Rs, let ϵ, δ > 0 with k ≥ 2 ln
(
2s
δ

)
/ϵ2, and f : Rs → Rk

be the randomly constructed linear map from [56], then with probability of error ≤ δ,
we have

|⟨f(x), f(y)⟩ − ⟨x, y⟩| ≤ ϵ

31

for all x, y ∈ P .

More precisely, we take R ∈ RO(
√
s log s)×s to be the matrix representation of f with ϵ := 1

3 4
√
s

and
δ := 1

sc for some c > 1 so that R[:, i] = f(ei). Thus, we define

qm[t, :] =


R[:, E(t− 1)], E(t− 1) ≤ s

0, otherwise.
(C.6)

For values, we use the heavy-hitter recovery matrix as described in Proposition C.1 so that we have

vm[t, :] =


S(m)[E(t), :], E(t) > s

0, otherwise,
(C.7)

Further, using 1DConv (equivalently, in terms of polynomials, h(X) := X), we can shift the queries to
get the projection for keys k so that we have km[t, :] = qm[t− 1, :]
The Hyena filters, along with the specific convolution being performed by Th, are specifically described
in terms of polynomial multiplications, for all m ∈ 1, . . . ,M , as follows.

Th(X) :=

L∑
i=0

Xi.

Here, we note that Th(u) takes the cumulative sum over the input. That is, for all i, we have

Th(u)[i, :] =

i∑
j=0

u[j, :]

We will now compute zm as follows
zm = km ⊗ vm

Further, applying the convolution, we get

Th(z
m
t) =

t∑
i=0

km[i, :]⊗ vm[i, :]

For inference, it suffices to show that the last row of the output y recovers the output with high prob-
ability. Indeed, let t′ ∈ [L] denote the row index of the value associated to the query such that the
corresponding key has the following relation

ut′−1 = uL. (C.8)
Finally, we multiply by the query q across L. Specifically, we now look at the computation of the Lth
row of y:

ym[L, :] =

(
L∑

t=0

km[t, :]⊗ vm[t, :]

)
qm[t, :]

=

L∑
t=0

(
qm[L, :]⊤km[t, :]

)
vm[t, :]

=

L∑
t=0

(
qm[t′ − 1, :]⊤qm[t− 1, :]

)
vm[t, :] (C.9)

=
∑
t∈[L]
t even

(
(R[:, E(t′ − 1)])⊤R[:, E(t− 1)]

)
S(m)[E(t), :] (C.10)

=

L∑
t∈[L]
t even

(
Re⊤E(t′−1)ReE(t−1)

)
S(m)[E(t), :] (C.11)

Here, we are using the fact that km[t′ − 1, :] = qm[L, :] due to (C.8) in (C.9). We then change the
indexing from (C.9) and (C.11) by observing that all the odd entries corresponding to values are zeroed
out in K (cf. C.6). Finally, we simply substitute (C.6) and (C.7) in (C.10) and (C.11), respectively.
Next, we define x ∈ Rs+1 with

xj := Re⊤E(t′−1)Rej (C.12)
where j = t − 1 with t ∈ [L] and t even. Here, x ∈ Rn+1 is a vector of size s + 1 as there are s + 1
such even numbers in [L]. Note that x is the vector with a heavy-hitter from Proposition C.1. To see

32

this, observe that we have
∣∣xE(t′−1) − 1

∣∣ ≤ 1
3 4
√
s

and |xj | ≤ 1
3 4
√
s

for all j ̸= E(t′ − 1). Using (C.11),
with probability ≥ 1− 1

sc , we then have
ym[L, :] = xS(m). (C.13)

By Proposition C.1, we can then infer the position of the key at t′ with probability of error 1
s . By the

union bound, we can then retrieve the corresponding value with probability at least 1− (1s + 1
sc).

We will now prove C.1 as follows.

Proof of C.1. We will assume that s is a power of 2 for the sake of simplicity. We first specify how
we will construct such an S(m) ∈ Rs×O(

√
s log s). Let h : [s] → [

√
s] be a hash function. We define

S̃ ∈ Rs×√
s to be

S̃[:, i] =
∑

j:h(j)=i

ej .

That is, each column i of S̃ is the sum of the standard basis vectors ej such that j is mapped by h to i.
In other words, the locations of the non-zero entries in column i correspond to the preimage of i under
h. We then multiply each non-zero entry of S̃ independently at random by ±1. Next, we replace the
kth row in S̃ by multiplying all non-zero ±1 entries at index i with the binary representation of i to get
a matrix S(m) ∈ Rs×(

√
s×log s). That is, for a non-zero entry at index i in row k, we replace the ith

entry with ±1 ·Bi. Note here that each column still has at most
√
s non-zero entries. Finally, we stack

243 · log s-many copies of S(m) as heads so that each copy produces independent measurements xS(m).
Here, we want to emphasize that each such copy uses fresh randomness for multiplying the non-zero
entry of S̃ independently at random by ±1.
Now, we will show that the average of the measurements with matrices S(m) ∈ Rs×√

s log s can locate
the heavy-hitter in x, where x is the vector of inner products from (C.12). For this purpose, we first
specify the algorithm for decoding the heavy-hitter.

