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Abstract

The computational cost of softmax-based atten-
tion in transformers limits their applicability to
long-context tasks. Adaptive sparsity, of which
a-entmax attention is an example, offers a flexi-
ble data-dependent alternative, but existing imple-
mentations are inefficient and do not leverage the
sparsity to obtain runtime and memory gains. In
this work, we propose ADASPLASH, which com-
bines the efficiency of GPU-optimized algorithms
with the sparsity benefits of a-entmax. We first
introduce a hybrid Halley-bisection algorithm, re-
sulting in a 7-fold reduction in the number of itera-
tions needed to compute the a-entmax transforma-
tion. Then, we implement custom Triton kernels
to efficiently handle adaptive sparsity. Experi-
ments with RoOBERTa and ModernBERT for text
classification and single-vector retrieval, along
with GPT-2 for language modeling, show that
our method achieves substantial improvements in
runtime and memory efficiency compared to ex-
isting a-entmax implementations. It approaches—
and in some cases surpasses—the efficiency of
highly optimized softmax implementations like
FlashAttention-2, enabling long-context training
while maintaining strong task performance.’

1. Introduction

Central to the success of transformers (Vaswani et al., 2017)
lies the attention mechanism, where each token in a se-
quence attends directly to every other token. Attention prob-
abilities are computed through the softmax transformation,
which always assigns a nonzero probability to every token.
However, for long context inputs, the accumulation of small
probabilities can lead to dispersion (Velickovi€ et al., 2025).
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Figure 1. Runtime (Fwd+Bwd) as a function of input sparsity for
non-causal attention. While the highly-optimized FlashAttention-
2 maintains a constant runtime across varying levels of sparsity,
ADASPLASH effectively leverages sparsity to obtain speed-ups,
eventually outperforming FlashAttention-2 as sparsity grows.

In fact, previous research shows that attention probabilities
tend to peak around a small number of tokens (Voita et al.,
2019; Treviso et al., 2022), which suggests that model per-
formance and computational efficiency can be increased by
leveraging attention sparsity. This has motivated methods
that predefine sparse masks (Beltagy et al., 2020; Zaheer
et al., 2020b), rely on clustering-based strategies (Kitaev
et al., 2020), or low-rank approximate attention (Choroman-
ski et al., 2021; Peng et al., 2021; Xiong et al., 2021; Chen
et al., 2021). Some of these techniques show the potential of
sparsity to mitigate memory and computation bottlenecks,
but they often require architectural modifications or crude
approximations, limiting their flexibility and generality.

A related line of research explores adaptive and differen-
tiable sparse activations as surrogates of softmax, such as
sparsemax (Martins & Astudillo, 2016) and, more broadly,
the a-entmax family (Peters et al., 2019; Correia et al.,
2019). By assigning zero probability to irrelevant tokens,
these activations eliminate their residual influence, reduc-
ing the dilution of attention scores and potentially improv-
ing both performance and interpretability. Unfortunately,
existing algorithms and implementations for these adap-
tive sparse activations do not exploit the sparsity, being
slower than softmax-based attention and struggling to scale
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effectively with context length, primarily due to the lack of
hardware-optimized implementations like FlashAttention-
2 (Dao, 2024) or support from programming models like
FlexAttention (Dong et al., 2024).

This paper addresses this problem by providing new algo-
rithms and implementations to improve the computational
efficiency of the family of a-entmax activations. Our main
contributions include a faster and GPU-friendly algorithm
for calculating a-entmax, alongside a Triton kernel (Tillet
et al., 2019) for computing entmax-based attention, which
we call ADASPLASH. In particular, ADASPLASH advances
the goal of supporting training of adaptively sparse mod-
els with longer context lengths, as shown in Figure 1. We
demonstrate the potential and scalability of our approach
through experiments with synthetic data and with several
natural language processing benchmarks for encoder-only
and decoder-only models, achieving substantial improve-
ments over previous a-entmax implementations and ap-
proaching (sometimes surpassing) the efficiency of softmax-
based attention with FlashAttention-2, with strong perfor-
mance on downstream tasks.

2. Background
2.1. Hardware Performance

Modern GPUs, such as the Nvidia H100, are designed for
efficient parallel computation using a hierarchical memory
architecture, with high-bandwidth memory (HBM) provid-
ing large capacity but slower access compared to the smaller,
faster on-chip SRAM. Efficient use of SRAM is critical to
minimize the memory bottlenecks caused by frequent HBM
accesses. GPUs execute operations (kernels) via thousands
of threads organized into thread blocks, where data is loaded
from HBM into SRAM for computation before being writ-
ten back. Kernel fusion is a key optimization strategy that
combines multiple operations into a single kernel, reducing
intermediate HBM accesses by directly computing and stor-
ing final results. While compilers like torch.compile can
automate fusion for simple operations (Ansel et al., 2024),
complex tasks such as attention mechanisms require cus-
tom strategies to reorder operations and optimize memory
usage effectively. Our method leverages this GPU mem-
ory organization by implementing block-wise computations,
recomputation strategies, and kernel fusion specifically tai-
lored for sparse attention, as detailed in §3.2.1 and §3.2.2.

2.2. Standard Attention

Given a set of matrices Q, K,V € R"*? containing d-
dimensional representations for n queries, keys and values,
the dot-product self-attention at a single head is computed

in the following way (Vaswani et al., 2017):
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The 7 transformation usually maps rows to distributions,
with 7(S);; = softmax (s;); being a common choice. For
decoder-only models, S is masked in order to ignore the
contribution from future tokens. Notably, a naive implemen-
tation of Equation 1 leads to a O (n?) time and memory
complexity for training.

2.3. FlashAttention

To address the costs of naive attention implementations,
Dao et al. (2022) introduced FlashAttention, an algorithm
that avoids the materialization of quadratic matrices via a
GPU-aware implementation of online softmax (Milakov &
Gimelshein, 2018), bringing the overall memory complexity
to O (n). Subsequent versions of FlashAttention further
improved GPU usage by reordering the loops, reducing the
number of non-GEMM (general matrix multiply) operations
(Dao, 2024), and exploiting the asynchronicity and support
for FP8 low-precision on the new Hopper GPUs (Shah et al.,
2024). The key idea of FlashAttention is to split the inputs
Q, K,V into blocks, load them from slow GPU high band-
width memory (HBM) to the fast GPU on-chip SRAM, then
compute the attention output regarding those blocks and, at
the end, scale the output by the right normalization factor.

