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Abstract

Vision-based manipulation has shown remarkable success, achieving promising
performance across a range of tasks. However, these manipulation policies often
fail to generalize beyond their training viewpoints, which is a persistent challenge
in achieving perspective-agnostic manipulation, especially in settings where the
camera is expected to move at runtime. Although collecting data from many
angles seems a natural solution, such a naive approach is both resource-intensive
and degrades manipulation policy performance due to excessive and unstructured
visual diversity. This paper proposes Vantage, a framework that systematically
identifies and integrates data from optimal perspectives to train robust, viewpoint-
agnostic policies. By formulating viewpoint selection as a continuous optimization
problem, we iteratively fine-tune policies on a few vantage points. Since we
leverage Bayesian optimization to efficiently navigate the infinite space of potential
camera configurations, we are able to balance exploration of novel views and
exploitation of high-performing ones, thereby ensuring data collection from a
minimal number of effective viewpoints. We empirically evaluate this framework
on diverse standard manipulation tasks using multiple policy learning methods,
demonstrating that fine-tuning with data from strategic camera placements yields
substantial performance gains, achieving average improvements of up to 46.19%
when compared to fixed, random, or heuristic-based strategies.

1 Introduction

Vision-based robot learning critically depends on the quality, consistency, and comprehensiveness of
visual input, making camera placement a decisive yet frequently overlooked factor in training robust
manipulation policies [1, 2]. The choice of camera viewpoint directly influences feature extraction,
state estimation, and ultimately, policy performance. For instance, consider a robot tasked with
picking objects from a cluttered table: a top-down camera initially offers a clear overhead view,
but as the robot’s arm moves to grasp an object, it may obstruct the camera, complicating precise
manipulation. Conversely, a side-view camera can continuously track the robot’s motion without
obstruction but may fail to clearly represent essential object attributes such as length or orientation,
crucial for successful grasping [3].

Despite the importance of viewpoints, most manipulation policies become highly specialized to their
training viewpoints, performing reliably only when the camera is the same as in training. While
suitable for static research settings, these policies fail in humanoid robots with constantly moving
heads, mobile manipulators with the camera mounted on pan-tilt head or mobile bases, robots on
moving assembly lines [4, 5], etc. One might assume that simply training on data from many random
viewpoints enhances robustness, but in practice, excessive variation or over-augmentation increases
the sample complexity and can lead to poor convergence. From the perspective of bias–variance
tradeoff [6], high-capacity models exposed to overly diverse data may overfit noise across viewpoints
and struggle to learn consistent features. This phenomenon parallels findings in domain generalization,
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Figure 1: Starting from an initial camera viewpoint, we first define the model and search space, then
sequentially fine-tune the policy at three additional selected viewpoints. Each fine-tuning step yields
a measurable gain in task success rate rising from 37% at the first refine to 48 %, 64 %, and finally 83
% accuracy, illustrating how strategic viewpoint selection progressively enhances

where large shifts between training distributions hinder model generalization [7]. Therefore, it is
important to learn the manipulation policy from a few meaningful viewpoints.

Instead of training a viewpoint-agnostic policy from scratch, we find it more stable to fine-tune a
pretrained policy with some additional strategic views. This process also aligns with the prevailing
trend of fine-tuning, as models continue to grow in size and complexity [8]. For example, a warehouse
robot trained to grasp items from a fixed viewpoint pre-deployment may later need to adapt to
dynamic environments such as variable shelf heights and mobile platforms at deployment [9]. This
shift necessitates structured methods capable of systematically identifying a few informative camera
perspectives, thereby balancing diversity in viewpoints with the stability required for effective
learning.

Since our goal is to find the optimal viewpoint from the space of all viewpoints, which increases the
model’s performance across diverse camera perspectives, using the minimum number of samples as
possible, we propose a Bayesian Optimization (BO)-driven framework for systematically identifying
and combining training viewpoints to enhance policy performance. Instead of exposing the robot
to all possible viewpoints at once, risking instability and poor convergence, we adopt a structured,
iterative approach. This method systematically finds the most informative camera angles over
multiple iterations, balancing exploration of new viewpoints with the stability required for effective
learning. By doing so, our approach ensures that the robot learns from perspectives that enhance task
performance while avoiding the pitfalls of excessive viewpoint variation. Our main contribution is a
framework that iteratively finds additional camera viewpoints to progressively finetune an arbitrary
manipulation policy to ensure the manipulation policy is agnostic to viewpoints.

