Prior-Driven Zeroth-Order Optimization for Scalable and
Memory-Efficient LLLM Fine-Tuning

Anonymous EMNLP submission

Abstract

Fine-tuning large language models (LLMs) has
demonstrated exceptional performance across
a variety of natural language processing (NLP)
tasks. However, the increasing scale of these
models imposes significant memory overhead
during backpropagation. While zeroth-order
(ZO) optimization mitigates this issue by esti-
mating gradients through forward passes and
Gaussian sampling, its random sampling strat-
egy introduces variance that scales linearly with
the number of parameters, leading to slow con-
vergence and suboptimal performance. We pro-
pose a novel gradient estimation framework
that utilizes the computation of a guiding vec-
tor, which is derived from Gaussian sampling
to direct perturbations for approximating gra-
dients. By incorporating this prior knowledge
into the perturbation process, our method sig-
nificantly accelerates convergence compared to
traditional ZO approaches. Additionally, we
investigate whether a greedy strategy can yield
similar enhancements in gradient estimation,
providing further insights into the optimization
process. Theoretical analysis indicates that the
proposed gradient estimator achieves a more
substantial alignment with the true gradient di-
rection, thereby improving optimization effi-
ciency. Comprehensive experiments conducted
across LLMs of varying scales and architec-
tures demonstrate that our method could in-
tegrates seamlessly into diverse optimization
frameworks, delivering faster convergence and
substantial performance improvements com-
pared to existing methods.

1 Introduction

The emergence of fine-tuning techniques for large
language models (LLMs) has revolutionized natu-
ral language processing (NLP), enabling state-of-
the-art performance in tasks such as text genera-
tion and question answering (Brown et al., 2020;
Achiam et al., 2023). However, as LLMs are scaled
up, the computational and memory demands dur-

ing full fine-tuning increase exponentially. A sig-
nificant bottleneck arises during backpropagation
(Rumelhart et al., 1986), which requires the stor-
age of intermediate activations and gradients, lead-
ing to substantial memory overhead. In recent
years, memory-efficient training strategies, such as
parameter-efficient fine-tuning (PEFT) (Hu et al.,
2022; Houlsby et al., 2019; Li and Liang, 2021),
have emerged as promising alternatives by selec-
tively updating only a subset of model parameters.
Despite these advancements, memory efficiency
remains limited: experiments on OPT-13B (Zhang
et al., 2022) indicate that full fine-tuning and PEFT
still consume 12x and 6x more GPU memory than
inference, respectively (Malladi et al., 2023).

To address these challenges, researchers have
investigated alternative optimization paradigms
that reduce memory requirements while preserv-
ing model performance. Zeroth-order (ZO) opti-
mization has emerged as a promising candidate,
substituting backpropagation with gradient estima-
tion through Gaussian sampling and forward passes
(Malladi et al., 2023). ZO methods significantly
alleviate computational burdens by eliminating the
necessity to store intermediate activations, which
are a primary source of memory overhead. Recent
advancements focus on accelerating convergence
and minimizing gradient variance, with innovations
such as sparse perturbation strategies enhancing
computational efficiency (Liu et al., 2024; Guo
et al., 2024). Hybrid frameworks further integrate
Z0 principles with established techniques: cou-
pling ZO with the Adam optimizer (Guo et al.,
2024) enhances stability, while Hessian-aware gra-
dient estimation (Zhao et al., 2024) improves ac-
curacy by incorporating second-order curvature in-
formation. Concurrent efforts combine ZO with
Parameter-Efficient Fine-Tuning (PEFT) frame-
works, such as low-rank adaptations (Hu et al.,
2022) and tensorized adapters (Yang et al., 2024),
to minimize the number of trainable parameters,
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Figure 1: The training loss curves for the WSC, SST-2, and BoolQ tasks are evaluated using the OPT-1.3B model.
Our proposed methods (MeZO-Greedy and MeZO-GV) are compatible with MeZO. For full fine-tuning, a learning
rate of 2e-7 is employed. All experiments are conducted with a consistent batch size of 16 to ensure uniformity

across evaluations.

demonstrating progress toward scalable and flexi-
ble optimization.

A fundamental challenge in zeroth-order (ZO)
optimization arises from the inherent limitations of
conventional gradient estimators, which typically
rely on random Gaussian perturbations, such as
those used in MeZO. Our work explicitly acknowl-
edges that achieving perfect unbiasedness in the
estimation of the ZO gradient is theoretically infea-
sible in practice due to the presence of the finite
difference parameter ¢ and the necessity of approx-
imating expectations over random perturbations.
Motivated by this inherent limitation, we propose
to intentionally deviate from the standard Gaus-
sian perturbation scheme by incorporating prior-
informed perturbations.

To this end, we introduce the Guiding Vector-
Augmented Zeroth-Order (GV-ZO) method, which
utilizes prior knowledge to direct the perturbation
process. Our approach iteratively estimates a guid-
ing vector through adaptive Gaussian sampling,
thereby dynamically aligning the perturbation di-
rection with the expected true gradient. Addition-
ally, we propose a prior-informed greedy pertur-
bation strategy, which further illustrates the effec-
tiveness of integrating prior knowledge in gradient
estimation through empirical evaluation.

Theoretically, we demonstrate that our guid-
ing vector-augmented and greedy-enhanced zeroth-
order optimization frameworks achieve signifi-
cantly stronger directional alignment with the true
gradient compared to conventional ZO methods
(see Section 5). This improved alignment ensures
that each optimization step contributes more ef-
fectively to the convergence dynamics (see Ap-
pendix C.1). Empirical experiments conducted on

diverse LLM architectures and scales show that our
method not only converges faster (see Figure 1)
but also yields substantial performance improve-
ments over existing approaches. Furthermore, on
the OPT-13B model, GV-based approaches consis-
tently achieve state-of-the-art performance across
all 11 benchmark tasks, outperforming traditional
zeroth-order optimization methods. When com-
pared to gradient-based baselines, GV-based meth-
ods exhibit superior results on 9 out of 11 tasks,
demonstrating a strong balance between efficiency
and accuracy. These results highlight the robust-
ness and adaptability of our framework. Notably,
our method employs a plug-and-play design, allow-
ing for seamless integration into a wide range of
optimization pipelines. This makes it a versatile
and practical solution for optimizing modern large
language models (LLMs), particularly in resource-
constrained environments.

2 Background

2.1 Simultaneous Perturbation Stochastic
Approximation (SPSA)

The Simultaneous Perturbation Stochastic Approxi-
mation (SPSA) (Spall, 1992) is a zeroth-order opti-
mization method used to approximate the gradient
of scalar-valued functions f(x) where x € R%
The SPSA gradient estimate employs finite differ-
ences along random Gaussian directions:

- 1 < x uw;) — f(x — pu;
Y /() = z;(f( +p )2uf( T ))u
- (1

where ¢ represents the number of function evalu-
ations, ;4 > 0 denotes the perturbation step size,
and u; ~ N(0,I) are random direction vectors.




