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Abstract001

Fine-tuning large language models (LLMs) has002
demonstrated exceptional performance across003
a variety of natural language processing (NLP)004
tasks. However, the increasing scale of these005
models imposes significant memory overhead006
during backpropagation. While zeroth-order007
(ZO) optimization mitigates this issue by esti-008
mating gradients through forward passes and009
Gaussian sampling, its random sampling strat-010
egy introduces variance that scales linearly with011
the number of parameters, leading to slow con-012
vergence and suboptimal performance. We pro-013
pose a novel gradient estimation framework014
that utilizes the computation of a guiding vec-015
tor, which is derived from Gaussian sampling016
to direct perturbations for approximating gra-017
dients. By incorporating this prior knowledge018
into the perturbation process, our method sig-019
nificantly accelerates convergence compared to020
traditional ZO approaches. Additionally, we021
investigate whether a greedy strategy can yield022
similar enhancements in gradient estimation,023
providing further insights into the optimization024
process. Theoretical analysis indicates that the025
proposed gradient estimator achieves a more026
substantial alignment with the true gradient di-027
rection, thereby improving optimization effi-028
ciency. Comprehensive experiments conducted029
across LLMs of varying scales and architec-030
tures demonstrate that our method could in-031
tegrates seamlessly into diverse optimization032
frameworks, delivering faster convergence and033
substantial performance improvements com-034
pared to existing methods.035

1 Introduction036

The emergence of fine-tuning techniques for large037

language models (LLMs) has revolutionized natu-038

ral language processing (NLP), enabling state-of-039

the-art performance in tasks such as text genera-040

tion and question answering (Brown et al., 2020;041

Achiam et al., 2023). However, as LLMs are scaled042

up, the computational and memory demands dur-043

ing full fine-tuning increase exponentially. A sig- 044

nificant bottleneck arises during backpropagation 045

(Rumelhart et al., 1986), which requires the stor- 046

age of intermediate activations and gradients, lead- 047

ing to substantial memory overhead. In recent 048

years, memory-efficient training strategies, such as 049

parameter-efficient fine-tuning (PEFT) (Hu et al., 050

2022; Houlsby et al., 2019; Li and Liang, 2021), 051

have emerged as promising alternatives by selec- 052

tively updating only a subset of model parameters. 053

Despite these advancements, memory efficiency 054

remains limited: experiments on OPT-13B (Zhang 055

et al., 2022) indicate that full fine-tuning and PEFT 056

still consume 12× and 6× more GPU memory than 057

inference, respectively (Malladi et al., 2023). 058

To address these challenges, researchers have 059

investigated alternative optimization paradigms 060

that reduce memory requirements while preserv- 061

ing model performance. Zeroth-order (ZO) opti- 062

mization has emerged as a promising candidate, 063

substituting backpropagation with gradient estima- 064

tion through Gaussian sampling and forward passes 065

(Malladi et al., 2023). ZO methods significantly 066

alleviate computational burdens by eliminating the 067

necessity to store intermediate activations, which 068

are a primary source of memory overhead. Recent 069

advancements focus on accelerating convergence 070

and minimizing gradient variance, with innovations 071

such as sparse perturbation strategies enhancing 072

computational efficiency (Liu et al., 2024; Guo 073

et al., 2024). Hybrid frameworks further integrate 074

ZO principles with established techniques: cou- 075

pling ZO with the Adam optimizer (Guo et al., 076

2024) enhances stability, while Hessian-aware gra- 077

dient estimation (Zhao et al., 2024) improves ac- 078

curacy by incorporating second-order curvature in- 079

formation. Concurrent efforts combine ZO with 080

Parameter-Efficient Fine-Tuning (PEFT) frame- 081

works, such as low-rank adaptations (Hu et al., 082

2022) and tensorized adapters (Yang et al., 2024), 083

to minimize the number of trainable parameters, 084
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Figure 1: The training loss curves for the WSC, SST-2, and BoolQ tasks are evaluated using the OPT-1.3B model.
Our proposed methods (MeZO-Greedy and MeZO-GV) are compatible with MeZO. For full fine-tuning, a learning
rate of 2e-7 is employed. All experiments are conducted with a consistent batch size of 16 to ensure uniformity
across evaluations.

demonstrating progress toward scalable and flexi-085

ble optimization.086

A fundamental challenge in zeroth-order (ZO)087

optimization arises from the inherent limitations of088

conventional gradient estimators, which typically089

rely on random Gaussian perturbations, such as090

those used in MeZO. Our work explicitly acknowl-091

edges that achieving perfect unbiasedness in the092

estimation of the ZO gradient is theoretically infea-093

sible in practice due to the presence of the finite094

difference parameter ϵ and the necessity of approx-095

imating expectations over random perturbations.096

Motivated by this inherent limitation, we propose097

to intentionally deviate from the standard Gaus-098

sian perturbation scheme by incorporating prior-099

informed perturbations.100

To this end, we introduce the Guiding Vector-101

Augmented Zeroth-Order (GV-ZO) method, which102

utilizes prior knowledge to direct the perturbation103

process. Our approach iteratively estimates a guid-104

ing vector through adaptive Gaussian sampling,105

thereby dynamically aligning the perturbation di-106

rection with the expected true gradient. Addition-107

ally, we propose a prior-informed greedy pertur-108

bation strategy, which further illustrates the effec-109

tiveness of integrating prior knowledge in gradient110

estimation through empirical evaluation.111

Theoretically, we demonstrate that our guid-112

ing vector-augmented and greedy-enhanced zeroth-113

order optimization frameworks achieve signifi-114

cantly stronger directional alignment with the true115

gradient compared to conventional ZO methods116

(see Section 5). This improved alignment ensures117

that each optimization step contributes more ef-118

fectively to the convergence dynamics (see Ap-119

pendix C.1). Empirical experiments conducted on120

diverse LLM architectures and scales show that our 121

method not only converges faster (see Figure 1) 122

but also yields substantial performance improve- 123

ments over existing approaches. Furthermore, on 124

the OPT-13B model, GV-based approaches consis- 125

tently achieve state-of-the-art performance across 126

all 11 benchmark tasks, outperforming traditional 127

zeroth-order optimization methods. When com- 128

pared to gradient-based baselines, GV-based meth- 129

ods exhibit superior results on 9 out of 11 tasks, 130

demonstrating a strong balance between efficiency 131

and accuracy. These results highlight the robust- 132

ness and adaptability of our framework. Notably, 133

our method employs a plug-and-play design, allow- 134

ing for seamless integration into a wide range of 135

optimization pipelines. This makes it a versatile 136

and practical solution for optimizing modern large 137

language models (LLMs), particularly in resource- 138

constrained environments. 139

2 Background 140

2.1 Simultaneous Perturbation Stochastic 141

Approximation (SPSA) 142

The Simultaneous Perturbation Stochastic Approxi- 143

mation (SPSA) (Spall, 1992) is a zeroth-order opti- 144

mization method used to approximate the gradient 145

of scalar-valued functions f(x) where x ∈ Rd. 146

The SPSA gradient estimate employs finite differ- 147

ences along random Gaussian directions: 148

∇̂f(x) = 1

q

q∑
i=1

(
f(x+ µui)− f(x− µui)