2 Related Work

Active vision in robotics: The paradigm of active vision, wherein an agent dynamically controls
its viewpoint to enhance perceptual efficiency, has long been a foundational pursuit in robotics and
computer vision [10, 11]. Recent advances have leveraged deep learning to address the next best
view (NBV) problem, where the agent selects optimal views to maximize information gain. Learning
based methods have emerged, using reinforcement learning or uncertainty modeling [12, 13] to guide
viewpoint selection for tasks such as object recognition and 3D reconstruction [14, 15, 16]. Notably,
recent works have substantially raised the bar. For instance, GenNBV [2] introduced a generalizable
NBV policy that learns in a 5D action space, while SUGARL [4] learns intrinsic sensorimotor rewards
to guide view selection under partial observability. Active Neural Mapping [17] and VIN-NBV [18]
further refined the NBV task using receding horizon planning and view quality introspection networks.
In multi-view tasks, Hou et al. [19] developed methods to select informative views for efficient 3D
understanding [20]. Additionally, Bayesian methods for NBV planning [16] are gaining traction
in robotics, such as in safe contact-based exploration [21] and dynamic view planning for robotic
manipulation [5]. Recent studies have also explored attention-driven NBV strategies for targeted
perception in complex environments [22] and affordance-driven NBV planning for robotic grasping
in cluttered scenes [23]. While active vision aims to solve the problem of “where to look” at inference
time, complementary to them, we address the problem of how to collect optimal data at the training
stage to develop a perspective agnostic policy.
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Viewpoint selection for generalization: Beyond selecting views for immediate perceptual gain,
recent research has explored how actively varying viewpoints can improve the robustness and
generalization of learned visual representations. Jayaraman et al.[24] demonstrated that agents
can learn viewpoint-invariant features by controlling the camera and predicting changes across
views. Follow up work from Wu et al. [25] used neural predictors to estimate utility in active 3D
reconstruction, while Lin et al. [26] leveraged neural implicit representations for efficient scene
understanding. In parallel, multi-agent or collaborative view selection strategies like MAP-NBV [27]
have been developed to jointly optimize multi-view acquisition under budgeted exploration, enabling
robust understanding of complex scenes. Additionally, approaches such as Pred-NBV [28] have
utilized prediction-guided strategies to enhance the efficiency of 3D object reconstruction. Parallel
work in domain generalization has highlighted that excessive diversity between training and test
distributions can degrade model performance, a phenomenon analyzed through invariant feature
learning and distributional robustness frameworks [7, 29]. Distinct from prior work, Vantage targets
the fine-tuning of pre-trained policies using data collected from a strategically chosen set of camera
viewpoints via Bayesian Optimization. Rather than optimizing a single next view, it emphasizes
maximizing the downstream task performance and generalization of learned policies across unseen
and dynamic camera settings. This policy-centric use of viewpoint planning represents a unique
contribution that bridges active vision and policy adaptation in real-world environments. Vantage
leverages existing policies and enhances their robustness through informed viewpoint selection,
addressing the challenges of dynamic and unpredictable operational conditions.

Data diversity and generalization: Although increasing training set diversity often aims to improve
robustness, unchecked heterogeneity can instead degrade model performance. Recht et al. [30] report
11–14 percent drops in ImageNet top-1 accuracy on a harder test split, indicating that naively adding
variation without matching distributional priors harms generalization. This effect mirrors the classical
bias–variance tradeoff: with fixed model capacity, excess data heterogeneity inflates variance and
thus test error [31]. In robotic manipulation, the DROID dataset [32] further illustrates that policies
trained on overly diverse, in-the-wild scenes under-performs unless coupled with targeted adaptation
or fine-tuning mechanisms, underscoring the need for our selective, BO-driven viewpoint strategy.