Algorithm 2 Decoder

Require: The vector y such that y = xS.
1: Split y into 243 · log s blocks y(m) ∈ R

√
s log s, each of which is a result of multiplying x by

S(m),m ∈ [243 · log n].
2: Take the average y ← 1

243·log s

∑
k y

(m).

3: b← Ir(|y|) ∈ R
√
s log s, cf. (C.14).

4: Retrieve b by isolating the binary representation of the position of the heavy-hitter in x.

Here, we define the function Ir : R
√
s log s → Z

√
s log s

2 to [xS]m that rounds each entry of its input to
the nearest integer:

Ir ([xS]m) = S(m)[i, :]. (C.14)
That is, in both cases, we retrieve the row in S(m) that corresponds to the heavy-hitter in x. Since the
rows in S(m) are distinct, we can also infer the position of the heavy-hitter in x with probability 1.
We now show that y = xS, which consists of 243 · log n many independent copies of y(m) = xŜ(m).
Instead, notice that we can analyze ỹ = xS̃ since each ŷ is the replacement of non-zero entries of S̃
with the binary representation of their indices times y. We will drop the superscript for now to avoid
cluttering the notation. We can then make the following claim:

|ỹi| = 1±O(ϵ · 4
√
s) and, for j ̸= i, |ỹj | = O(ϵ · 4

√
s). (C.15)

For the above claim, we note that the first part follows from the latter as it suffices to show that all the
non-zero heavy-hitters contribute O(ϵ 4

√
s) to the sum ỹi = ⟨x, S̃[:, i]⟩. Since each column in S̃ only

interacts with
√
s sized sub-vector of x, each ỹj for non-heavy hitters can be expressed as

ỹj = ⟨x, Sj⟩ with x, Sj ∈ R
√
s,

where Sj ∈ R
√
s contains the non-zero entries of S̃j and x is obtained by extracting the entries with

corresponding indices from x. Here, we have ∥x∥2 ≤ ϵ 4
√
s since each entry associated with the non-

heavy hitter is bounded as xi ≤ ϵ, and thus, ∥x∥2 =
√∑

i x
2
i ≤

√∑
i ϵ

2 =
√√

s · ϵ2 = ϵ 4
√
s.

Consequently, as S̃j is independently random ±1, we then must have∣∣⟨x, Sj⟩∣∣ ≤ 1

3
(C.16)

33

with constant probability for j ̸= i. To see this, note that
E[⟨x,Sj⟩2] =

∑
k,ℓ

E[Sjk · Sjℓ] · xi · xj

= ∥x∥22,
where the last equality follows since E[Sjk · Sjℓ] = δk,ℓ by the distribution on entries of Sj . Now, we
use Jensen’s inequality [57] to get the following bound on the expectation of

∣∣⟨x, Sj⟩∣∣.
E
[∣∣⟨x, Sj⟩∣∣] ≤√E[⟨x, Sj⟩2] ≤ ϵ 4

√
s. (C.17)

We then use the expectation above to bound the relevant probability as follows:

Pr

[∣∣⟨x, Sj⟩∣∣ ≤ 1

3

]
≥ 1− Pr

[∣∣⟨x,Sj⟩∣∣ ≥ 1

3

]
≥ 1− 3E

[∣∣⟨x, Sj⟩∣∣] (C.18)

≥ 1− 3ϵ · 4
√
s,

where we apply Markov’s inequality [57] in (C.18). That is, we have shown that ỹj is bounded by 1/3
with constant probability for j ̸= i, and ỹi is thus bounded by 1± 1

3 . Note here that each of the m-copies
ỹ
(m)
i will have identical guarantees.

Now, define the average ỹj := 1
243·log s

∑
m ỹ(m) so that yj (line 3 in Decoder) is the corresponding

replacement of the non-zero entries with the binary representation of their indices. We now claim that
this average ỹj ≤ 4/9 < 1/2 with high probability for j ̸= i. To this end, we employ the multiplicative

Chernoff bound [57] on the independent random variables {ỹ(h)j }h[0, 1] with E
[∑

m ỹ
(m)
j

]
≤ 81 · log s

to get

Pr

[
ỹj >

4

9

]
= Pr

[∑
m

ỹ
(m)
j >

(
1 +

1

3

)
1

3
· 243 · log s

]

≤ Pr

[∑
m

ỹ
(m)
j ≥

(
1 +

1

3

)
81 · log s

]
,

≤ exp

(
−
(

1

32
· 81 · log s

)
/3

)
,

=
1

s3
.