2.4. Sparse Attention

The original softmax-based attention is dense, i.e., it puts
some probability mass on all tokens—not only a compu-
tational disadvantage, but also making interpretation and
generalization harder (Voita et al., 2019; Treviso et al., 2022;
Velickovié et al., 2025). An alternative to softmax is the
a-entmax transformation (Peters et al., 2019), which is
differentiable and leads to sparse outputs:

a-entmax (8) = [(a — 1)s — Tl]:{w_l, (2)

where [-]+ is the ReLU function, and 7 € R is a normalizing
constant to ensure the output is a valid probability distribu-
tion. Importantly, entries with score s; < — get exactly
zero probability. In the limit o — 1, c-entmax recovers the
softmax function, while for any value of a > 1 this trans-
formation returns increasingly sparser probability vectors.
When o = 2, we recover the sparsemax transformation
(Martins & Astudillo, 2016). However, in contrast to fixed
sparse patterns, such as windowed sparse attention (Child
et al., 2019; Beltagy et al., 2020) and block-sparse vari-
ants (Zaheer et al., 2020b; Dao et al., 2022), a-entmax’s
sparsity patterns are dynamic and hence difficult to exploit
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in order to reduce the quadratic burden of self-attention
because we still need to materialize S = QK | before
applying the transformation.

In the next section (§3), we outline ADASPLASH, our new
method for computing a-entmax attention, along with a
novel custom Triton kernel (Tillet et al., 2019) that enables
efficient training of transformers for extremely long context
lengths. As shown in §4, our implementation maintains com-
petitiveness with state-of-the-art algorithms such as FlashAt-
tention by leveraging the sparsity given by a-entmax, ef-
fectively exploiting the advantages of sparse attention at
scale.

3. ADASPLASH

We start by revisiting the computation of a-entmax for gen-
eral values of «v in §3.1, and proposing a new algorithm that
has a fast empirical convergence. We design an efficient
Triton kernel in §3.2, dubbed ADASPLASH, that effectively
leverages adaptive sparsity patterns in both the forward and
backward passes of c-entmax in order to minimize runtime.

3.1. a-entmax Computation

In order to compute Equation 2 for a given s € R”, we need
to find the threshold 7 € R such that the resulting output
sums to 1. Mathematically, this is equivalent to finding the
root of the following equation:

=3 lla-s; -7 -1 3

i

Exact algorithms for oo € {1.5,2}. In particular, for o =
2, the computation is reduced to an Euclidean projection
onto the probability simplex, for which efficient algorithms
have been extensively studied (Held et al., 1974; Duchi et al.,
2008; Condat, 2016). Similarly, for « = 1.5, Peters et al.
(2019) introduced an exact sort-based algorithm. However,
these methods either require complex data structures that are
not efficiently handled in GPUs, or sorting-based algorithms,
which require the materialization of the entire input.

Bisection algorithm for o > 1. For a general «, Blondel
et al. (2019) introduced a bisection update rule to approxi-
mate 7 by iteratively refining its lower (73,) and higher (7;)

bounds:
By(r) = {mo,r) if f(r) <0,

otherwise,

“

(7—7 Thi)

obtaining 7 = %(710 + 7hi) after the last iteration. While
the bisection algorithm is simple and effective, it converges
at a linear rate (Kaufman & Lenker, 1986), meaning the

absolute error decreases by approximately half at each iter-

Algorithm 1 Halley-bisection algorithm for a-entmax.
1: Input: logits s € R”, param. o € R, iterations T’

2: Define f(7) := Y ,[si — 7/ —1

3: Sets « (a—1)s

4: Initialize 1, = max(s) — 1

5: Initialize 7,y = max(s) — n! =

6: Initialize 7 = (7o + Thi)/2

7: repeat

8:  Compute 7y, Thi = Bf(7) (Equation 4)

9:  Compute 75 = Hy(7) (Equation 5)

10: ifry € [7—107 Thi] then

11: T TH > (Halley’s Update)
12:  else

13: T %(7’10 + Thi) > (Bisection Update)
14:  end if

15: until T iterations are completed

: Output: [s — 7'1]1/(0‘_1)

—_
o))

ation. Achieving high precision often requires many itera-
tions, resulting in frequent memory accesses. As a result,
in memory-bound scenarios where the time taken is mostly
determined by the number of memory accesses—such as in
attention—the number of iterations can significantly impact
the runtime cost.

Halley-bisection algorithm. In order to obtain a faster
runtime, we propose a hybrid algorithm for solving Equa-
tion 3 for any o > 1 that combines the convergence guar-
antee of bisection with the faster convergence of Halley’s
method (Scavo & Thoo, 1995). As we show in §4.1, this
approach achieves significant wall-clock speed-ups while
requiring fewer iterations to attain the same precision.

The function defined in Equation 2 enjoys a cheap com-
putation of its derivatives. Thus, methods that incorporate
second-order information, such as Halley’s method, can be
leveraged to improve the approximation of 7 at each itera-
tion. Halley’s method, which uses both the first and second
derivatives, updates the solution using the following rule:

2/ (1) f'(7)

W= e O

where the derivatives are given as follows:

L S a—1si— VeI @

a—1
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2—«

1" = e > lla— s =7 @)

While Halley’s method offers faster convergence under ideal
conditions, it does not always converge, particularly when



ADASPLASH: Adaptive Sparse Flash Attention

—e— Bisection (Output)
Bisection (Gradient)

No—e —e— Halley-bisection (Output)

-5 N e Halley-bisection (Gradient)

Mean Absolute Error Magnitude

5 10 15 20 25
Number of Iterations

Figure 2. Comparison of mean absolute error magnitudes between
Halley-bisection and Torch’s bisection methods across iterations,
measured against the exact solution for o = 1.5.

the initial guess is far from the solution. To ensure conver-
gence, we introduce a fail-safe mechanism that integrates
the convergence guarantee of bisection: whenever Halley’s
method produces an update that moves the solution out of
the bisection bounds, the algorithm reverts to a bisection
update By (7). This ensures that the algorithm converges,
even in the worst cases, while leveraging the cubic conver-
gence of Halley’s method wherever possible. We outline
our hybrid algorithm in Algorithm 1.

Efficiency Benchmark. We compare the runtime of
Halley-bisection against existing algorithms for computing
a-entmax implemented in Torch. Specifically, we gener-
ate random tensors from a standard Gaussian distribution
(u = 0,02 = 1) with a fixed sequence length of n = 8192.
For each configuration, we measure the average runtime
over 1000 runs. Overall, we observe that Halley-bisection
is significantly more efficient than the standard bisection
algorithm implemented in Torch. Halley-bisection achieves
a runtime of 2.38 ms, compared to 36.67 ms for the standard
bisection algorithm, making it approximately 15X faster. In
addition, Halley-bisection reduces memory usage by 1.75x,
requiring only 512 MB compared to 8§96.15 MB for bisec-
tion. Furthermore, in Figure 2 we show that Halley-bisection
(a = 1.5) requires only 3 iterations to converge to machine
precision for both the output and the gradient. On the other
hand, the standard bisection algorithm takes 23 iterations to
achieve the same precision for both cases.