2µ

)
ui,

(1) 149

where q represents the number of function evalu- 150

ations, µ > 0 denotes the perturbation step size, 151

and ui ∼ N (0, I) are random direction vectors. 152
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As µ → 0, the finite difference converges to the153

directional derivative f ′(x,u) = u⊤∇f(x). This154

results in an unbiased gradient estimator:155

Eu[f
′(x,u)u] = Eu[uu

⊤∇f(x)] = ∇f(x),
(2)156

making SPSA particularly effective for high-157

dimensional optimization tasks, such as fine-tuning158

LLMs.159

2.2 Memory-Efficient ZO-SGD (MeZO)160

Given a labeled dataset D = {(xi, yi)}|D|
i=1, mini-161

batch B ⊂ D, and a loss function L(θ;B) with162

parameters θ ∈ Rd, the SPSA gradient estimate is163

expressed as follows:164

∇̂L(θ;B) = L(θ + ϵz;B)− L(θ − ϵz;B)
2ϵ

z,

(3)165

where z ∼ N (0, I) represents a random pertur-166

bation vector, and ϵ > 0 denotes the perturbation167

scale. The estimator ∇̂L(θ;B) ≈ zz⊤∇L(θ;B)168

requires only two forward passes, facilitating169

memory-efficient optimization. This serves as the170

foundation for Zeroth-Order Stochastic Gradient171

Descent (ZO-SGD):172

θt+1 = θt − η∇̂L(θ;Bt), (4)173

where Bt represents the t-th minibatch and η de-174

notes the learning rate, ZO-SGD mitigates the175

memory overhead associated with backpropaga-176

tion by substituting exact gradients with SPSA es-177

timates. For more related work, see Appendix B.178

3 Our Proposed Method179

The proposed method is a plug-and-play strategy180

designed for seamless integration into any zeroth-181

order optimization algorithm that employs stochas-182

tic perturbation for gradient estimation. The guid-183

ing vector mechanism and the greedy perturbation184

strategy are intentionally architecture-agnostic, en-185

suring broad compatibility with various optimiza-186

tion frameworks. This inherent flexibility allows187

the proposed method to be easily adapted to diverse188

optimization techniques without necessitating sig-189

nificant modifications to the underlying process.190

To rigorously demonstrate the effectiveness and191

generality of our approach, we have integrated the192

proposed mechanisms into two prominent zeroth-193

order optimization algorithms—MeZO (Malladi194

et al., 2023) and SubZero (Yu et al., 2024)—and195

conducted comprehensive experiments to evaluate196

their performance across a range of models and 197

tasks. 198

3.1 Memory-efficient ZO with Guiding Vector 199

In this work, we propose Memory-Efficient Zeroth- 200

Order Optimization with Guiding Vectors (MeZO- 201

GV), an advanced zeroth-order optimization al- 202

gorithm designed to efficiently optimize high- 203

dimensional parameters θ ∈ Rd in scenarios where 204

gradient computations are either infeasible or com- 205

putationally expensive. The algorithm builds upon 206

the traditional MeZO framework by introducing 207

a guiding vector v that directs parameter updates 208

toward more promising regions of the loss land- 209

scape. This guiding vector is computed using a 210

perturbation-based exploration strategy, which sig- 211

nificantly enhances convergence speed and opti- 212

mization performance compared to standard zeroth- 213

order methods. 214

The MeZO-GV algorithm iteratively updates the 215

model parameters θ over a fixed step budget T . At 216

each iteration t, MeZO-GV begins by sampling 217

a minibatch Bt from the dataset D and generat- 218

ing a random seed s to ensure in-place operation. 219

The guiding vector v is derived from a set of M 220

perturbations {zi}Mi=1, where each zi ∼ N (0, I) 221

is a random perturbation vector generated using 222

a unique seed si = Hash(s ⊕ i). The perturba- 223

tions are evaluated on the loss function L, and the 224

top αM perturbations with the lowest losses are 225

selected as the elite group Otop, while the remain- 226

ing form the non-elite group Obottom. The guiding 227

vector v is computed as: 228

v =
1

|Otop|
∑

zi∈Otop

zi−
1

|Obottom|
∑

zi∈Obottom

zi, (5) 229

Using the guiding vector v, MeZO-GV estimates 230

the directional gradient ∇̂L(θ;B) via: 231

∇̂L(θ;B) = L(θ + ϵv;B)− L(θ − ϵv;B)
2ϵ

v,

(6) 232

where ϵ > 0 is the perturbation scale, this esti- 233

mator approximates the gradient as ∇̂L(θ;B) ≈ 234

vv⊤∇L(θ;B). This approach requires only two 235

forward passes and eliminates the need for back- 236

propagation, thereby facilitating memory-efficient 237

optimization. The parameters θ are updated accord- 238

ing to Equation 4. By leveraging the guiding vector 239

v, MeZO-GV allows the algorithm to concentrate 240

on the most promising directions for parameter up- 241

dates, resulting in faster convergence and improved 242

3



optimization performance. The complete algorith-243

mic implementation is provided in Appendix E.1.244

245

3.2 Memory-efficient ZO with Greedy246

Perturbation247

In addition to the guiding vector mechanism, we248

propose another Memory-efficient ZO with Greedy249

Perturbation (MeZO-Greedy) strategy as a com-250

plementary optimization component to further en-251

hance the performance of the optimization process.252

MeZO-Greedy functions as an independent mech-253

anism that actively explores the most promising254

update directions at each iteration. Specifically, the255

algorithm generates a set of M candidate pertur-256

bations {zi}Mi=1, where each zi is sampled from a257

predefined distribution. The greedy selection pro-258

cess then identifies the optimal perturbation z∗ that259

minimizes the loss function in the vicinity of the260

current parameters:261

z∗ = arg minziL(θ + ϵzi;B), (7)262

where ϵ controls the exploration radius, and B rep-263

resents the current mini-batch of data, the selected264

perturbation z∗ encapsulates the most favorable265

direction for parameter updates based on immedi-266

ate feedback from the loss landscape, effectively267

capturing the local geometry of the optimization268

surface.269

Building upon this selected direction, we cal-270

culate an independent gradient estimate using a271

symmetric difference approximation:272

∇̂∗L(θ;B) = L(θ + ϵz∗;B)− L(θ − ϵz∗;B)
2ϵ

z∗,

(8)273

Then the parameters θ are updated using the Equa-274

tion 4. The complete algorithmic implementation275

is presented in Appendix E.2.276

4 Experiments and Analysis277

LLM fine-tuning tasks and models For all ex-278

periments, we consider the SuperGLUE (Wang279

et al., 2019) dataset collection, which includes280

CB (De Marneffe et al., 2019), COPA (Roem-281

mele et al., 2011), MultiRC (Khashabi et al., 2018),282

RTE (Bar-Haim et al., 2014), WiC (Pilehvar and283

Camacho-Collados, 2019), WSC (Levesque, 2011),284

BoolQ (Clark et al., 2019), and ReCoRD (Zhang285

et al., 2018). Additionally, we incorporated SST-2286

(Socher et al., 2013) and two question-answering287

(QA) datasets: SQuAD (Rajpurkar et al., 2016)288

and DROP (Dua et al., 2019). We also conduct 289

