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ABSTRACT

Grounded video question answering (GVQA) aims to localize relevant temporal
segments in videos and generate accurate answers to a given question; however,
large video-language models (LVLMs) exhibit limited temporal awareness. Al-
though existing approaches based on Group Relative Policy Optimization (GRPO)
attempt to improve temporal grounding, they still struggle to faithfully ground their
answers in the relevant video evidence, leading to temporal mislocalization and
hallucinations. In this work, we present Zoom-Zero, a coarse-to-fine framework
that first localizes query-relevant segments and then temporally zooms into the
most salient frames for finer-grained visual verification. Our method addresses
the limits of GRPO for the GVQA task with two key innovations: (i) a zoom-in
accuracy reward that validates the fidelity of temporal grounding prediction and
facilitates fine-grained visual verification on grounded frames; (ii) token-selective
credit assignment, which attributes rewards to the tokens responsible for temporal
localization or answer generation, mitigating GRPO’s issue in handling multi-
faceted reward signals. Our proposed method advances grounded video question
answering, improving temporal grounding by 5.2% on NExT-GQA and 4.6% on
ReXTime, while also enhancing average answer accuracy by 2.4%. Additionally,
the coarse-to-fine zoom-in during inference further benefits long-form video under-
standing by preserving critical visual details without compromising global context,
yielding an average improvement of 6.4% on long-video benchmarks. Our code
will be publicly available1.

1 INTRODUCTION

Large video-language models (LVLMs) have achieved remarkable progress in video understanding (Li
et al., 2023b; 2024b; Cheng et al., 2024; Lin et al., 2024; Luo et al., 2023; Ataallah et al., 2024).
However, current LVLMs often struggle to remain faithfully grounded in key visual evidence, leading
to hallucinations when reasoning across video sequences. To evaluate this critical capability, video
temporal grounding (VTG) (Gao et al., 2017; Anne Hendricks et al., 2017; Lei et al., 2021) measures
how well models localize segments given an explicit event description, while the more comprehensive
task of grounded video question answering (GVQA) (Xiao et al., 2024) requires models to implicitly
infer the relevant moment from a general question for temporal localization and simultaneously
generating accurate answers.

The key challenge of GVQA lies in achieving precise temporal localization while maintaining general
video understanding capabilities. Reinforcement learning (RL) offers a promising solution for
sharpening specific capabilities while preserving generalization from a pretrained LVLM (Lai et al.,
2025). Recent efforts (Li et al., 2025b; Feng et al., 2025) have explored GRPO-based (Shao et al.,
2024) RL algorithm for video temporal grounding and reasoning. However, most approaches (Wang
et al., 2025b; Chen et al., 2025b) optimize with only format and Intersection over Union (IoU)
rewards, neglecting the quality of the generated answers. Although VideoChat-R1 (Li et al., 2025b)
incorporates an answer accuracy reward, these training objectives still cannot guarantee that localized
video segments actually contain the visual evidence required for correct reasoning. Moreover, limited
context budgets compel models to depend on coarse-grained representations, which overlook the

1Please refer to the anonymous GitHub link for access to the code.
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Figure 1: Our Zoom-Zero first rolls out samples to localize relevant segments with preliminary
answers in the coarse-grained pass, then zooms into spotlight segments with higher-resolution video
tokens in the fine pass. For example, the coarse pass may miss the small visual cue “29%”, but the
zoom-in captures the fine-grained details. This fine-grained visual verification (zoom-in accuracy
reward) ensures that the temporally grounded segments truly provide key visual evidence.

fine-grained details critical for accurate question answering, a shortcoming that becomes especially
severe in long videos where rich spatial information can be easily lost.

To address such challenges, we propose Zoom-Zero to achieve more accurate temporal grounding
with finer-grained video understanding. First, we introduce zoom-in accuracy reward for GRPO in
the GVQA task. It serves two critical roles: (1) verifying that grounded segments contain requisite
evidence to answer the query, and (2) enabling dynamic context reallocation by zooming into key
frames with increased spatial resolution. As illustrated in Figure 1, our approach first rolls out several
samples to localize the relevant segments and produce preliminary answers in the coarse-grained pass.
It then performs a fine-grained pass by narrowing down and zooming into the spotlight segments,
dynamically allocating high-resolution video tokens. For instance, the coarse pass may overlook the
small visual detail “29%” due to low-resolution tokens. Only by correctly grounding the segment and
zooming into the relevant frames can the model capture such details and produce the right answer,
thereby achieving the highest reward among all rollouts. This hierarchical paradigm resembles human
visual cognition: breaking down complex problems, identifying relevant temporal intervals, and then
refining focus to extract precise details.

In addition, when training with multi-faceted rewards (e.g., temporal localization accuracy, answer
correctness) in the GVQA task, the standard GRPO algorithm (Shao et al., 2024) has key limitations.
First, it compresses multiple reward signals into a single value via naı̈ve summation, making it hard
to differentiate targeted improvements for different aspects of the task. Second, the uniform credit
assignment problem: it assigns an identical reward (advantage) to every token in a sequence based
solely on the final outcome, regardless of weighting each token’s contribution. We address this
by introducing token-selective credit assignment (TokenAdv), which selectively attributes credit to
tokens specifically for temporal grounding or question answering, enabling finer-grained advantage
estimation and more effective learning from diverse signals.

Extensive experiments demonstrate superior performance of Zoom-Zero across challenging bench-
marks, including GVQA datasets NExT-GQA (Xiao et al., 2024), ReXTime (Chen et al., 2024a), and
CG-Bench (Chen et al., 2025a), as well as long video understanding benchmarks VideoMME (Fu
et al., 2025), MLVU (Zhou et al., 2025), and LVBench (Wang et al., 2024). Our method mutually
enhances temporal grounding capability and question-answering performance. It advances temporal
grounding by 5.2% on NExT-GQA and 4.6% on ReXTime. The main contributions of this work are:
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• We introduce a zoom-in accuracy reward that verifies localized segments contain the vi-
sual evidence required for correct reasoning in a finer-grained manner, enhancing both
localization precision and answer accuracy.

• We identify and address the limit of GRPO in handling multi-faceted reward signals by
selective token-level credit assignment, enabling effective learning from diverse reward
signals in GVQA.

• Our coarse-to-fine paradigm further enhances long-form video understanding by first
coarsely identifying key segments and then zooming into fine-grained details, preserving
global context while capturing critical information, resulting in an average 6.4% improve-
ment on long-video benchmarks.

