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ABSTRACT

While diffusion-based text-to-image generation has made notable advancements,
generating accurate images containing interactive actions remains a challenge due
to the lack of inherent physical and spatial priors. To address this problem, we pro-
pose a novel pipeline that synthesizes a dataset enriched with physical priors using
a graphics engine, combined with a captioning technique. Building on the dataset,
we introduce a distillation-structured fine-tuning method, where a teacher network
assists in inverting the semantics of interactive actions, leveraging the synthesized
priors effectively. This fine-tuning method disentangles the synthetic data features
while mitigating random misalignment during the fine-tuning process. Extensive
experiments demonstrate that our method not only achieves state-of-the-art results
but also highlights the synthetic data’s potential to be applied more broadly in en-
hancing the generation of interactive action images.
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1 INTRODUCTION

Stable Diffusion v1-5

Stable Diffusion v3

i

> “baby open safebox”  “Trump pushdoor”  “monkeys [ift vase” “magician move stone”

FLUX

Figure 1: (for Reviewer WdtC’ W1, Esr5’ Q4) Examplar results of Stable Diffusion v1-5, Stable
Diffusion v3 (2024) and FLUX. These results show that existing T2I model can draw the
subjects and objects precisely, according to the input prompt, but cannot well generate the interactive
action: subjects in these images have unreasonable spatial relationship or do not touch the objects.

Recent years have witnessed significant breakthroughs in the field of text-to-image generation, par-
ticularly with powerfulness of diffusion models (2022). However, existing text-to-image
generation models such as Stable Diffusion (SD) Rombach et al.[(2022) struggle to generate images
containing interactive actions. As shown in Figure[I} the generated images from SD totally fail to
model correct spatial positions of objects and the interactions between them.

In general, generating interactions requires modeling spatial relationships, which is inherently more
difficult than generating isolated objects. For instance, depicting an action as seemingly straightfor-
ward as “picking up” involves intricate spatial and physical constraints, including the placement of
objects, the elevation at which the pick-up occurs, and the degree of arm curvature, etc.

Existing diffusion models lack explicit physical understanding. Typically, text-to-image mod-
els Dhariwal & Nichol| (2021); [Ho & Salimans| (2022); Lugmayr et al.| (2022)); [Esser et al.| (2021)
are pretrained using image-text pairs. This approach has limitations particularly in learning physi-
cal constraints, because images involving interactions are very rare in the training dataset, resulting
in models that do not thoroughly comprehend spatial dynamics (for example, illustrations where
various models fail to depict spatial relations accurately).

To resolve this problem, we propose to fine-tune the diffusion models on synthetic images with

interactions rendered from physical simulation graphics engines[Savva et al.|(2019);Xia et al.| (2018
[2020)); [Savva et al| (2017); Brockman et al.| (2016); James et al.| (2020); Xiang et al.| (2020). A

graphics engine can offer a 3D scene where an object interacts with another object conforming to
physical constraints. In this paper, we select SAPIEN [Xiang et al.| (2020) as the main generation
engine due to its convenience, but we also prove that other popular engine like Unity3D is effective
as well. In SAPIEN, we first build a 3D scene where a robot agent is interacting with objects, and
then render multi-view 2D image dataset which contains physical priors for diffusion models.

However, using synthetic data’s physical prior to learn interactive action is not a free lunch: there
is a big domain gap between synthetic data and real data where diffusion models are pretrained
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Figure 2: Textual Inversion’s problem (left) and ReVersion’s problem (right). Textual Inversion
tends to overfit to the training synthetic data, maintaining style features of the synthetic data, while
ReVersion usually throws the subject or object randomly.

on. We expect to transfer the interactive action learning from synthetic data to real data generation.
An intuitive approach is to use textual inversion (2022), a fine-tuning method to learn
a specific semantic concept with a rare textual token (in this paper, we use vx) in a “Subject-v*-
Object” prompt, then transfer the concept by using the token for inference. However, optimizing the
token’s embeddings on synthetic data is prone to overfit, as shown in Figure[2] Our objective is to
obtain a generalizable action embedding which disentangles synthetic appearance and style features.