3 Methodology

Formulating the optimization problem. We define a viewpoint, θ, as a 3D camera placement
around the robot, where the camera is oriented toward the center of the manipulator’s workspace.
Given a pre-trained manipulation policy, π, our objective is to identify the optimal camera viewpoint,
θvantage, that when used for fine-tuning the manipulation policy, maximizes task performance, J(·),
across the test space of viewpoints, Θtest. To find this vantage, we search across the large, continuous
space of candidate training viewpoints, Θtrain:

θvantage = argmax
θtrain∈Θtrain

J(πθtrain(θtest)), ∀θtest ∈ Θtest. (1)

Here, πθtrain(θtest) indicates rolling out the policy, which was trained on data obtained from the
viewpoint θtrain, at test angles θtest ∈ Θtest. In practice, we consider Θtrain and Θtest to have the
same boundaries. Without loss of generality, we consider the performance metric, J , as the average
manipulation success rate calculated over several rollouts on a discrete grid of test viewpoints. Note
that training is much more expensive than testing because training requires collecting trajectories and
updating neural network parameters whereas testing only requires policy rollouts. Considering these
challenges, we iteratively optimize this expensive blackbox function, J , using a variant of Bayesian
optimization (BO) [33] to obtain optimal viewpoints to train the neural network in such a way that
policy performs well for test viewpoints.

Modeling the performance metric. We model the relationship between J and θtrain as a Gaussian
process,

J(πθtrain) ∼ GP(µ(θtrain), k(θtrain, θ
′
train)), (2)

with predicted mean success rate, µ(θtrain), and a similarity metric between viewpoints, k(θtrain, θ
′
train),

computed using a squared-exponential kernel [34]. This probabilistic surrogate model iteratively
guides the BO in selecting informative viewpoints—vantage points—in a sample-efficient manner.

Batched optimization. While (2) can be used in a standard BO setting [33], we further enhance the
efficiency by evaluating multiple tests viewpoints simultaneously during exploration. To this end, we
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Algorithm 1 Vantage

Step 1: Gather Initial Data
Sample q random viewpoints {θ(j)train}

q
j=1, where each θ

(j)
train ∈ Θtrain

Generate manipulation datasets {D(j)}qj=1, from robot trials or simulation at viewpoints {θ(j)train}
q
j=1

Fine-tune the original policy on Dj independently
Evaluate the fine-tuned models across Θ to obtain success rates {Ji}qi=1
Initialize a historical dataset Dgp ← {(θj , Ji)}qi=1
Step 2: Bayesian Optimization Loop
for i = 1 to N do

Use D and Bayesian optimization to select q new angles {θnew,j}qj=1 = (θnew,j
h , θnew,j

v ) ∈ Θ
Generate datasets Dnew,j at θnew,j

Fine-tune the original model separately on Dnew,j

Evaluate the model fine-tuned at θnew to obtain Jnew
Update Dgp ← Dgp ∪ {(θnew,j , Jnew,j)}

end for
Step 3: Final Selection
θ∗ ← argmax

θ∈Θ
J(πθ)

use the q-Upper Confidence Bound (q-UCB) [35] as our acquisition function. Consider a batch of
viewpoints, Θq = (θ1, . . . , θq), where θ ∈ Θtrain, for fine-tuning the manipulation policy. Following
[35], we obtain the next batch of viewpoints to train by maximizing the joint acquisition score,

Θnext
q = argmax

Θq⊂Θtrain

αqUCB(Θq) (3)

= argmax
Θq⊂Θtrain

E
Θ̃ ∼ N

(
µ(Θq),

βπ
2 Σ(Θq)

)[ max
i=1,...,q

(
µ(θi) + |Θ̃i − µ(θi)|

)]
, (4)

where µ(Θq) ∈ Rq and Σ(Θq) ∈ Rq×q are the GP posterior mean and covariance on the batch,
respectively. The scalar β > 0 controls exploration vs. exploitation: larger β spreads the reparame-
terized posterior, encouraging sampling of high-uncertainty viewpoints, while smaller β focuses on
high-mean regions. In practice, the expectation is approximated by quasi-Monte Carlo sampling of
Θ̃, yielding an easy to compute acquisition score for selecting the next batch of viewpoints.

Once new q viewpoints are selected, they are mapped from the BO space to real-world coordinates,
and the policy is fine-tuned using datasets generated from these viewpoints. The updated policy is
then evaluated and the corresponding success rates are used to update the prior. This is done for a
fixed number of iterations. Upon completion of all iterations, we select the policy fine-tuned with the
highest observed success rate as our final model. This process is described in Algorithm 1.

4 Experiments

We use Vantage to improve manipulation policies trained in RoboSuite [36] using datasets from
RoboMimic [37]. To represent a range of common manipulation challenges with varying levels of
difficulty, we benchmark across the standard tasks: Lift, Square, and Pick & Place. To have models
of different architectures and learning capacities, we use BC [38], BCQ [39], Diffusion Policy [40],
and BC Transformer [37] models.