Therefore, we have shown that the average ỹj is less than 1/2 with probability at least 1− 1
s3 for j ̸= i.

Consequently, we will have ỹi bounded by 1± 1
2 . Using the union bound over each j ̸= i and the log s

bits in the binary representation of j, we can then show that yj+m < 1/2 for each j ̸= i,m ∈ [0, log s]

with probability 1− log s
s2 ≫ 1− 1

s .

34

D Experimental Details

D.1 Pre-training
To verify the effect of introducing heads to Hyena as described in Section 4, we train a series of models
on THE PILE [11]. All MultiHyena models are set to 8 heads, and otherwise use the same hyperpa-
rameters of Hyena models of equivalent size. We set weight decay of Hyena filter parameters to 0, and
lower the frequency of sine activations in the implicit MLP to 4. We follow the setup of [2], and first
train models for 5, 10 and 15 billion tokens, adjusting the learning rate scheduler accordingly. Then, we
train for 300 billion tokens. The results are reported in Tables 5.1 and 5.1.

D.2 Distillation Analysis
Distilling pre-trained long convolution sequence models (LCSM) with LaughingHyena can introduce
errors on the convolution filter, which then propagate to the outputs.

Setup We perform a series of extensive experiments on all variants of LCSM, including pre-trained
H3 models of sizes 125 million, 355 million, 1.3 billion and 2.7 billion parameters; Hyena of size
153 million parameters, and MultiHyena of size 153 million parameters. For H3 models, we report
approximation errors on both shift as well as diagonal SSMs (reported as IIR and FIR). Each point
corresponds to distillation carried out at a particular order, using LaughingHyena modal interpolation.
To optimize the parameters of the modal form, we use gradient-based optimization and minimize the
ℓ2 discrepancy between filters in time domain. In particular, we use the ADAMW [58] optimizer with
learning rate 3 ·10−4, and a cosine annealing decay schedule down to 10−6 after 30 thousand iterations.
Each individual filter of every layer is distilled in the same way.

Discussion The errors are shown in Figures D.1, D.1, D.2, D.3, D.4 and D.5. We observe H3 filters
to be easier to distill into recurrences with small state without introducing significant errors, whereas
Hyena variants learn filters with larger effective dimensions. This provides further evidence that training
with implicit convolutions may yield in general more expressive filters.

21 23

0.00005

0.00010

0.00015

0.00020

E
rr

or

IIR `1 Error

21 23
0.00

0.25

0.50

0.75

1.00

×10−6

IIR `2 Error

21 23

0.0025

0.0050

0.0075

0.0100

0.0125
IIR `∞ Error

20 22 24

0.05

0.10

0.15

0.20

IIR Hankel Singular Values

21 23 25

Order

0.0005

0.0010

0.0015

0.0020

0.0025

E
rr

or

FIR `1 Error

21 23 25

Order

0.0

0.5

1.0

1.5

2.0

×10−5

FIR `2 Error

21 23 25

Order

0.004

0.006

0.008

0.010

FIR `∞ Error

20 23

Singular Value Index

0.1

0.2

0.3

FIR Hankel Singular Values

Distillation Error of H3 125M

Figure D.1: Mean, lower and upper bounds across channels and layers of the distillation errors on 125M H3 model
for both its IIR and FIR filters.

D.2.1 Pretrained Filters: Effective Dimension
Visualizations We qualitatively investigate LCSM filters at initialization and after pretraining. This
visual inspection (Figures D.6, D.7 and D.8) complements the distillation error analysis of Section D.2.

Distribution of Hankel singular values We further compute the distribution of Hankel singular val-
ues of each long convolution filter in different models. The decay in the spectrum quantifies how easy
it is to find a compact modal form with LaughingHyena, and serves as a proxy measure of effective
dimension of the convolution. The results are shown in Figures D.9 and D.10.

35

21 23

0.00004

0.00006

0.00008

0.00010

E
rr

or

IIR `1 Error

21 23
0

2

4

6

×10−7

IIR `2 Error

21 23

0.002

0.004

0.006

0.008

0.010
IIR `∞ Error

20 22 24

0.05

0.10

IIR Hankel Singular Values

21 23 25

Order

0.0010

0.0015

0.0020

0.0025

E
rr

or

FIR `1 Error

21 23 25

Order

0.5

1.0

1.5

2.0

×10−5

FIR `2 Error

21 23 25

Order

0.004

0.006

0.008

0.010

0.012

FIR `∞ Error

20 23

Singular Value Index

0.05

0.10

0.15

0.20

0.25
FIR Hankel Singular Values

Distillation Error of H3 355M

Figure D.2: Mean, lower and upper bounds across channels and layers of the distillation errors on 355M H3 model
for both its IIR and FIR filters.