A possible fine-tuning approach is to employ personalization methods like DreamBooth [Ruiz et al.|
(2023). However, DreamBooth requires extra real-images to refine the class-specific prior preserva-
tion loss, which helps prevent over-fitting. This requirement cannot be easily meet in our task since
real data is very rare. ReVersion Huang et al.|(2023b)) handles the disentangle problem by analyzing
different parts of the textual prompts via a contrastive loss, which steers the embedding towards
relation-dense region in the text embedding space. Adapting ReVersion in our task helps to alleviate
the overfitting issue but will introduce textual prompt misalignment problem: as shown in Figure[2]
subjects or objects will disappear randomly. This problem appears due to the domain gap between
the real data and synthetic data.

Therefore we propose a distillation network specified for synthetic data fine-tuning to solve the
misalignment problem. We find that although SD fails to accurately model the spatial relation,
the subject and object are present without random losing. This observation inspires us to leverage
its strengths. As shown in Figure 3} a frozen diffusion model works as a teacher network, which
conditions on a “Subject-and-Object” prompt, aiming to generate them without considering their
relationship; the student network learns the interactive action conditioning on “Subject-v*-Object”
prompt, disentangling the synthetic features. With a distillation loss, the teacher network offers a
guidance signal to supervise the student network to generate the subjects and objects. Then v can
be used to generate images with specific interactive actions as the teaser page shows.

Our contribution is three-folded: 1) we pioneer to focus on interactive-action image generation, an
important and challenging task that remains unsolved, and we propose to employ synthetic data to
offer more physical priors; 2) we design a new distillation method to fine-tune the diffusion model
on synthetic data, solving the misalignment problem introduced by the domain gap; 3) extensive
experiments prove the potential ability of synthetic data, our method can generate significantly better
images with reasonable spatial relationships and good fidelity.

2 RELATED WORK

Diffusion-based Text-to-Image (T2I) Generation. With great success, diffusion models have be-
come a mainstream approach in various domains such as image generation [Dhariwal & Nichol
(2021); [Ho & Salimans| (2022)); Lugmayr et al| (2022); [Esser et al|(2021), image processing |Sa-
haria et al. (2022bza); Guo et al. (2023); |Chung et al|(2022), video generation [Wu et al. (2022);
Hong et al|(2022); Wu et al|(2023), and 3D generation [Poole et al. (2022); Miiller et al.| (2023);
Nam et al.|(2022) etc. Text-to-image (T2I) diffusion models have demonstrated impressive results
in converting text descriptions into images. Notable examples include GLIDE [Nichol et al.| (2021)),
DALL-E Ramesh et al.| (2022)), Imagen and Latent Diffusion Model (LDM) [Rombach et al.| (2022),
each contributing unique advancements to the field. Stable Diffusion Rombach et al|(2022), based
on LDM, uses a cross-attention mechanism to inject textual conditions into the generation process,
significantly improving computational efficiency by operating in latent space. This marks a new era
of text-to-image generation capable of handling arbitrarily text descriptions. Motivated by its suc-
cess and popularity in the open research community, we build our framework on Stable Diffusion.
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Interactive Action Generation. A similar task, HOI generation mainly focus on 3D, like
DreamHOI [Zhu et al.[(2024) generate 3D models with deformed SMPL mesh [Loper et al.| (2023)),
although the 3D scene be physically constrained, their rendered images have far low fidelity than
real images, therefore fine-tuning interactive-action images is more feasible. Due to the demand for
generating images with user-specified content, customization methods like DreamBooth |[Ruiz et al.
(2023)), Textual Diffusion |Gal et al.|(2022)), Custom Diffusion Kumari et al.| (2023)), and P+ Voynov
et al.| (2023) have been proposed. These methods focus on transferring user-specified subject ap-
pearance or style by fine-tuning diffusion models on a few images to align a new word with visual
semantics, failing to model interactive relationships. ReVersion|Huang et al.|(2023b) makes progress
in learning specific relations denoted by prepositions and modeling simple actions, yet it faces chal-
lenges in inverting complex interactive relationships. Meanwhile, recent work ADI |[Huang et al.
(2023a) successfully disentangles actions from exemplar images, but focusing primarily on isolated
actions without addressing interactive relationships. Our framework is designed to bridge this gap.