4.1 Defining the space of allowed camera placements

Let b ∈ R3 denote the robot’s base position and let r > 0 be the fixed radial distance at which the
camera is placed. Let the sphere of radius r around b is defined by S =

{
x ∈ R3 : ∥x− b∥ = r

}
.

For experimental purposes, we restrict our space of viewpoints to the spherical quadrant in front of
the robot and above the table (the blue area in Fig. 1):

Θ = Θtrain = Θtest =
{
x ∈ S : (x− b) · u ≥ 0 and (x− b) · n ≥ 0

}
,

where u is the unit vector pointing forward from the robot’s base and n is the upward normal to
the table plane. Any viewpoint θ ∈ Θ can be uniquely parameterized by the horizontal and vertical
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angles θh and θv , respectively:

x(θh, θv) = b+ r

cos θv cos θh

cos θv sin θh

sin θv

 , θh ∈
[
−π

2 ,
π
2

]
, θv ∈

[
−π

4 ,
π
4

]
Any θ = (θh, θv) ∈ Θ is considered a valid camera placement. Robot policies are initially trained
from the viewpoint θ = (0, 0). The resulting model is then fine-tuned using data collected from one
additional viewpoint. To quantify the variability of our method, in all experiments, this process is
repeated four times, each with a different randomly selected initialization point for the GP. Next, we
evaluate the model’s performance on a uniform grid over the viewing space Θ and fit a GP surrogate
to these measurements. By applying the q-UCB acquisition function to the GP, we identify the next
eight most informative viewpoints for further data collection and fine-tuning.

We parameterize each viewpoint by normalized coordinates νh, νv ∈ [0, 1]. The GP is trained on
these normalized inputs and thus only sees values in the unit square. To convert a normalized sample
(νh, νv) into actual camera angles, we apply the affine transformation:

θh/v =
(
νh/v − 0.5

) (
θmax
h/v − θmin

h/v

)
+

θmax
h/v + θmin

h/v

2

All methods (grid search, random search, and Vantage) were allocated identical compute resources and
used the same hyperparameters (see Appendix and code). Each task–policy combination underwent
eight fine-tuning steps per iteration per method, and 4 iterations were done leading to 32 models
fine-tuned for each combination.

4.2 Results

Our experiments demonstrate that Vantage yields significant improvements in policy performance
across a variety of tasks and architectures while requiring only a small number of fine-tuning steps.
Table 1 summarizes the success rates of BC and Table 2 the success rates of Diffusion policies
under the baseline (default), Θ, and dynamic camera settings, benchmarking Vantage against grid
and random search. We observe that our method consistently outperforms or matches alternative
strategies, with the largest gain seen for the Diffusion policy on Pick & Place—an increase from
37.01% to 83.20%, a 46.19% improvement. Moreover, as detailed in Appendix, by leveraging the
q-UCB acquisition function within a GP framework, we present theoretical guarantees of asymptotic
optimality, ensuring that each new viewpoint selection is near-optimal under standard regularity
conditions. Together, these findings demonstrate that Vantage combines strong theoretical foundations
with practical efficiency, delivering faster convergence and higher success rates than exhaustive or
naïve sampling strategies.

Figure 4 illustrates the progression of best success rates over BO iterations for each model class. In
all cases, Vantage converges more rapidly than both grid and random search, reaching near-optimal
performance within 10–12 steps. Furthermore, Fig. 2 shows the detailed improvement of each policy
for each task over Θ when using Vantage, with consistent gains observed across all tasks. Figure 3
shows the success rate of a policy before and after fine-tuning. Figure 5 shows each iteration slowly
leads towards the global maxima.

Table 1: Success Rate of BC policy
Camera

Placement
Base

Model
Grid

Search
Random
Search Vantage

Lift Default 100.00% 100% 100% 100%
Θ 6.90% 9.18% 23.15% 23.5%
Dynamic 91.66% 93.33% 100.00% 100.00%

Pick Place Default 70.00% 70.00% 70.00% 70.00%
Θ 0.80% 1.04% 2.53% 3.90%
Dynamic 3.00% 4.23% 7.66% 9.88%

Square Default 30.00% 20.00% 30.00% 20.00%
Θ 0.24% 0.61% 0.74% 1.00%
Dynamic 0.00% 0.00% 0.00% 0.00%

