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Abstract

Vision-based manipulation has shown remarkable success, achieving promising1

performance across a range of tasks. However, these manipulation policies often2

fail to generalize beyond their training viewpoints, which is a persistent challenge3

in achieving perspective-agnostic manipulation, especially in settings where the4

camera is expected to move at runtime. Although collecting data from many5

angles seems a natural solution, such a naive approach is both resource-intensive6

and degrades manipulation policy performance due to excessive and unstructured7

visual diversity. This paper proposes Vantage, a framework that systematically8

identifies and integrates data from optimal perspectives to train robust, viewpoint-9

agnostic policies. By formulating viewpoint selection as a continuous optimization10

problem, we iteratively fine-tune policies on a few vantage points. Since we11

leverage Bayesian optimization to efficiently navigate the infinite space of potential12

camera configurations, we are able to balance exploration of novel views and13

exploitation of high-performing ones, thereby ensuring data collection from a14

minimal number of effective viewpoints. We empirically evaluate this framework15

on diverse standard manipulation tasks using multiple policy learning methods,16

demonstrating that fine-tuning with data from strategic camera placements yields17

substantial performance gains, achieving average improvements of up to 46.19%18

when compared to fixed, random, or heuristic-based strategies.19

1 Introduction20

Vision-based robot learning critically depends on the quality, consistency, and comprehensiveness of21

visual input, making camera placement a decisive yet frequently overlooked factor in training robust22

manipulation policies [1, 2]. The choice of camera viewpoint directly influences feature extraction,23

state estimation, and ultimately, policy performance. For instance, consider a robot tasked with24

picking objects from a cluttered table: a top-down camera initially offers a clear overhead view,25

but as the robot’s arm moves to grasp an object, it may obstruct the camera, complicating precise26

manipulation. Conversely, a side-view camera can continuously track the robot’s motion without27

obstruction but may fail to clearly represent essential object attributes such as length or orientation,28

crucial for successful grasping [3].29

Despite the importance of viewpoints, most manipulation policies become highly specialized to their30

training viewpoints, performing reliably only when the camera is the same as in training. While31

suitable for static research settings, these policies fail in humanoid robots with constantly moving32

heads, mobile manipulators with the camera mounted on pan-tilt head or mobile bases, robots on33

moving assembly lines [4, 5], etc. One might assume that simply training on data from many random34

viewpoints enhances robustness, but in practice, excessive variation or over-augmentation increases35

the sample complexity and can lead to poor convergence. From the perspective of bias–variance36

tradeoff [6], high-capacity models exposed to overly diverse data may overfit noise across viewpoints37

and struggle to learn consistent features. This phenomenon parallels findings in domain generalization,38
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Iterative Vantage Selection for Policy Fine-Tuning
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Figure 1: Starting from an initial camera viewpoint, we first define the model and search space, then
sequentially fine-tune the policy at three additional selected viewpoints. Each fine-tuning step yields
a measurable gain in task success rate rising from 37% at the first refine to 48 %, 64 %, and finally 83
% accuracy, illustrating how strategic viewpoint selection progressively enhances

where large shifts between training distributions hinder model generalization [7]. Therefore, it is39

important to learn the manipulation policy from a few meaningful viewpoints.40

Instead of training a viewpoint-agnostic policy from scratch, we find it more stable to fine-tune a41

pretrained policy with some additional strategic views. This process also aligns with the prevailing42

trend of fine-tuning, as models continue to grow in size and complexity [8]. For example, a warehouse43

robot trained to grasp items from a fixed viewpoint pre-deployment may later need to adapt to44

dynamic environments such as variable shelf heights and mobile platforms at deployment [9]. This45

shift necessitates structured methods capable of systematically identifying a few informative camera46

perspectives, thereby balancing diversity in viewpoints with the stability required for effective47

learning.48

Since our goal is to find the optimal viewpoint from the space of all viewpoints, which increases the49

model’s performance across diverse camera perspectives, using the minimum number of samples as50

possible, we propose a Bayesian Optimization (BO)-driven framework for systematically identifying51

and combining training viewpoints to enhance policy performance. Instead of exposing the robot52

to all possible viewpoints at once, risking instability and poor convergence, we adopt a structured,53

iterative approach. This method systematically finds the most informative camera angles over54

multiple iterations, balancing exploration of new viewpoints with the stability required for effective55

learning. By doing so, our approach ensures that the robot learns from perspectives that enhance task56

performance while avoiding the pitfalls of excessive viewpoint variation. Our main contribution is a57

framework that iteratively finds additional camera viewpoints to progressively finetune an arbitrary58

manipulation policy to ensure the manipulation policy is agnostic to viewpoints.59