Interactive Scene Rendering. Several simulated environments for robot learning have been de-
veloped, each featuring diverse 3D scenes. Habitat [Savva et al.| (2019)serves as a key example of
navigation-focused environments, incorporating elements from Gibson Xia et al.| (2018}, 2020) and
Minos Savva et al.| (2017) but it primarily emphasizes static physics over interactive actions. Al2-
THOR [Kolve et al.|(2017) is recognized for its game-like interactive environments, but its navigation
is restricted by object interactions. Additionally, platforms like OpenAI Gym |Brockman et al.|(2016])
and RLBench James et al.[(2020) provide interactive environments; however, their dependence on
commercial software limits their adaptability and customizability. In contrast, the open-source plat-
form SAPIEN Xiang et al.|(2020)) offers various interactive tasks and part-level physical simulations,
providing rich spatial information and priors that can boost our text-to-image generation tasks.

3 METHODS

3.1 PRELIMINARY

Stable Diffusion. Latent diffusion models [Rombach et al.| (2022) (LDM) refer to a kind of genera-
tive models working in latent space, where £ and D are corresponding encoder and decoder relating
pixel space with and latent space, following the mechanism of VQ-VAE [Van Den Oord et al.| (2017)).
Specifically, £ encoders an input image x € R¢***" into latent space, obtaining corresponding
latent code zg i.e. z9 = E£(x). Forward diffusion process transforms zg into zp ~ N(0,1) by T
steps of gradually adding Gaussian noise € ~ A (0, I) with the same shape as 2:

(](Zt|2’t—1) :N(Zt, V 1 - ﬂtztflvﬂtj)vt = 1a aT (l)

where ¢(z¢|z¢—1) is the conditional density of z; given z;_1, {5}3;1 are noise scheduler hyperpa-
rameters, and 7" is a large enough parameter. Then the LDM further undertakes the learning of a
backward process, aimed at reversing the forward process to reconstruct zy from zp:

po(ze—1|ae) = N(2y; po(we, t), Xo (e, t)) (2)

After t = T, ..., 1 steps backward process, 2 is generated from z7, then the output video results
from an decoder, i.e. x = D(z). The backward process is optimized by:

‘6_60(zt7t70)H§ (3)

where Ljenoise 18 @ denoising loss. €y is a conditional denoising network, often implemented by a
2D-UNet. ¢ denotes the condition, if the model is trained with video-text prompt pairs (z,p), ¢ is
the conditional text embedding processed by a text encoder C, i.e. ¢ = C(p).

£denoise = Ezwt,zo J€,C

3.2 SYNTHETIC DATA COLLECTION

Synthetic data can be curated based on various platforms. For convenience, we collect the syn-
thetic data on the SAPIEN [Xiang et al.|(2020), a 3D realistic and physics-rich simulation platform.
The platform provides an extensive library of pre-designed articulated robot agents, objects, and
habitat assets, enabling users to simulate realistic interactive environments. Specifically, we reg-
ister an action environment, and then input parameters into the environment to define the objects,
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Figure 3: The pipeline of our method. We render synthetic interactive images from a Physical
Simulation Environment, which contains rich physical prior, and then utilize them to optimize a
placeholder v* to learn an interactive semantic. The denoising loss and steering loss help to disen-
tangle the interactive semantics for v* from the synthetic shallow features, while the teacher network
and distillation loss address the misalignment problem introduced by the domain gap.

indoor scenes, agent initial poses, and agent trajectories. Agent trajectories are sampled from vari-
ous trajectories. Then the robot agent is driven accordingly to finish the interactive task. We input
diverse camera viewpoint parameters and render multi-view videos accordingly. Then we sample
key-frames in which the robot interacts with objects from the rendered videos to build the image
dataset. Details and exemplary generated data can be viewed in Appendix [A]

Additionally, we provide multiple text templates, which describe the depicted scenes, to pair with
each image. These templates are divided into two groups. Specifically, one group is tailored for
interactive action modeling and includes a placeholder v, forming “Subject-v*-Object” prompts.
Another template is the same as the former one, except that v* is replaced by preposition “and”,
forming “Subject-and-Object”, which is for distillation and will be further discussed in Section[3.3}
We also curate synthetic data from Unity3D to test its effectiveness as shown in Section[4.3]

3.3 NETWORK ARCHITECTURE

Figure[3|shows the overall architecture of our method. This method adopts the foundational structure
of distillation learning (2013)), consisting of a student network and a teacher network.