21 23

0.00006

0.00008

0.00010

0.00012

0.00014

E
rr

or

IIR `1 Error

21 23

2

4

6

8

×10−7

IIR `2 Error

21 23

0.004

0.006

0.008

0.010

0.012
IIR `∞ Error

20 22 24
0.00

0.05

0.10

IIR Hankel Singular Values

21 23 25

Order

0.0010

0.0015

0.0020

E
rr

or

FIR `1 Error

21 23 25

Order

0.5

1.0

×10−5

FIR `2 Error

21 23 25

Order

0.004

0.006

0.008

FIR `∞ Error

20 23

Singular Value Index

0.05

0.10

FIR Hankel Singular Values

Distillation Error of H3 1.3B

Figure D.3: Mean, lower and upper bounds across channels and layers of the distillation errors on 1.3B H3 model
for both its IIR and FIR filters.

D.3 Downstream Evaluation
We benchmark the downstream performance of MultiHyena and distilled MultiHyena on standard lan-
guage modeling tasks from the LM-Eval-Harness [42] and HELM [41] suites. As a reference baseline,
we evaluate Pythia [44] 160M.
Our objective is to quantify the absolute performance of MultiHyena and the downstream impact of
distillation. We use the same procedure outlined in Section D.2 to distill MultiHyena.

D.4 Benchmarking
To demonstrate the superior performance of Laughing Hyena for autoregressive generation, we conduct
a series of experiments to benchmark its latency, throughput, and memory usage for autoregressive
generation with initial prompt length T and number of generated tokens K. For each experiment,
we compare the performance of Laughing Hyena against a Transformer, a hybrid H3-attention model
with 2 attention layers and a Hyena model. The latter two have been shown to match or achieve lower
perplexity than Transformers on standard datasets (WIKITEXT103 and THE PILE). All experiments are
carried out on a NVIDIA A100 with 80GB in float16 precision. Missing measurements for any model
indicate Out of Memory (OOM) errors while doing autoregressive inference for that particular model.

36

21 23

0.00010

0.00015

0.00020

0.00025

E
rr

or

IIR `1 Error

21 23

0.5

1.0

×10−6

IIR `2 Error

21 23

0.0050

0.0075

0.0100

0.0125

IIR `∞ Error

20 22 24
0.00

0.05

0.10

IIR Hankel Singular Values

21 23 25

Order

0.0010

0.0015

0.0020

0.0025

0.0030

E
rr

or

FIR `1 Error

21 23 25

Order

1

2

3
×10−5

FIR `2 Error

21 23 25

Order

0.006

0.008

0.010

0.012
FIR `∞ Error

20 23

Singular Value Index

0.05

0.10

FIR Hankel Singular Values

Distillation Error of H3 2.7B

Figure D.4: Mean, lower and upper bounds across channels and layers of the distillation errors on 2.7B H3 model
for both its IIR and FIR filters.

21 24 27

Order

0.00

0.01

E
rr

or

`1 Error

21 24 27

Order

0.000

0.005

0.010

0.015

E
rr

or

`2 Error

21 24 27

Order

0

1

2

E
rr

or
`∞ Error

21 24 27

5

10

Hankel Singular Values

Distillation Error of Hyena 155M (150B tokens)

21 25

Order

0.0

0.1

0.2

E
rr

or

`1 Error

21 25

Order

0

1

2

3

E
rr

or

`2 Error

21 25

Order

0

10

20

E
rr

or

`∞ Error

21 25

50

100

Hankel Singular Values

Distillation Error of MultiHyena 155M (300B tokens)

Figure D.5: Mean, lower and upper bounds across channels and layers of the distillation errors on Hyena and
MultiHyena models.

Peak throughput We first evaluate the throughput (number of tokens generated per second) across
different batch sizes, using a typical generation workload consisting of a prompt of length 512 and
generating 256 tokens. Figure 1.1 measures peak throughput of different models. Since Laughing Hyena
does not require caching intermediate kv-projections during generation, reduced memory requirements
at a fixed model size allow it to process larger batch sizes.

Prompt length Autoregressive generation in Laughing Hyena is achieved through a two-step process:
an initial prefill step that uses the length−T prompt to initialize the state xT and that generates all K
tokens. In Figure 5.3 we demonstrate how the prefill step scales for different prompt lengths, keeping
batch sizes fixed at 64. Since prefilling in Laughing Hyena is carried out efficiently via convolutions (as
described in Section 3.4), throughput scales more favorably than Transformers. Other models capable of
prefilling via convolutions also achieve higher throughputs than Transformers but are ultimately slower
than Laughing Hyena during the generation phase.