2 Related Work60

Active vision in robotics: The paradigm of active vision, wherein an agent dynamically controls61

its viewpoint to enhance perceptual efficiency, has long been a foundational pursuit in robotics and62

computer vision [10, 11]. Recent advances have leveraged deep learning to address the next best63

view (NBV) problem, where the agent selects optimal views to maximize information gain. Learning64

based methods have emerged, using reinforcement learning or uncertainty modeling [12, 13] to guide65

viewpoint selection for tasks such as object recognition and 3D reconstruction [14, 15, 16]. Notably,66

recent works have substantially raised the bar. For instance, GenNBV [2] introduced a generalizable67

NBV policy that learns in a 5D action space, while SUGARL [4] learns intrinsic sensorimotor rewards68

to guide view selection under partial observability. Active Neural Mapping [17] and VIN-NBV [18]69

further refined the NBV task using receding horizon planning and view quality introspection networks.70

In multi-view tasks, Hou et al. [19] developed methods to select informative views for efficient 3D71

understanding [20]. Additionally, Bayesian methods for NBV planning [16] are gaining traction72

in robotics, such as in safe contact-based exploration [21] and dynamic view planning for robotic73

manipulation [5]. Recent studies have also explored attention-driven NBV strategies for targeted74

perception in complex environments [22] and affordance-driven NBV planning for robotic grasping75

in cluttered scenes [23]. While active vision aims to solve the problem of “where to look” at inference76

time, complementary to them, we address the problem of how to collect optimal data at the training77

stage to develop a perspective agnostic policy.78
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Viewpoint selection for generalization: Beyond selecting views for immediate perceptual gain,79

recent research has explored how actively varying viewpoints can improve the robustness and80

generalization of learned visual representations. Jayaraman et al.[24] demonstrated that agents81

can learn viewpoint-invariant features by controlling the camera and predicting changes across82

views. Follow up work from Wu et al. [25] used neural predictors to estimate utility in active 3D83

reconstruction, while Lin et al. [26] leveraged neural implicit representations for efficient scene84

understanding. In parallel, multi-agent or collaborative view selection strategies like MAP-NBV [27]85

have been developed to jointly optimize multi-view acquisition under budgeted exploration, enabling86

robust understanding of complex scenes. Additionally, approaches such as Pred-NBV [28] have87

utilized prediction-guided strategies to enhance the efficiency of 3D object reconstruction. Parallel88

work in domain generalization has highlighted that excessive diversity between training and test89

distributions can degrade model performance, a phenomenon analyzed through invariant feature90

learning and distributional robustness frameworks [7, 29]. Distinct from prior work, Vantage targets91

the fine-tuning of pre-trained policies using data collected from a strategically chosen set of camera92

viewpoints via Bayesian Optimization. Rather than optimizing a single next view, it emphasizes93

maximizing the downstream task performance and generalization of learned policies across unseen94

and dynamic camera settings. This policy-centric use of viewpoint planning represents a unique95

contribution that bridges active vision and policy adaptation in real-world environments. Vantage96

leverages existing policies and enhances their robustness through informed viewpoint selection,97

addressing the challenges of dynamic and unpredictable operational conditions.98

Data diversity and generalization: Although increasing training set diversity often aims to improve99

robustness, unchecked heterogeneity can instead degrade model performance. Recht et al. [30] report100

11–14 percent drops in ImageNet top-1 accuracy on a harder test split, indicating that naively adding101

variation without matching distributional priors harms generalization. This effect mirrors the classical102

bias–variance tradeoff: with fixed model capacity, excess data heterogeneity inflates variance and103

thus test error [31]. In robotic manipulation, the DROID dataset [32] further illustrates that policies104

trained on overly diverse, in-the-wild scenes under-performs unless coupled with targeted adaptation105

or fine-tuning mechanisms, underscoring the need for our selective, BO-driven viewpoint strategy.106

3 Methodology107

Formulating the optimization problem. We define a viewpoint, θ, as a 3D camera placement108

around the robot, where the camera is oriented toward the center of the manipulator’s workspace.109

Given a pre-trained manipulation policy, π, our objective is to identify the optimal camera viewpoint,110