3.2. Flash c-entmax Attention

Given an algorithm to compute the entmax mapping that
requires 7" iteration steps, a naive implementation of entmax
attention proceeds as follows: (1) multiply S = QK" ¢
R™*™ and write the result to slow HBM on the GPU; (2)
load S from HBM T times to compute 7; (3) load S from
HBM again, and write the result P = «-entmax (.S) to
HBM,; (4) perform a matrix multiplication to get the output

Algorithm 2 ADASPLASH forward pass (w/o masking)

1: Require: Matrices Q, K,V € R"*¢ in HBM, block
sizes B., B,., param. o € R

2: Divide Q into T, = [n/B,] blocks Q1, ..., Qr,. of
size B, x d

3: Divide K,V into T, = [n/B,] blocks K1, ..., Kr,,
Vi,...,Vr, ofsize B, x d

4: Divide O € R**¢ into T, blocks Oy, . . ., Or, of size

B, xd
Divide 7 into 7). blocks 7, ..
for: =1to 7, do
Load Q; from HBM to on-chip SRAM
On chip, initialize O;
On chip, compute 7; using Hybrid Halley’s with pre-
defined «, using a block version of Algorithm 1.
10. forj=1toT.do

., Tr,. of size B,

LR W

11: Load K, V; from HBM to on-chip SRAM
12: Compute Si(J) = QlK]T € RB-xBe

. . 1a—1
13: Compute P = |(a —1)SY) — Ti]

+

14: Accumulate O; « O; + PYV;
15:  end for
16:  Write O; and 7; to HBM
17: end for

18: Return: Output O and T

O = PV. However, since most of these operations are
memory-bound, the excessive number of HBM accesses
leads to slow wall-clock times. Moreover, having to mate-
rialize S and P in memory poses a major bottleneck, as
their sizes quickly exceed GPU memory capacity when the
sequence length n increases. To address these issues and
speed up c-entmax attention on hardware accelerators like
GPUs, we propose an algorithm that reduces HBM reads
and writes while producing the same outputs as the naive
implementation.

3.2.1. FORWARD PASS

We outline the forward pass in Algorithm 2 (without mask-
ing full-zero blocks, which we introduce later on this sec-
tion). Concretely, given the inputs Q, K,V € R"*¢
stored in HBM, the goal is to compute the attention out-
put O € R"* efficiently and write it back to HBM. Akin
to the approach taken in FlashAttention (Dao et al., 2022),
we employ two well-known techniques—tiling and recom-
putation—to address the challenge of materializing the
matrices S € R"*" and P € R"*",

Tiling. The key idea involves splitting the inputs Q, K,V
into smaller blocks, and then computing attention block by
block. We start by loading only @ and K from the slower
HBM to the faster SRAM to compute 7 € R"” using the
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Halley-bisection algorithm (Alg. 1). In order to use the
aforementioned algorithm, we need to accumulate three val-
ues: f(7), f'(7), f(7). Since f, as well as its derivatives,
is additive over its inputs, their computation can also be
computed in blocks. Let B, and B, be the row and col-
umn block sizes, respectively, and define T, = [n/B,.| and
T. = [n/B.]. Divide Q into Q1, ..., Q. blocks, and K
into K1, ..., K7 blocks. Then, f(7) can be computed as:

Fr) =Y flri 89 ®)

where S = Q:K; € RPr*B and ; represents the i
sliced block of T with size 7;.. Thus, these quantities do
not need to ever be materialized and can be accumulated
directly in fast memory. Afterwards, we load V' to compute
the attention output O for those blocks. In contrast to
FlashAttention, our approach requires loading K to com-
pute .S at least two additional times. Therefore, the forward
pass is bound to always be slower than FlashAttention’s
due to the extra HBM reads and computation.

Recomputation. In order to avoid the materialization of
the matrices S and P, we recompute them again in Algo-
rithm 1, which is used to compute 7, and also recompute
them for obtaining the gradients for the backward pass.
By doing this we are increasing the required FLOPs to re-
duce the maximum amount of memory required. While
this might suggest an increase in runtime, the opposite is
observed (Dao et al., 2022). Despite the need for additional
matrix multiplications, the reduction in total HBM reads
and writes more than offsets the extra FLOPs, leading to
improved performance overall.

Sparsity-aware implementation. The key challenge
of a-entmax attention lies in finding the threshold T,
which requires multiple evaluations of the function f(7),
which, in turn, depends on the score matrix .S. While our
proposed Halley-bisection algorithm alleviates the number
of iterations needed to recompute Si(] ) by providing a faster
empirical convergence, our current implementation still
iterates over all blocks of S, including null blocks—Dblocks
where the corresponding entries of the sparse attention
matrix P are zero.

Furthermore, empirical evidence from Jiang et al. (2024)
and (Xiao et al., 2024) suggests that for long inputs (e.g.,
128k tokens in LLaMa-3-8b), approximately 3% of the en-
tries in P suffice to capture over 96% of the total attention,
which motivates an approach to leverage the adaptive and
unstructured sparsity of a-entmax attention weights. To this
end, we propose to only compute necessary blocks of P by
skipping the null blocks. Concretely, let Z(i) denote the set
of all indices ¢’ such that |i’/T,.| = ¢, and J(j) denote the

set of all indices j such that |j'/T.| = j. We construct a
block mask matrix M € {0, 1}7*T¢ as follows:

M;; = 1 if 31"6;(04%3@) 2 Si g > Tir, )
0 otherwise,

Importantly, M is created dynamically after a small prede-
fined number of Halley-bisection iterations.

While the introduction of M breaks the linear memory com-
plexity of dense fused-attention by requiring 7. x T, extra
memory, the overhead is still manageable as it only con-
tains binary values and is substantially smaller than the full
P ¢ R™ "™ matrix. Furthermore, M needs to be materi-
alized only once and its memory can be shared across all
attention layers. To leverage M in practice, we propose to
create two pointer-increment lookup tables:

1. K; = {i | M;; = 1}: A table containing the row
indices ¢ of M that lead to non-null blocks in Pi(J ),

2. Q; ={j | M;; = 1}: A table containing the column
indices j of M that lead to non-null blocks in Pi(] ),

These tables enable efficient skipping of K and V blocks
that do not contribute to the final attention output O, sig-
nificantly reducing unnecessary computations. Moreover,
the same mechanism can be extended to accelerate the back-
ward pass, where gradients with respect to Q, K, and V'
are computed, which we describe next.

3.2.2. BACKWARD PASS

In FlashAttention (Dao et al., 2022), the backward pass is
executed using a single kernel that parallelizes computation
across batch, head, and sequence dimensions. However, fol-
lowing Triton’s official implementation of FlashAttention,?
we separate the backward pass into two kernels: one for d@Q
(the gradient w.r.t. Q) and another for dK and dV (the
gradients w.r.t. K and V).