3.3.1 STUDENT NETWORK

As mentioned in Section [T} we optimize a rarely used token vx to capture the visual interactive
action, then insert this token as predicate into the inference prompt to guide image generation with
interaction actions. The optimization objective is shown below:

Uy = arg minEZNt,zo,e,c |:||6 — €9 (Zt7 ta C(y))||§j| 5 (4)
v

where v is the token to represent the interaction action, y is the textual condition, a “Subject-vx-
Object” structured prompt.

A straightforward method is to optimize it as Textual Inversion|Gal et al|(2022) with a denoising loss
as Eq.[3.1] but only using denoising loss is prone to overfitting to the synthetic data. For example,
as shown in Figure 2] the generated image contains the style of synthetic data and the color of the
agents. A common way to disentangle these object appearance and style is to follow personalization
methods like DreamBooth (2023)), but its prior preservation loss requires additional real
images to prevent overfiting, which is hard to obtain. ReVersion focuses on modeling the preposition
relation (in, of, on, etc) of objects and can disentangle object appearance and style without additional
images with a loss like Info-NCE (2018). Similarily, we use a contrastive loss to steer
the interactive action embedding towards the interactive action region in the text embedding space:

L ouvT-P/y
€
L T.pl M T.Nm /~
PINEEAETRE D DN
where ~y is the temperature parameter, P; = {P11 ., PL } refers to positive samples, from the embed-

dings of diverse interactive actions (we collect over 150 words and phrases), and N; = {N Lo NiM }
refers to negative samples, embeddings from other Part-Of-Speech of the input tokens.

Lyeer = —log

(&)
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Figure 4: Diagrams of embedding space, POS refers to Part-Of-Speech, red circle represents embed-
ding pretrained on real data, and blue circle is synthetic embedding. Left shows on real data, how v
is steered to an interactive action space, however, as mentioned in Section [I] there are rare physical
real images. As the middle shows, due to the domain gap, synthetic embedding deviates from the
pretrained real embedding. During optimization, student network will overfit to the synthetic data,
and v is pushed to an area that cannot invert real actions in real images. As shown in the rightmost,
the distillation loss (pink) will not push v* too much and then let v reach real data space.

However, this steering process will result in a misalignment problem as shown in Figure [2| where
subject or object will be thrown randomly. As shown in Figure [d we hypothesize that unlike meth-
ods fine-tuning on real data which has identical distribution as the pretrained data, fine-tuning on
synthetic data faces the problem that synthetic visual embedding is deviated from real visual em-
bedding, and does not align with textual embeddings. Simply contrasting with other Part-of-Speech
will not steer v to the interactive action space for inference in real data generation. To alleviate this
problem, we propose a teacher network with a distillation loss to recify the steering process.

3.3.2 TEACHER NETWORK

As mentioned in Section [IL when dealing with interactive scenarios, vanilla stable diffusion models
can precisely depict both the subject and the object, although fail to represent their spatial rela-
tionship. At the same time, the student network faces the misalignment problem that the subject or
object will be lost randomly. This inspires us to integrate the advantage of the vanilla stable diffusion
model which does not lose objects into our student network to address the misalignment problem.

Specifically, for identical noisy input, we assign different textual conditions to the student network
and teacher network. The student network €y is conditioned on ‘“‘Subject-v+-Object” structured
textual prompt y as previously mentioned. The teacher network, which is a frozen copy of the
student network, is conditioned on a “Subject-and-Object” structured textual prompt y,,,4. At each
training step, y and y4,¢ are randomly sampled from two separate prompt groups (typically, 10-12
textual prompts) which are paired with each image. As shown in Figure [3] we adopt the concept of
knowledge distillation by transforming the entire network structure into a distillation paradigm.