As o — 0, the finite difference converges to the
directional derivative f'(x,u) = u 'V f(z). This
results in an unbiased gradient estimator:

Eulf'(,u)u] = Eyuu'Vf(z)] = V().
2)
making SPSA particularly effective for high-
dimensional optimization tasks, such as fine-tuning
LLMs.

2.2 Memory-Efficient ZO-SGD (MeZO)

Given a labeled dataset D = {(x;, yz)}@l, mini-
batch B C D, and a loss function £(6;B) with
parameters 6 € RY, the SPSA gradient estimate is
expressed as follows:

VL(0:B) = £(0+6z;8)2—6£(0—6z;8)

z?

3)
where z ~ N(0, I) represents a random pertur-
bation vector, and € > 0 denotes the perturbation
scale. The estimator VL(0; B) =~ zz! VL(0; B)
requires only two forward passes, facilitating
memory-efficient optimization. This serves as the
foundation for Zeroth-Order Stochastic Gradient
Descent (ZO-SGD):

041 =0, —VL(O; By), 4)

where B; represents the ¢-th minibatch and 7 de-
notes the learning rate, ZO-SGD mitigates the
memory overhead associated with backpropaga-
tion by substituting exact gradients with SPSA es-
timates. For more related work, see Appendix B.

3  Our Proposed Method

The proposed method is a plug-and-play strategy
designed for seamless integration into any zeroth-
order optimization algorithm that employs stochas-
tic perturbation for gradient estimation. The guid-
ing vector mechanism and the greedy perturbation
strategy are intentionally architecture-agnostic, en-
suring broad compatibility with various optimiza-
tion frameworks. This inherent flexibility allows
the proposed method to be easily adapted to diverse
optimization techniques without necessitating sig-
nificant modifications to the underlying process.
To rigorously demonstrate the effectiveness and
generality of our approach, we have integrated the
proposed mechanisms into two prominent zeroth-
order optimization algorithms—MeZO (Malladi
et al., 2023) and SubZero (Yu et al., 2024)—and
conducted comprehensive experiments to evaluate

their performance across a range of models and
tasks.

3.1 Memory-efficient ZO with Guiding Vector

In this work, we propose Memory-Efficient Zeroth-
Order Optimization with Guiding Vectors (MeZO-
GYV), an advanced zeroth-order optimization al-
gorithm designed to efficiently optimize high-
dimensional parameters # € R? in scenarios where
gradient computations are either infeasible or com-
putationally expensive. The algorithm builds upon
the traditional MeZO framework by introducing
a guiding vector v that directs parameter updates
toward more promising regions of the loss land-
scape. This guiding vector is computed using a
perturbation-based exploration strategy, which sig-
nificantly enhances convergence speed and opti-
mization performance compared to standard zeroth-
order methods.

The MeZO-GV algorithm iteratively updates the
model parameters 0 over a fixed step budget T'. At
each iteration ¢, MeZO-GV begins by sampling
a minibatch B; from the dataset D and generat-
ing a random seed s to ensure in-place operation.
The guiding vector v is derived from a set of M
perturbations {z;}}4,, where each z; ~ N(0,I)
is a random perturbation vector generated using
a unique seed s; = Hash(s @ ¢). The perturba-
tions are evaluated on the loss function £, and the
top aM perturbations with the lowest losses are
selected as the elite group O,p, while the remain-
ing form the non-elite group Opottom- The guiding
vector v is computed as:
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Using the guiding vector v, MeZO-GV estimates
the directional gradient V.£(0; B) via:

VL(0:B) = £(0+EU;B)2—GE(0—E’U;B)

v?
(6)
where € > 0 is the perturbation scale, this esti-
mator approximates the gradient as @E(O; B) ~
vv ' VL(0;B). This approach requires only two
forward passes and eliminates the need for back-
propagation, thereby facilitating memory-efficient
optimization. The parameters 6 are updated accord-
ing to Equation 4. By leveraging the guiding vector
v, MeZO-GYV allows the algorithm to concentrate
on the most promising directions for parameter up-
dates, resulting in faster convergence and improved



optimization performance. The complete algorith-
mic implementation is provided in Appendix E.1.

3.2 Memory-efficient ZO with Greedy
Perturbation

In addition to the guiding vector mechanism, we
propose another Memory-efficient ZO with Greedy
Perturbation (MeZO-Greedy) strategy as a com-
plementary optimization component to further en-
hance the performance of the optimization process.
MeZO-Greedy functions as an independent mech-
anism that actively explores the most promising
update directions at each iteration. Specifically, the
algorithm generates a set of M candidate pertur-
bations {z;}£,, where each z; is sampled from a
predefined distribution. The greedy selection pro-
cess then identifies the optimal perturbation z* that
minimizes the loss function in the vicinity of the
current parameters:

2" = arg min, L£(0 + ez;; B), @)

where € controls the exploration radius, and B rep-
resents the current mini-batch of data, the selected
perturbation z* encapsulates the most favorable
direction for parameter updates based on immedi-
ate feedback from the loss landscape, effectively
capturing the local geometry of the optimization
surface.

Building upon this selected direction, we cal-
culate an independent gradient estimate using a
symmetric difference approximation:
$*£(6:B) — L0+ ez*;B) — L(O — ez™; B)z*,

2e
8)
Then the parameters 6 are updated using the Equa-
tion 4. The complete algorithmic implementation
is presented in Appendix E.2.

4 Experiments and Analysis

LLM fine-tuning tasks and models For all ex-
periments, we consider the SuperGLUE (Wang
et al., 2019) dataset collection, which includes
CB (De Marneffe et al., 2019), COPA (Roem-
mele et al., 2011), MultiRC (Khashabi et al., 2018),
RTE (Bar-Haim et al., 2014), WiC (Pilehvar and
Camacho-Collados, 2019), WSC (Levesque, 2011),
BoolQ (Clark et al., 2019), and ReCoRD (Zhang
et al., 2018). Additionally, we incorporated SST-2
(Socher et al., 2013) and two question-answering
(QA) datasets: SQuAD (Rajpurkar et al., 2016)

and DROP (Dua et al., 2019). We also conduct
experiments on two representative language mod-
els of varying sizes. For OPT (Zhang et al., 2022),
we test the OPT-1.3B, OPT-13B, and OPT-30B
models, while for Llama2 (Touvron et al., 2023),
we evaluate the Llama2-7B-hf and Llama2-13B-hf
models. For specific details and the experimental
setup, please refer to the Appendix A.

We evaluate zeroth-order (ZO) large language
model (LLM) fine-tuning using two sets of met-
rics: accuracy and efficiency. Accuracy measures
the fine-tuned model's test data performance on
specific tasks. Efficiency encompasses various
measurements, including memory efficiency (e.g.,
peak memory usage or GPU cost) and convergence
speed.