State throughput We measure the impact of SSM state dimension on the throughput of
Laughing Hyena. Keeping batch sizes fixed reveals minimal impact for all dimensions smaller than

37

0 50

−1

0

1
N

or
m

al
iz

ed
F

ilt
er

s
h
t
/‖
h
‖ ∞ Layer 0

Initialization

Pre-trained

0 50

−1

0

1

Layer 1

0 50

−1

0

1

Layer 2

0 50

−1

0

1

Layer 3

0 50

−1

0

1

Layer 4

0 50

−1

0

1

Layer 5

0 50

t

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Attention Layer

0 50

t

−1

0

1

Layer 7

0 50

t

−1

0

1

Layer 8

0 50

t

−1

0

1

Layer 9

0 50

t

−1

0

1

Layer 10

0 50

t

−1

0

1

Layer 11

FIR Filters of H3 125M

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 0

Initialization

Pre-trained

0 2000

−1

0

1

Layer 1

0 2000

−1

0

1

Layer 2

0 2000

−1

0

1

Layer 3

0 2000

−1

0

1

Layer 4

0 2000

−1

0

1

Layer 5

0 2000

t

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Attention Layer

0 2000

t

−1

0

1

Layer 7

0 2000

t

−1

0

1

Layer 8

0 2000

t

−1

0

1

Layer 9

0 2000

t

−1

0

1

Layer 10

0 2000

t

−1

0

1

Layer 11

IIR Filters of H3 125M

Figure D.6: Initialized and pre-trained convolution filters of H3.

100, which are sufficient to distill all models discussed in this work. All other measurements provided
in this Section are carried out with a standard order 16. We note that it may be possible to further
increase peak throughput by leveraging reduced memory footprints achieved by extremely small SSMs.

Latency over sequence length We benchmark the time taken to generate a variable number of to-
kens, starting from a prompt of length 512 tokens at batch size 1 (Figure D.11). Laughing Hyena tracks
highly optimized Transformers. We note that Laughing Hyena is asymptotically more efficient than
Transformers; however, this regime is bottlenecked by hardware-specific implementation details and
optimizations. We expect optimized, platform-specific implementations of Laughing Hyena to outper-
form Transformers even at batch size 1. When the prompt is long, the prefilling step becomes the
bottleneck, and all convolutional models outperform Transformers.

Parameter scaling To better understand how the performance of Laughing Hyena scales, we bench-
mark its latency, throughput, and peak memory utilization for autoregressive generation and 125M,
355M, 1.3B, 2.7B and 6.7B parameters. We compare the performance to that of Transformers, Hybrid-
H3, and Hyena at the same number of parameters and report the results in Figure D.11. For the latency
measurement, we use a batch size of 1 and benchmark the time taken to generate 128 tokens, starting
from a prompt of length 512 tokens. For throughput and peak memory scaling against the number of
parameters, we use a batch size of 64 and measure the throughput for generating 256 tokens starting
with a prompt of length 512.

38

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 0

Initialization

Pre-trained

0 2000

−1

0

1

Layer 1

0 2000

−1

0

1

Layer 2

0 2000

−1

0

1

Layer 3

0 2000

−1

0

1

Layer 4

0 2000

−1

0

1

Layer 5

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 6

0 2000

−1

0

1

Layer 7

0 2000

−1

0

1

Layer 8

0 2000

−1

0

1

Layer 9

0 2000

−1

0

1

Layer 10

0 2000

−1

0

1

Layer 11

0 2000

t

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 12

0 2000

t

−1

0

1

Layer 13

0 2000

t

−1

0

1

Layer 14

0 2000

t

−1

0

1

Layer 15

0 2000

t

−1

0

1

Layer 16

0 2000

t

−1

0

1

Layer 17

Filters of MultiHyena 155M (300B tokens)

Figure D.7: Initialized and pre-trained long convolution filters of MultiHyena.

39

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/
‖h
‖ ∞ Layer 0

Initialization

Pre-trained

0 2000

−1

0

1

Layer 1

0 2000

−1

0

1

Layer 2

0 2000

−1

0

1

Layer 3

0 2000

−1

0

1

Layer 4

0 2000

−1

0

1

Layer 5

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/
‖h
‖ ∞ Layer 6

0 2000

−1

0

1

Layer 7

0 2000

−1

0

1

Layer 8

0 2000

−1

0

1

Layer 9

0 2000

−1

0

1

Layer 10

0 2000

−1

0

1

Layer 11

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 12

0 2000

−1

0

1

Layer 13

0 2000

−1

0

1

Layer 14

0 2000

−1

0

1

Layer 15

0 2000

−1

0

1

Layer 16

0 2000

−1

0

1

Layer 17

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 18

0 2000

−1

0

1

Layer 19

0 2000

−1

0

1

Layer 20

0 2000

−1

0

1

Layer 21

0 2000

−1

0

1

Layer 22

0 2000

−1

0

1

Layer 23

0 2000

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 24

0 2000

−1

0

1

Layer 25

0 2000

−1

0

1

Layer 26

0 2000

−1

0

1

Layer 27

0 2000

−1

0

1

Layer 28

0 2000

−1

0

1

Layer 29

0 2000

t

−1

0

1

N
or

m
al

iz
ed

F
ilt

er
s
h
t
/‖
h
‖ ∞ Layer 30

0 2000

t

−1

0

1

Layer 31

0 2000

t

−1

0

1

Layer 32

0 2000

t

−1

0

1

Layer 33

0 2000

t

−1

0

1

Layer 34

0 2000

t

−1

0

1

Layer 35

Filters of Hyena 355M (200B tokens)

Figure D.8: Initialized and pre-trained long convolution filters of Hyena (355 M).