We use a classical distillation loss L4511 to compute the difference between the student network
output and teacher network output, and minimizing this loss will guide the student network to depict
both the subject and object, preventing missing either component of the textual prompt:

Laistitt = ||€0ruaener (2621, Corononer (Yand)) — €6 (225t co (Yana)) |l (6)
= [(€6reaener (2ts s COrunoner Wand)) — €) — (€0 (22, s co (Yana)) — €)l|5 (7

Since Oieqcner and 0 are initialized from the same weights, their initial output will be similar, while

different from e. If the student network ey overfit on synthetic data ||eg — e||§ will be small, and
Lg;stinp will be large. Therefore we can regard Lg;s:4; as a penalty term to prevent overfitting to the
synthetic data. We present a visualization diagram as shown in Figure 4| for further explaination.

Naturally, distillation loss should not overwhelm the denoising loss and steering loss. We leverage
Asteer and Agisei to balance them. The total loss is formulated as:

L= ['denoise + Asteerﬁsteer + )\distillﬁdistilb (8)

To show what v learns, we visualize the cross-attention map in the student network as Figure E}



Under review as a conference paper at ICLR 2025

“girl v* lemon” girl v* lemon “man v* cart” man v* cart

Figure 5: On the left, after fine-tuning on synthetic data with the “pick” action, v* corresponds to
the area connecting subject (girl) and object (lemon). On the right, after fine-tuning on synthetic
data containing “push” action, v* aligns with the area between subject (man) and object (cart).

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Comparison Methods. We select the following baselines to evaluate our methods effectiveness: 1)
Stable Diffusion v-1.5, since there is no ground-truth textual description, we use natural language
that can best describe sample images to replace the v token. 2) DreamBooth requires generating 200
class-preservation images, and there will be a large domain gap between the generated real images
and synthetic data, so we do not fine-tune it on the synthetic data but on selected real data among
large number of generated images 3) Textual Inversion, ReVersion and Our method, all fine-tune on
our curated synthetic data, based on vanilla Stable Diffusion v-1.5 model.

Implementation Details. By default, we set Ag;s¢i; = 0.2. We use the AdamW
(2014) optimizer with a learning rate of 2.5e-4, while the training takes 3000 steps and training batch

size is 2. We use 50 steps of the DDIM [Song et al.| sampler with a guidance scale of 7.5. All
images are at a resolution of 512x512. All experiments are conducted on one NVIDIA A100 GPU.

Textual Inversion DreamBooth ReVersion Ours Stable Diffusion

L§

let v*=“pick up”
CLIP-Score=0.3306 CLIP-Score=0.3411 CLIP-Score=0.3599 CLIP-Score=0.3542 CLIP-Score=0.3647
IAScore=0 TIAScore=0.3411 IAScore=0 TAScore=0.3542 TAScore=0.3647

Input samples

“A photo of Donald Trump v* a lemon on a table, indoor scene.”

Figure 6: (for ReViewer ro2Y’s W2, ESr5” W1) Example to illustrate CLIP-Score alone fails to
evaluate the interactive action fairly. While our proposed IAScore could alleviate this unfairness.

Evaluation Metric. As mentioned in Section[I] existing conditional encoders does not align the tex-
tual and visual features of interactive action well, naturally, directly using these alignment evaluation
metrics like CLIP-Score |[Radford et al.|(2021) cannot obtain fair evaluation, as shown in Figure@

We assumed that most interactive actions require the subject to overlap with the object. Therefore,
we propose a new metric I AScore (Interactive Action Score): using an object detection method to
calculate the Intersection over Union (IoU) score between the subject and object, and only samples
with an IoU score greater than zero will be counted for textual-visual alignment evaluation. This
approach helps eliminate images that score well but do not exhibit interactive action.