Table 2: Success Rate of Diffusion policy
Camera

Placement
Base

Model
Grid

Search
Random
Search Vantage

Lift Default 100.00% 100% 100% 100%
Θ 50.40% 58.57% 65.82% 66.10%
Dynamic 98.33% 100% 100% 100%

Pick Place Default 90.00% 90.00% 90.00% 90.00%
Θ 37.01% 22.09% 66.11% 83.20%
Dynamic 88.33% 71.54% 92.33% 97.16%

Square Default 60.00% 60.00% 60.00% 70.00%
Θ 2.38% 2.38% 12.08% 14.80%
Dynamic 8.33% 8.33% 40.00% 54.66%
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Figure 2: Success rates for each model across Lift, PickPlace, Square, and Average metrics. Solid
bars indicate default model and hatched bars indicate after applying Vantage
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Figure 3: Comparison of default fine-tuned diffusion policies for pick place task across a uniform
grid in Θ

5 Conclusions and Future Work

We presented Vantage, a Bayesian optimization–driven framework for systematically identifying
and combining camera viewpoints to enhance the robustness and generalization of vision-based
robot policies. By modeling the success rate over the space of possible camera placements with
a Gaussian Process and employing an Upper Confidence Bound acquisition strategy, our method
efficiently balances exploration of new viewpoints and exploitation of high-performing ones, avoiding
the instability caused by indiscriminate diversity in training data.

Our empirical evaluation on a suite of manipulation tasks (Lift, Nut Assembly, Pick & Place) and
across multiple policy architectures (BC, BCQ, BCT, Diffusion) demonstrates that fine-tuning on
viewpoints selected by Vantage yields consistent and significant performance gains over fixed or
heuristic placements. Notably, we observe average improvements ranging from 6% for BC to 46.19%
for Diffusion policies on the hyperplane evaluation, with marked robustness in dynamic camera
settings. As future work, we will move beyond simulation to validate our approach on real robot
platforms, assessing sim-to-real transfer and evaluating performance under real-world sensor noise
and lighting variations.
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Figure 4: Success rate across Θ of the best model per each model fine-tuned

100 75 50 25 0 25 50 75 100
Horizontal Camera Position

40

20

0

20

40

Ve
rti

ca
l C

am
er

a 
Po

sit
io

n

Step  11/32

100 75 50 25 0 25 50 75 100
Horizontal Camera Position

40

20

0

20

40

Ve
rti

ca
l C

am
er

a 
Po

sit
io

n
Diffusion Policy for PickPlace  

 Step  22/32

100 50 0 50 100
Horizontal Camera Position

40

20

0

20

40

Ve
rti

ca
l C

am
er

a 
Po

sit
io

n

Step  32/32
Global max
Reference

45

50

55

60

65

70

75

80

Ac
cu

ra
cy

 a
cr

os
s 

Figure 5: Rollout progression across camera viewpoints and training iterations for each task. Each
column illustrate sequential outputs of the Diffusion policy. The plots visualize how task
performance evolves as the policy is fine-tuned with optimized viewpoints - bigger circles indicate
points from current iteration while smaller ones indicate older iteration

Figure 6: Comparison of the base model and model fine-tuned with Vantage, performing PickPlace
task from a different viewpoint.
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6 Appendix

6.1 Theoretical Guarantees

Imagine a black-box function which, for each fine-tuning viewpoint θ, returns the robot’s success
rate when evaluated across a uniform grid spanning the entire allowable camera placement space Θ.
Initially, we know almost nothing about this function, so we sample a few random angles and observe
the outcomes. Each time we fine-tune the policy from a new angle, we learn more about which regions
of the viewing space are most informative and which angles yield high success rates. By fitting a
smooth probabilistic model (a Gaussian Process) over these observations, we can predict both the
expected success rate at untested angles and how uncertain those predictions are. The GP-UCB rule
then lets us pick the next angles that strike the best balance between exploring uncertain regions and
exploiting angles already known to work well. Over successive rounds, this strategy systematically
steers us toward the optimal viewpoints, guaranteeing that we improve faster than if we had naively
tried every angle or picked random ones.