4.1 Medium-sized Language Models

As shown in Table 1, the experimental results
demonstrate that GV-based methods, particularly
MeZO-GYV, consistently outperform both vanilla
MeZO and baseline approaches across a wide
range of tasks. This highlights that our proposed
method achieves significant performance improve-
ments. By leveraging guiding vectors, MeZO-
GV enhances fine-tuning efficiency, achieving sig-
nificant performance gains in classification tasks
(e.g., +3.8% on SST-2), multiple-choice tasks (e.g.,
+5.0% on COPA), and generation tasks (e.g., +3.2%
on SQuAD). Notably, MeZO-GV excels in com-
plex scenarios, such as WSC (+3.9% improvement)
and MultiRC (+5.3% improvement), where vanilla
MeZO and baseline methods exhibit limited ef-
fectiveness. Additionally, the proposed method
demonstrates significantly accelerated convergence
rates, as illustrated in Appendix C.1. For instance,
on SST-2 and WSC, MeZO-GV achieves perfor-
mance comparable to vanilla MeZO at 20,000 steps
in just 6,000 and 1,000 steps, respectively. These
results highlight MeZO-GV's ability to stabilize the
optimization process while effectively adapting to
diverse task requirements, establishing it as a ro-
bust and memory-efficient fine-tuning framework.

4.2 Large Language Models

With the promising results from OPT-1.3B, we
scale the model to larger sizes and architectures
to further validate the proposed methods. As
shown in Table 2, the experimental results on OPT-
13B demonstrate that GV-based methods, such as
MeZO-GV and SubZero-GV, consistently outper-
form their non-GV counterparts and baseline ap-



Table 1: Comparison of average task performance across different methods on OPT-1.3B over three rounds. Results
are reported for zero-shot, in-context learning (ICL), and MeZO-based methods, including variants with guiding

vectors (GV), LoRA, and prefix tuning. The best performance for each task is highlighted in bold.

Task Type — classification — —— multiple choice — —— generation —
Task SST2 RTE CB BoolQ WSC WIC MultiRC | COPA ReCoRD  |SQuAD DROP
Zero-shot 53.6 53.1 393 449 433 535 454 73.0 70.5 27.2 11.2
ICL 80.0 534 446 594 462 503 463 69.0 71.0 58.7 20.5
MeZO(FT) 89.2 574 714 625 567 572 533 73.0 70.9 72.0 21.9
MeZO-GV(FT) 93.0 60.6 69.6 644 606 58.0 58.6 78.0 72.0 75.2 24.1
MeZO(LoRA) 90.8 61.7 712 634 587 602 57.0 74.0 71.5 71.5 23.1
MeZO-GV(LoRA) 935 628 705 648 625 60.7 60.6 76.0 72.4 78.7 24.4
MeZO(Prefix) 90.1 65.7 69.6 63.0 60.6 560 59.1 71.0 70.4 76.0 232
MeZO-GV(Prefix) 92.1 668 709 645 60.8 582  62.7 74.0 72.7 78.8 24.8
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Figure 2: Validation Accuracy on SST2 and BoolQ Tasks for Llama2-7B and Llama2-13B. All experiments are
conducted with a batch size of 16. For LoRA-based methods, the learning rate is set to 1e-4, while for full-parameter

methods, the learning rate is set to Se-7.

proaches across a wide range of tasks. In classi-
fication tasks, SubZero-GV(FT) achieves 94.7 %
accuracy on SST-2, surpassing MeZO(FT) by
2.7% , whileMeanwhile, SubZero-GV (Prefix) at-
tains 85.7% accuracy on CB, outperforming ZO-
AdaMU(Prefix) by 13.4%. SubZero-GV (Prefix)
achieves 76.2% accuracy on RTE, marking a
5.4% improvement over MeZO(Prefix), and scores
65.1% on MultiRC, leading all compared methods.
In generation tasks, SubZero-GV (LoRA) achieves
85.3% on SQuAD, outperforming MeZO (LoRA)
by 1.5%, while MeZO-GV(LoRA) achieves 32.7 %
on DROP, surpassing MeZO (LoRA) by 1.3%. In
multiple-choice tasks, GV-based methods consis-
tently demonstrate advantages: MeZO-GV (Pre-
fix) achieves 90.0% accuracy on COPA, outper-
forming MeZO (Prefix) by 3.0%. Compared to
zeroth-order optimization methods, GV-based ap-
proaches exhibit superior performance across all
11 tasks. Additionally, when compared to gradient-
based methods, GV-based methods excel in 9 out
of 11 tasks.

To further validate the effectiveness of the pro-
posed method, we extend our approach to the
Llama2-7B model, with the experimental results

presented in Table 3. The results demonstrate
that our GV-based methods consistently outper-
form non-GV variants across multiple tasks while
also achieving significant efficiency improvements.
Specifically, GV-based methods achieve superior
performance with only 10,000 training steps, sur-
passing the results of other methods that are trained
for 20,000 steps. GV-based methods exhibit strong
performance across various tasks. For instance,
MeZO-GV-10k achieves 90.4% accuracy on SST-
2, outperforming both MeZO-10k (85.3%) and
MeZO-20k (88.7% ) with half the training steps.
Similarly, MeZO-GV-10k (LoRA) achieves 94.3%
accuracy on SST-2, surpassing MeZO-10k (LoRA)
(87.7%) and MeZO-20k (LoRA) (93.7%). On
more challenging tasks such as WSC and WIC, GV-
based methods demonstrate consistent improve-
ments, achieving 62.5% and 62.3% accuracy, re-
spectively, outperforming non-GV methods with
fewer training steps. Additionally, we conduct ex-
periments on larger models, including Llama2-13B
and OPT-30B, with detailed results provided in Ap-
pendix C.1. In Figure 2, we present the curves of
training steps versus validation accuracy, which
further illustrate the effectiveness of GV-based



Table 2: Average task performance of various methods across three rounds on OPT-13B. Results are reported
for zero-shot, in-context learning (ICL), ZO-AdaMU (extends zeroth-order optimization to the Adam algorithm),
HiZOO (Hessian matrix-based gradient estimation in ZO optimization), SubZero (decomposes parameter mapping
into low-dimensional subspaces), MeZO, and their variants that incorporate guiding vectors (GV), LoRA, and prefix
tuning. Fine-tuning using the Adam is also included. The best performance for each task among the zeroth-order

optimization methods is highlighted in bold.