Sparse Jacobian of c-entmax. The sparsity in the Jaco-
bian of a-entmax plays a crucial role in the backward pass.
For p = a-entmax(s), the Jacobian is (Peters et al., 2019)

Oa-entmax(s) uu "

= Diag(u) — —,
9 &) =l

where u; = (p;)?~*. Importantly, this Jacobian is sparse
and only depends on p, which, in turn, is a function of 7
computed during the forward pass. We denote by U &
R"™*™ the matrix defined element-wise as Uy, = Py, and

by U € RB-*Be its (i, j)™ block. Using this information,

(10)

*https://github.com/triton-lang/triton/blob/
main/python/tutorials/06-fused-attention.py
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the gradient w.r.t. the score matrix Sz(j ) € RB-*Be can be
efficiently computed as:

ds¥) =UY & dPY — Diag(6)UY, (1)

where dP) = dO,V," € R? 5, with dO; € RP>"
and V; € RB<*" and §; € RP" denotes the i block
of the vector & € R" defined element-wise as §;

Q_k UndPix)/ (O Utk

Efficient gradient computation. In ADASPLASH, instead
of storing P, we store the lookup tables KC and Q computed
during the forward pass, allowing us to to efficiently skip the
computations of null blocks during backpropagation. Given
dS;, the gradients for Q;, K;, V; € RB»*? are computed
as follows using the pointer-increment lookup tables:

=Y das? K (12)
JjEQ,

dK; =Y ds” - qQ, (13)
iEK:j

av; = > PV .do. (14)
iEK:j

Hence, by splitting the backward pass into separate ker-
nels and exploiting the sparsity of a-entmax through the
Jacobian structure, we can achieve efficient gradient com-
putation. Overall, ADASPLASH allows users to choose
between memory efficiency (without block masking) and
computational speed (with block masking) depending on
the task requirements and hardware constraints. We provide
a detailed derivation of c-entmax attention’s backward pass
and its implementation in Appendix A.2.

4. Experiments

We evaluate ADASPLASH across various scenarios to show
its computational efficiency and impact on downstream
tasks. Our experiments address the following questions:

* Performance efficiency: How does ADASPLASH com-
pare with baseline methods in terms of runtime as
sequence length and sparsity vary?

=OOM

=O0OM
=O0OM
=O0OM

64k

Figure 3. Efficiency of algorithms for computing non-causal attention in terms of the average training step time for increasingly longer
sequence lengths. We use a = 1.5 for a-entmax based methods (Bisection and ADASPLASH).

32k

8k 16k

* Generalization to architectures: How does ADAS-
PLASH perform when integrated with encoder-only
and decoder-only models?

 Effectiveness in finetuning: Can ADASPLASH-
pretrained models outperform or match their dense
counterparts in short and long-context tasks?

4.1. Efficiency Benchmark

We compare the efficiency of ADASPLASH against
FlashAttention-2 and naive implementations of a-entmax.
For a fair comparison, we also include a variant of
FlashAttention-2 implemented in Triton that follows closely
our kernel implementation of ADASPLASH. We set the
number of iterations of ADASPLASH to 3 and Bisection to
10. As input, we generate random tensors from a Gaussian
distribution (1 = 0), simulating attention scores with a high
level of sparsity by setting the Gaussian variance to 02 = 6
of query vectors. Sequence lengths range from 1k to 64k,
with a fixed head size of d = 64.

Runtime. We show the average training step time for each
method in Figure 3. ADASPLASH demonstrates superior
scalability, efficiently handling sequences up to 64k, unlike
the Bisection method implemented in Torch, which runs out
of memory beyond 4k context length. We also note that,
as context length increases, the amount of block sparsity
naturally increases as well, leading to an advantage for our
method over both implementations of FlashAttention-2.

4.2. Performance on Real Tasks

Encoder-only models, such as RoOBERTa (Liu et al., 2019)
and ModernBERT (Warner et al., 2024), exhibit higher at-
tention sparsity than decoder-only models, making them
well-suited for adaptive sparse attention mechanisms like
ADASPLASH. Following ModernBERT’s evaluation setup,
we opt to evaluate these models on standard NLP tasks, such
as text classification, natural language inference, textual
similarity, and information retrieval. Moreover, following
FlashAttention’s evaluation setup (Dao et al., 2022), we
also benchmark ADASPLASH with GPT-2, a decoder-only
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Table 1. Results for single-vector retrieval models on different
tasks from the BEIR benchmark in terms of nDCG@10.

Model Seq. SciFact NFC FiQA TREC-C

RoBERTa 512 51.7 231 278 60.1
RoBERTa (o = 1.5) 512 508 242 276 71.0
RoBERTa (o = 2.0) 512 522 238 257 655
ModernBERT 8192 57.7 224 257 @ 67.6
ModernBERT (a = 1.5) 8192 584 25.7 29.6  75.2
ModernBERT (a = 2.0) 8192 58.0 254 293 71.1

Table 2. Long document classification performance (F7 micro)
with softmax and a-entmax attention.

Sequence Length
Model 512 1024 2048 4096 8192
RoBERTa 715 744 751 779 79.2

RoBERTa (e« =1.5) 718 755 764 78.0 78.6

model, to assess its efficiency in autoregressive settings
where attention patterns are denser. This ensures a compre-
hensive comparison with optimized softmax-based methods
while validating the benefits of sparsity across different ar-
chitectures. We provide more training and evaluation details
for each task in Appendix B.

Continuous pretraining. We conducted continuous pre-
training of RoBERTa-base and ModernBERT-base on 2B
tokens of the English subset of Fineweb-edu (Lozhkov et al.,
2024) using ADASPLASH for a € {1.5,2}, and PyTorch’s
scaled_dot_product_attention for « = 1.0. To en-
sure a smooth transition from dense to sparse attention,
we linearly increased o from av = 1.0 to the target values
a € {1.5,2.0} over the first 1B tokens and kept it fixed
afterwards. We provide more details on the continuous pre-
training phase in Appendix B.1, including efficiency results.

Single-vector retrieval. We evaluate our pretrained
models on single-vector retrieval performance using the
BEIR benchmark (SciFact, NFCorpus, FiQA2018, TREC-
COVID), following the setup in (Warner et al., 2024). Ta-
ble 1 highlights the performance of RoBERTa and Mod-
ernBERT models using c-entmax attention in terms of the
standard nDCG @10 metric. ModernBERT with av = 1.5
consistently outperformed its dense counterpart, achieving
the highest scores on all tasks, demonstrating its ability to
focus on relevant signals effectively. While ModernBERT
with a = 2.0 remained competitive, its higher sparsity
might have excluded relevant information, affecting task per-
formance. Finally, sparse versions of ModernBERT achieve
better results than the sparse versions of RoOBERTa on all
tasks, highlighting the benefit of modeling long contexts.

Table 3. Runtime per epoch (hh:mm:ss) and peak memory usage
(GB) for long document classification with different sequence
lengths. In cases where the full batch could not fit in memory,
gradient accumulation was used. Memory values represent the
effective peak memory required to process a batch of 16 samples.