2 RELATED WORK

Large Video Language Models. Multimodal large language models (MLLMs) (Zhu et al., 2024;
Liu et al., 2024b;a; Tong et al., 2024; Chen et al., 2023) have demonstrated remarkable progress
in vision-language tasks. Recent advancements have further extended their capabilities to video
understanding tasks (Li et al., 2023b; 2024b; Cheng et al., 2024; Lin et al., 2024; Luo et al., 2023;
Ataallah et al., 2024). Large Video Language Models (LVLMs) process videos by extracting and
encoding frames, and then rearranging them into final video representations. Some approaches (Li
et al., 2023b; 2024b; Cheng et al., 2024) leverage the Q-Former module from BLIP-2 (Li et al., 2023a)
to integrate visual and textual features, while others (Lin et al., 2024; Luo et al., 2023; Ataallah et al.,
2024) directly concatenate frame features. To address intensive video tokens for long videos, several
works train on sparsely sampled frames (Li et al., 2023b; Ataallah et al., 2024; Cheng et al., 2024;
Zhang et al., 2024b; Li et al., 2024a), while others try to handle long videos by token pooling (Maaz
et al., 2023; Li et al., 2024c; Song et al., 2024), token compression (Shen et al., 2025), memory
aggregation (He et al., 2024), or frame selection (Hu et al., 2025; Zhang et al., 2025; Wu et al., 2019;
Tang et al., 2025). Unlike frame-selection methods that search in the embedding space and select a
fixed set of frames, our approach tackles the long-video token challenge by explicitly enhancing the
model’s temporal grounding capability through reasoning over the user query.

Grounded Video Question Answering. Video Temporal Grounding (Gao et al., 2017; Anne Hen-
dricks et al., 2017; Lei et al., 2021) localizes relevant segments given an explicit event description.
The more advanced task of Grounded Video Question Answering (GVQA) (Xiao et al., 2024) re-
quires models to implicitly infer the relevant segment from a general question to perform localization
and question-answering jointly. Recent LVLM-based approaches reformulate grounding as text
generation (Nie et al., 2024; Ren et al., 2024; Huang et al., 2024a; Li et al., 2025b; Feng et al., 2025)
while other methods (Wang et al., 2025a; Huang et al., 2024b) expand vocabularies to learn temporal
embeddings for improved precision. Our approach leverages Qwen2.5VL (Bai et al., 2025) to predict
textual temporal spans and introduces a novel coarse-to-fine training paradigm: initially predicting
coarse timestamps for global localization, then dynamically zooming into identified segments for
high-resolution visual verification. In contrast with a concurrent work (Li et al., 2025c) that relies on
separate off-the-shelf VideoQA models to answer the query based on localized segments, our unified
framework seamlessly integrates temporal grounding with question-answering within a single model
for coherent video understanding.

Reinforcement Learning for Grounded Video Question Answering. Reinforcement learning (RL)
has emerged as a powerful paradigm for improving the reasoning ability of large language models.
Breakthroughs such as OpenAI-o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo et al., 2025) have
demonstrated notable success in addressing complex problems. DeepSeek-R1 (Guo et al., 2025)
adopts group relative policy optimization (GRPO) to train LLMs to incentivize reasoning capability
at inference time. Recently, RL has been adapted to LVLMs with the goal of strengthening video
reasoning (Li et al., 2025b; Feng et al., 2025). Time-R1 (Wang et al., 2025b) and TVG-R1 (Chen
et al., 2025b) adopt a two-stage pipeline, beginning with supervised fine-tuning (SFT) as a cold
start, followed by GRPO-based RL training, while TimeZero (Wang et al., 2025b) demonstrates
that a purely GRPO approach can be more effective without an SFT stage. These methods leverage
only format and Intersection over Union (IoU) reward, whereas VideoChat-R1 (Li et al., 2025b)
further integrates answer accuracy into RL training. In this work, we enhance GRPO by decoupling
multi-faceted reward signals for selective token-level advantage estimation.
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3 PRELIMINARY

GRPO. Group Relative Policy Optimization (GRPO) (Shao et al., 2024) is a variant of Proximal
Policy Optimization (PPO) (Schulman et al., 2017) for reinforcement learning. Unlike PPO, which
relies on a critic model, GRPO directly compares groups of candidate responses. This design
eliminates the dependency on a critic, thereby substantially reducing training costs. Given a question-
answer pair (q, a), policy πθold generates G distinct candidate responses o = o1, . . . , oG through
policy sampling. Then, the verifiable reward(s) r1, . . . , rG is calculated for each response. GRPO
normalizes the scores by computing their mean and standard deviation, and then evaluates the relative
quality of the responses accordingly.

Ai,t =
ri −mean({ri}Gi=1)

std({ri}Gi=1)
, (1)

where Ai,t denotes the relative quality of the t-th token in i-th response. GRPO promotes higher-
scoring answers within each group while regularizing the policy πθ against the reference parameters
πref via a KL-divergence penalty DKL(·|·), leading to the final objective:

max
πθ

E(q,a),{oi}G
i=1∼πθold

(·|q)

[ 1
G

G∑
i=1

1

|oi|

|oi|∑
t=1

( πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
·Ai,t−β DKL(πθ ∥πref)

)]
, (2)

where β is a regularization coefficient, preventing excessive deviation from the reference policy
during optimization.

Dynamic Spatiotemporal Resolution. Qwen2.5-VL (Bai et al., 2025) dynamically adjusts tokens
to determine the number of tokens per frame under a fixed video context budget. Specifically, the
video context size is denoted as Lv, the maximum tokens per frame as Vmax, the minimum tokens
per frame as Vmin, the video duration as F seconds, and the sampling rate as s frames per second.
Based on these, the per-frame token resolution Vres is defined as follows:

N = min

(
F ∗ s, Lv

Vmin

)
, Vres = max

(
Vmin,min(

Lv

N
,Vmax)

)
(3)

4 ZOOM-ZERO

We propose a coarse-to-fine framework for grounded video question answering: a coarse-grained pass
predicts query-conditioned intervals, followed by a fine-grained zoom-in that takes as input only the
localized segments at higher per-frame token resolution (Section 4.1). Beyond standard format, IoU,
and answer-accuracy rewards, we introduce a zoom-in accuracy reward to verify evidence within the
localized span (Section 4.2). To overcome GRPO’s limit in uniform credit assignment, we develop
token-selective credit assignment for finer-grained advantage estimation tailored to multi-faceted
rewards in the GVQA task (Section 4.3).