Task Type —— classification — —— multiple choice — —— generation —
Task SST2 RTE CB BoolQ WSC WIC MultiRC | COPA ReCoRD  |SQuAD DROP
Zero-shot 58.8 59.6 464 59.0 385 550 469 80.0 81.2 46.2 14.6
ICL 87.0 62.1 571 669 394 505 53.1 87.0 82.5 75.9 29.6
7Z0-AdaMU (2x) 92.1 729 679 73.0 615 60.7 63.0 89.0 83.0 82.4 32.0
7Z0-AdaMU (LoRA) 88.0 72.0 71.6 72.6 60.1 564 589 88.0 83.2 76.8 324
7Z0-AdaMU (Prefix) 88.0 61.8 723 749 565 582 619 86.0 82.8 85.2 304
HiZOO 92.1 693 694 673 635 594 613 88.0 81.4 81.9 25.0
HiZOO(LoRA) 90.6 67.5 69.6 705 635 60.2 602 87.0 81.9 83.8 25.1
HiZOO(Prefix) 920 718 696 739 606 60.0 6438 87.0 81.2 83.2 253
MeZO(FT) 914 66.1 679 676 635 61.1 60.1 88.0 81.7 84.7 30.9
SubZero(FT) 92.1 740 732 753 654 60.8 61.0 88.0 82.3 84.5 32.0
MeZO-GV(FT) 939 735 716 725 654 614 625 89.0 82.9 84.9 31.7
SubZero-GV(FT) 94.7 748 739 768 644 627 632 89.0 83.1 84.9 31.3
MeZO(LoRA) 89.6 679 66.1 738 644 597 615 84.0 81.2 83.8 31.4
SubZero(LoRA) 93.8 755 714 761 654 603 603 89.0 81.9 83.7 31.3
MeZO-GV(LoRA) 916 726 728 756 663 609 619 89.0 82.9 84.9 327
SubZero-GV(LoRA) 94.0 758 738 77.6 654 639 64.1 90.0 83.8 85.3 324
MeZO(Prefix) 90.7 70.8 69.6 73.1 606 599 637 87.0 81.4 84.2 289
SubZero(Prefix) 91.7 73.6 803 763 621 61.1 635 88.0 82.0 83.7 32.0
MeZO-GV(Prefix) 924 748 732 766 635 61.8 644 90.0 82.7 84.3 30.9
SubZero-GV(Prefix) 93.1 762 85.7 77.1 644 641 65.1 89.0 82.5 85.1 329
FT 92.0 70.8 839 77.1 635 701 711 | 79.0 74.1 | 84.9 31.3

Table 3: Task Performance Comparison for Different
Methods on Llama2-7B.

Table 4: Task Performance Comparison of Greedy Strat-
egy for Different Methods on Llama2-7B and OPT-13B

Task SST2 RTE BoolQ WSC WIC Model Task WiC RTE BoolQ
MeZO-10k 853 581 721 608 57.8 MeZO 60.8 62.1 80.1
MeZ0-20k 887 621 80.1 621 608 Llama2-7B MeZO-Greedy 63.0 63.6 81.9
MeZO-GV-10k 904 643 813 625 623 MeZO (LoRA) 575 633 795
MeZO-10k(LoRA) 877 60.6 769 589 563 MeZ0-Greedy (LoRA) 619 657 303
MeZO0-20k(LoRA) 937 633 795 625 57.5 MeZO 61.1 66.1 67.6
MeZO-GV-10k(LoRA) 943 657 807 61.5 61.4 OPT-13B  MeZO-Greedy 619 722 726

MeZO (LoRA) 60.8 740 753

MeZO-Greedy (LoRA) 62.7 758 759

methods. The curves demonstrate that GV-based
methods achieve comparable validation accuracy
with significantly fewer training steps compared
to non-GV methods, reinforcing their efficiency
and performance advantages. These results val-
idate the scalability and robustness of GV-based
methods across different model sizes, highlighting
their potential for efficient fine-tuning in resource-
constrained environments.

4.3 MeZO with Greedy Strategy

In Table 4, we present the test accuracy of various
optimization methods, including MeZO, MeZO-

Greedy, SubZero, and SubZero-Greedy, applied to
the Llama2-7B and OPT-13B models across mul-
tiple datasets (e.g., WIC, RTE, BoolQ). The re-
sults demonstrate that the Greedy variants (MeZO-
Greedy and SubZero-Greedy) consistently achieve
higher accuracy compared to their standard counter-
parts (MeZO and SubZero). For instance, MeZO-
Greedy outperforms standard MeZO, and SubZero-
Greedy exhibits superior performance over stan-
dard SubZero. This trend suggests that Greedy
strategies are more effective in optimizing model
performance, particularly in resource-constrained



scenarios. Moreover, when combined with tech-
niques like LoRA (Low-Rank Adaptation), the
Greedy variants (e.g., MeZO-Greedy (LoRA))
maintain or even enhance accuracy while reduc-
ing computational costs. The performance advan-
tage of the Greedy methods is consistent across
different datasets and model sizes, demonstrating
their robustness and broad applicability. These
findings highlight the effectiveness of the Greedy
strategies in improving model accuracy and effi-
ciency. Additionally, in Appendix C.2, we provide
the training loss convergence curves based on the
Greedy strategy, which reveal that perturbations
guided by prior knowledge accelerate the model's
convergence speed and achieve better performance
compared to the original baseline.

4.4 Impact of the Number of Evaluations

In Figure 3, we illustrate the performance of the
OPT-13B model across three datasets—WIC, Copa,
and WSC—as the number of evaluations varies
from 4 to 12. The Copa and WSC datasets ex-
hibit stable performance with increasing evalua-
tions, suggesting limited sensitivity to additional it-
erations. In contrast, the WIC dataset demonstrates
the most significant improvement, highlighting its
stronger dependence on the number of evaluations.
These findings reveal that the impact of the number
of evaluations varies substantially across datasets,
emphasizing the need for dataset-specific optimiza-
tion strategies. Notably, the experiments indicate
that for many datasets, increasing the number of
evaluations does not consistently enhance perfor-
mance; often, only a few iterations are sufficient
to achieve robust results. We further support this
observation with a theoretical analysis confirming
that excessive evaluations are not always benefi-
cial. While additional evaluations may acceler-
ate model convergence, they can also increase the
risk of overfitting. Therefore, a balanced approach,
carefully tailored to the unique characteristics of
each dataset, is essential for achieving optimal per-
formance.

4.5 Directional Alignment Analysis

To quantitatively assess the quality of zeroth-
order gradient estimation, we examine the direc-
tional alignment between the estimated gradient
g—obtained via MeZO or MeZO-GV—and the
true gradient g, which is computed using stochastic
gradient descent (SGD). Specifically, we calculate
the expected cosine similarity cos(g, g) as a mea-
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Figure 3: Performance of OPT-13B Model Across three
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Figure 4: Cosine similarity between the estimated gra-
dient g and the true gradient g computed by SGD, on
SST-2 and BoolQ using OPT-1.3B in the prefix tuning
scheme.

sure of alignment quality. Figure 4 illustrates the
alignment trends on SST-2 and BoolQ using the
OPT-1.3B model under the prefix tuning setting.
All methods are trained with a batch size of 16
for 10K steps. As illustrated in Figure 4, MeZO-
GV consistently achieves a higher cosine similar-
ity compared to the standard MeZO baseline and
closely follows the direction of the true gradient ob-
tained via SGD. These empirical findings provide
robust support for our theoretical analysis, which
predicts enhanced alignment when perturbations
are guided by prior-informed directions.