N
1
TAScore = i z; sgn(loU;) - CLIPScore; 9

4.2 MAIN COMPARISONS

For evaluation, we have build 136 unique inference templates for each interactive action. The sub-
jects used include a diverse range of people with distinct characteristics, from specific types of indi-
viduals to celebrities, as well as animals. Objects in these templates vary from non-articulated items
(e.g., boxes) to articulated ones (e.g., refrigerators)in real life. This extensive collection enables a
comprehensive assessment of performance across broad types of interactive actions.
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Input samples “Aphoto ofa tiger * a wheelchair.” let v*="push”

Figure 7: (for Reviewer WdtC’ W1, Esr5’ Q4) Main comparison results. Left are samples of the
synthetic data used for fine-tuning by the four methods shown in the middle. Images on the right are
results of Stable Diffusion v1-5 (used as main backbone), Stable Diffusion v3 and
FLUX as references. They validate our method’s best performance for interactive action generation.

Methods Entity Action  Overall
Methods TAScore Stable Diffusion | 10.96% 4.11% 5.48%
Stable Diffusion 0.2296 DreamBooth 9.59% 5.48% 2.74%
DreamBooth 0.2637 Textual Inversion | 2.74% 4.5% 0.00%
Textual Inversion 0.2021 ReVersion 6.85% 1.37% 2.74%
ReVersion 0.1858 FLUX 4521% 21.92% 30.14%
Ours 0.3386 Ours 26.03% 64.38% 58.90%

Table 1: Quantitive Results Table 2: (for ReViewer WdtC) Qualitative Re-

sults by Human Evaluators adding FLUX.

Qualititive Comparison. Figure[7illustrates the qualitative comparison of all methods involved. It
can be observed that although natural text descriptions are provided, the interactive actions generated
by Stable Diffusion are wrong (for example, the panda and teacher). Textual Inversion overfits on the
synthetic data’s appearance and style (for example, the desk of Trump is similar to the given example
images). DreamBooth only partially captures the interactive action. ReVersion can disentangle the
synthetic data’s domain features, but it faces a misalignment problem: subjects or objects disappear
randomly. Our method can learn from the example images and generate images authentic to the
input prompt with reasonable spatial relation and object appearance.

Quantitive Comparison. We evaluate comparison methods with our proposed metric, as shown in
Table [T We conduct a survey involving 73 human evaluators to assess 50 groups of comparison
images. Each group contains images generated by comparison methods. Along with the generated
images, evaluators receive 1) the corresponding synthetic image showcasing a specific interactive
action and 2) a natural language description of the synthetic image.

Human evaluators vote for the best-generated image based on three metrics: 1) Subject and Ob-
ject (Entity) Accuracy. Evaluators judge whether the subjects and objects are generated accurately
without any omissions, distortions, or deformations. 2) Interactive Action Accuracy. Evaluators
assess whether the subjects and objects in the generated images accurately represent the interactive
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Input samples “bear v* monkey” “Sam Altman v* grandpa” “cat v cat” “man v* woman” “panda v* tree”

(a) Ablation on the action categories. Interactive actions not predefined by SAPIEN can be learnt.

e |
b

Input Unity3D samples “Newton v* magic stick” “monkey v* camera”  “girl v* trophy cup” “rabbit v* guitar” “boy v* phone”

(b) Ablation on the synthetic data source. Synthetic data from Unity3D also works in our pipeline.
“A photo of a tiger v* a wheelchair.”

Input Samples Adistill = 0 Adistitt= 0.2 Adistill = 0.4 Adistitt = 0.6 Adistitt = 0.8 Adistitr=1.0

(c) Ablation on Ag;stiii. Adistizn = 0.2 is the better choice.

“or” “without” “and” “or” “without”

Input samples “A photo of a Leonardo DiCaprio v* a vase.” “A photo of Super Mario v* a cube.”

(d) Ablation on the preposition.“and” is the better preposition for the teacher network’s conditional prompt.

Figure 8: Ablation Study from four aspects.

actions depicted in the exemplar images and whether the spatial information is correctly expressed.
3) Overall Quality. Evaluators rate the overall quality of the generated images. Even if the objects
and their interactions are accurately generated, this metric checks if their fidelity is maintained.

As indicated in Table 2] our method has superior performance across all three quality metrics.
4.3 ABLATION STUDY

Ablation on actions. To assess the transferability of our method, we conduct an ablation study on
the input sample group. The results indicate that our pipeline can effectively learn interactive actions
not pre-defined by the SAPIEN platform as shown in Figure[§]

Ablation on synthetic data source. To further evaluate our method’s transferability, we ablate
the synthetic data source. From the graphics engine platform Unity3D, we manually synthesize
interactive action images that seem physically reasonable, then apply them in our pipeline. The
results in Figure [§]show that our method can be extended to different synthetic data.