4.1 COARSE-TO-FINE VIDEO UNDERSTANDING VIA TEMPORAL ZOOM-IN

While dynamic token allocation offers flexibility, a fundamental trade-off remains: capturing long-
range temporal context versus preserving fine-grained visual detail. Spatial or temporal downsampling
inevitably discards critical information. This problem is exacerbated in longer videos, where preserv-
ing more frames often comes at the expense of per-frame spatial granularity. A coarse-to-fine strategy
provides a principled remedy: a coarse pass preserves temporal context, followed by a fine-grained
stage that processes evidence-bearing segments through temporal zoom-in2.

More specifically, we leverage the model’s temporal grounding capability to perform a fine-grained
zoom-in on relevant segments and recover the details of the video. From the coarse view of the video,

2We term it temporal zoom-in, not spatiotemporal, to avoid confusion, since no spatial regions are predicted
from the model. However, the spatio-temporal grid size per token is increased, since salient frames are sampled
at higher temporal resolution (if the full video was sparsely sampled in the coarse pass), and spatial resolution is
dynamically increased.
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Token-Selective
Credit Assignment

(TokenAdv)

Figure 2: We present Zoom-Zero, a coarse-to-fine training pipeline that first rolls out samples to
localize relevant segments with preliminary answers, followed by a fine-grained pass by zooming
into spotlight segments and dynamically allocating high-resolution video tokens. The zoom reward
enforces fine-grained visual verification of the predicted temporal span. In this example, only a
faithful span prediction with the correct final answer yields the highest reward. Then we propose
token-selective credit assignment (TokenAdv) for a finer-grained advantage estimation.

we obtain grounded start–end pairs (s1, e1), (s2, e2), . . . , (sn, en). We crop the video accordingly,
yielding N ′ < N frames. Under a fixed visual token budget Lv , the per-frame video tokens increases
from Vres =

Lv

N to V ′
res =

Lv

N ′ > Vres, enabling more fine-grained visual verification of the selected
segments. This coarse-to-fine temporal zoom-in preserves global context while concentrating high-
resolution capacity on the frames that matter most.

Crucially, this paradigm hinges on accurate, query-conditioned temporal grounding. To this end, we
leverage GRPO-based reinforcement learning with carefully designed rewards that jointly improve
temporal grounding and question answering, as detailed in the following section.

4.2 REWARDS DESIGN

In this section, we first review the basic rewards used in GVQA, i.e., format, temporal grounding, and
answer accuracy, and then introduce our proposed zoom-in reward for fine-grained visual verification.

Format Reward. To guide the model toward producing responses in the desired format, we require
the output to follow the instructions below:

Format Prompt and Template

Answer the question: [QUESTION] according to the content of the video. Select the answer from:
[OPTIONS]. Output key information relevant to the question and options, marking precise timestamps
or time ranges in seconds within <time> </time> tags, and present them in an interleaved analysis
format. Enclose the full analysis in <think> </think> tags. Then, provide your answer within the
<answer> </answer> tags, output the corresponding letter of the option. At the same time, in the
<glue> </glue> tags, include only the precise video segments (in seconds) that strongly support your
answer, in the format of [(s1, e1), (s2, e2), ...]. For example: <answer>A</answer><glue> [(20.3,
30.8)] </glue>.

We then apply regular expression matching to verify whether the model output conforms to this
format. Rformat is assigned as 1 if the format fully matches the template.

5
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Answer Accuracy Reward. We define reward RAcc to evaluate the correctness of the policy model’s
answer in coarse understanding by taking as input the whole video.

Temporal Grounding Reward. For temporal grounding, the model is required to predict a timestamp
interval that specifies the video segment relevant to the given textual query. To evaluate this prediction,
we adopt the Intersection over Union (IoU) between the model-predicted interval (from <glue>

</glue>) and the ground-truth interval as the reward function. RIoU =
|Ipred∩Igt|
|Ipred∪Igt| , where Ipred

and Igt are the predicted time intervals and the ground truth intervals.

Zoom Accuracy Reward. Based on the temporal grounding prediction (from <glue> </glue>)
in the coarse pass, we can obtain a set of salient frames that enables fine-grained visual verification.
In the finer-grained pass, the model takes as input the question and the zoomed-in frames from
the coarse response to produce the final answer. The reward RZoom is assigned a value of 1 if the
model produces an accurate final answer. This reward provides two key benefits: (1) enabling visual
verification to ensure the predicted timestamp is accurately grounded in the relevant frames, and (2)
facilitating a coarse-to-fine visual zoom-in to capture details within key frames.

4.3 TOKEN-SELECTIVE CREDIT ASSIGNMENT FOR ADVANTAGE ESTIMATION

Since our approach involves multiple rewards, i.e., Rformat, RAcc, RZoom, and RIoU, the key question
becomes how to leverage them for the policy updates. Standard GRPO handles multi-faceted rewards
by naı̈vely summing them into a single scalar, thereby collapsing the contributions of individual
reward signals. The advantage is then estimated only from this aggregated value (Equation 1), which
cannot be decoupled for gradient updates. As a result, the model receives no explicit guidance on
which aspect of its behavior each reward reflects, making it difficult to attribute feedback to specific
abilities. In addition, the same advantage is assigned uniformly across all tokens in a response, which
hides the contribution of each token from its corresponding rewards. Appendix C provides a simple
example illustrating this limitation.

To overcome these limitations, we propose TokenAdv, a token-selective credit assignment for fine-
grained token-level advantage estimation. Instead of summing up all rewards into one value for
advantage estimation, we decouple advantage calculation separately for each reward type (Equation 4).
In our case, since the outputs for answering and temporal grounding are explicitly formatted with
task-specific tokens, it is feasible to distinguish the contribution of corresponding tokens to each
aspect. Specifically, the token-level advantage is computed by averaging the relevant task-specific
advantages for each token (Equation 5). This design allows the model to attribute feedback to specific
rewards, improving its ability to learn from diverse, multi-faceted signals.

Ak
i =

rki −mean({rki }Gi=1)

std({rki }Gi=1)
, rk ∈ {Rformat, RAcc, RZoom, RIoU} (4)

Ai,t =

{
mean(Aformat

i , AZoom
i , AIoU

i ) if oi,t ∈ <glue> · · ·</glue>
mean(Aformat

i , AZoom
i , AAcc

i ) else
(5)

By selectively assigning credits to task-specific tokens, we guide policy gradient updates toward the
most influential parts of the output for each capability. This targeted credit assignment allows the
model to effectively leverage diverse reward signals, leading to improved temporal grounding and
question-answering performance, as shown in Figure 4.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Benchmarks and Evaluation Metrics. We evaluate on three GVQA benchmarks: NExT-GQA (Xiao
et al., 2024), ReXTime (Chen et al., 2024a), and CG-Bench (Chen et al., 2025a). Temporal grounding
is measured by mean Intersection-over-Union (mIoU), R@0.3 (IoU > 0.3), and R@0.5 (IoU >
0.5); video understanding by multiple-choice question (MCQ) accuracy; Acc@GQA measures the
percentages of questions that are correctly answered and visually grounded, i.e., IoP≥ 0.5, where

6
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Table 1: Grounded video question answering results on NExT-GQA (Xiao et al., 2024) and ReX-
Time (Chen et al., 2024a). All models are of comparable scale (7B or 8B).