S Theory Analysis

To discuss the approximation efficiency of the ex-
pectation in Equation 2, we propose the following
lemma.

Lemma 1. Under the ZO setting, assume the dim-
sension of the problem is d, and the sampling num-
berisk, z1, 22, ...,z ~ N(0, Iy). Let € be a small
positive number, 5 > 0 and S}, = %Zle ziz;f.
When k = O (E% log (%)), with probability p >
1— 6, we have || S, — 1| < €. Please note that the
experimental configuration of MeZO(K = 1) is
far from the theoretical bound, indicating that its



approximation efficiency is not satisfactory.

Lemma 2. Under the ZO settings, assume the
dimension of the optimization problem is d, and
the sampling number is k, where 21,29, ..., 2
are all standard normal distributions, and g is the
gradient direction (without loss of generality, as-
sume the length is 1). Define V. = %Zl ziziT g,
V= VTg)g, VI =V — V||. We have the follow-

ing conclusions:
Ml ]k
VL d—1

il
9l

The Lemma 2 analyzes the norm ratio between
the parallel component (aligned with the true gradi-
ent g) and the orthogonal component. For k Gaus-
sian random vectors, the parallel component domi-

ratioy =

ratiop =

k . .
1 while its

length aligns closely with g (||V}[|/[|g]l = D).

nates with a ratio ||V} [|/[|VL] ~

Lemma 3. Under the ZO combined with greedy
permutation, assume the dimension of the optimiza-
tion problem is d, and the sampling number is k,
where 21, 2o, . .., 2 are all standard normal dis-
tributions, and g is the gradient direction (without
loss of generality, assume the length is 1). Us-
ing decomposition, we have z; = (Z;[g)g + 21,
Y; = zl'g and let Y1 = miny<;< Y;, we have its
PDF as

Fy) =k —2(y) o).

NowV = z12) g = YVig+211)Y1g+21,1) g =
YPg+Yiz1,1,V) = Y9, Vi = Y121 1. We have
the following conclusions:

vl v Y1 2log(k)
ratioy = = ~ ~ .
Vil el Va-1 0 Vd-1
L HVHH 2
ratioo = —— = Y{* =~ 2log(k).

g1l

The norm ratio of the parallel component to the
true gradient satisfies ratiop = % ~ 2log(k), en-
hancing the dominance of the parallel component,
making the ZO estimation more accurate along the

gradient direction.

Lemma 4. Under the ZO combined with guding
vector, assume the dimension of the optimization
problem is d, and the sampling number is k, where

21,22, . - - , 2, are all standard normal distributions,
g is the gradient direction with norm 1, o is the
ratio of sparks selected to calculate guding vec-
tor, s = [o % k|. Using decomposition, we have
zi = (zZ-Tg)g—l-zi,L, Y, :z;fgandletyl <Yy <
e <Y, A1 ={1,2, ..., A0 = {k,k— 1,k —
2,k =5+ 112 = 1 (Tien, 5~ Ljenn %)
V=:3:Tg= V| + V., We have the following con-
clusions:

Vil 2y/sTogk

ratioy = =
V.|| d—1
.
ratioo = —— = 8slogk
llgll
The ratios ratio; = 2V\/‘21%g1k and ratiog =

8slog k show that increasing s or k significantly
boosts [|V][|, enhancing alignment with the gradi-
ent direction.

Table 5 compares the current ZO algorithm and
its variants in terms of the gradient-aligned com-
ponent ratio. Both ZO-Greedy and ZO-GV signif-
icantly improve the gradient-aligned component
ratio through the greedy strategy and guiding vec-
tor, respectively. In particular, ZO-GV achieves
the best performance when increasing s and k. In
Appendix F, we provide a detailed theoretical proof
to support these findings.

Table 5: Comparison of Gradient-aligned Component
Ratio

Algorithm Index | ZO
vy Il k
VLl d—1
TV
lLgll

Z0-Greedy 70-GV
log (k) Vslogk
o () o ()

1 O(log(k)) | O(slog(k))

6 Conclusion

In this paper, we propose two distinct prior-
informed approaches to enhance zeroth-order op-
timization: a guiding vector-augmented strategy
and a greedy perturbation strategy. Both methods
leverage prior knowledge to significantly improve
optimization performance and efficiency. Theo-
retically and empirically, our approaches achieve
more substantial directional alignment with the true
gradient, drastically reducing the number of conver-
gence iterations while maintaining high accuracy.
These innovations underscore the effectiveness of
prior-guided perturbations, providing scalable and
efficient solutions for optimizing LLMs.



Limitations

Despite demonstrating promising results, this study
has several limitations that warrant discussion.
First, while the proposed prior-informed pertur-
bation strategy proves effective, the research does
not systematically investigate which types of prior
knowledge are most suitable for different model
architectures or task requirements, leaving the op-
timal selection criteria for future exploration. Sec-
ond, although designed as a plug-and-play frame-
work and validated against mainstream approaches,
the method's generalizability across the full spec-
trum of existing zeroth-order optimization tech-
niques remains to be comprehensively verified.
Third, constrained by computational resources, our
empirical validation was limited to models with up
to 30 billion parameters, leaving open questions
about the method's scalability to hundred-billion
or trillion-parameter models and its potential trade-
offs in such extreme-scale scenarios. These limi-
tations highlight valuable directions for future re-
search to further strengthen the framework's theo-
retical foundations and practical applicability.
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A Datasets and Setup

As shown in Table 6, the datasets utilized in our experiments encompass three types of tasks: classification
tasks, multiple choice tasks, and question-answer tasks. Previous studies (Brown et al., 2020; Gao et al.,
2021; Schick and Schiitze, 2021) have demonstrated that incorporating appropriate prompts ensures that
fine-tuning objectives are closely aligned with the pre-training one. Specifically, simple prompts can
streamline the fine-tuning optimization, enabling zeroth-order methods to work efficiently (Malladi et al.,
2023). We investigate three fine-tuning schemes to validate the proposed method: full-tuning (FT), which
fine-tunes the entire pre-trained model; low-rank adaptation (LoRA), which fine-tunes the model by
introducing low-rank weight perturbations (Hu et al., 2022); and prefix-tuning (Prefix), which fine-tunes
the model by appending learnable parameters to the attention mechanism of Transformers (Li and Liang,
2021). For further details, please refer to Appendix D.