Runtime (hh:mm:ss) Sequence Length
Model 512 1024 2048 4096 8192
RoBERTa 2:39  5:00 9:35 18:36  35:51
RoBERTa (a = 1.5) 2:45 5:20 10:24  19:54  38:08
w/ Torch Bisect 4:51 8:44 22:48 1:11:53 4:12:34

Memory (GB) Sequence Length
512 1024 2048 4096 8192
RoBERTa 6.75 11.43 2035 3749  75.00
RoBERTa (o = 1.5) 6.75 1145 2038 39.17 79.88
w/ Torch Bisect 775 1692 44.06 142.76 508.16

Long document classification. We fine-tuned a pre-
trained RoBERTa model (Liu et al., 2019) on the ECtHR
(Chalkidis et al., 2019; 2021) dataset while progressively
increasing the sequence length up to 8192 tokens. Positional
embeddings were extended by repetition, following the ap-
proach of Beltagy et al. (2020). As a baseline, we fine-tuned
the model using standard softmax-based attention. For a-
entmax attention, we linearly increased the o from 1.0to 1.5
during training to ensure smooth convergence. The results,
summarized in Table 2, show a consistent improvement in
model performance with longer context lengths. Notably,
despite the base model being pretrained with standard atten-
tion, a-entmax attention was capable of effectively learning
the task, achieving a slightly higher micro F} score than the
model fine-tuned with standard attention up to a sequence
length of 4096 tokens.

Table 3 compares the runtime per epoch and peak memory
usage for different sequence lengths on the long document
classification task. We report results for ROBERTa with
FlashAttention-2 (o« = 1), RoOBERTa with ADASPLASH
(v = 1.5), and RoBERTa using Torch’s bisection-based
implementation. ADASPLASH enables scalable training
with a-entmax attention. Prior to this, implementations had
to resort to Torch’s bisection, which leads to both extremely
slow runtimes or even out-of-memory problems, rendering
it infeasible for most realistic training setups. In contrast,
our method brings the cost of a-entmax attention down to
the level of existing dense attention implementations, as
both runtime and memory usage with ADASPLASH remain
well aligned with those of FlashAttention-2.

Language understanding. We also evaluate ROBERTa
and ModernBERT models with a-entmax attention on the
GLUE benchmark (Wang et al., 2018) in Appendix B.2.
Overall, the results indicate that models with sparse attention
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Table 4. Results on language modeling with GPT-2 in terms of
final validation loss and accuracy on the HellaSwag task (Zellers
et al., 2019), along with the average runtime per training step (in
seconds) and peak memory usage (GB) per GPU.

Model Val. Loss HS Acc. Runtime Memory

GPT-2 3.283 304 0.98 52.5

GPT-2 (o = 1.5) 3.263 30.6 1.03 52.5
w/ Torch sorting - - 3.61 73.8
w/ Torch bisection - - 7.78 77.6

achieve comparable performance to their dense counterparts,
which underscores the ability to efficiently train c-entmax
models without sacrificing accuracy.

Language modeling. Following (Dao et al., 2022), we
trained a small 124M GPT-2 model (Radford et al., 2019)
from scratch on 10B tokens of the FineWeb dataset (Penedo
et al., 2024) with a context length of 1024 tokens. For a
consistent evaluation between softmax and a-entmax at-
tention, we also trained a softmax-based GPT-2 to serve
as baseline. After training, we evaluated both models on
the HellaSwag task (Zellers et al., 2019). Table 4 presents
a side-by-side comparison of the final validation loss and
accuracy on HellaSwag, along with runtime and memory
usage numbers. Sparse GPT-2 achieves a slight improve-
ment in validation loss (3.263 vs. 3.283) and final accuracy
(30.6% vs. 30.4%) compared to its softmax counterpart,
while obtaining comparable runtime and memory efforts.
Furthermore, our approach achieves a runtime comparable
to the GPT-2 using the highly optimized FA2 (1.03 s/step
vs. 0.98 s/step) and matches its memory footprint (52.5
GB), while outperforming the sorting and bisection variants
by large margins in both speed (1.03 s/step vs. 3.61 and
7.78 s/step) and memory usage (52.5 GB vs. 73.8 and 77.6
GB). In Appendix B.4, we report all training and evaluation
details, including the validation loss curves of each method.

Sparsity in attention heads. Figure 4 presents the spar-
sity observed in attention heads for all layers for an input
of 1024 tokens for our sparse GPT-2 model (o« = 1.5).
Except for the first layer, all subsequent layers exhibit a
high degree of sparsity, highlighting the potential efficiency
gains from leveraging this property. Moreover, in Fig-
ure 5 (Appendix B.1), we illustrate the sparsity patterns
in ModernBERT-base attention heads for o € {1.5,2.0},
reinforcing similar conclusions.

5. Related Works

Sparse Probability Transformations. The sparsity in-
herent to the a-entmax transformation, as demonstrated by
Blondel et al. (2019), is directly controlled by the « pa-
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Figure 4. Ratio of non-zero attention scores for GPT-2 (o = 1.5).

rameter. For o = 2, the problem simplifies to a projection
onto the probability simplex, a well-established optimization
problem. Its solution forms the base of sparsemax (Martins
& Astudillo, 2016), which can be efficiently computed using
sorting and root-finding methods (Held et al., 1974; Condat,
2016; Liu & Ye, 2009). Moreover, for intermediate values
such as o = 1.5, Peters et al. (2019) proposed an exact
sorting-based algorithm along with an implementation of
a bisection algorithm applicable to any a. However, these
approaches remain suboptimal for long contexts due to slow
convergence or reliance on complex data structures and sort-
ing operations, which are difficult to optimize for hardware.

Sparse Attention Mechanisms. Efficient sparse atten-
tion mechanisms have been widely studied to reduce the
quadratic cost of transformers. The Sparse Transformer
(Child et al., 2019) introduces a fixed windowed atten-
tion that can be efficiently computed using CUDA ker-
nels, a strategy also adopted by Longformer (Beltagy et al.,
2020), and BigBird (Zaheer et al., 2020a). However, data-
dependent sparse attention methods, such as Reformer (Ki-
taev et al., 2020) and Routing Transformer (Roy et al., 2021),
aimi to approximate softmax in return for efficiency, not
leveraging the sparsity of attention weights. Other methods,
such as Top-k attention (Gupta et al., 2021) and NSA (Yuan
et al., 2025), provide sparsity but require a fixed, non-
adaptable budget. In contrast, a-entmax attention provides
natural, input-dependent sparsity patterns with an exact and
differentiable transformation that generalizes softmax, mak-
ing it more flexible for modeling attention distributions.
Adaptively sparse transformers (Correia et al., 2019) uses
a-entmax attention where attention heads can learn « dy-
namically, improving interpretability but without leveraging
sparsity for efficiency. SparseFinder (Treviso et al., 2022)
aims to address efficiency issues by predicting the sparsity
pattern of entmax attention a priori; however, it does not
scale efficiently for long sequences.
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Hardware-Aware Attention. Recent works have ex-
plored optimizing attention mechanisms with hardware-
aware implementations. Flex Attention (Dong et al., 2024)
provides an API for efficient attention computation, though
they remain tied to softmax-based transformations and do
not support more complex operations such as those con-
sidered in our work. Closely related to our approach,
FlashAttention-1 and 2 (Dao et al., 2022; Dao, 2024) op-
timize softmax-based attention using tiling and recompu-
tation techniques implemented in CUDA. While FlashAt-
tention includes a sparse block variant, its sparsity pattern
must be predefined, limiting adaptability. In this work, we
compare our method, ADASPLASH, with FlashAttention-2
and demonstrate that our approach can outperform both its
CUDA and Triton implementations at high input sparsity
levels. Similarly, Sparse Flash Attention (Pagliardini et al.,
2023) extends FlashAttention-1 with a sparse variant that
reduces computational cost by either dropping queries and
keys per head or grouping them using a hash-based bucket-
ing approach. However, despite its efficiency improvements,
it relies on slow sorting operations and is constrained to
causal attention, making its sparsity a by-product of bucket-
ing rather than an inherently adaptive feature, as in our case.