Models NExT-GQA ReXTime

Acc@GQA mIoU R@0.3 R@0.5 Acc mIoU R@0.3 R@0.5

Qwen2.5-VL (Bai et al., 2025) 18.9 20.2 31.6 18.1 51.1 27.4 36.1 24.8

SFT-based

TimeChat (Ren et al., 2024) 7.6 20.6 34.1 17.9 40.0 11.6 14.4 7.6
VTimeLLM (Huang et al., 2024a) 17.4 24.4 36.1 20.1 36.1 20.1 28.8 17.4
Grounded-VideoLLM (Wang et al., 2025a) 26.7 21.1 - 18.0 - - - -

RL-based

VideoChat-TPO (Li et al., 2025a) 25.5 27.7 41.2 23.4 - 25.2 34.5 19.3
TVG-R1 (Chen et al., 2025b) 22.1 29.2 41.6 20.8 53.6 28.2 41.0 24.5
VideoChat-R1 (Li et al., 2025b) 24.3 32.4 50.2 27.7 58.1 38.6 50.6 39.0
Zoom-Zero (Ours) 29.0 37.6 55.6 33.8 62.0 43.2 56.5 44.1

IoP is the intersection over prediction span. CG-Bench (Chen et al., 2025a), a long-form GQA
benchmark, additionally introduces two metrics rec.@IoU and acc.@IoU: rec.@IoU averages recall
over IoU thresholds {0.1, 0.2, 0.3, 0.4, 0.5} to estimate the probability of correctly retrieving clue
intervals; acc.@IoU counts a response as correct only if the predicted answer is accurate and its IoU
exceeds the threshold, and is averaged over the same thresholds per the original protocol. We also
assess general video understanding on four long-video benchmarks, VideoMME (Fu et al., 2025),
MLVU (Zhou et al., 2025), LVBench (Wang et al., 2024) and CG-Bench (Chen et al., 2025a), and
report MCQ accuracy.

Baselines. We compare our approach with several strong baselines, including SFT-based LVLMs
with grounding capability such as VTimeLLM (Huang et al., 2024a), TimeChat (Ren et al., 2024) and
Grounded-VideoLLM (Wang et al., 2025a), RL-based methods VideoChat-TPO (Li et al., 2025a),
TVG-R1 (Chen et al., 2025b) VideoChat-R1 (Li et al., 2025b) as well as general-purpose LVLMs
such as LLaVA-OneVision (Li et al., 2024a), Qwen2.5-VL (Bai et al., 2025) and InternVL2.5 (Chen
et al., 2024b). All open-sourced models are of comparable scale (7B or 8B). All SFT-based models
are evaluated in a zero-shot setting on NExT-GQA (Xiao et al., 2024). RL methods, VideoChat-R1 (Li
et al., 2025b), and our model are trained on the NExT-GQA val split. For ReXTime (Chen et al.,
2024a) (Table 1, right) and CG-Bench (Chen et al., 2025a) (Table 2, rightmost), all models are
evaluated strictly in the zero-shot setting, ensuring a valid and fair comparison across methods.

Training Details. We adopt Qwen2.5-VL-7B (Bai et al., 2025) as the base model. The maximum
number of video tokens is set to 8192, with videos sampled at 1 fps during training. The minimum
video frame resolution is 16 × 28 × 28 pixels and the maximum is 768 × 28 × 28, allowing the
number of tokens per frame to be adaptively adjusted under the video context budget. The maximum
response length is capped at 512 tokens. The statistics of training data are shown in Appendix A and
Table 7. All experiments are performed on NVIDIA A100 GPUs (80GB), with a global batch size of
64. Further implementation details are provided in the Appendix B.

5.2 MAIN RESULTS

Grounded Video Question Answering. We evaluate grounded video question answering on NExT-
GQA (Xiao et al., 2024) and ReXTime (Chen et al., 2024a), reporting both answer accuracy and
temporal grounding quality as shown in Table 1. Our model achieves state-of-the-art performance
across all metrics on both benchmarks, surpassing strong RL-based baselines such as VideoChat-
R1 (Li et al., 2025b). Notably, on NExT-GQA (Xiao et al., 2024), we improve mIoU by 5.2%, R@0.3
by 5.4%, and R@0.5 by 6.1% over the runner-up. On ReXTime (Chen et al., 2024a), our model also
consistently yields an average improvement of 4.6% across all metrics.

We also report GQA performance on the challenging CG-Bench (Chen et al., 2025a) in Table 2,
which contains very long videos where the answer-supporting clue typically occupies ≤ 1% of the
total duration. Beyond IoU, we evaluate how well the predicted segment covers the ground-truth
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Table 2: Performance on long video understanding (VideoMME (Fu et al., 2025), MLVU (Zhou et al.,
2025), LVBench (Wang et al., 2024)) and long GVQA (CG-Bench (Chen et al., 2025a)) tasks. All
open-sourced models are of comparable scale (7B or 8B).

Models VideoMME (w/o & w/ sub.) MLVU LVBench CG-Bench
Overall Long M-Avg Avg mIoU rec.@IoU acc.@IoU

Duration 1010s 2386s 651s 4101s 1624s

Proprietary LVLMs

Gemini 1.5 Pro (Google, 2024) 75.0 / 81.3 67.4 / 77.4 - 33.1 3.85 5.61 2.64
GPT-4o (OpenAI, 2024) 65.3 / 77.2 65.3 / 72.1 64.6 30.8 5.73 8.12 4.33

Open-Source LVLMs

LLaVA-OneVision (Li et al., 2024a) 58.2 / 61.5 - / - 64.7 - 1.56 1.19 1.72
LongVA (Zhang et al., 2024a) 52.6 / - 46.2 / - 56.3 - 2.91 3.15 1.32
InternVL2.5 (Chen et al., 2024b) 64.2 / 66.9 - / - 68.9 38.4 - - -
Qwen2.5-VL (Bai et al., 2025) 65.2 / 70.7 51.1 / 62.0 70.2 45.3 2.48 3.15 1.36
TVG-R1 (Chen et al., 2025b) 64.3 / 69.1 52.7 / 62.4 69.7 42.3 2.43 3.62 1.29
VideoChat-R1 (Li et al., 2025b) 64.3 / 69.1 53.4 / 62.3 69.5 43.7 5.91 8.38 2.56
Zoom-Zero (Ours) 66.0 / 71.2 54.8 / 64.2 70.8 45.7 6.68 9.30 3.62

clue span using Intersection-over-Ground truth (IoG; see Appendix D.1). As shown in Table 3, our
model achieves a 7.7% gain of mIoG over the runner-up, validating that the zoom-in accuracy reward
RZoom encourages predictions that not only localize the relevant temporal segments but also better
cover the most salient frames containing key visual cues.