Setup. We compare our methods with zero-shot, in-context learning (ICL), and fine-tuning with Adam
(FT). Additionally, we validate the effectiveness of our methods by applying them to MeZO (Malladi
et al., 2023) and SubZero (Yu et al., 2024). Following the MeZO, we randomly sample 1,000 examples
for training, 500 examples for validation, and 1,000 examples for testing. Unless otherwise specified,
we set the query budget per gradient estimation to ¢ = 1 and the hyperparameter o to 0.5. The number
of prior-estimated times M is set to either 2 or 4. We execute MeZO and SubZero for 20,000 steps,
while our proposed method is trained for 10,000 steps. All models are validated every 1,000 steps. To
reduce memory consumption, we employ half-precision training (FP16) for zeroth-order optimization
(ZO) methods. All experiments are conducted on Nvidia A100 GPUs with 80GB of memory or Nvidia
3090 GPUs with 24GB of memory. Detailed learning rates, batch sizes, and other hyperparameter
configurations for the different models are provided in Table 7 and Table 8. Our code is available in
https://github.com/stan-anony/MeZ0-GV

Table 6: The prompts of the datasets used in our OPT experiments.

Dataset Type Task Type Prompt

SST-2 cls. <text> It was terrible/great

RTE cls. <premise> Does this mean that “<hypothesis>" is true? Yes or No?
Yes/No

CB cls. Suppose <premise> Can we infer that “<hypothesis>"? Yes, No, or Maybe?
Yes/No/Maybe?

BoolQ cls. <passage> <question>?
Yes/No

WSC cls. <text>
In the previous sentence, does the pronoun “<span2>" refer to “<span1>"? Yes or No?
Yes/No

WIC cls. Does the word “<word>" have the same meaning in these two sentences? Yes or No?
<sent1>
<sent2>
Yes/No

MultiRC cls. <paragraph>

Question: <question>
I found this answer “<answer>". Is that correct? Yes or No?

Yes/No
COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace(“@placeholder”, <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>

Answer:

DROP QA Passage: <context>
Question: <question>
Answer:
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Table 7: Experiment Hyperparameters on OPT Models

Experiment Hyperparameter Value
Batch Size 16
MeZO (FT) Learning Rate {1le-7, 2e-7, S5e-7}
€ le-3
Batch Size 16
MeZO (LoRA) Learning Rate {3e-5, 5e-5, le-4}
€ le-2
Batch Size 16
MeZO (Prefix) Learning Rate {1e-3, 5e-3, le-2}
€ le-1
Batch Size 16
Learning Rate {1e-7, 2e-7, 5e-7}
SubZero (FT) € le-3
Rank {32, 64}
Subspace Change Frequency {500, 1000, 2000}
Batch Size 16
Learning Rate {3e-5, 5e-5, le-4}
SubZero (LoRA) € le-2
Rank {32, 64}
Subspace Change Frequency {500, 1000, 2000}
Batch Size 16
Learning Rate {1e-3, 5e-3, le-2}
SubZero (Prefix) € le-1
Rank {8, 16}
Subspace Change Frequency {500, 1000, 2000}
Batch Size 16

MeZO-GV (FT)

Learning Rate

{1e-7, 2e-7, 3e-7, 5e-7}

€ le-3
k {4,8,12}
Batch Size 16
MeZO-GV (LoRA) Learnlrelg Rate {3e-5, 15:-—25,16—4}
k {4,8,12}
Batch Size 16
MeZO-GV (Prefix) Learmrelg Rate {1e-3, ?Z:?, le-2}
k {4,8,12}
Batch Size 16
Learning Rate {1le-7, 2e-7, 3e-7, 5e-7}
SubZero-GV (FT) ]: {4’1%_31 2}
Rank {32, 64}
Subspace Change Frequency {500, 1000, 2000}
Batch Size 16
Learning Rate {3e-5, 5e-5,1e-4}
SubZero-GV (LoRA) : 4 1§'212}
Rank {32, 64}
Subspace Change Frequency {500, 1000, 2000}
Batch Size 16
Learning Rate {1e-3, 5e-3, le-2}
SubZero-GV (Prefix) 2 (4 15_112}
Rank {8, 16}
Subspace Change Frequency {500, 1000, 2000}
Batch Size 16

SGD (FT)

Learning Rate

{1e-4, 1e-3, 5e-3}
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Table 8: Experiment Hyperparameters on Llama2 Models

Experiment Hyperparameter Value
Batch Size 16
MeZO (FT) Learning Rate {1e-7, 2e-7, 5e-7}
€ le-3
Batch Size 16
MeZO (LoRA) Learning Rate {3e-5, 5e-5, le-4}
€ le-2
Batch Size 16
MeZO-GV (FT) Learmrelg Rate {1le-7, 2e—17é_3§e—7, 5e-7}
k {4,8,12}
Batch Size 16
MeZO-GV (LoRA) Learnlr;g Rate {3e-5, 15:_—25,16-4}
k {4,8,12}

B Related Work

Gradient-free Optimization of LLMs Recent advancements in gradient-free optimization have utilized
evolutionary algorithms, particularly the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
(Hansen and Ostermeier, 2001), to optimize continuous prompt vectors in black-box tuning methods.
This approach has demonstrated significant advantages for applying large language models by reducing
complexity. However, training these prompt vectors has exhibited instability and slow convergence rates
(Sun et al., 2022b,a). To address these issues, Jin et al. (2024) proposed a gradient-free optimization
framework for low-rank adaptation to stabilize training and improve convergence speed.

Zeroth-Order Optimization of LLMs Zeroth-order optimization (ZO) has emerged as a pivotal gradient-
free method in machine learning, particularly in scenarios where gradient computation is infeasible or
prohibitively expensive (Ren et al., 2021; Kim et al., 2023; Chen et al., 2024). ZO has also inspired the
development of distributed optimization techniques (Tang and Li, 2019) and has been effectively applied to
black-box adversarial example generation in deep learning (Cai et al., 2021; Liu et al., 2019). In addition,
several ZO methods have been proposed that achieve optimization without explicitly estimating gradients
(Golovin et al., 2020; Mania et al., 2018; Hinton, 2022). Recently, the application of ZO optimization
to fine-tuning LLMs has demonstrated significant reductions in GPU utilization and memory footprint
(Malladi et al., 2023; Gautam et al., 2024; Zhang et al., 2024). These advancements have catalyzed a grow-
ing body of research on zeroth-order optimization techniques tailored for LLMs. Recent advancements
in ZO optimization have primarily focused on enhancing convergence rates and minimizing gradient
estimation variance to optimize fine-tuning of LLMs. Increasing the batch size has effectively reduced
noise in ZO gradient estimation (Gautam et al., 2024; Jiang et al., 2024). Sparse perturbation strategies
improve efficiency by selectively perturbing a subset of parameters, thereby reducing computational
overhead and gradient variance (Liu et al., 2024; Guo et al., 2024). These strategies achieve sparse
parameter perturbations through techniques such as random and sparse pruning masks (Liu et al., 2024)
or block-coordinate perturbations (Zhang et al., 2024). Notably, Guo et al. (2024) extended zero-order
optimization to the Adam algorithm, while Zhao et al. (2024) enhanced model inference performance
by incorporating Hessian matrix-based gradient estimation in ZO optimization, albeit at the expense of
increased memory consumption. Additionally, innovative approaches have been proposed to reduce the
number of trainable parameters, such as mapping models to subspaces and employing PEFT methods (Hu
etal., 2022; Li and Liang, 2021) alongside tensorized adapters (Yang et al., 2024).