experiments on two representative language mod- 290

els of varying sizes. For OPT (Zhang et al., 2022), 291

we test the OPT-1.3B, OPT-13B, and OPT-30B 292

models, while for Llama2 (Touvron et al., 2023), 293

we evaluate the Llama2-7B-hf and Llama2-13B-hf 294

models. For specific details and the experimental 295

setup, please refer to the Appendix A. 296

We evaluate zeroth-order (ZO) large language 297

model (LLM) fine-tuning using two sets of met- 298

rics: accuracy and efficiency. Accuracy measures 299

the fine-tuned model's test data performance on 300

specific tasks. Efficiency encompasses various 301

measurements, including memory efficiency (e.g., 302

peak memory usage or GPU cost) and convergence 303

speed. 304

4.1 Medium-sized Language Models 305

As shown in Table 1, the experimental results 306

demonstrate that GV-based methods, particularly 307

MeZO-GV, consistently outperform both vanilla 308

MeZO and baseline approaches across a wide 309

range of tasks. This highlights that our proposed 310

method achieves significant performance improve- 311

ments. By leveraging guiding vectors, MeZO- 312

GV enhances fine-tuning efficiency, achieving sig- 313

nificant performance gains in classification tasks 314

(e.g., +3.8% on SST-2), multiple-choice tasks (e.g., 315

+5.0% on COPA), and generation tasks (e.g., +3.2% 316

on SQuAD). Notably, MeZO-GV excels in com- 317

plex scenarios, such as WSC (+3.9% improvement) 318

and MultiRC (+5.3% improvement), where vanilla 319

MeZO and baseline methods exhibit limited ef- 320

fectiveness. Additionally, the proposed method 321

demonstrates significantly accelerated convergence 322

rates, as illustrated in Appendix C.1. For instance, 323

on SST-2 and WSC, MeZO-GV achieves perfor- 324

mance comparable to vanilla MeZO at 20,000 steps 325

in just 6,000 and 1,000 steps, respectively. These 326

results highlight MeZO-GV's ability to stabilize the 327

optimization process while effectively adapting to 328

diverse task requirements, establishing it as a ro- 329

bust and memory-efficient fine-tuning framework. 330

4.2 Large Language Models 331

With the promising results from OPT-1.3B, we 332

scale the model to larger sizes and architectures 333

to further validate the proposed methods. As 334

shown in Table 2, the experimental results on OPT- 335

13B demonstrate that GV-based methods, such as 336

MeZO-GV and SubZero-GV, consistently outper- 337

form their non-GV counterparts and baseline ap- 338
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Table 1: Comparison of average task performance across different methods on OPT-1.3B over three rounds. Results
are reported for zero-shot, in-context learning (ICL), and MeZO-based methods, including variants with guiding
vectors (GV), LoRA, and prefix tuning. The best performance for each task is highlighted in bold.

Task Type —– classification —– —– multiple choice —– —– generation —–
Task SST2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

Zero-shot 53.6 53.1 39.3 44.9 43.3 53.5 45.4 73.0 70.5 27.2 11.2
ICL 80.0 53.4 44.6 59.4 46.2 50.3 46.3 69.0 71.0 58.7 20.5

MeZO(FT) 89.2 57.4 71.4 62.5 56.7 57.2 53.3 73.0 70.9 72.0 21.9
MeZO-GV(FT) 93.0 60.6 69.6 64.4 60.6 58.0 58.6 78.0 72.0 75.2 24.1

MeZO(LoRA) 90.8 61.7 71.2 63.4 58.7 60.2 57.0 74.0 71.5 77.5 23.1
MeZO-GV(LoRA) 93.5 62.8 70.5 64.8 62.5 60.7 60.6 76.0 72.4 78.7 24.4

MeZO(Prefix) 90.1 65.7 69.6 63.0 60.6 56.0 59.1 71.0 70.4 76.0 23.2
MeZO-GV(Prefix) 92.1 66.8 70.9 64.5 60.8 58.2 62.7 74.0 72.7 78.8 24.8
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Figure 2: Validation Accuracy on SST2 and BoolQ Tasks for Llama2-7B and Llama2-13B. All experiments are
conducted with a batch size of 16. For LoRA-based methods, the learning rate is set to 1e-4, while for full-parameter
methods, the learning rate is set to 5e-7.

proaches across a wide range of tasks. In classi-339

fication tasks, SubZero-GV(FT) achieves 94.7%340

accuracy on SST-2, surpassing MeZO(FT) by341

2.7%, whileMeanwhile, SubZero-GV(Prefix) at-342

tains 85.7% accuracy on CB, outperforming ZO-343

AdaMU(Prefix) by 13.4%. SubZero-GV(Prefix)344

achieves 76.2% accuracy on RTE, marking a345

5.4% improvement over MeZO(Prefix), and scores346

65.1% on MultiRC, leading all compared methods.347

In generation tasks, SubZero-GV (LoRA) achieves348

85.3% on SQuAD, outperforming MeZO (LoRA)349

by 1.5%, while MeZO-GV(LoRA) achieves 32.7%350

on DROP, surpassing MeZO (LoRA) by 1.3%. In351

multiple-choice tasks, GV-based methods consis-352

tently demonstrate advantages: MeZO-GV (Pre-353

fix) achieves 90.0% accuracy on COPA, outper-354

forming MeZO (Prefix) by 3.0%. Compared to355

zeroth-order optimization methods, GV-based ap-356

proaches exhibit superior performance across all357

11 tasks. Additionally, when compared to gradient-358

based methods, GV-based methods excel in 9 out359

of 11 tasks.360

To further validate the effectiveness of the pro-361

posed method, we extend our approach to the362

Llama2-7B model, with the experimental results363

presented in Table 3. The results demonstrate 364

that our GV-based methods consistently outper- 365

form non-GV variants across multiple tasks while 366

also achieving significant efficiency improvements. 367

Specifically, GV-based methods achieve superior 368

performance with only 10,000 training steps, sur- 369

passing the results of other methods that are trained 370

for 20,000 steps. GV-based methods exhibit strong 371

performance across various tasks. For instance, 372

MeZO-GV-10k achieves 90.4% accuracy on SST- 373

2, outperforming both MeZO-10k (85.3%) and 374

MeZO-20k (88.7%) with half the training steps. 375

Similarly, MeZO-GV-10k (LoRA) achieves 94.3% 376

accuracy on SST-2, surpassing MeZO-10k (LoRA) 377

(87.7%) and MeZO-20k (LoRA) (93.7%). On 378

more challenging tasks such as WSC and WIC, GV- 379

based methods demonstrate consistent improve- 380

ments, achieving 62.5% and 62.3% accuracy, re- 381

spectively, outperforming non-GV methods with 382

fewer training steps. Additionally, we conduct ex- 383

periments on larger models, including Llama2-13B 384

and OPT-30B, with detailed results provided in Ap- 385

pendix C.1. In Figure 2, we present the curves of 386

training steps versus validation accuracy, which 387

further illustrate the effectiveness of GV-based 388
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Table 2: Average task performance of various methods across three rounds on OPT-13B. Results are reported
for zero-shot, in-context learning (ICL), ZO-AdaMU (extends zeroth-order optimization to the Adam algorithm),
HiZOO (Hessian matrix-based gradient estimation in ZO optimization), SubZero (decomposes parameter mapping
into low-dimensional subspaces), MeZO, and their variants that incorporate guiding vectors (GV), LoRA, and prefix
tuning. Fine-tuning using the Adam is also included. The best performance for each task among the zeroth-order
optimization methods is highlighted in bold.