Efficiency at Inference Time. Another line of work fo-
cuses on optimizing transformers at inference time. Meth-
ods such as Paged Attention (Kwon et al., 2023) and KV
cache sparsification (Devoto et al., 2024; Luohe et al., 2024)
aim to alleviate the linear complexity of inference by mod-
ifying key-value caching strategies. While our approach
does not directly provide KV cache compression benefits,
these methods are orthogonal and can be combined with our
work to further improve inference efficiency.

6. Conclusion

In this work, we introduced ADASPLASH, a hardware-aware
and efficient implementation of a-entmax attention, bridg-
ing the gap between adaptive sparse activations and efficient
long-context modeling. Our approach leverages a hybrid
Halley-bisection algorithm for faster empirical convergence
and custom Triton kernels to exploit the inherent sparsity
of a-entmax. Our experiments show that ADASPLASH not
only achieves substantial computational improvements over
existing a-entmax implementations, but can often match
or even surpass the efficiency of highly optimized softmax-
based attention algorithms like FlashAttention-2. Moreover,
ADASPLASH enables long-context training while maintain-
ing strong task performance across diverse benchmarks,
such as language understanding, information retrieval, doc-
ument classification, and language modeling. Overall, our
work unlocks the viability of dynamically sparse attention
mechanisms in large-scale training, which was previously
hindered by computational inefficiencies.

Impact Statement

Efficient attention mechanisms are crucial for scaling trans-
formers to long-context tasks. Our work provides a prac-
tical implementation by making adaptive sparse attention
efficient, overcoming previous computational limitations of
a-entmax. Therefore, the improved efficiency of ADAS-
PLASH has potential applications in large-scale NLP, where
sparsity can be leveraged to reduce computational costs. We
do not foresee direct societal consequences from sparsity
itself, but its integration into decision-making models may
still reflect biases in training data. As such, we encourage
careful evaluation when deploying sparse attention mecha-
nisms in high-stakes applications, ensuring that efficiency
gains do not come at the cost of fairness or transparency.
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ADASPLASH: Adaptive Sparse Flash Attention

A. Algorithm Details

We first derive a high-level view of the forward and backward passes of the entmax attention and then present the full
algorithms for both mentioned versions. For consistency and ease of comparison, we follow the notation adopted by
FlashAttention-1 (Dao et al., 2022).

A.1l. a-entmax Attention Forward Pass
We recall that given the input sequences Q, K,V € R™*9, we want to compute the attention output O € R™*? as follows:

S=QK'" ¢ R"", P = a-entmax(S) € R"*", O = PV ¢ R"*¢

Therefore all we need is the 7 € R” that solves Equation 2, for which we can use Algorithm 1. We note that we do not need
to materialize .S as we only need to accumulate the derivatives of f(7), defined in Equation 3. Once T is computed, we can
compute each row of O as follows:

Oi = PIV = ZP”‘/J = Zmax (0, (a - 1)Q:K] - Ti)l/a71 ‘/J (15)
j j=1

As in FlashAttention, we can compute O; without extra memory by incrementally summing the contributions of each
a-entmax(Q,' K;)V; term. We can then compute the forward pass with O (n) extra memory as follows:

1. Compute 7; for all 1 < 4 < n according to Algorithm 1, which takes O (n) extra memory.

2. Compute O; for all 1 < ¢ < n according to Equation 15 which takes O (n) extra memory.

A.2. a-entmax Attention Backward Pass

For the a-entmax attention backward pass, we need to compute the gradients with respect to V', K, and Q. Let £ be a
scalar loss function, and dO € R"*? denote %. Our goal is to compute the input gradients dV, dK , dQ € R"*¢,

1. Gradient of V'
Using reverse-mode autodifferentiation, we first compute dV':
dV = P'dO, (16)

where P = a-entmax(S) is the output of the a-entmax transformation applied row-wise to the score matrix S = QK .
Expressed element-wise, we obtain:

dV; =Y P;d0;, (17)

i=1

which is analogous to the softmax case. Since P;; is sparse due to the nature of a-entmax, we can skip ; blocks that leads
to blocks of P full of zeros using the pointer increment tables, as shown in Equation 14.

2. Gradient of P and S

The next step involves computing dP and dS. From O = PV, we have:

dP;; = dO,'V;. (18)

Next, let us recall the Jacobian of the c-entmax mapping (Peters et al., 2019). Defining p = a-entmax(s), the Jacobian is:

da-entmax(s) uu’

58 = Diag(u)

[[ellx
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where u is defined element-wise as:

N2—«a if
"y = {(pk) , ifpe >0 20)

0, otherwise.

Let U denote a stack of [uq, ..., uy] for each row of P. From the relationship P = a-entmax(.S), and the Jacobian of the
a-entmax function, we can propagate the gradients back to S as follows:

UU;
Uil
U/ dP,
:U4®dP~—< C 7’) i (22)
' L 1Uillx
We can further simplify by defining a new quantity § € R"™:
U/'dP;
i = (23)
1Uillx
1 @ -
= Ui; (dO; v;) (24)
1Uilly =
j_
o (V) o)
' 1Uill1
o

In standard softmax attention, instead of the right-side term in the above product, we would simply obtain O;. Since this
new quantity is required for the backward pass, and to avoid passing once more through @, K and V', we compute and
store this quantity during the forward pass solely during training. Unlike in softmax attention, however, the backward pass
for a-entmax does not require saving the output matrix O; instead, we only require this new quantity, which we label O(?).
Then, we can simplify the computation of d.S to:

dS; =U; ® (dP; — §;) (26)

Again, we can use the sparsity stored in M (see Equation 9) from the forward pass to efficiently skip the computation of
null blocks of P.

3. Gradients of () and K
Using the definition of S;; = Q. K, the gradients for () and K are:

dQ; =Y dS;K;, 27)
j=1
dK; = dS;;Q;. (28)
i=1
Substituting d.S;;, we get:
dQi =) U (dP; —6) K; (29)
j=1
dK; = Z Uij (dP;j — 0;) Qi (30)
i=1
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Effectively, we can only iterate through the blocks that will result in P;; # 0. As in FlashAttention, the backward pass can
also be computed with O (n) extra memory:

1. Compute dV for all j according to Equation 17, which takes O (d) extra memory.

2. Compute §; for all i according to Equation 23, which takes O (n) extra memory.

3. Compute 052) for all 4, as defined in Equation 25, which takes O (d) extra memory.
4. Compute dQ; for all 7 according to Equation 29, which takes O (d) extra memory.