C More Results and Analysis

C.1 Training Loss Curves on Different Models

We present the training loss curves of the GV-based method across various models, including datasets such
as SST-2, WSC, BoolQ, and CB across OPT and Llama2 models, further demonstrating the effectiveness of
our approach. The GV-based method achieves a faster gradient descent at each step, reaching convergence
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in significantly fewer iterations compared to baselines.
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Figure 5: Training loss on SST2, WSC, BoolQ, and CB Tasks for OPT-1.3B/13B and Llama2-7B Models. For
OPT-1.3B/13B, we employ a learning rate of 2e-7, while for Llama2-7B, a learning rate of 5e-7 is used. All
experiments are conducted with a consistent batch size of 16.

C.2 Training Loss Curves of Greedy Stategy on Different Models

The training loss curves of the greedy-based method across various models, including datasets such as

BoolQ and RTE.
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Figure 6: Training loss on BoolQ and RTE Tasks with Llama2-7B Model. We employ a learning rate of Se-7. All
experiments are conducted with a consistent batch size of 16.

C.3 Additional Results on LLMs

The experimental results on Llama2-13B and OPT-30B models further validate the effectiveness and
scalability of guiding vector (GV)-based methods across diverse model sizes and tasks. On Llama2-13B,
GV-based methods consistently outperform non-GV variants, demonstrating significant performance
improvements with reduced training steps. For instance, MeZO-GV-10k(LoRA) achieves 93.7% accuracy
on SST2, surpassing MeZO-10k(LoRA) (89.7%) and closely matching the performance of MeZO-
20k(LoRA) (94.3%) with only half the training steps. Similarly, on RTE, MeZO-GV-10k(LoRA) attains
72.2% accuracy, outperforming MeZO-10k(LoRA) (66.8%) and approaching the results of MeZO-
20k(LoRA) (70.4%). For BoolQ, GV methods exhibit notable improvements: MeZO-GV-10k(LoRA)
achieves 83.3% accuracy, surpassing MeZO-10k(LoRA) (76.3%) and MeZO-20k(LoRA) (82.1%). In
more challenging tasks such as WSC and WIC, GV methods also demonstrate consistent gains: MeZO-
GV-10k(LoRA) achieves 65.4% on WSC and 65.8% on WIC, exceeding both MeZO-10k(LoRA) (59.6%
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Table 9: Task Performance Comparison for Different Methods on Llama2-13B

Task SST2 RTE BoolQ WSC WIC
MeZO-10k(LoRA) 89.7 66.8 763 59.6 59.9
MeZO-20k(LoRA) 943 704 82.1 615 627

MeZO-GV-10k(LoRA) 937 722 833 654 658

Table 10: Task Performance Comparison on OPT-30B

Task SST2 RTE BoolQ WSC WIC
Zero-shot 56.7 520 39.1 385 502
ICL 819 66.8 662 56.7 51.3
MeZO (prefix) 87.5 72,6 735 557 59.1
MeZO-GV (prefix) 914 758 774 615 627
SubZero (prefix) 893 740 768 59.6 583

SubZero-GV(prefix) 91.6 75.1 794 61.5 629

and 59.9%) and MeZO-20k(LoRA) (61.5% and 62.7%). These findings underscore the efficiency of GV
methods in achieving competitive performance with fewer training iterations.

On the OPT-30B model, GV-based methods also demonstrate superior performance compared to
non-GV variants and baseline approaches. For example, MeZO-GV (prefix) achieves 91.4% accuracy on
SST2, outperforming MeZO(prefix) (87.5%) and SubZero(prefix) (89.3%). On RTE, MeZO-GV (prefix)
attains 75.8% accuracy, surpassing MeZO(prefix) (72.6%) and SubZero(prefix) (74.0%). For BoolQ, GV
methods show significant improvements: MeZO-GV (prefix) achieves 77.4% accuracy, a notable gain over
MeZO(prefix) (73.5%) and SubZero(prefix) (76.8%). In more complex tasks such as WSC and WIC, GV
methods consistently outperform non-GV approaches: MeZO-GV (prefix) achieves 61.5% on WSC and
62.7% on WIC, demonstrating robust performance gains, highlighting the adaptability and effectiveness
of GV methods across different model architectures and task types. These findings position GV-based
fine-tuning as a promising approach for efficient adaptation of large-scale language models to downstream
applications.

C.4 Memory Usage of Different Methods

Table 11 compares memory usage (in GB) for fine-tuning the OPT-13B model across SST-2, WIC,
and BoolQ tasks using zero-shot, in-context learning (ICL), full fine-tuning (FT), and MeZO variants.
Zero-shot and ICL exhibit the lowest memory usage, ranging from 26.0 to 29.3 GB, as they do not
require parameter updates. In contrast, FT is highly memory-intensive, consuming between 242.3
and 315.3 GB due to the need for full parameter updates. MeZO variants—MeZO-FT, MeZO-LoRA,
and MeZO-Prefix significantly reduce memory usage by avoiding full gradient computations, making
them efficient alternatives to FT. Notably, MeZO-GV variants, which incorporate guiding vector (GV)
techniques, achieve comparable memory efficiency while further enhancing model convergence speed and
performance, demonstrating that GV not only maintains low memory usage but also improves optimization
effectiveness, making it a powerful tool for resource-constrained fine-tuning of large language models.

D Parameter-Efficient Fine-Tuning (PEFT)
We consider two PEFT methods, including {LoRA, prefix tuning}.

1) Low-Rank Adaptation (LoRA)

LoRA modifies a pre-trained model by introducing trainable low-rank matrices, enabling fine-tuning with
a limited parameters. Given a weight matrix W € R”*"™ in a transformer model, LoRA decomposes it as:

W'=W + BA

where W is the original weight matrix, B € R"*" and A € R"™*" are the low-rank matrices, and
r < min(m, n) represents the rank. During fine-tuning, only B and A are updated, keeping W frozen.
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Table 11: Memory usage (GB) of fine-tuning OPT-13B, with FT's batch size being 8 and 16 for other tasks.