Table 3: Temporal grounding coverage ratio. For ReXTime (Chen et al., 2024a), results (IoU and
accuracy) are only obtainable via server submission without access to ground-truth spans; therefore,
to report mIoG (mean Intersection-over-Ground truth), we use the validation set for comparison.

Models NExT-GQA ReXTime val CG-Bench

mIoU mIoG mIoP mIoU mIoG mIoP mIoU mIoG mIoP

Qwen2.5-VL (Bai et al., 2025) 20.2 56.8 29.5 31.6 54.3 43.2 2.48 10.35 4.16
VideoChat-R1 (Li et al., 2025b) 32.4 93.5 39.1 43.5 64.3 52.8 5.91 18.44 7.34
Zoom-Zero (Ours) 37.6 94.7 43.2 44.7 67.6 53.5 6.68 26.15 8.25

Long Video Understanding. We compare against general-purpose LVLMs with temporal grounding
capability and RL-based models explicitly optimized for grounding (TVG-R1 (Chen et al., 2025b),
VideoChat-R1 (Li et al., 2025b)). While RL approaches that prioritize grounding can trade off
general GQA accuracy, our method proposes token-selective credit assignment that decouples reward
signals from answer accuracy and temporal grounding, assigning credit to the appropriate tokens.
This mitigates the accuracy–grounding trade-off and yields stronger temporal localization without
degrading question answering, as shown in Table 2.

Qualitative Results. We provide qualitative results in Figures 5 to 8 in the Appendix to demonstrate
the model’s performance on the GVQA task. For example, as shown in Figure 5, the model can
localize each event mentioned in the question and arrange them in the correct chronological order.

Table 4: Long video understanding via temporal zoom-in evaluated with MCQ accuracy.
Models VideoMME (long w/ sub.) MLVU LVBench CG-Bench

Qwen2.5-VL (Bai et al., 2025) 62.0 70.2 45.3 29.2
Zoom-Zero (Ours) 64.2 70.8 45.7 36.1
Zoom-Zero + Coarse-to-fine (Ours) 66.2 71.4 46.3 39.0
Zoom-Zero + Divide-and-conquer (Ours) 68.7 73.4 48.1 42.2
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5.3 LONG VIDEO UNDERSTANDING VIA TEMPORAL ZOOM-IN

The above experiments demonstrate our model’s ability to answer questions while faithfully localizing
relevant video segments. Although our primary goal is to enhance GVQA, we further present two
strategies that further benefit long-video understanding through temporal zoom-in.

Coarse-to-Fine. In long-video scenarios, we first let the model trade spatial resolution for broad
temporal coverage to obtain a global overview. Once it has a coarse understanding and localizes the
query-relevant interval, we enable a fine-grained pass at higher spatial resolution for frames of interest
as mentioned in Section 4.1. As Table 4 (Coarse-to-fine) shows, it consistently improves performance
by providing targeted visual verification on a small set of salient frames with higher spatial resolution,
thus enhancing fine-grained understanding. We provide spatial and temporal resolution before and
after zoom-in in Table 13 and qualitative results in Figures 9 to 11 in the Appendix.

Divide-and-Conquer. Another strategy is to partition a long video into non-overlapping windows
and perform a temporal search over them. For each window, the model predicts a query-relevant
temporal span and an answer. We then aggregate frames from spans with high-confidence answers
and apply a fine-grained zoom-in. Answer confidence is computed as the probability of the predicted
answer token, where c = pπθ

(t) for token t strictly between <answer> and </answer>. We
select the top spans based on answer confidence and aggregate those frames as input to obtain the
final answer. As shown in Table 4 (Divide-and-conquer), it yields an average +6.4% improvement
over the baseline Qwen2.5-VL (Bai et al., 2025). Please refer to Appendix D.3 for ablation studies
on the window size and the number of aggregated predicted temporal spans.

Table 5: Ablation studies.

Models NExT-GQA ReXTime

Acc mIoU R@0.3 R@0.5 Acc mIoU R@0.3 R@0.5

Qwen2.5-VL (Bai et al., 2025) 53.3 20.2 31.6 18.1 51.1 27.4 36.1 24.8
+ GRPO (Rformat+RIoU+RAcc) 69.6 35.3 52.5 29.9 58.3 39.2 51.8 39.6
+ GRPO + TokenAdv 69.9 36.9 54.9 32.3 59.8 41.5 53.9 41.7
+ GRPO + RZoom 70.4 36.3 53.8 31.4 60.2 40.9 53.0 40.9
+ GRPO + RZoom + TokenAdv 70.7 37.6 55.6 33.8 62.0 43.2 56.5 44.1

5.4 ABLATION STUDIES

Impact of Each Component. As shown in Table 5, introducing TokenAdv improves grounding
performance over baseline GRPO, i.e., NExT-GQA mIoU 35.3→36.9; ReXTime mIoU 39.2→41.5.
The zoom-in reward further boosts answer quality and grounding with larger gains in accuracy
(+1.9) on ReXTime over GRPO. Combining both components yields the best performance across all
metrics: NExT-GQA accuracy (+1.1) and mIoU (+2.3); ReXTime accuracy (+3.7) and mIoU (+4.0),
which proves that the selective credit assignment and zoom-in verification enhance both temporal
localization and evidence-faithful answering.

Duration Analysis. Figure 3 in the Appendix shows the grounding accuracy upon clue dura-
tion/portion on NExT-GQA. We observe that shorter ground-truth spans or smaller clue portions
make temporal grounding more challenging. Nevertheless, our method consistently improves over
the base GRPO across all ranges, demonstrating stronger robustness to temporal variations.

5.5 COMPUTATION ANALYSIS

Training computation. By using 8×A100 GPUs with a global batch size of 64, we measure the
average per-step training time and TFLOPs. Without the temporal zoom-in paradigm, each step takes
13.29 minutes and consumes 551.2 TFLOPs. Incorporating the temporal zoom-in strategy increases
the per-step time to 15.30 minutes and TFLOPs to 585.4, representing a 1.15× increase in training
time per step.
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Table 6: Trade-off between inference speed and accuracy gain. Time denotes the average inference
time per video.