θvantage, that when used for fine-tuning the manipulation policy, maximizes task performance, J(·),111

across the test space of viewpoints, Θtest. To find this vantage, we search across the large, continuous112

space of candidate training viewpoints, Θtrain:113

θvantage = argmax
θtrain∈Θtrain

J(πθtrain(θtest)), ∀θtest ∈ Θtest. (1)

Here, πθtrain(θtest) indicates rolling out the policy, which was trained on data obtained from the114

viewpoint θtrain, at test angles θtest ∈ Θtest. In practice, we consider Θtrain and Θtest to have the115

same boundaries. Without loss of generality, we consider the performance metric, J , as the average116

manipulation success rate calculated over several rollouts on a discrete grid of test viewpoints. Note117

that training is much more expensive than testing because training requires collecting trajectories and118

updating neural network parameters whereas testing only requires policy rollouts. Considering these119

challenges, we iteratively optimize this expensive blackbox function, J , using a variant of Bayesian120

optimization (BO) [33] to obtain optimal viewpoints to train the neural network in such a way that121

policy performs well for test angles.122

Modeling the performance metric. We model J as a Gaussian process,123

J(πθtrain) ∼ GP(µ(θtrain), k(θtrain, θ
′
train)), (2)

with µ(θtrain) predicted mean success rate and k(θtrain, θ
′
train) similarity metric between viewpoints,124

computed using a squared-exponential kernel [34].125

Batched optimization. While (2) can be used in a standard BO setting [33], we further enhance the126

efficiency by evaluating multiple tests viewpoints simultaneously during exploration. To this end, we127

use the q-Upper Confidence Bound (q-UCB) [35] as our acquisition function. Consider a batch of128

3



Algorithm 1 Vantage

Step 1: Gather Initial Data
Sample q random angle {θj}qj=1, where each θj = (θh,j , θv,j) ∈ Θ
Generate corresponding manipulation datasets Dj , from robot trials or simulation
Fine-tune the original model on Dj separately
Evaluate the fine-tuned models across Θ to obtain success rates {Ji}qi=1
Initialize a historical dataset Dgp ← {(θj , Ji)}qi=1
Step 2: Bayesian Optimization Loop
for i = 1 to N do

Use D and Bayesian optimization to select q new angles {θnew,j}qj=1 = (θnew,j
h , θnew,j

v ) ∈ Θ
Generate datasets Dnew,j at θnew,j

Fine-tune the original model separately on Dnew,j

Evaluate the model fine-tuned at θnew to obtain Jnew
Update Dgp ← Dgp ∪ {(θnew,j , Jnew,j)}

end for
Step 3: Final Selection
θ∗ ← argmax

θ∈Θ
J(πθ)

viewpoints, Θq = (θ1, . . . , θq), where θ ∈ Θtrain, for fine-tuning the manipulation policy. Following129

[35], we obtain the next batch of viewpoints to train by maximizing the joint acquisition score,130

Θnext
q = argmax

Θq⊂Θtrain

αqUCB(Θq) (3)

= argmax
Θq⊂Θtrain

E
Θ̃ ∼ N

(
µ(Θq),

βπ
2 Σ(Θq)

)[ max
i=1,...,q

(
µ(θi) + |Θ̃i − µ(θi)|

)]
, (4)

where µ(Θq) ∈ Rq and Σ(Θq) ∈ Rq×q are the GP posterior mean and covariance on the batch,131

respectively. The scalar β > 0 controls exploration vs. exploitation: larger β spreads the reparame-132

terized posterior, encouraging sampling of high-uncertainty viewpoints, while smaller β focuses on133

high-mean regions. In practice, the expectation is approximated by quasi-Monte Carlo sampling of134

Θ̃, yielding a tractable acquisition score for selecting the next batch of viewpoints.135

Once new viewpoints are selected, they are mapped from the normalized BO space to real-world136

coordinates, and the policy is fine-tuned using datasets generated from these viewpoints. The updated137

policy is then evaluated and the corresponding success rates are used to update the prior. This is done138

for a fixed number of iterations. Upon completion of all iterations, we select the policy fine-tuned139

with the highest observed success rate as our final model.140

4 Experiments141

We use Vantage to improve manipulation policies trained in RoboSuite using datasets from142