Every fine-tuning step at a new viewpoint yields a measured success rate for the policy at that angle.
We treat these measured success rates as noisy evaluations of an underlying true function f(θ). When
we update the GP with a new observation (θt, Jt), the surrogate’s posterior mean µt(θ) and standard
deviation σt(θ) reflect our current best guess of f and our uncertainty. The GP-UCB acquisition
function

µt(θ) + βt σt(θ)

scores each candidate angle by combining its predicted success rate (exploitation) with a bonus
for uncertainty (exploration). By fine-tuning at the angle maximizing this score, we both collect
data where we expect high success and reduce uncertainty where the model is least certain, thereby
directly linking each fine-tuning experiment to measurable improvements in success rate and ensuring
theoretical guarantees on cumulative performance.

In the single-point GP-UCB analysis, the information gain γT quantifies the maximum reduction in
uncertainty one can achieve by making T sequential observations. In our batched q-UCB procedure,
we collect q observations per round for T rounds, yielding a total of qT queries to the underlying
function. Accordingly, we must replace the sequential information gain γT with the batch information
gain γqT , which measures the maximum mutual information between the GP prior and qT noisy
evaluations. Since a GP’s information gain grows sublinearly in the number of observations, this
substitution preserves the same sublinear regret behavior: the cumulative batch regret is controlled by

qT γqT βT ,

just as in the single-point case but scaled to account for the larger total sample size.

Theorem 6.1 (GP-UCB Regret Bound). Let f : Θ→ R be a mapping from angles to success rates,
drawn from a Gaussian process prior with kernel k. At each round t = 1, . . . , T choose,

θt = argmax
θ∈Θ

[
µt−1(θ) +

√
βt σt−1(θ)

]
,

and observe yt = f(θt) + εt with εt zero-mean sub-Gaussian noise. Then, with probability at least
1− δ,

R(T ) =

T∑
t=1

q∑
i=1

[
f(θ∗)− f(θt,j)

]
= O

(√
qT γqT βT

)
,

where θ∗ = argmaxΘ f , γT is the maximum information gain after T steps, and βT is chosen as
in [41].

Proof. By Theorem 2 of Srinivas et al. (2012), with probability 1− δ, for all t and all θ,∣∣f(θ)− µt−1(θ)
∣∣ ≤ √

βt σt−1(θ).

Hence the instantaneous regret rt = f(θ∗)− f(θt) satisfies

rt ≤ 2
√
βt σt−1(θt).

10



Summing and applying Cauchy–Schwarz together with the definition of information gain gives

R(T ) =

T∑
t=1

rt ≤ 2

T∑
t=1

√
βt σt−1(θt) ≤ 2

√(∑
t

βt

)(∑
t

σ2
t−1(θt)

)
= O

(√
T γT βT

)
.

Theorem 6.2 (Average Success Convergence). Under the same setting as Theorem 6.1, with proba-
bility at least 1− δ,

1

T

T∑
t=1

J
(
πθt

)
≥ J

(
πθ∗

)
− O

(√
γT βT

T

)
.

In particular, the mean success converges to the optimum at rate O(T−1/2).

Proof. From Theorem 6.1, with high probability,

T∑
t=1

[
J(πθ∗)− J(πθt)

]
= O

(√
T γT βT

)
.

Divide both sides by T and rearrange:

J(πθ∗) − 1

T

T∑
t=1

J(πθt) = O
(√

γT βT

T

)
,

which yields the stated bound.

Theorem 6.3 (Rademacher Complexity Generalization). Let F be a class of indicator functions
with Rademacher complexity Rn(F). If Ĵ(πθ) is the empirical success rate over n i.i.d. trials at
viewpoint θ, then for any δ > 0, with probability at least 1− δ, for all θ∣∣J(πθ)− Ĵ(πθ)

∣∣ ≤ 2Rn(F) +

√
ln(2/δ)

2n
.

Proof. Apply Theorem 3.1 of Mohri et al. (2018) on uniform convergence: with probability 1− δ,

sup
f∈F

∣∣E[f ]− Ê[f ]
∣∣ ≤ 2Rn(F) +

√
ln(2/δ)

2n
.

Setting f(·) = 1{success} for each πθ gives the result.
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Figure 7: Rollout progression across camera viewpoints and training iterations for each task. Each
row corresponds to a different manipulation task, namely Lift, Square and PickPlace while columns
illustrate sequential outputs of the BC policy. The plots visualize how task performance evolves
as the policy is fine-tuned with optimized viewpoints - bigger circles indicate points from current
iteration while smaller ones indicate older iteration
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Figure 8: Success rate across Θ of the best model per each model fine-tuned (all experiments)
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