Models MLVU LVBench VideoMME long (w/ sub.)
Acc Time Acc Time Acc Time

Duration 651s 4101s 2386s

Qwen2.5-VL (Bai et al., 2025) 70.2 18.5s 45.3 39.7s 62.0 25.6s
Zoom-Zero (Ours) 70.8 18.7s 45.7 40.6s 64.2 25.8s
Zoom-Zero + Coarse-to-fine (Ours) 71.4 31.1s 46.3 55.5s 66.2 35.2s
Zoom-Zero + Divide-and-conquer (Ours) 73.4 33.5s 48.1 110.5s 68.7 59.7s

Inference speed analysis. We provide a clearer breakdown of the effectiveness–latency trade-off in
the table below, and report three inference scenarios in Table 6

(i) One-stage inference: Zoom-Zero (second row) uses the same one-stage inference pipeline as
the baseline, resulting in nearly identical inference time (it might vary a little due to the number of
generated tokens). Trained with our proposed method, this setting yields an average improvement
of +1.0 over the baseline without introducing additional latency. Please kindly note that the main
experimental results as shown in Table 1 and Table 2 only have one-stage inference. (ii) Two-
stage inference (Coarse-to-fine): The coarse-to-fine variant adds a fine-grained pass on grounded
frames. This introduces a moderate increase in computation, approximately 1.4× inference time,
while delivering a higher average absolute improvement of +2.1 over the baseline. (iii) Two-stage
inference (Divide-and-conquer): The divide-and-conquer scheme is an optional test-time scaling
strategy designed to further push performance. While it increases inference time to around 2.3×, it
also achieves the largest gain, improving the baseline by +4.3 on average.

6 CONCLUSION

We introduce Zoom-Zero, a coarse-to-fine framework for grounded video question answering that
first localizes query-relevant segments, then zooms into salient frames to capture fine-grained details.
Our approach enhances GRPO for GVQA with two key contributions: (i) a zoom-in accuracy reward
for evidence-faithful temporal grounding and fine-grained visual verification, and (ii) token-selective
credit assignment for advantage estimation, assigning credit to the tokens responsible for localization
or answer generation, respectively, addressing GRPO’s limits under multi-faceted reward signals.
Our method improves both temporal grounding and answer accuracy, raising temporal grounding by
5.2% on NExT-GQA and 4.6% on ReXTime. Its coarse-to-fine paradigm boosts long-form video
understanding by an average of 6.4%, preserving critical detail without sacrificing global context.

ETHICS STATEMENT

Our work builds on large video-language models (LVLMs) and reinforcement learning for grounded
video question answering. We do not collect or annotate any human subject data; all experiments
use publicly available datasets under research licenses. We adhere to the terms of use specified by
the original dataset creators and provide appropriate citations. Our approach does not introduce
additional risks of data misuse or privacy leakage.

REPRODUCIBILITY STATEMENT

We make every effort to ensure reproducibility of our results. Full implementation details are
provided in Appendix B. All datasets used in our experiments are publicly accessible and described
in Appendix A. We provide the evaluation protocols and metrics in Section 5.1, and present ablation
studies to analyze the effect of key components in Section 5.4 and Appendix D.
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APPENDIX

A TRAINING DATA

Table 7 summarizes the statistics of the training datasets. For the QVHighlights (Lei et al., 2021)
training split, which contains 9,996 examples, we only keep videos longer than 120 seconds. For the
PLM-Video (Cho et al., 2025) multiple-choice split, we perform a quality check to remove examples
that cannot be correctly answered using the full video, but can be correctly answered when restricted
to the cropped segment defined by the clue duration. This ensures that the clue duration indeed
provides sufficient information for identifying the correct video segment.

After Stage I training, we employ the model trained from Stage I for offline data filtering. Specifically,
we generate n = 8 responses per example and discard those without meaningful reward signals.
For question-answering ability, we exclude examples for which all generated responses answer the
question correctly, as they lack discriminative signals. For temporal grounding ability, we filter out
examples with low response variance. In particular, we retain only examples where the responses
yield a sufficiently strong relative reward signal, quantified by the difference between the maximum
IoU and the mean IoU across responses:

δ = max
1≤i≤n

IoUi − 1

n

n∑
i=1

IoUi (6)

We filter out examples with δ < 0.1.

Table 7: Statistics of training data. NExT-GQA and ActivityNet in seconds stage are sampled from
the first stage by filtering reward variation based on the first-stage model.

Dataset #Queries Video Len. Moment Len.

Stage I
NExT-GQA (Xiao et al., 2024) 3,358 43.9s 8.5s
ActivityNet (Krishna et al., 2017) 4,727 177.3s 48.35
QVHighlights (Lei et al., 2021) 7,218 150.0s 34.1s

Stage II
ActivityNet (Krishna et al., 2017) 1,395 220.87 88.4s
NExT-GQA (Xiao et al., 2024) 1,004 50.2s 7.1s
PLM-Video (Cho et al., 2025) 5,333 808.6s 26.1s

B IMPLEMENTATION DETAILS

We adopt Qwen2.5-VL-7B (Bai et al., 2025) as the base model. The maximum number of video
tokens is set to 8,192, with videos sampled at 1 fps during training. The minimum video frame
resolution is 16× 28× 28 pixels, and the maximum is 768× 28× 28, allowing the number of tokens
per frame to be adaptively adjusted under the video context budget. The maximum response length
is capped at 512 tokens. Due to computational resource limitations, we conduct RL training in two
stages. In the first stage, we train on 20K short-video GQA examples from NExT-GQA (Xiao et al.,
2024), ActivityNet (Krishna et al., 2017), and QVHighlights (Lei et al., 2021). In the second stage,
we train on the yt1b mcqa split from PLM-Video (Cho et al., 2025), combined with the short-video
data sampled from the first stage, for a total of 7K examples. The statistics of training data are shown
in Appendix A and Table 7. All experiments are performed on NVIDIA A100 GPUs (80GB), with a
global batch size of 64.

During inference, we evaluate all models at 1 FPS with a context size of 8,192 on the short-video
benchmarks NExT-GQA (Xiao et al., 2024) and ReXTime (Chen et al., 2024a). For long-video
benchmarks: CG-Bench (Chen et al., 2025a), VideoMME (Fu et al., 2025), MLVU (Zhou et al.,
2025), and LVBench (Wang et al., 2024). We also uniformly sampled a maximum of 256 frames and
set the context size to 16,384.
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Table 8: A simple example to demonstrate the GRPO’s uniform credit assignment problem.