RoboMimic. To represent a range of common manipulation challenges with varying levels of143

difficulty, we benchmark across Lift, Square, and Pick & Place tasks. To have models of different144

learning capacity, we use BC, BCQ, Diffusion Policy, and BC Transformer Models.145

4.1 Defining the space of allowed camera placements146

Let b ∈ R3 denote the robot’s base position and let r > 0 be the fixed radial distance at which the147

camera is placed. Define the sphere of radius r around b by S =
{
x ∈ R3 : ∥x− b∥ = r

}
.148

We restrict our attention to the spherical quadrant in front of the robot and above the table:149

Θ =
{
x ∈ S : (x− b) · u ≥ 0 and (x− b) · n ≥ 0

}
,

where u is the unit vector pointing forward from the robot’s base and n is the upward normal to the150

table plane.151
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Table 1: Success Rate of BC policy
Camera

Placement
Base

Model
Grid

Search
Random
Search Vantage

Lift Default 100.00% 100% 100% 100%
Θ 6.90% 9.18% 23.15% 23.5%
Dynamic 91.66% 93.33% 100.00% 100.00%

Pick Place Default 70.00% 70.00% 70.00% 70.00%
Θ 0.80% 1.04% 2.53% 3.90%
Dynamic 3.00% 4.23% 7.66% 9.88%

Square Default 30.00% 20.00% 30.00% 20.00%
Θ 0.24% 0.61% 0.74% 1.00%
Dynamic 0.00% 0.00% 0.00% 0.00%

Table 2: Success Rate of Diffusion policy
Camera

Placement
Base

Model
Grid

Search
Random
Search Vantage

Lift Default 100.00% 100% 100% 100%
Θ 50.40% 58.57% 65.82% 66.10%
Dynamic 98.33% 100% 100% 100%

Pick Place Default 90.00% 90.00% 90.00% 90.00%
Θ 37.01% 22.09% 66.11% 83.20%
Dynamic 88.33% 71.54% 92.33% 97.16%

Square Default 60.00% 60.00% 60.00% 70.00%
Θ 2.38% 2.38% 12.08% 14.80%
Dynamic 8.33% 8.33% 40.00% 54.66%

Any point in Θ can be uniquely parameterized by the horizontal and vertical angles θh and θv:152

x(θh, θv) = b+ r

cos θv cos θh

cos θv sin θh

sin θv

 , θh ∈
[
−π

2 ,
π
2

]
, θv ∈

[
−π

4 ,
π
4

]

Any θ = (θh, θv) ∈ Θ is considered a valid camera placement. Robot policies are initially trained153

from the viewpoint θ = (0, 0). The resulting model is then fine-tuned using data collected from one154

additional viewpoint. This process is repeated four times, each with a different randomly selected155

initialization point for the Gaussian Process (GP). Next, we evaluate the model’s performance on a156

uniform grid over the viewing space Θ and fit a GP surrogate to these measurements. By applying157

the q-UCB acquisition function to the GP, we identify the next eight most informative viewpoints for158

further data collection and fine-tuning.159

We parameterize each viewpoint by normalized coordinates νh, νv ∈ [0, 1]. The Gaussian Process160

is trained on these normalized inputs and thus only sees values in the unit square. To convert a161

normalized sample (νh, νv) into actual camera angles, we apply the affine transformation162

θh/v =
(
νh/v − 0.5

) (
θmax
h/v − θmin

h/v

)
+

θmax
h/v + θmin

h/v

2

All methods (grid search, random search, and Vantage) were allocated identical compute resources163

and the same hyperparameter. Each task–policy combination underwent eight fine-tuning steps per164

iteration per method, and 4 iterations were done leading to 32 models fine-tuned for each combination.165

4.2 Results166

Our experiments demonstrate that the Vantage yields significant improvements in policy performance167

across a variety of tasks and architectures while requiring only a small number of fine-tuning steps.168

Table 1 summarizes the success rates of BC and Table 2 the success rates of Diffusion policies under169

the baseline (default), Θ-optimized, and dynamic camera settings, comparing Vantage to grid and170

random search . We observe that Vantage consistently matches or outperforms alternative strategies,171

with the largest gain seen for the Diffusion policy on Pick & Place (an increase from 37.01% to172

83.20%, a 46.19% improvement). Moreover, by leveraging the q-UCB acquisition function within a173

Gaussian Process framework, we obtain theoretical guarantees of asymptotic optimality, ensuring174

that each new viewpoint selection is near-optimal under standard regularity conditions.175