40

20 24 28
10−4

10−2

100

102

H
an

ke
l

S
in

gu
la

r
V

al
u

es
Layer 0

MultiHyena

Hyena

20 24 28
10−4

10−2

100

102

Layer 1

20 24 28
10−4

10−2

100

102

Layer 2

20 24 28
10−4

10−2

100

102

Layer 3

20 24 28
10−4

10−2

100

102

Layer 4

20 24 28
10−4

10−2

100

102

Layer 5

20 24 28
10−4

10−2

100

102

H
an

ke
l

S
in

gu
la

r
V

al
u

es

Layer 6

20 24 28
10−4

10−2

100

102

Layer 7

20 24 28
10−4

10−2

100

102

Layer 8

20 24 28
10−4

10−2

100

102

Layer 9

20 24 28
10−4

10−2

100

102

Layer 10

20 24 28
10−4

10−2

100

102

Layer 11

20 24 28

n

10−4

10−2

100

102

H
an

ke
l

S
in

gu
la

r
V

al
u

es

Layer 12

20 24 28

n

10−4

10−2

100

102

Layer 13

20 24 28

n

10−4

10−2

100

102

Layer 14

20 24 28

n

10−4

10−2

100

102

Layer 15

20 24 28

n

10−4

10−2

100

102

Layer 16

20 24 28

n

10−4

10−2

100

102

Layer 17

Hankel Singular Values of Hyena and MultiHyena Filters

Figure D.9: Distribution of Hankel singular values for Hyena and MultiHyena long convolution filters.
MultiHyena filters have larger effective dimension, as evidenced by slower decay.

20 24
10−5

10−2

H
an

ke
l

S
in

gu
la

r
V

al
u

es

Layer 0

Initialization

Pre-trained

20 24
10−5

10−2

Layer 1

20 24
10−5

10−2

Layer 2

20 24
10−5

10−2

Layer 3

20 24
10−5

10−2

Layer 4

20 24
10−5

10−2

Layer 5

0.0 0.5 1.0

n

−1

0

1

H
an

ke
l

S
in

gu
la

r
V

al
u

es

Attention Layer

20 24

n

10−5

10−2

Layer 7

20 24

n

10−5

10−2

Layer 8

20 24

n

10−5

10−2

Layer 9

20 24

n

10−5

10−2

Layer 10

20 24

n

10−5

10−2

Layer 11

Hankel Singular Values of H3 (125M) FIR Filters

20 24
10−5

10−2

H
an

ke
l

S
in

gu
la

r
V

al
u

es

Layer 0

Initialization

Pre-trained

20 24
10−5

10−2

Layer 1

20 24
10−5

10−2

Layer 2

20 24
10−5

10−2

Layer 3

20 24
10−5

10−2

Layer 4

20 24
10−5

10−2

Layer 5

0.0 0.5 1.0

n

−1

0

1

H
an

ke
l

S
in

gu
la

r
V

al
u

es

Attention Layer

20 24

n

10−5

10−2

Layer 7

20 24

n

10−5

10−2

Layer 8

20 24

n

10−5

10−2

Layer 9

20 24

n

10−5

10−2

Layer 10

20 24

n

10−5

10−2

Layer 11

Hankel Singular Values of H3 (125M) IIR Filters

Figure D.10: Distribution of Hankel singular values for H3 long convolution filters. The values decay
rapidly.

41

0 1,000 2,000

0

20

40

Output sequence length

Fu
ll

ge
ne

r.
la

te
nc

y
(s

)

0 2 4 6
0

20

40

60

Number of Parameters ×109

Pe
ak

M
em

or
y

[G
B

s]

0 1 2
0

2

4

6

Number of Parameters ×109G
en

er
.t

hr
ou

gh
pu

t[
to

k/
s]
×
1
0
3

0 2 4 6

2

4

Number of Parameters ×109

Fu
ll

ge
ne

r.
la

te
nc

y
(s

)

Laughing Hyena Hyena Hybrid Attn. H3 Transformer

Figure D.11: Generation latency, throughput and peak memory of Transformers, H3, Hyena and
Laughing Hyena.

42

E Additional Experiments
E.1 Associative Recall with MultiHyena

We follow the setup of [2] and train 2-layer Hyena and MultiHyena (with 8 heads) to solve associative
recall via a standard next-token prediction objective. We focus on the sequence length 64k, high vocab-
ulary size setting, and push vocabulary sizes past the maximum values considered in [2]. At vocabulary
size 60, a difference between MultiHyena and Hyena can be observed (Table E.1), as experimental
support for Theorem 4.1.