Response RIoU RAcc AIoU AAcc RSum ASum

1 0.0 1.0 -1.40 +0.82 1.0 +0.06
2 0.5 0.0 +0.44 -1.22 0.5 -1.54
3 0.4 1.0 +0.07 +0.82 1.4 +1.34
4 0.8 0.0 +1.55 -1.22 0.8 -0.58
5 0.2 1.0 -0.66 +0.82 1.2 +0.70

Table 9: Ablation on the number of generated responses G per prompt during GRPO training.

G NExT-GQA RexTime

Acc mIoU R@0.3 R@0.5 Acc mIoU R@0.3 R@0.5

2 69.6 33.7 50.3 27.5 58.5 36.9 49.0 37.1
4 69.8 35.2 52.6 29.6 58.8 40.1 53.2 40.6
8 70.7 37.6 55.6 33.8 62.0 43.2 56.5 44.1

C LIMITATION OF GRPO IN UNIFORM CREDIT ASSIGNMENT

In Table 8, we present a simple example with two rewards, RIoU and RAcc, across five responses to
illustrate the limitations of GRPO arising from naı̈ve reward summation and uniform credit assignment.
For example, the first response attains the lowest temporal grounding reward, R(1)

IoU = 0, yet its
overall advantage under standard GRPO is positive, A(1)

Sum = +0.06. In contrast, response 4 achieves
much better temporal grounding, R(4)

IoU = 0.8, but receives a lower advantage, A(4)
Sum = −0.58.

Due to uniform credit assignment, all tokens in response 1 are reinforced by the positive advantage,
while all tokens in response 4 are penalized. This hides the contribution of tokens that support more
accurate temporal grounding.

In contrast, computing separate advantages for each reward, AIoU and AAcc, provides a clearer view
of each task’s contribution. By selectively assigning these decoupled advantages to the corresponding
tokens, our approach TokenAdv, updates the policy to increase the probability of tokens that positively
impact their respective tasks.

D EXPERIMENTS

D.1 TEMPORAL GROUNDING COVERAGE

In addition to IoU, we evaluate how well the predicted segment covers the ground-truth clue span using
Intersection-over-Ground truth (IoG), defined as IoG =

|Ipred∩Igt|
|Igt| , where Ipred is the predicted

temporal span and Igt is the ground-truth clue span. We report mean IoG (mIoG) as the average
IoG across instances. IoG directly measures coverage of the ground truth and thus verifies whether
temporal grounding captures the key frames relevant to the query, particularly informative for the
finer-grained zoom-in.

We present results in Table 3. For ReXTime (Chen et al., 2024a), only IoU and accuracy are available
via server-side evaluation, and the ground-truth clue spans are not released; consequently, we compute
and report mIoG on the validation set for comparison. Our model improves mIoG by 1.2% on NExT-
GQA (Xiao et al., 2024) and by 3.3% on ReXTime (Chen et al., 2024a). For very long videos such
as CG-Bench (Chen et al., 2025a), mIoU can be less informative because the larger denominator
depresses scores. Considering both mIoU and mIoG shows that our model not only localizes the
relevant moments but also achieves strong coverage of key frames.
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Figure 3: Temporal grounding robustness analysis on NExT-GQA. Left: mIoU results across
different ground-truth clue durations. Right: mIoU results across different clue proportions (ground-
truth clue duration relative to the total video duration).

D.2 THE NUMBER OF GENERATED RESPONSES

We investigate the impact of the number of generated responses G per prompt during GRPO training,
as this hyperparameter directly influences the diversity and quality of the policy optimization process.
As presented in Table 9, increasing G from 2 to 8 consistently improves performance across both
datasets and all evaluation metrics. Based on these results, we adopt G = 8 for all main experiments,
as it provides the optimal balance between computational efficiency and performance gains.

D.3 DIVIDE-AND-CONQUER

We study the impact of window size (Table 10) and the number of predicted temporal spans aggregated
in the divide-and-conquer strategy. Because this approach requires scanning every sliding window
during the coarse-grained pass, it introduces an average ×2.3 increase in inference cost. Nevertheless,
it improves performance across all long-video benchmarks by an average of +6.4%, demonstrating
that our temporal zoom-in with higher spatial resolution provides substantial benefits for long video
understanding. (Table 11) shows the impact of number of aggregated temporal spans with top answer
confidence.

Table 10: Window size ablation.

Window Size VideoMME (long w sub.) MLVU LVBench

128 67.4 72.1 47.6
256 68.7 73.4 48.1
384 68.4 72.4 48.5

Table 11: Number of aggregated temporal spans with top answer confidence.

# Aggregated Spans VideoMME (long w sub.) MLVU LVBench

3 73.2 66.8 47.5
4 73.4 68.7 48.1
5 73.2 68.4 47.9

D.4 COARSE-TO-FINE VIDEO UNDERSTANDING ON GVQA

We further evaluate short-form GVQA answer accuracy on NExT-GQA and ReXTime through
temporal zoom-in, as reported in Table 12. Both benchmarks consist of short videos, where the model
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Table 12: Grounded question answering (GQA) results on NExT-GQA (Xiao et al., 2024) and
ReXTime (Chen et al., 2024a) with temporal zoom-in.

Models NExT-GQA ReXTime

Acc mIoU R@0.3 R@0.5 Acc mIoU R@0.3 R@0.5

Zoom-Zero 70.7 37.6 55.6 33.8 62.0 43.2 56.5 44.1
Zoom-Zero + Coarse-to-fine 71.4 N/A N/A N/A 62.8 N/A N/A N/A

Table 13: Spatial and temporal resolution in coarse-to-fine video understanding.

Benchmark VideoMME Long MLVU LVBench
Duration 2386s 651s 4101s

Coarse Fine Coarse Fine Coarse Fine

Avg frames 256 136 253 86 256 154
Avg FPS 0.1 1.0 0.2 1.0 0.06 1.0
Avg tokens/frame 54 76 64 190 64 62

(a) Training curve: IoU reward (b) Training curve: answer reward

Figure 4: Training curve: IoU reward RIoU and answer reward RAcc comparison with baseline
GRPO and our improved GRPO with TokenAdv.