Figure 4 illustrates the progression of best success rates over BO iterations for each model class. In176

all cases, Vantage converges more rapidly than both grid and random search, reaching near-optimal177

performance within 10–12 steps. Furthermore, Fig. 2 shows the detailed improvement of each policy178

for each task over Θ when using Vantage, with consistent gains observed across all tasks. Figure 3179

shows the success rate of a policy before and after fine-tuning. Figure 5 shows each iteration slowly180

leads towards the global maxima.181

Together, these findings demonstrate that Vantage combines strong theoretical foundations with182

practical efficiency, delivering faster convergence and higher success rates than exhaustive or naïve183

sampling strategies.184
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Figure 2: Success rates for each model across Lift, PickPlace, Square, and Average metrics. Solid
bars indicate default model and hatched bars indicate after applying Vantage
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Figure 3: Comparison of default fine-tuned diffusion policies for pick place task across a uniform
grid in Θ

5 Conclusions and Future Work185

We have presented Vantage, a Bayesian Optimization–driven framework for systematically identifying186

and combining camera viewpoints to enhance the robustness and generalization of vision-based robot187

policies. By modeling the success rate over the space of possible camera placements with a Gaussian188

Process and employing an Upper Confidence Bound acquisition strategy, our method efficiently189

balances exploration of new viewpoints and exploitation of high-performing ones, avoiding the190

instability caused by indiscriminate diversity in training data.191

Our empirical evaluation on a suite of manipulation tasks (Lift, Nut Assembly, Pick & Place) and192

across multiple policy architectures (BC, BCQ, BCT, Diffusion) demonstrates that fine-tuning on193

viewpoints selected by Vantage yields consistent and significant performance gains over fixed or194

heuristic placements. Notably, we observe average improvements ranging from 6% for BC to 46.19%195
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Figure 4: Success rate across Θ of the best model per each model fine-tuned
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Figure 5: Rollout progression across camera viewpoints and training iterations for each task. Each
row corresponds to a different manipulation task, namely Lift, and PickPlace while columns illustrate
sequential outputs of the Diffusion policy. The plots visualize how task performance evolves as the
policy is fine-tuned with optimized viewpoints - bigger circles indicate points from current iteration
while smaller ones indicate older iteration

for Diffusion policies on the hyperplane evaluation, with marked robustness in dynamic camera196

settings.197

Current domain randomization methods typically apply multiple randomly chosen camera angles198

during training. We plan to extend Vantage to select sets of viewpoints, rather than a single best199

angle, thereby marrying our Bayesian selection strategy with domain randomization and providing200

theoretical guarantees on batch information gain. Such an extension could further improve policy201

robustness by covering a broader diversity of perspectives in a guided way. Moreover, we will move202

beyond simulation: future experiments will validate our approach on real robot platforms, assessing203

sim-to-real transfer and evaluating performance under real-world sensor noise and lighting variations.204
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6 Appendix290

6.1 Theoretical Guarantees291

Imagine a black-box function which, for each fine-tuning viewpoint θ, returns the robot’s success292

rate when evaluated across a uniform grid spanning the entire allowable camera placement space Θ.293

Initially, we know almost nothing about this function, so we sample a few random angles and observe294

the outcomes. Each time we fine-tune the policy from a new angle, we learn more about which regions295

of the viewing space are most informative and which angles yield high success rates. By fitting a296

smooth probabilistic model (a Gaussian Process) over these observations, we can predict both the297

expected success rate at untested angles and how uncertain those predictions are. The GP-UCB rule298

then lets us pick the next angles that strike the best balance between exploring uncertain regions and299

exploiting angles already known to work well. Over successive rounds, this strategy systematically300

steers us toward the optimal viewpoints, guaranteeing that we improve faster than if we had naively301

tried every angle or picked random ones.302

Every fine-tuning step at a new viewpoint yields a measured success rate for the policy at that angle.303