Task Type —– classification —– —– multiple choice —– —– generation —–
Task SST2 RTE CB BoolQ WSC WIC MultiRC COPA ReCoRD SQuAD DROP

Zero-shot 58.8 59.6 46.4 59.0 38.5 55.0 46.9 80.0 81.2 46.2 14.6
ICL 87.0 62.1 57.1 66.9 39.4 50.5 53.1 87.0 82.5 75.9 29.6

ZO-AdaMU (2×) 92.1 72.9 67.9 73.0 61.5 60.7 63.0 89.0 83.0 82.4 32.0
ZO-AdaMU (LoRA) 88.0 72.0 71.6 72.6 60.1 56.4 58.9 88.0 83.2 76.8 32.4
ZO-AdaMU (Prefix) 88.0 61.8 72.3 74.9 56.5 58.2 61.9 86.0 82.8 85.2 30.4

HiZOO 92.1 69.3 69.4 67.3 63.5 59.4 61.3 88.0 81.4 81.9 25.0
HiZOO(LoRA) 90.6 67.5 69.6 70.5 63.5 60.2 60.2 87.0 81.9 83.8 25.1
HiZOO(Prefix) 92.0 71.8 69.6 73.9 60.6 60.0 64.8 87.0 81.2 83.2 25.3

MeZO(FT) 91.4 66.1 67.9 67.6 63.5 61.1 60.1 88.0 81.7 84.7 30.9
SubZero(FT) 92.1 74.0 73.2 75.3 65.4 60.8 61.0 88.0 82.3 84.5 32.0
MeZO-GV(FT) 93.9 73.5 71.6 72.5 65.4 61.4 62.5 89.0 82.9 84.9 31.7
SubZero-GV(FT) 94.7 74.8 73.9 76.8 64.4 62.7 63.2 89.0 83.1 84.9 31.3

MeZO(LoRA) 89.6 67.9 66.1 73.8 64.4 59.7 61.5 84.0 81.2 83.8 31.4
SubZero(LoRA) 93.8 75.5 71.4 76.1 65.4 60.3 60.3 89.0 81.9 83.7 31.3
MeZO-GV(LoRA) 91.6 72.6 72.8 75.6 66.3 60.9 61.9 89.0 82.9 84.9 32.7
SubZero-GV(LoRA) 94.0 75.8 73.8 77.6 65.4 63.9 64.1 90.0 83.8 85.3 32.4

MeZO(Prefix) 90.7 70.8 69.6 73.1 60.6 59.9 63.7 87.0 81.4 84.2 28.9
SubZero(Prefix) 91.7 73.6 80.3 76.3 62.1 61.1 63.5 88.0 82.0 83.7 32.0
MeZO-GV(Prefix) 92.4 74.8 73.2 76.6 63.5 61.8 64.4 90.0 82.7 84.3 30.9
SubZero-GV(Prefix) 93.1 76.2 85.7 77.1 64.4 64.1 65.1 89.0 82.5 85.1 32.9

FT 92.0 70.8 83.9 77.1 63.5 70.1 71.1 79.0 74.1 84.9 31.3

Table 3: Task Performance Comparison for Different
Methods on Llama2-7B.

Task SST2 RTE BoolQ WSC WIC

MeZO-10k 85.3 58.1 72.1 60.8 57.8
MeZO-20k 88.7 62.1 80.1 62.1 60.8
MeZO-GV-10k 90.4 64.3 81.3 62.5 62.3

MeZO-10k(LoRA) 87.7 60.6 76.9 58.9 56.3
MeZO-20k(LoRA) 93.7 63.3 79.5 62.5 57.5
MeZO-GV-10k(LoRA) 94.3 65.7 80.7 61.5 61.4

methods. The curves demonstrate that GV-based389

methods achieve comparable validation accuracy390

with significantly fewer training steps compared391

to non-GV methods, reinforcing their efficiency392

and performance advantages. These results val-393

idate the scalability and robustness of GV-based394

methods across different model sizes, highlighting395

their potential for efficient fine-tuning in resource-396

constrained environments.397

4.3 MeZO with Greedy Strategy398

In Table 4, we present the test accuracy of various399

optimization methods, including MeZO, MeZO-400

Table 4: Task Performance Comparison of Greedy Strat-
egy for Different Methods on Llama2-7B and OPT-13B

Model Task WiC RTE BoolQ

Llama2-7B
MeZO 60.8 62.1 80.1
MeZO-Greedy 63.0 63.6 81.9
MeZO (LoRA) 57.5 63.3 79.5
MeZO-Greedy (LoRA) 61.9 65.7 80.8

OPT-13B
MeZO 61.1 66.1 67.6
MeZO-Greedy 61.9 72.2 72.6
MeZO (LoRA) 60.8 74.0 75.3
MeZO-Greedy (LoRA) 62.7 75.8 75.9