Question: Arrange the following events from the video in the correct chronological order: (1)The action of the 
lures is shown underwater as several different fish go after the lures; (2)Several men show off the different lures 
they are using for ice fishing; (3)The video ends with the closing credits and Graphics shown on the screen; (4)An 
introduction comes onto the screen for a video about fishing lures.
Options: (A) 3->2->1->4 (B) 4->2->1->3 (C) 1->2->3->4 (D) 2->1->3->4

Output: <think>First, the video introduces the topic of fishing lures with an opening screen <time> (20.3, 49.7) 
</time>. Next, several men showcase the different lures they are using for ice fishing <time> (283.5, 304.2) </time>. 
Then, the action of the lures is demonstrated underwater as various fish chase after them <time> (593.1, 611.4) 
</time>. Finally, the video concludes with closing credits and graphics <time> (673.8, 680.2)
</time>.</think>\n<answer>B</answer><glue>[(20.3, 49.7), (283.5, 304.2), (593.1, 611.4), (673.8, 680.2)]</glue>

0s 46s 73s 100s 213s 292s 405s 472s 523s 605s 638s 660s 674s668s

Figure 5: A qualitative example for long video understanding.

can preserve most temporal context and details within the context budget. In this setting, the zoom-in
paradigm improves performance by 0.7% on NExT-GQA and 0.8% on ReXTime.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Question: Are there any irregularities in this surveillance video? If there are, what sort are they?
Options: (A) Abuse (B) Arrest (C) Arson (D) Stealing

Output: <think>During the video, a person is seen entering a room with a bag <time> (30.8, 46.9) </time>. They 
then proceed to light a fire <time> (170.0, 230.0) </time> using a lighter, which spreads rapidly across the floor. This 
indicates arson activity. </think>\n<answer>C</answer><glue>[(170.0, 230.0)]</glue>

0s      15s     33s     47s      67s     75s      92s    123s    142s     159s    173s    192s    214s     225s

Figure 6: A qualitative example for long video understanding.

Question: Which of the following options correctly sequences the order in which the competition items appear in 
the video? 
Options: A. 400m run, shot put, 110m hurdles. B. 100m run, shot put, long jump. 

C. 100m run, long jump, shot put. D. 400m run, 110m hurdles, shot put.

Output: <think><time>(78.00, 150.00)</ time > The video starts with the 100m Decathlon event, where athletes 
compete in the 100m run. < time >(150.00, 220.00)</ time > Next, the Long Jump Decathlon is shown, where 
athletes perform the long jump. < time >(380.00, 490.00)</ time > Finally, the Shot Put Decathlon is displayed, 
where athletes throw the shot put. This sequence matches the order in the options provided.</think>\n
<answer>C</answer>><glue>[(78.00, 150.00), (150.00, 220.00), (380.00, 490.00)]</glue>

0s      100s    200s    300s     400s    500s    600s     700s    800s     900s   1000s   1100s    1200s   1300s

(78.00, 150.00) 

(150.00, 220.00) 

(380.00, 490.00) 

Figure 7: A qualitative example for long video understanding.

Question: What color suit is the female anchor who also has a chest bracelet and gold bracelet? 
Options: (A) Grey (B) Pink (C) Purple (D) Black

Output: <think>The female anchor is wearing a pink suit with a chest bracelet and gold bracelet <time> (130.67, 
140.07) </time>. This matches the description provided in the question.</think>\n
<answer>C</answer><glue>[(130.67, 140.07)]</glue>

0s      100s    200s    300s     400s    500s     600s    700s    800s     900s    1000s   1100s   1200s    1300s

(130.67, 140.07)

Figure 8: A qualitative example for long video understanding.

E LIMITATION AND FUTURE DIRECTION

Our current approach performs only a single round of zoom-in during both training and inference. We
did not explore iterative or recursive zooming due to computational constraints. However, multi-stage
zooming could further refine temporal grounding by progressively narrowing the search space and
focusing on increasingly fine-grained visual cues.

Another limitation is that the zoom-in process is enforced rather than adaptive. Ideally, the model
itself should decide whether, when, and how many times to zoom in, guided by the task objective. A
goal-oriented, multi-step zooming policy could potentially yield more efficient and faithful grounding.
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Question: Why did the woman point at the far end at the end of the video?
Options: (A) baby leg is there (B) adjust the camera (C) show him something (D) couple hugging (E) take a photo
GT Span: [55.5, 61]

Output: <think>The woman points at the far end towards the end of the video, likely indicating something of interest 
to the child she is holding. This interaction suggests she is showing the child something specific, possibly a baby or 
another object in the distance. The time range for this action is <time>(52.9, 61.33)</time>.</think>
<answer>A</answer>\n<glue>[(52.9, 61.33)]</glue>

0s      5s      10s      15s     20s     25s     30s     35s     40s      45s     50s     55s     60s     63s

(52.9, 61.33)

Full Video Frames

Zoom-in Frames

Second Pass Output: <answer>C</answer>

Figure 9: A qualitative example for grounded videoQA with temporal zoom-in.

Question: How many people are at the staircase at the beginning of the video?
Options: (A) One (B) Two (C) Three (D) Four

Output: <think> The video starts with a scene at a staircase where three individuals are present. They appear to be 
engaged in some form of interaction or activity. The presence of three people is clearly visible as they stand together 
on the staircase.\n\n<time>(0.0, 6.9)</time> - Three individuals are standing on a staircase.</think>
<answer>C</answer>\n<glue>[(0.0, 6.9)]</glue>

0s      40s      80s     120s     160s     200s    240s    280s    320s     360s    400s    440s     456s 

Full Video Frames

Zoom-in Frames

Second Pass Output: <answer>B</answer>

(0.0, 6.9)

Figure 10: A qualitative example for long video understanding with coarse-to-fine zoom-in.

If a strong pretrained model with reasonable temporal grounding ability and exploration samples is
sufficient, our framework could also be trained without explicit temporal interval annotations. Instead
of relying on rule-based reward, i.e., RIoU, the model could learn to verify whether key visual clues
exist within its predicted temporal segments. This self-verification mechanism has the potential to
mutually enhance answer accuracy and temporal grounding, especially in long-video scenarios where
temporal annotations are often scarce to obtain.
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Question: What did I take out of the cupboard?
Options: (A) cotton hand gloves I took out of the cupboard (B) wool sweater

(C) plastic hangers (D) metal spoon

Output: <think> The video shows a person opening a cupboard and taking out items. The specific item taken out is 
not clearly visible, but it appears to be a piece of clothing based on the context of the action. The options provided 
suggest that the item could be either a wool sweater or cotton hand gloves. However, without a clear view of the item, 
it's difficult to determine which one it is</think>\n<answer>B</answer>\n<glue>[(224.0, 251.0)]</glue>

0s      40s     80s     120s     160s     200s    240s    280s    320s     360s    400s    440s     479s 

Full Video Frames

Zoom-in Frames

Second Pass Output: <answer>A</answer>

(224.0, 251.0)

Figure 11: A qualitative example for long video understanding with coarse-to-fine zoom-in.
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