Ablation on ) ;4. We ablate \g;4457; to further investigate its impact. As shown in Figure|§|, when
Adistin = 0, the distillation branch takes no effect, and subjects or objects disappear randomly,
which proves our distillation is necessary. What’s more, Ay;s¢;; should not be too large, if Ag;sti1; =
1.0, the interactive action disappears, we hypothesize that is due to the distillation dominating the
process. We recommend using empirically default value \g;5+5;; = 0.2, which can cover most cases.

Ablation on preposition word. As previously mentioned, we typically use “and” as a preposition
to link subjects and objects in the distillation branch’s condition text. We replaced “and” with “or”
and “without” to evaluate their effectiveness, as Figure [§] showing that “and” performs better.
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4.4 ADDITIONAL EXPERIMENTS

Input samples

“complex action with two objects”

“woman v~ “Sam Altman v*

i 2
“Steven Jobs v* enager /"

“toy bear v*
apple and apple” sauce and strawberry” dice and cube” trophy and trophy”  bottle and can”

“young man v~ “man v* “girl v*

book and tomato” wine and beard shaver” dice and block” tomato and book”  phone and toy”

Figure 9: Additional experiments on a more complex Interactive Action with Multiple Objects.

Experiments on more complex samples. (for Reviewer ro2Y’ W1, gBhf” W1&Q1, WIRr’
W1&Q3) As Figure[9]show, the generated results validate our pipeline’s generalization ability.

al

ReVersion “hug” benchmark bear v* monkey” “Sam Altman v* grandpa”

Svesaye

“cat v* cat” “man v* woman” “panda v* tree”

Figure 10: Additional experiments of ReVersion on ‘hug’ benchmark.

Experiments of ReVersion. (for Reviewer WIRr’ Q1) ReVersion primarily focuses on preposition
words rather than interactive action words. To enable a fair comparison, we chose the only common
action, “hug”. In Figure ReVersion demonstrates inaccurate physical positioning, performing
worse than ours in Figure@likely due to the absence of multi-view information in the real data.

Input samples B “baby v* apple” “young man v* cup”  “old man v* phone” “penguin v* strawberry” “monkey v* trophy”

Figure 11: Additional experiments on robot manipulation dataset DROID |[Khazatsky et al.[(2024).

Experiments on DROID Dataset. (for Reviewer WdtC’ W5) As shown in Figure[TT]} we sampled
“pick-up” action images from the DROID [Khazatsky et al.| (2024) dataset to adapt them to our
pipeline. Experimental results reveal that fine-tuning on DROID struggles to capture interactive
actions. This may be because its actions are challenging to recognize effectively.

5 CONCLUSION

In this work, we pioneer in generating images with interactive actions based on the text-to-image
diffusion model. To address this challenge, we have curated a synthetic dataset enriched with con-
trollable interactive actions rendered from a graphics engine. Based on the dataset, a novel fine-
tuning scheme is proposed to improve the spatial and interactive awareness of the diffusion model.
With the steering loss and distillation structure, our proposed method effectively addresses the prob-
lems of disentanglement and textual-visual misalignment and achieves state-of-the-art performance,
marking synthetic data’s potential in interactive-action image generation.
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A APPENDIX

A.1 CODE

Our code and dataset are available at this anonymous external link: https://anonymous.
4open.science/r/Interactive_Action-E033

A.2 MORE SYNTHETIC DATA

In the main text, we only shows several sampled input images, here we show more images by
SAPIEN and images from Unity3D which are used for ablation study.

Various
Interactive
Objects

Multiple |
Viewpoints |

Different
States

“open a cabinet” “plug in a peg”

3 ’i‘ "# H ’i

Figure 12: Examples of synthetic dataset built with SAPIEN engine. This dataset contains various
interactive actions, various objects, multiple rendering viewpoints and different stateswhich offers
sufficient physical knowledge. Note that here the name of the action is only for representation
convenience since one action can correspond to several synonymous words the action “pick up the
cube” can be replaced by "lift the cube”, “open the door” can be replaced by pull out the door”.