Greedy, SubZero, and SubZero-Greedy, applied to 401

the Llama2-7B and OPT-13B models across mul- 402

tiple datasets (e.g., WIC, RTE, BoolQ). The re- 403

sults demonstrate that the Greedy variants (MeZO- 404

Greedy and SubZero-Greedy) consistently achieve 405

higher accuracy compared to their standard counter- 406

parts (MeZO and SubZero). For instance, MeZO- 407

Greedy outperforms standard MeZO, and SubZero- 408

Greedy exhibits superior performance over stan- 409

dard SubZero. This trend suggests that Greedy 410

strategies are more effective in optimizing model 411

performance, particularly in resource-constrained 412

6



scenarios. Moreover, when combined with tech-413

niques like LoRA (Low-Rank Adaptation), the414

Greedy variants (e.g., MeZO-Greedy (LoRA))415

maintain or even enhance accuracy while reduc-416

ing computational costs. The performance advan-417

tage of the Greedy methods is consistent across418

different datasets and model sizes, demonstrating419

their robustness and broad applicability. These420

findings highlight the effectiveness of the Greedy421

strategies in improving model accuracy and effi-422

ciency. Additionally, in Appendix C.2, we provide423

the training loss convergence curves based on the424

Greedy strategy, which reveal that perturbations425

guided by prior knowledge accelerate the model's426

convergence speed and achieve better performance427

compared to the original baseline.428

4.4 Impact of the Number of Evaluations429

In Figure 3, we illustrate the performance of the430

OPT-13B model across three datasets—WIC, Copa,431

and WSC—as the number of evaluations varies432

from 4 to 12. The Copa and WSC datasets ex-433

hibit stable performance with increasing evalua-434

tions, suggesting limited sensitivity to additional it-435

erations. In contrast, the WIC dataset demonstrates436

the most significant improvement, highlighting its437

stronger dependence on the number of evaluations.438

These findings reveal that the impact of the number439

of evaluations varies substantially across datasets,440

emphasizing the need for dataset-specific optimiza-441

tion strategies. Notably, the experiments indicate442

that for many datasets, increasing the number of443

evaluations does not consistently enhance perfor-444

mance; often, only a few iterations are sufficient445

to achieve robust results. We further support this446

observation with a theoretical analysis confirming447

that excessive evaluations are not always benefi-448

cial. While additional evaluations may acceler-449

ate model convergence, they can also increase the450

risk of overfitting. Therefore, a balanced approach,451

carefully tailored to the unique characteristics of452

each dataset, is essential for achieving optimal per-453

formance.454

4.5 Directional Alignment Analysis455

To quantitatively assess the quality of zeroth-456

order gradient estimation, we examine the direc-457

tional alignment between the estimated gradient458

ĝ—obtained via MeZO or MeZO-GV—and the459

true gradient g, which is computed using stochastic460

gradient descent (SGD). Specifically, we calculate461

the expected cosine similarity cos(g, ĝ) as a mea-462
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Figure 3: Performance of OPT-13B Model Across three
Datasets as a Function of Prior-Estimated Times
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Figure 4: Cosine similarity between the estimated gra-
dient ĝ and the true gradient g computed by SGD, on
SST-2 and BoolQ using OPT-1.3B in the prefix tuning
scheme.

sure of alignment quality. Figure 4 illustrates the 463

alignment trends on SST-2 and BoolQ using the 464

OPT-1.3B model under the prefix tuning setting. 465

All methods are trained with a batch size of 16 466

for 10K steps. As illustrated in Figure 4, MeZO- 467

GV consistently achieves a higher cosine similar- 468

ity compared to the standard MeZO baseline and 469

closely follows the direction of the true gradient ob- 470

tained via SGD. These empirical findings provide 471

robust support for our theoretical analysis, which 472

predicts enhanced alignment when perturbations 473

are guided by prior-informed directions. 474

5 Theory Analysis 475

To discuss the approximation efficiency of the ex- 476

pectation in Equation 2, we propose the following 477

lemma. 478

Lemma 1. Under the ZO setting, assume the dim- 479

sension of the problem is d, and the sampling num- 480

ber is k, z1, z2, ..., zk ∼ N(0, Id). Let ϵ be a small 481

positive number, δ > 0 and Sk = 1
k

∑k
i=1 ziz

T
i . 482

When k = O
(
1
ϵ2
log

(
d
δ

))
, with probability p ≥ 483

1− δ, we have ∥Sk− Id∥ ≤ ϵ. Please note that the 484

experimental configuration of MeZO(K = 1) is 485

far from the theoretical bound, indicating that its 486
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approximation efficiency is not satisfactory.487

Lemma 2. Under the ZO settings, assume the488

dimension of the optimization problem is d, and489

the sampling number is k, where z1, z2, . . . , zk490

are all standard normal distributions, and g is the491

gradient direction (without loss of generality, as-492

sume the length is 1). Define V = 1
k

∑
i ziz

T
i g,493

V∥ = (V T g)g, V⊥ = V − V∥. We have the follow-494

ing conclusions:495

ratio1 =
∥V∥∥
∥V⊥∥

≈
√

k

d− 1
.496

ratio2 =
∥V∥∥
∥g∥

≈ 1.497

The Lemma 2 analyzes the norm ratio between498

the parallel component (aligned with the true gradi-499

ent g) and the orthogonal component. For k Gaus-500

sian random vectors, the parallel component domi-501

nates with a ratio ∥V∥∥/∥V⊥∥ ≈
√

k
d−1 , while its502

length aligns closely with g (∥V∥∥/∥g∥ ≈ 1).503

Lemma 3. Under the ZO combined with greedy504

permutation, assume the dimension of the optimiza-505

tion problem is d, and the sampling number is k,506

where z1, z2, . . . , zk are all standard normal dis-507

tributions, and g is the gradient direction (without508

loss of generality, assume the length is 1). Us-509

ing decomposition, we have zi = (zTi g)g + zi,⊥,510

Yi = zTi g and let Y1 = min1≤i≤k Yi, we have its511

PDF as512

f(y) = k(1− Φ(y))k−1ϕ(y).513

Now V = z1z
T
i g = (Y1g+z1,⊥)(Y1g+z1,⊥)

T g =514

Y 2
1 g + Y1z1,⊥,V∥ = Y 2

1 g, V⊥ = Y1z1,⊥. We have515

the following conclusions:516

ratio1 =
∥V∥∥
∥V⊥∥

=
|Y1|
|z1,⊥|

≈ |Y1|√
d− 1

≈
√
2 log(k)√
d− 1

.517

ratio2 =
∥V∥∥
∥g∥

= Y 2
1 ≈ 2 log(k).518

519

The norm ratio of the parallel component to the520

true gradient satisfies ratio2 =
∥V∥∥
∥g∥ ≈ 2 log(k), en-521

hancing the dominance of the parallel component,522

making the ZO estimation more accurate along the523

gradient direction.524

Lemma 4. Under the ZO combined with guding525

vector, assume the dimension of the optimization526

problem is d, and the sampling number is k, where527

z1, z2, . . . , zk are all standard normal distributions, 528

g is the gradient direction with norm 1, σ is the 529

ratio of sparks selected to calculate guding vec- 530

tor, s = [σ ∗ k]. Using decomposition, we have 531

zi = (zTi g)g + zi,⊥, Yi = zTi g and let Y1 < Y2 < 532

... < Yk, ∧1 = {1, 2, ..., s},∧2 = {k, k − 1, k − 533

2, ..., k − s + 1},ẑ = 1
s

(∑
i∈Λ1

zi −
∑

j∈Λ2
zj

)
, 534

V = ẑẑT g = V∥ + V⊥,We have the following con- 535

clusions: 536

ratio1 =
∥V∥∥
∥V⊥∥

=
2
√
s log k√
d− 1

537

ratio2 =
∥V∥∥
∥g∥

= 8s log k 538

539

The ratios ratio1 = 2
√
s log k√
d−1

and ratio2 = 540

8s log k show that increasing s or k significantly 541

boosts ∥V∥∥, enhancing alignment with the gradi- 542

ent direction. 543

Table 5 compares the current ZO algorithm and 544

its variants in terms of the gradient-aligned com- 545

ponent ratio. Both ZO-Greedy and ZO-GV signif- 546

icantly improve the gradient-aligned component 547

ratio through the greedy strategy and guiding vec- 548

tor, respectively. In particular, ZO-GV achieves 549

the best performance when increasing s and k. In 550

Appendix F, we provide a detailed theoretical proof 551

to support these findings.