We treat these measured success rates as noisy evaluations of an underlying true function f(θ). When304

we update the GP with a new observation (θt, Jt), the surrogate’s posterior mean µt(θ) and standard305

deviation σt(θ) reflect our current best guess of f and our uncertainty. The GP-UCB acquisition306

function307

µt(θ) + βt σt(θ)

scores each candidate angle by combining its predicted success rate (exploitation) with a bonus308

for uncertainty (exploration). By fine-tuning at the angle maximizing this score, we both collect309

data where we expect high success and reduce uncertainty where the model is least certain, thereby310

directly linking each fine-tuning experiment to measurable improvements in success rate and ensuring311

theoretical guarantees on cumulative performance.312

In the single-point GP-UCB analysis, the information gain γT quantifies the maximum reduction in313

uncertainty one can achieve by making T sequential observations. In our batched q-UCB procedure,314

we collect q observations per round for T rounds, yielding a total of qT queries to the underlying315

function. Accordingly, we must replace the sequential information gain γT with the batch information316

gain γqT , which measures the maximum mutual information between the GP prior and qT noisy317

evaluations. Since a GP’s information gain grows sublinearly in the number of observations, this318

substitution preserves the same sublinear regret behavior: the cumulative batch regret is controlled by319

qT γqT βT ,

just as in the single-point case but scaled to account for the larger total sample size.320

Theorem 6.1 (GP-UCB Regret Bound). Let f : Θ→ R be a mapping from angles to success rates,321

drawn from a Gaussian process prior with kernel k. At each round t = 1, . . . , T choose,322

θt = argmax
θ∈Θ

[
µt−1(θ) +

√
βt σt−1(θ)

]
,

and observe yt = f(θt) + εt with εt zero-mean sub-Gaussian noise. Then, with probability at least323

1− δ,324

R(T ) =

T∑
t=1

q∑
i=1

[
f(θ∗)− f(θt,j)

]
= O

(√
qT γqT βT

)
,

where θ∗ = argmaxΘ f , γT is the maximum information gain after T steps, and βT is chosen as325

in [36].326

Proof. By Theorem 2 of Srinivas et al. (2012), with probability 1− δ, for all t and all θ,327 ∣∣f(θ)− µt−1(θ)
∣∣ ≤ √

βt σt−1(θ).

Hence the instantaneous regret rt = f(θ∗)− f(θt) satisfies328

rt ≤ 2
√
βt σt−1(θt).
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Summing and applying Cauchy–Schwarz together with the definition of information gain gives329

R(T ) =

T∑
t=1

rt ≤ 2

T∑
t=1

√
βt σt−1(θt) ≤ 2

√(∑
t

βt

)(∑
t

σ2
t−1(θt)

)
= O

(√
T γT βT

)
.

330

Theorem 6.2 (Average Success Convergence). Under the same setting as Theorem 6.1, with proba-331

bility at least 1− δ,332

1

T

T∑
t=1

J
(
πθt

)
≥ J

(
πθ∗

)
− O

(√
γT βT

T

)
.

In particular, the mean success converges to the optimum at rate O(T−1/2).333

Proof. From Theorem 6.1, with high probability,334

T∑
t=1

[
J(πθ∗)− J(πθt)

]
= O

(√
T γT βT

)
.

Divide both sides by T and rearrange:335

J(πθ∗) − 1

T

T∑
t=1

J(πθt) = O
(√

γT βT

T

)
,

which yields the stated bound.336

Theorem 6.3 (Rademacher Complexity Generalization). Let F be a class of indicator functions337

with Rademacher complexity Rn(F). If Ĵ(πθ) is the empirical success rate over n i.i.d. trials at338

viewpoint θ, then for any δ > 0, with probability at least 1− δ, for all θ339 ∣∣J(πθ)− Ĵ(πθ)
∣∣ ≤ 2Rn(F) +

√
ln(2/δ)

2n
.

Proof. Apply Theorem 3.1 of Mohri et al. (2018) on uniform convergence: with probability 1− δ,340

sup
f∈F

∣∣E[f ]− Ê[f ]
∣∣ ≤ 2Rn(F) +

√
ln(2/δ)

2n
.

Setting f(·) = 1{success} for each πθ gives the result.341
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Figure 6: Rollout progression across camera viewpoints and training iterations for each task. Each
row corresponds to a different manipulation task, namely Lift, Square and PickPlace while columns
illustrate sequential outputs of the BC policy. The plots visualize how task performance evolves
as the policy is fine-tuned with optimized viewpoints - bigger circles indicate points from current
iteration while smaller ones indicate older iteration
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Default Policy
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Figure 7: Comparison of the base model and model fine-tuned with Vantage, performing PickPlace
task from a viewpoint close to the original.
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Figure 8: Comparison of the base model and model fine-tuned with Vantage, performing PickPlace
task from a viewpoint farther from the original.
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