A.3 DATA GENERATION PIPELINE

’ N
S APIEN ! Register
| Cameras

[

1

1 Agent Object

1 Tra]ectory I l

1 1

1 | —

| | 5 &
Subject- v* -Object “A pholo of a robot V" a cabinet”,

R e et LA A\ S A “robot v cabinet”, . _______
Pose, Texture, ... Pose, Texture, Captmn Subject- and -Object ~ “A photo of a robot i o cabinet”,
“robot v* cabinet”, ...
Register Environment Build Scene and Render Videos Collect dataset

Figure 13: Synthetic data generation pipeline based on SAPIEN.

As can be seen from Figure [[3] SAPIEN is a 3D realistic and physics-rich simulation platform.
The platform provides an extensive library of pre-designed articulated robot agents, objects, and
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habitat assets, enabling users to simulate realistic interactive environments. These robot agents are
programmed to manipulate objects along trajectories sampled from a predefined set. Under the
guidance of these sampled trajectories, the agents can efficiently navigate and interact with objects.

Users have the flexibility to select specific objects for the agents to interact with, enhancing the
customization of the simulation. The habitat scenes are meticulously crafted to offer a realistic
background, adding depth and authenticity to the simulations. This realism is further bolstered by
user-defined cameras, which allow for the capture of the interactive actions from multiple view-
points. To optimize the observational quality of these interactions, users can finely adjust the coor-
dinates of both the agents and objects, as well as the camera angles. This adjustability ensures that
users can obtain clear and precise observations of the interactive actions.

After the image data obtained, we caption them with two kinds of textual prompts: “Subject-vx-
Object” structure and “Subject-and-Object” structure. Thus we obtain paired training data.

A.4 LIMITATIONS AND BROADER IMPACT

Hard Case

Language Drift CounterFactual

A
“bird {open} door” “cat {pull out} drawer” “monkey {pick up} apple” “Taylor Swift {pick up} wallet” “rabbit {pick up} carrot” “Trump {pick up} tennis ball”

Figure 14: Examples of our failure cases. The leftmost represents that some animals are hard to
finish some interactive tasks, the middle shows that sometimes subject may not match with the
textual prompts, the rightmost indicates that although generated images can satisfy the interaction
requirement, there are still some counterfactual results.

Limitation. As shown in Figure our work can only activate the inherent knowledge within
stable diffusion models but struggles to incorporate new knowledge. This limitation is influenced
by the pretrained stable diffusion models, which vary in effectiveness depending on the subject. For
instance, it is challenging for the model to depict “an otter picking up objects”, likely because it has
not been exposed to many images of otters performing such actions. In contrast, depicting a monkey
performing similar tasks is much easier due to the model’s frequent exposure to such images. This
reflects a bias in stable diffusion.

Moreover, the output is occasionally not well-aligned with the text, introducing irrelevant words and
objects. Additionally, the precision, especially concerning angles, is insufficient.

Potential Negative Societal Impacts. The entity relational composition capabilities of our method
could be applied maliciously on real human figures.

A.5 ADDTIONAL RESULTS

(for Reviewer WdtC) We conduct experiments on FLUX with multiple random seeds, and as shown
in Figure[T3] generating interactive-action images is still challenging.
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seed: 14344955179 16313611173 18335810890 30552158904 42444815966 57765567034 74528938174

84767528413 9076541819 99812037784

“A photo of David Beckham open the door of a room.”

seed: 27168857631 33667781547 34454141321 42607997063 45547102721 48815891800 50005454233 52205799777 78584665553 86763493272

“A photo of a bear open a room door."

seed: 19983637679 35563150754 41803668509 50889710336 57465750676 68246998151 70257821963 81256259637 85342380518 99048494843

Il

“A photo of a cleaner open the door of a house.”

seed: 3083776408 15385273682 16799708628 19729890821 25578552718 43307575033 48224305803 663000715778 80257200817 12007359900

\ w W

“A photo of Bruno Mars open a room door."

Figure 15: (for Reviewer WdtC) FLUX results with corresponding multiple random seeds and
prompts.
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