Method Task

SST-2  WIC BoolQ
Zero-shot 26.0 26.0 26.3
ICL 27.2 28.5 29.3
FT 2423 2447 3153
MeZO (FT) 28.9 29.1 45.6
MeZO (LoRA) 28.6 29.3 46.5
MeZO (Prefix) 29.5 29.7 46.9
MeZO-GV (FT) 28.9 29.1 45.6

MeZO-GV (LoRA)  28.6 29.3 46.5
MeZO-GV (Prefix) 29.5 29.7 46.9

2) Prefix Tuning

Prefix tuning adds context vectors to the attention mechanism of transformer models. Given an input
sequence z, the model processes it with additional context vectors C' and C,, serving as keys and values
in the attention mechanism:

QK +Cp)T

Attention(Q, K, V') = softmax <
(@51 Vi

o

where @, K, and V represent the query, key, and value matrices in the attention mechanism, Cj, € R/ %,
C, € R™dv and [ is the length of the prefix. During training, only C} and C, are updated, and the
original model parameters are frozen.

E Algorithms

E.1 MeZO with Guiding Vector

Algorithm 1 MeZO with Guiding Vector

Require: Parameters § € R?, loss function £(6; B), step budget 7', perturbation scale ¢, batch size 3,
learning rate 7, weight decay A, fireworks size M, split ratio o € (0, 1)
1: for iterationt = 1to T do
Sample minibatch B; ~ D and random seed s
Compute guidance vector: v < COMPUTEGUIDINGVECTOR(6, M, o, s, B)
GUIDINGPERTURBATION(#, +¢, v)
Evaluate L « L(6; B;)
GUIDINGPERTURBATION(6, —2¢, v)
Evaluate L~ + L(6; B;)
GUIDINGPERTURBATION(f, +¢€, v)
Estimate directional gradient: g < (LT — £7)/(2¢)
10:  Update parameters: 6 «<— 0 —n - (g - v)
11: end for

R A A
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Algorithm 2 Subroutines for MeZO with Guiding Vector

Subroutine: COMPUTEGUIDINGVECTOR(A, M, «, s, B)
Initialize perturbation set O < ()
for particle i = 1 to M do
Generate unique seed s; < Hash(s @ i)
RANDOMPERTURBATION(#, €, s;)
Evaluate fitness [; < £(6; B)
RANDOMPERTURBATION(f, —¢, s;)
Store perturbation seed s;
O+ 0Ou {(lz, Sl)}
end for
: Sort O by ascending [; values
: Split into elite/non-elite groups:
Oyop < First(|aM |, O)
Obottom < Last(M — [aM |, O)
: Compute guide vector through the z; corresponding to the seed s; :

s A A R

—_ e e e e
SN kA2

_1 )
/U[Op A |O[0p| Z(livsi)eotop i

—_
~

1 ;
Ubottom < [Obotiom] Z(li7si)€(9bonom %
1 U £ Uop — Ubottom
: Return v

NN ==
- S © ®

: Subroutine: GUIDINGPERTURBATION(#, €, v)
: for each parameter 0; € 0 do

0« 0+ec-v

: end for

D N NN

: Subroutine: RANDOMPERTURBATION(S, ¢, s)
: Reset random number generator with seed s

: for each parameter 0; € 0 do

Zj ~ N (0, 1)

Qj — Gj +€- Zj

: end for

W W N NN

E.2 MeZO with Greedy Strategy

Algorithm 3 MeZO with Greedy Strategy

Require: Parameters § € R?, loss function £(6; B), step budget 7', perturbation scale ¢, batch size 3,
learning rate 77, weight decay A, candidate perturbations M
1: for iterationt = 1to T do
Sample minibatch ; ~ D and random seed s
Compute optimal perturbation: z* < COMPUTEGREEDYPERTURBATION(, M, ¢, s, B;)
GREEDYPERTURBATION(A, +e€, 2*)
Evaluate LT + L(0; By)
GREEDYPERTURBATION(f, —2¢, z*)
Evaluate £~ < L(0; ;)
GREEDYPERTURBATION(f, +¢, 2*)
Estimate directional gradient: g < (LT — £7)/(2¢)
10:  Update parameters: 6 «<— 0 —n - (g - z¥)
11: end for

R A A d
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Algorithm 4 Subroutines for MeZO with Greedy Strategy

1: Subroutine: COMPUTEGREEDYPERTURBATION(#, M, ¢, s, B)
2: Initialize perturbation set O < ()

3: for particle i = 1 to M do

4:  Generate unique seed s; < Hash(s @ 1)

5. RANDOMPERTURBATION(®, ¢, s;)
6

7

8

9

Evaluate fitness [; < £(6; B)
RANDOMPERTURBATION(f, —¢, s;)
Store perturbation z; and loss [;
O« 0U{(li,z)}
10: end for
11: Find the optimal perturbation:
120 2% < argming, . ycoli
13: Return z*
14:
15: Subroutine: GREEDYPERTURBATION(®, ¢, z*)
16: for each parameter 6; € 6 do
17: 0j<—9j—|-e-z;
18: end for
19:
20: Subroutine: RANDOMPERTURBATION(, ¢, s)
21: Reset random number generator with seed s
22: for each parameter 0; € 6 do
23z ~N(0,1)
24: 9j<—9j+6-zj
25: end for

F Proofs

Proof Lemma 1:

Proof. Using Matrix Bernstein theorem, we have P(||Sy — I|| > t) < d - exp( 2+zt) where 0% =

1
and L = ||z||2 < d + O(Vd). Lett = ¢ ,d - exp( 2+“) = ¢ and the proof is completed. O

Proof Lemma 2:

Proof It is not difficult to see that V = (V7Tg)g + V|, V| = (VTg)gand V| = V — V| =
h Zz 128 9711 BIVj] = g, E[Vi] = 0, E[||VL|*] = Trace(Cov(V1)) = Trace(;(Ia — 99"))

k

oo

Proof Lemma 3:
Proof. Suppose we sample k points, and we have
Vi<Ye<Y3<..<Y,Yi=zlyg

Beacuse selectmg the ¢-th smallest value from k samples implies that this value should fall below
approximately 7 of all possible samples in the overall distribution. Therefore Y; aligns with the ;-
quantile of the normal distribution:




We can get |Y7| = /2log(k)

Proof Lemma 4:
Proof.
.1 1
2= (X m- Y ) = oY Mg+ Zia) = Y (Vg + Z3)

1ENL JEN2 1ENL JEA2

! ZE—ZY} g+ ZZ@',J__ZZJ',J_

1ENT JEAN2 1ENT JEAN2

meER NERd

1
V=z2tlg = —(m'g+mN) =V + V.

m={Y Yi-> Y =2*ZY2~—2§:W
1

1E€EA1 JEN2 1EAL i=

logs
)

~ —2s4/2logk(1 —
mn y ogk( 2logk

N=|>%Z.-> Zj1| Zpr~N(0OIs—gg")

IS JEN2

N ~ N(0,2s(I; — gg™))

so we can get that,
Nl ~ /25(d - 1)

L H/HH _ Im| __ 2+/slogk
ration = v = I ¥ Va1
. V 2
ratiog = HHTH = "= ~ 8slogk
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