Model Accuracy
Hyena 65

MultiHyena 98

Table E.1: Associative recall accuracy, sequence length 64k, vocabulary size 60.

E.2 Analysis of Hankel Singular Values of Pretrained Large Convolution Sequence Models
E.3 Model Order Reduction of H3
The H3 model is constructed with a combination of diagonal SSMs and shift SSMs. There exists
various classical model order reduction techniques for these different types of SSMs. The following
sections aim to present the formulation and effectiveness of two classical approaches on obtaining the
compressed representation of a H3 model. More specifically, we study modal truncation and balanced
truncation for compressing diagonal SSMs and shift SSMs respectively.

E.3.1 Modal Truncation
A discrete diagonal SSM (A = diag(λ1, . . . , λd), B ∈ Cd×1, and C ∈ C1×d) can be directly converted
into a residue-pole transfer function as follows:

(A,B,C)→ H(z) =

d∑
i=1

ri
z − λi

, (E.1)

where residue ri = BiCi. Modal truncation aims to compress such a transfer function by essentially
reducing the summation over d to n < d, of the n most influential modes. The influence from each node
can be isolated by expressing it using the h∞ norm of the system as follows:

∥H(z)∥∞ =

d∑
i=1

∥∥∥∥ ri
z − λi

∥∥∥∥
∞
≤

d∑
i=1

|ri|
|1− |λi||

. (E.2)

Each mode i can be ranked using the bound formulated above. Subsequently, the d − n lowest modes
could be discarded to form a reduced order model. Figure E.1 illustrates the monotonically decreasing
l∞ error with the increase in system order. However, this model reduction approach is only suitable for
diagonalizable SSMs.

21 23 25
0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 0

Mean

21 23 25
0.0

0.5

1.0

Layer 1

21 23 25
0.0

0.5

1.0

Layer 2

21 23 25
0.0

0.5

1.0

Layer 3

21 23 25
0.0

0.5

1.0

Layer 4

21 23 25
0.0

0.5

1.0

Layer 5

21 23 25

Order

0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 6

21 23 25

Order

0.0

0.5

1.0

Layer 7

21 23 25

Order

0.0

0.5

1.0

Layer 8

21 23 25

Order

0.0

0.5

1.0

Layer 9

21 23 25

Order

0.0

0.5

1.0

Layer 10

21 23 25

Order

0.0

0.5

1.0

Layer 11

Modal Truncation Model Reduction Error of H3

Figure E.1: Modal truncation model reduction error (||h(t) − hn(t)||∞) across all diagonal SSM layers of the
trained H3 125M model.

43

E.3.2 Balanced Truncation
A balanced SSM realization is one in which the observability P and controllability Q gramians are
equal and diagonal. Such a realization can be formulated with the following Lyapunov equations [24]:

AΣA⊤ + BB⊤ = Σ,

A⊤ΣA+ C⊤C = Σ,
(E.3)

where P = Q = Σ = diag(σ1, . . . , σd) and σi ≥ σi+1.
Results from [59] shows that the n−order model reduction error is bounded by:

E∞ ≜ ∥H(s)−Hn(s)∥∞ ≤ 2

d∑
i=d−n

σi. (E.4)

Therefore, an n−order partition of the full balanced realization can be chosen, such that the discarded
orders are the d − n lowest contributor to the error. The steps taken by [24], computes the n−order
partition of the balanced realization as follows:

1. Form a Hankel matrix Sd from the impulse response h1:n of the shift SSM.
2. Obtain the eigenvector matrix V ∈ Cd×d, and the eigenvalues λ = σ2 via the eigen-

decomposition of Sd.
3. Choose the truncated model’s order n < d, based on the bound in Equation E.4.
4. Compute the state-space matrices as follows:

A = V ⊤
2:d,1:nV1:d−1,1:n, B = V1,1:n, C = h⊤

1:dV1:d,1:n, D = h0. (E.5)

This model reduction technique was applied to a trained 125 million parameter H3, MultiHyena, and
Hyena models as shown in Figures E.2, E.3, and E.4 respectively. It could be noted that the all models
encountered an undesirable non-monotonic error reduction with the increase in order. Moreover, order
reduction configurations such as the one in Figure E.3 layer 15 display signs of numerical instability.

21 23 25
0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 0

Mean

21 23 25
0.0

0.5

1.0

Layer 1

21 23 25
0.0

0.5

1.0

Layer 2

21 23 25
0.0

0.5

1.0

Layer 3

21 23 25
0.0

0.5

1.0

Layer 4

21 23 25
0.0

0.5

1.0

Layer 5

21 23 25

Order

0.00

0.02

0.04

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 6

21 23 25

Order

0.0

0.5

1.0

Layer 7

21 23 25

Order

0.0

0.5

1.0

Layer 8

21 23 25

Order

0.0

0.5

1.0

Layer 9

21 23 25

Order

0.0

0.5

1.0

Layer 10

21 23 25

Order

0.0

0.5

1.0

Layer 11

Balanced Truncation Model Reduction Error of H3

Figure E.2: Balanced truncation model reduction error (||h(t) − hn(t)||∞) across all shift SSM layers
of the trained H3 125M model. Note that Layer 6 is an Attention layer, therefore balanced truncation
model order reduction is not possible.