5. Compute dK; for all j according to Equation 30, which takes O (d) extra memory.

We note that the only extra memory requirement compared to FlashAttention is in having to additionally compute and storing
0® ¢ R"*? When using block masking, we also need O (T}. x T.) extra memory to store the binary mask M. However,
we recall that this memory can be shared across attention layers, as it is merely a temporary matrix used to compute the
pointer-increment tables.

A.3. ADASPLASH: Forward Pass (without block masking)

The full ADASPLASH’s forward pass is presented in Algorithm 2. For completeness, we also provide in Algorithm 3 the
steps for approximating T without the need to materialize S in a block-wise manner.

Algorithm 3 Halley-bisection for computing 7 — Block Version

Require: Matrices Q, K € R™*? in HBM, block sizes B,, B, and number of iterations M.

1: Divide Q into T, = [n/B,| blocks Q1,...,Qr, of size B, x d

2: Divide K into T, = [n/B.] blocks K71, ..., Kr, of size B. x d

3: Divide 7 into T;. blocks 7, ..., 71, of size B,

4: fori=1to T, do

5:  Load @Q; from HBM to on-chip SRAM

6:  On chip, initialize 75, Tio,, Thi, according to Algorithm 1. > Note: this requires one pass over K for all j.
7:  repeat
8.
9

On chip, initialize f, f, /" =0 € RB
: for j =1to 7. do
10: Load K, V; from HBM to on-chip SRAM

11: Compute S = QK e RP*Be

12: Accumulate f, f ' f " according to Equations 3, 6 and 7, respectively.
13: end for

14: Update T;, Tio,, Thi; according to Algorithm 1.

15:  until M iterations are completed
16:  Write 7; to HBM

17: end for

18: Return: 7

A.4. ADASPLASH: Backward Pass (without block masking)

As mentioned in §3.2.2, in contrast to FlashAttention, we propose to separate the kernels that compute the gradients
dQ,dK,dV. However, as in FlashAttention, we need to compute & before being able to compute the gradients, which we
do in a separate kernel following Equation 25. We present the full steps for computing d K and dV in Algorithm 4, and for
computing d@ in Algorithm 5.

A.5. ADASPLASH: Block Masked Version

In this version, as outlined in Section 3, a boolean block mask M € RT~*T- is created dynamically in the forward pass,
allowing the exploitation of the sparsity in the matrix P at the cost of linear memory complexity. The mask is populated
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Algorithm 4 ADASPLASH Backward Pass for d K and dV
Require: Matrices Q, K,V ,0,dO € R"*?in HBM, vector T € R" in HBM, block sizes B., B,., parameter o
1: Divide Q into T, (n/B 1 blocks Q1, ..., Q. of size B, x d each, and divide K,V into T, = [n/B.] blocks
Ki,...,Kr ., Vi,...,Vp, of size B, x d each.

2: Divide dO into T, blocks dOy,...,dOr, of size B, x d each.
3: Divide 7 into T;. blocks 7, ..., 71, of size B, each.
4: Initialize and divide dK,dV € R™*? into T, blocks d K, . .. ,dK7 and dVi,...,dVr, of size B, x d each.
5: Divide ¢ into 7). blocks 41, ..., dr, of size B, each.
6: for1 < j <T.do
7:  Load K, V; from HBM to on-chip SRAM.
8: Initialize dK; = Op_xq on SRAM.
9:  Initialize dV; = Op_xq on SRAM.
10: forl1<:¢<T,do
11: Load Q;,dO;, T;,9; from HBM to on-chip SRAM.
12: On chip, compute S =Q; I(JT € RBrxB.
13: On chip, compute Pi(J) = max(0, (« )S(]) 7)) /et € RBrxBe,
14: On chip, compute dV; < dV; + (P, ( )dO; € RBexd,
15: On chip, compute dP; = dOiVjT RB xBe,
. ND—
16: On chip, compute U( D = 1(” “ e RBrxBe,
17: On chip, compute dS\) = U (de 6i) € RB-xBe,
18: On chip, compute dK; + dKJ +(dSY)TQ, € RBx1,
19:  end for
20:  Write dK;,dV; to HBM.
21: end for

22: Return: Gradients dK,dV .

during the final iteration of the Halley-bisection algorithm (Algorithm 3) by evaluating the condition any(Si(j ) > 7;) and
storing the result as a boolean value. Thus, the mask M indicates whether a specific @, K block pair contributes to the
output. This process enables the creation of a lookup table that associates each query block with the set of key blocks that
contribute non-zero values, thereby allowing to skip unnecessary computations for future computations. Similarly, a reverse
lookup table can be created for each key block. Both tables can be used in the backward pass (Line 10 in Algorithm 4 and
Line 9 in Algorithm 5) to avoid looping over unnecessary query/key blocks.

In practice, to create the lookup tables, we use the torch.argwhere function to extract the (4, j) indices of entries where
M;; = 1. Combined with row-wise summation of non-zero entries, this approach efficiently skips computations for
irrelevant blocks within the remaining kernels. Consequently, during the forward pass, only the K, V pairs identified in
the lookup table are loaded, avoiding redundant memory and computational overhead. As mentioned, for the backward
pass, given that we separated the computation of d@Q and dK,dV', we can further use both tables (Q and K) to speedup the
gradient computation.

B. Experimental Setup
B.1. Continuous Pre-training

We conducted continuous pretraining of RoOBERTa-base® and ModernBERT-base* models with our custom sparse attention
Triton kernel, ADASPLASH. The pretraining process was carried on 2B tokens of the FineWeb-Edu dataset,” due to its
high-quality, diverse and large-scale content. We used the HuggingFace Transformers library for model training and
implementation and the Datasets library for data handling. Concretely, we used a batch size of 32 and a learning rate of
5 x 10~°, optimized with the AdamW optimizer. Training was conducted for 100,000 steps using mixed-precision (fp16).

*https://huggingface.co/FacebookAI/roberta-base
*https://huggingface.co/answerdotai/ModernBERT-base
Shttps://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
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Algorithm 5 ADASPLASH Backward Pass for dQ
Require: Matrices Q, K,V ,0,dO € R"*% in HBM, vector T € R" in HBM, block sizes B., B,., parameter c.

1: Divide Q into T, (n/B 1 blocks Q1, ..., Q. of size B, x d each, and divide K,V into T, = [n/B.] blocks
Ki,...,Kr ., Vi,...,Vp, of size B, x d each.

2: Divide dO into T blocks dOy,...,dOr, of size B, x d each.

3: Divide 7 into T;. blocks 7, ..., 71, of size B, each.

4: Initialize d@ in HBM and divide it into T;. blocks dQ1, . .., dQ7r, of size B, x d each.
5: Divide ¢ into 7). blocks 41, ..., dr, of size B, each.

6: fori =1to T, do

7:  Load Q,;,dO;, 6;, T;, from HBM to on-chip SRAM

8: Initialize dQ; = 0p_xq on SRAM.