Table 5: Comparison of Gradient-aligned Component
Ratio

Algorithm Index ZO ZO-Greedy ZO-GV
∥V∥∥
∥V⊥∥

√
k

d−1
O

(√
log(k)

√
d−1

)
O
(√

s log k√
d−1

)
∥V∥∥
∥g∥ 1 O(log(k)) O(s log(k))

552

6 Conclusion 553

In this paper, we propose two distinct prior- 554

informed approaches to enhance zeroth-order op- 555

timization: a guiding vector-augmented strategy 556

and a greedy perturbation strategy. Both methods 557

leverage prior knowledge to significantly improve 558

optimization performance and efficiency. Theo- 559

retically and empirically, our approaches achieve 560

more substantial directional alignment with the true 561

gradient, drastically reducing the number of conver- 562

gence iterations while maintaining high accuracy. 563

These innovations underscore the effectiveness of 564

prior-guided perturbations, providing scalable and 565

efficient solutions for optimizing LLMs. 566
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Limitations567

Despite demonstrating promising results, this study568

has several limitations that warrant discussion.569

First, while the proposed prior-informed pertur-570

bation strategy proves effective, the research does571

not systematically investigate which types of prior572

knowledge are most suitable for different model573

architectures or task requirements, leaving the op-574

timal selection criteria for future exploration. Sec-575

ond, although designed as a plug-and-play frame-576

work and validated against mainstream approaches,577

the method's generalizability across the full spec-578

trum of existing zeroth-order optimization tech-579

niques remains to be comprehensively verified.580

Third, constrained by computational resources, our581

empirical validation was limited to models with up582

to 30 billion parameters, leaving open questions583

about the method's scalability to hundred-billion584

or trillion-parameter models and its potential trade-585

offs in such extreme-scale scenarios. These limi-586

tations highlight valuable directions for future re-587

search to further strengthen the framework's theo-588

retical foundations and practical applicability.589
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This study raises no ethical concerns, as it involves591

no human or animal subjects, confidential data, or592
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tifiable information was used, and all sources are596

properly cited to avoid plagiarism or misrepresen-597

tation.598
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A Datasets and Setup856

As shown in Table 6, the datasets utilized in our experiments encompass three types of tasks: classification857

tasks, multiple choice tasks, and question-answer tasks. Previous studies (Brown et al., 2020; Gao et al.,858

2021; Schick and Schütze, 2021) have demonstrated that incorporating appropriate prompts ensures that859

fine-tuning objectives are closely aligned with the pre-training one. Specifically, simple prompts can860

streamline the fine-tuning optimization, enabling zeroth-order methods to work efficiently (Malladi et al.,861

2023). We investigate three fine-tuning schemes to validate the proposed method: full-tuning (FT), which862

fine-tunes the entire pre-trained model; low-rank adaptation (LoRA), which fine-tunes the model by863

introducing low-rank weight perturbations (Hu et al., 2022); and prefix-tuning (Prefix), which fine-tunes864

the model by appending learnable parameters to the attention mechanism of Transformers (Li and Liang,865

2021). For further details, please refer to Appendix D.866

Setup. We compare our methods with zero-shot, in-context learning (ICL), and fine-tuning with Adam867

(FT). Additionally, we validate the effectiveness of our methods by applying them to MeZO (Malladi868

et al., 2023) and SubZero (Yu et al., 2024). Following the MeZO, we randomly sample 1,000 examples869

for training, 500 examples for validation, and 1,000 examples for testing. Unless otherwise specified,870

we set the query budget per gradient estimation to q = 1 and the hyperparameter α to 0.5. The number871

of prior-estimated times M is set to either 2 or 4. We execute MeZO and SubZero for 20,000 steps,872

while our proposed method is trained for 10,000 steps. All models are validated every 1,000 steps. To873

reduce memory consumption, we employ half-precision training (FP16) for zeroth-order optimization874

(ZO) methods. All experiments are conducted on Nvidia A100 GPUs with 80GB of memory or Nvidia875

3090 GPUs with 24GB of memory. Detailed learning rates, batch sizes, and other hyperparameter876

configurations for the different models are provided in Table 7 and Table 8. Our code is available in877

https://github.com/stan-anony/MeZO-GV

Table 6: The prompts of the datasets used in our OPT experiments.

Dataset Type Task Type Prompt
SST-2 cls. <text> It was terrible/great
RTE cls. <premise> Does this mean that “<hypothesis>” is true? Yes or No?

Yes/No
CB cls. Suppose <premise> Can we infer that “<hypothesis>”? Yes, No, or Maybe?

Yes/No/Maybe?
BoolQ cls. <passage> <question>?

Yes/No
WSC cls. <text>

In the previous sentence, does the pronoun “<span2>” refer to “<span1>”? Yes or No?
Yes/No

WIC cls. Does the word “<word>” have the same meaning in these two sentences? Yes or No?
<sent1>
<sent2>
Yes/No

MultiRC cls. <paragraph>
Question: <question>
I found this answer “<answer>”. Is that correct? Yes or No?
Yes/No

COPA mch. <premise> so/because <candidate>
ReCoRD mch. <passage>

<query>.replace(“@placeholder”, <candidate>)
SQuAD QA Title: <title>

Context: <context>
Question: <question>
Answer:

DROP QA Passage: <context>
Question: <question>
Answer:

878
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Table 7: Experiment Hyperparameters on OPT Models

Experiment Hyperparameter Value

MeZO (FT)
Batch Size 16

Learning Rate {1e-7, 2e-7, 5e-7}
ϵ 1e-3

MeZO (LoRA)
Batch Size 16

Learning Rate {3e-5, 5e-5, 1e-4}
ϵ 1e-2

MeZO (Prefix)
Batch Size 16

Learning Rate {1e-3, 5e-3, 1e-2}
ϵ 1e-1

SubZero (FT)

Batch Size 16
Learning Rate {1e-7, 2e-7, 5e-7}

ϵ 1e-3
Rank {32, 64}

Subspace Change Frequency {500, 1000, 2000}

SubZero (LoRA)

Batch Size 16
Learning Rate {3e-5, 5e-5, 1e-4}

ϵ 1e-2
Rank {32, 64}

Subspace Change Frequency {500, 1000, 2000}

SubZero (Prefix)

Batch Size 16
Learning Rate {1e-3, 5e-3, 1e-2}

ϵ 1e-1
Rank {8, 16}

Subspace Change Frequency {500, 1000, 2000}

MeZO-GV (FT)

Batch Size 16
Learning Rate {1e-7, 2e-7, 3e-7, 5e-7}

ϵ 1e-3
k {4, 8, 12}

MeZO-GV (LoRA)

Batch Size 16
Learning Rate {3e-5, 5e-5,1e-4}

ϵ 1e-2
k {4, 8, 12}

MeZO-GV (Prefix)

Batch Size 16
Learning Rate {1e-3, 5e-3, 1e-2}

ϵ 1e-1
k {4, 8, 12}

SubZero-GV (FT)

Batch Size 16
Learning Rate {1e-7, 2e-7, 3e-7, 5e-7}

k {4, 8, 12}
ϵ 1e-3

Rank {32, 64}
Subspace Change Frequency {500, 1000, 2000}

SubZero-GV (LoRA)