44

21 24 27
0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 0

Mean

21 24 27
0.0

0.5

1.0

Layer 1

21 24 27
0.0

0.5

1.0

Layer 2

21 24 27
0.0

0.5

1.0

Layer 3

21 24 27
0.0

0.5

1.0

Layer 4

21 24 27
0.0

0.5

1.0

Layer 5

21 24 27
0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 6

21 24 27
0.0

0.5

1.0

Layer 7

21 24 27
0.0

0.5

1.0

Layer 8

21 24 27
0.0

0.5

1.0

Layer 9

21 24 27
0.0

0.5

1.0

Layer 10

21 24 27
0.0

0.5

1.0

Layer 11

21 24 27

Order

0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 12

21 24 27

Order

0.0

0.5

1.0

Layer 13

21 24 27

Order

0.0

0.5

1.0

Layer 14

21 24 27

Order

0.0

0.5

1.0

Layer 15

21 24 27

Order

0.0

0.5

1.0

Layer 16

21 24 27

Order

0.0

0.5

1.0

Layer 17

Balanced Truncation Model Reduction Error of MultiHyena

Figure E.3: Balanced truncation model reduction error (||h(t) − hn(t)||∞) across all convolutional
layers of the trained MultiHyena 155M model.

21 24 27
0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 0

Mean

21 24 27
0.0

0.5

1.0

Layer 1

21 24 27
0.0

0.5

1.0

Layer 2

21 24 27
0.0

0.5

1.0

Layer 3

21 24 27
0.0

0.5

1.0

Layer 4

21 24 27
0.0

0.5

1.0

Layer 5

21 24 27
0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 6

21 24 27
0.0

0.5

1.0

Layer 7

21 24 27
0.0

0.5

1.0

Layer 8

21 24 27
0.0

0.5

1.0

Layer 9

21 24 27
0.0

0.5

1.0

Layer 10

21 24 27
0.0

0.5

1.0

Layer 11

21 24 27

Order

0.0

0.5

1.0

N
or

m
al

iz
ed

` ∞
E

rr
or

Layer 12

21 24 27

Order

0.0

0.5

1.0

Layer 13

21 24 27

Order

0.0

0.5

1.0

Layer 14

21 24 27

Order

0.0

0.5

1.0

Layer 15

21 24 27

Order

0.0

0.5

1.0

Layer 16

21 24 27

Order

0.0

0.5

1.0

Layer 17

Balanced Truncation Model Reduction Error of Hyena

Figure E.4: Balanced truncation model reduction error (||h(t) − hn(t)||∞) across all convolutional
layers of the trained Hyena 155M model.

45

	Introduction
	Preliminaries and Related Work
	Long Convolution Sequence Models
	Auto-Regressive Generation

	The Laughing Hyena Distillery
	Data-Free Distillation Objectives
	Making Hyena Laugh with Modal Interpolation
	Minimal Distillation Orders
	Deploying the Recurrence

	Multi-head Long Convolutions
	Experiments
	Pre-training
	Distillation Analysis
	Downstream Evaluation
	Benchmarking

	Conclusion
	Linear Systems
	Extended Notation and System Theory Preliminaries
	Systems Norms
	Transfer Function of State-Space Models
	Truncated Transfer Functions
	From Transfer Function to State-Space
	Isolating the h0-term from Transfer Function by Long division
	Construction of the State-Space from the Transfer Function

	From State-Space to Transfer Function
	State-Space Representation of Truncated Filters.
	Efficient Computation of State-Space Models
	Fast Evaluation of the Transfer Function
	Fast Companion Recurrence
	Canonization of State-Space Models

	Laughing Hyena: Further Details
	Parametrization of Modal Interpolators
	Distillation as Rational Interpolation

	Proofs
	Proof of Lemma 2.1
	Proof of Lemma 2.2
	Proof of Lemma 2.3
	Proof of Proposition 3.1
	Proof of Lemma 3.1
	Proof of Theorem 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.2
	Proof of Theorem 4.1

	Experimental Details
	Pre-training
	Distillation Analysis
	Pretrained Filters: Effective Dimension

	Downstream Evaluation
	Benchmarking

	Additional Experiments
	Associative Recall with MultiHyena
	Analysis of Hankel Singular Values of Pretrained Large Convolution Sequence Models
	Model Order Reduction of H3
	Modal Truncation
	Balanced Truncation