9: forj=1to7,.do
10: On chip, compute S = QK| € RB>Be,
11: On chip, compute P = max(0, (o — 1)SY) — 7,)/a=1 € RB-xBe,
12: On chip, compute dP; = dO; VT € RBrxBe,
13: On chip, compute U( P(j) ® e RB-xBe,
14: On chip, compute dS(j) U(J) (dPi(j) —8;) € RBrxBe,
15: On chip, compute dQ; + dQ; + dSZ-(j)Kj € RB-xd,
16:  end for
17:  Write dQ; to HBM
18: end for

19: Return: Gradient dQ

Table 5. Runtime (s) of ModernBERT-base (o« = 1.5) for varying context lengths.

Sequence Length

Algorithm 512 1024 2048 4096 8192
Sorting (Torch) 0.09 0.11 026 0.76 OOM
Bisection (Torch) 0.11  0.15 042 135 4.99

Halley-bisection (Triton) 0.10 0.11  0.26  0.46 1.61
ADASPLASH (Triton) 0.10 0.12 021 048 1.53

The sparsity parameter (o)) was initialized at 1.01 and annealed linearly to a final value of 1.5 or 2.0 over 50,000 steps. We
kept ModernBERT’’s window attention layers untouched, only replacing the full softmax layers by a-entmax. Finally, we
also performed continuous pretraining of RoOBERTa and ModernBERT with standard softmax attention with a fixed o = 1.0.

As shown in Figure 5, the attention mechanisms of our sparse ModernBERT model (o = 1.5) obtain high sparsity levels
in practice, with an overall sparsity of 95% for a = 1.5 and 99% for o = 2.0. For this reason, we used the version of
ADASPLASH that leverages the pointer increment tables for training ModernBERT, which has a maximum sequence length
of 8,192. For RoBERTa, which has a sequence length of 512, we opted to use the Halley-bisection algorithm implemented
in Triton. In Table 5 we report efficiency results in terms of runtime and memory usage for different attention algorithms
with ModernBERT-base. Overall, we observe that the sorting approach is slower than bisection, which is slower than our
Halley-bisection and ADASPLASH, in that order.

B.2. GLUE and BIER tasks

For GLUE tasks, we used the checkpoints of continuous pre-trained models for both RoOBERTa-base and ModernBERT-base.
Then, we fine-tuned them on each GLUE task with the default hyperparameters from the Transformer library.® Importantly,
we capped the maximum sequence length at 128 tokens to reduce computational cost while preserving task-relevant context
and used £p16 for training.

®https://github.com/huggingface/transformers/tree/main/examples/pytorch/text-classification
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Figure 5. Ratio of non-zeros for non-local layers of ModernBERT-base with o = 1.5 (left) and o = 2.0 (right).
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Table 6. Results on different tasks from the GLUE benchmark (Wang et al., 2018).

Single Sentence

Paraphrase and Similarity

Natural Language Inference

Model Params Seq. CoLA SST-2 MRPC STS-B  QQP MNLI QNLI RTE Avg.
BERT 110M 512 58.6 91.9 86.9 89.0 89.3 84.0 91.0 69.3 82.5
RoBERTa 125M 512 59.8 93.7 89.5 89.6 89.8 87.7 92.3 69.3 83.9
RoBERTa (a = 1.5) 125M 512 585 93.2 91.5 90.2 89.7 87.3 92.5 68.6 83.9
RoBERTa (o = 2.0) 125M 512 56.8 93.0 90.9 88.8 89.0 86.7 91.9 67.2 83.0
ModernBERT 149M 8192  63.2 95.0 88.2 90.3 90.4 87.9 93.0 61.7 83.7
ModernBERT (o = 1.5) 149M 8192 622 96.1 81.7 89.4 90.2 87.9 92.6 61.7 83.5
ModernBERT (a = 2.0) 149M 8192 622 94.8 89.0 89.9 90.5 87.8 93.1 62.5 83.7

To evaluate the generalization of ADASPLASH in retrieval tasks, we fine-tuned ModernBERT-base and RoBERTa-base
models on the MS MARCO dataset (Bajaj et al., 2016) and evaluated them on the BEIR benchmark (Thakur et al., 2021).
This benchmark suite assesses performance across diverse information retrieval tasks, including SciFact, NFCorpus, FiQA-
2018, and TREC-COVID. The fine-tuning and evaluation process closely follows the approach proposed in the ModernBERT
paper (Warner et al., 2024). Fine-tuning was performed using the SentenceTransformers library.” The models were evaluated
on BEIR tasks using the MTEB benchmark toolkit.® The evaluation metric for each task was nDCG@ 10 (Normalized
Discounted Cumulative Gain), following standard information retrieval practices.

B.3. Long Document Classification

The European Court of Human Rights (ECtHR) dataset comprises legal cases from the European Court of Human Rights,
each associated with specific articles of the Convention on Human Rights allegedly violated. For this task, we fine-tuned the
RoBERTa base model (Liu et al., 2019) with a classification head. Since this is a multi-label classification task, we used a
binary cross-entropy loss. To accommodate longer contexts, we followed the approach proposed by (Beltagy et al., 2020),
repeating the 512 position embeddings until the target context size was reached. We used the AdamW optimizer for training.
For hyperparameters, we follow the recipe of Dai et al. (2022). For the attention mechanism, bf1oat16 precision was used.

B.4. Language Modeling

We trained both the standard GPT-2 model and sparse GPT-2 (o« = 1.5) using the configuration provided in the 11m.c
repository,” following their training recipe. Specifically, we trained a GPT-2 (124M parameters) from scratch on 10B
tokens of the FineWeb dataset, with a maximum sequence length of 1024 tokens. Training was conducted using bfloat16
precision. We use an effective batch size of 512, and use gradient accumulation to fit into available GPU memory. We

"https://sbert.net/
Shttps://github.com/embeddings-benchmark/mteb
*https://github. com/karpathy/11lm.c
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use the AdamW optimizer, with learning rate 6 x 10~* and weight decay of 0.1. The learning rate followed a warm-up
phase, linearly ramping from zero to a maximum of 6 x 10~* over the first 700 iterations, equivalent to 350 million tokens.
Subsequently, the learning rate decayed to zero across the remaining training steps. We show the validation loss curves for
both softmax and a-entmax (o = 1.5) in Figure 6.

Given that, for this task, the context size was not high enough, for sparse attention we opted to use the algorithm that does
not take advantage of the pointer increment tables. For the benchmarking of the time spent per step, we averaged across 50
steps after the model had trained for at least 100 steps.
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Figure 6. FineWeb withheld validation loss comparison between GPT-2 and Sparse GPT-2 during training.

C. Computational Details

Experiments on masked language modeling, text classification, GLUE tasks and BIER tasks were carried on Nvidia RTX
A6000 GPUs with 48GB VRAM. Experiments with GPT-2 and the efficiency benchmark in Figures 1 and 3 were carried on
a single Nvidia H100 GPU (80GB). The runtime experiments with ModernBERT were carried on a single A6000 GPU.
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