Batch Size 16
Learning Rate {3e-5, 5e-5,1e-4}

ϵ 1e-2
k {4, 8, 12}

Rank {32, 64}
Subspace Change Frequency {500, 1000, 2000}

SubZero-GV (Prefix)

Batch Size 16
Learning Rate {1e-3, 5e-3, 1e-2}

ϵ 1e-1
k {4, 8, 12}

Rank {8, 16}
Subspace Change Frequency {500, 1000, 2000}

SGD (FT) Batch Size 16
Learning Rate {1e-4, 1e-3, 5e-3}
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Table 8: Experiment Hyperparameters on Llama2 Models

Experiment Hyperparameter Value

MeZO (FT)
Batch Size 16

Learning Rate {1e-7, 2e-7, 5e-7}
ϵ 1e-3

MeZO (LoRA)
Batch Size 16

Learning Rate {3e-5, 5e-5, 1e-4}
ϵ 1e-2

MeZO-GV (FT)

Batch Size 16
Learning Rate {1e-7, 2e-7, 3e-7, 5e-7}

ϵ 1e-3
k {4, 8, 12}

MeZO-GV (LoRA)

Batch Size 16
Learning Rate {3e-5, 5e-5,1e-4}

ϵ 1e-2
k {4, 8, 12}

B Related Work879

Gradient-free Optimization of LLMs Recent advancements in gradient-free optimization have utilized880

evolutionary algorithms, particularly the Covariance Matrix Adaptation Evolution Strategy (CMA-ES)881

(Hansen and Ostermeier, 2001), to optimize continuous prompt vectors in black-box tuning methods.882

This approach has demonstrated significant advantages for applying large language models by reducing883

complexity. However, training these prompt vectors has exhibited instability and slow convergence rates884

(Sun et al., 2022b,a). To address these issues, Jin et al. (2024) proposed a gradient-free optimization885

framework for low-rank adaptation to stabilize training and improve convergence speed.886

Zeroth-Order Optimization of LLMs Zeroth-order optimization (ZO) has emerged as a pivotal gradient-887

free method in machine learning, particularly in scenarios where gradient computation is infeasible or888

prohibitively expensive (Ren et al., 2021; Kim et al., 2023; Chen et al., 2024). ZO has also inspired the889

development of distributed optimization techniques (Tang and Li, 2019) and has been effectively applied to890

black-box adversarial example generation in deep learning (Cai et al., 2021; Liu et al., 2019). In addition,891

several ZO methods have been proposed that achieve optimization without explicitly estimating gradients892

(Golovin et al., 2020; Mania et al., 2018; Hinton, 2022). Recently, the application of ZO optimization893

to fine-tuning LLMs has demonstrated significant reductions in GPU utilization and memory footprint894

(Malladi et al., 2023; Gautam et al., 2024; Zhang et al., 2024). These advancements have catalyzed a grow-895

ing body of research on zeroth-order optimization techniques tailored for LLMs. Recent advancements896

in ZO optimization have primarily focused on enhancing convergence rates and minimizing gradient897

estimation variance to optimize fine-tuning of LLMs. Increasing the batch size has effectively reduced898

noise in ZO gradient estimation (Gautam et al., 2024; Jiang et al., 2024). Sparse perturbation strategies899

improve efficiency by selectively perturbing a subset of parameters, thereby reducing computational900

overhead and gradient variance (Liu et al., 2024; Guo et al., 2024). These strategies achieve sparse901

parameter perturbations through techniques such as random and sparse pruning masks (Liu et al., 2024)902

or block-coordinate perturbations (Zhang et al., 2024). Notably, Guo et al. (2024) extended zero-order903

optimization to the Adam algorithm, while Zhao et al. (2024) enhanced model inference performance904

by incorporating Hessian matrix-based gradient estimation in ZO optimization, albeit at the expense of905

increased memory consumption. Additionally, innovative approaches have been proposed to reduce the906

number of trainable parameters, such as mapping models to subspaces and employing PEFT methods (Hu907

et al., 2022; Li and Liang, 2021) alongside tensorized adapters (Yang et al., 2024).908

C More Results and Analysis909

C.1 Training Loss Curves on Different Models910

We present the training loss curves of the GV-based method across various models, including datasets such911

as SST-2, WSC, BoolQ, and CB across OPT and Llama2 models, further demonstrating the effectiveness of912

our approach. The GV-based method achieves a faster gradient descent at each step, reaching convergence913
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in significantly fewer iterations compared to baselines.
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Figure 5: Training loss on SST2, WSC, BoolQ, and CB Tasks for OPT-1.3B/13B and Llama2-7B Models. For
OPT-1.3B/13B, we employ a learning rate of 2e-7, while for Llama2-7B, a learning rate of 5e-7 is used. All
experiments are conducted with a consistent batch size of 16.

914

C.2 Training Loss Curves of Greedy Stategy on Different Models 915

The training loss curves of the greedy-based method across various models, including datasets such as 916

BoolQ and RTE.
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Figure 6: Training loss on BoolQ and RTE Tasks with Llama2-7B Model. We employ a learning rate of 5e-7. All
experiments are conducted with a consistent batch size of 16.

917

C.3 Additional Results on LLMs 918

The experimental results on Llama2-13B and OPT-30B models further validate the effectiveness and 919

scalability of guiding vector (GV)-based methods across diverse model sizes and tasks. On Llama2-13B, 920

GV-based methods consistently outperform non-GV variants, demonstrating significant performance 921

improvements with reduced training steps. For instance, MeZO-GV-10k(LoRA) achieves 93.7% accuracy 922

on SST2, surpassing MeZO-10k(LoRA) (89.7%) and closely matching the performance of MeZO- 923

20k(LoRA) (94.3%) with only half the training steps. Similarly, on RTE, MeZO-GV-10k(LoRA) attains 924

72.2% accuracy, outperforming MeZO-10k(LoRA) (66.8%) and approaching the results of MeZO- 925

20k(LoRA) (70.4%). For BoolQ, GV methods exhibit notable improvements: MeZO-GV-10k(LoRA) 926

achieves 83.3% accuracy, surpassing MeZO-10k(LoRA) (76.3%) and MeZO-20k(LoRA) (82.1%). In 927

more challenging tasks such as WSC and WIC, GV methods also demonstrate consistent gains: MeZO- 928

GV-10k(LoRA) achieves 65.4% on WSC and 65.8% on WIC, exceeding both MeZO-10k(LoRA) (59.6% 929
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Table 9: Task Performance Comparison for Different Methods on Llama2-13B

Task SST2 RTE BoolQ WSC WIC

MeZO-10k(LoRA) 89.7 66.8 76.3 59.6 59.9
MeZO-20k(LoRA) 94.3 70.4 82.1 61.5 62.7
MeZO-GV-10k(LoRA) 93.7 72.2 83.3 65.4 65.8

Table 10: Task Performance Comparison on OPT-30B

Task SST2 RTE BoolQ WSC WIC

Zero-shot 56.7 52.0 39.1 38.5 50.2
ICL 81.9 66.8 66.2 56.7 51.3
MeZO (prefix) 87.5 72.6 73.5 55.7 59.1
MeZO-GV(prefix) 91.4 75.8 77.4 61.5 62.7
SubZero (prefix) 89.3 74.0 76.8 59.6 58.3
SubZero-GV(prefix) 91.6 75.1 79.4 61.5 62.9

and 59.9%) and MeZO-20k(LoRA) (61.5% and 62.7%). These findings underscore the efficiency of GV930

methods in achieving competitive performance with fewer training iterations.931

On the OPT-30B model, GV-based methods also demonstrate superior performance compared to932

non-GV variants and baseline approaches. For example, MeZO-GV(prefix) achieves 91.4% accuracy on933

SST2, outperforming MeZO(prefix) (87.5%) and SubZero(prefix) (89.3%). On RTE, MeZO-GV(prefix)934

attains 75.8% accuracy, surpassing MeZO(prefix) (72.6%) and SubZero(prefix) (74.0%). For BoolQ, GV935

methods show significant improvements: MeZO-GV(prefix) achieves 77.4% accuracy, a notable gain over936

MeZO(prefix) (73.5%) and SubZero(prefix) (76.8%). In more complex tasks such as WSC and WIC, GV937

methods consistently outperform non-GV approaches: MeZO-GV(prefix) achieves 61.5% on WSC and938

62.7% on WIC, demonstrating robust performance gains, highlighting the adaptability and effectiveness939

of GV methods across different model architectures and task types. These findings position GV-based940

fine-tuning as a promising approach for efficient adaptation of large-scale language models to downstream941

applications.942

C.4 Memory Usage of Different Methods943

Table 11 compares memory usage (in GB) for fine-tuning the OPT-13B model across SST-2, WIC,944

and BoolQ tasks using zero-shot, in-context learning (ICL), full fine-tuning (FT), and MeZO variants.945

Zero-shot and ICL exhibit the lowest memory usage, ranging from 26.0 to 29.3 GB, as they do not946

require parameter updates. In contrast, FT is highly memory-intensive, consuming between 242.3947

and 315.3 GB due to the need for full parameter updates. MeZO variants—MeZO-FT, MeZO-LoRA,948

and MeZO-Prefix significantly reduce memory usage by avoiding full gradient computations, making949

them efficient alternatives to FT. Notably, MeZO-GV variants, which incorporate guiding vector (GV)950

techniques, achieve comparable memory efficiency while further enhancing model convergence speed and951

performance, demonstrating that GV not only maintains low memory usage but also improves optimization952

effectiveness, making it a powerful tool for resource-constrained fine-tuning of large language models.953

D Parameter-Efficient Fine-Tuning (PEFT)954

We consider two PEFT methods, including {LoRA, prefix tuning}.955

1) Low-Rank Adaptation (LoRA)956

LoRA modifies a pre-trained model by introducing trainable low-rank matrices, enabling fine-tuning with957

a limited parameters. Given a weight matrix W ∈ Rm×n in a transformer model, LoRA decomposes it as:958

W ′ = W +BA959

where W is the original weight matrix, B ∈ Rm×r and A ∈ Rr×n are the low-rank matrices, and960

r ≪ min(m,n) represents the rank. During fine-tuning, only B and A are updated, keeping W frozen.961
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Table 11: Memory usage (GB) of fine-tuning OPT-13B, with FT's batch size being 8 and 16 for other tasks.

Method Task

SST-2 WIC BoolQ

Zero-shot 26.0 26.0 26.3
ICL 27.2 28.5 29.3
FT 242.3 244.7 315.3
MeZO (FT) 28.9 29.1 45.6
MeZO (LoRA) 28.6 29.3 46.5
MeZO (Prefix) 29.5 29.7 46.9
MeZO-GV (FT) 28.9 29.1 45.6
MeZO-GV (LoRA) 28.6 29.3 46.5
MeZO-GV (Prefix) 29.5 29.7 46.9

2) Prefix Tuning 962

Prefix tuning adds context vectors to the attention mechanism of transformer models. Given an input 963

sequence x, the model processes it with additional context vectors Ck and Cv serving as keys and values 964

in the attention mechanism: 965

Attention(Q,K, V ) = softmax
(
Q(K + Ck)

T

√
dk

)
(V + Cv) 966

where Q, K, and V represent the query, key, and value matrices in the attention mechanism, Ck ∈ Rl×dk , 967

Cv ∈ Rl×dv , and l is the length of the prefix. During training, only Ck and Cv are updated, and the 968

original model parameters are frozen. 969

E Algorithms 970

E.1 MeZO with Guiding Vector 971

Algorithm 1 MeZO with Guiding Vector

Require: Parameters θ ∈ Rd, loss function L(θ;B), step budget T , perturbation scale ϵ, batch size B,
learning rate η, weight decay λ, fireworks size M , split ratio α ∈ (0, 1)

1: for iteration t = 1 to T do
2: Sample minibatch Bt ∼ D and random seed s
3: Compute guidance vector: v ← COMPUTEGUIDINGVECTOR(θ,M,α, s,B)
4: GUIDINGPERTURBATION(θ, +ϵ, v)
5: Evaluate L+ ← L(θ;Bt)
6: GUIDINGPERTURBATION(θ, −2ϵ, v)
7: Evaluate L− ← L(θ;Bt)
8: GUIDINGPERTURBATION(θ, +ϵ, v)
9: Estimate directional gradient: g ← (L+ − L−)/(2ϵ)

10: Update parameters: θ ← θ − η · (g · v)
11: end for
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Algorithm 2 Subroutines for MeZO with Guiding Vector

1: Subroutine: COMPUTEGUIDINGVECTOR(θ, M , α, s, B)
2: Initialize perturbation set O ← ∅
3: for particle i = 1 to M do
4: Generate unique seed si ← Hash(s⊕ i)
5: RANDOMPERTURBATION(θ, ϵ, si)
6: Evaluate fitness li ← L(θ;B)
7: RANDOMPERTURBATION(θ, −ϵ, si)
8: Store perturbation seed si
9: O ← O ∪ {(li, si)}

10: end for
11: Sort O by ascending li values
12: Split into elite/non-elite groups:
13: Otop ← First(⌊αM⌋,O)
14: Obottom ← Last(M − ⌊αM⌋,O)
15: Compute guide vector through the zi corresponding to the seed si :
16: vtop ← 1

|Otop|
∑

(li,si)∈Otop
zi

17: vbottom ← 1
|Obottom|

∑
(li,si)∈Obottom

zi
18: v ← vtop − vbottom
19: Return v
20:

21: Subroutine: GUIDINGPERTURBATION(θ, ϵ, v)
22: for each parameter θj ∈ θ do
23: θ ← θ + ϵ · v
24: end for
25:

26: Subroutine: RANDOMPERTURBATION(θ, ϵ, s)
27: Reset random number generator with seed s
28: for each parameter θj ∈ θ do
29: zj ∼ N (0, 1)
30: θj ← θj + ϵ · zj
31: end for

E.2 MeZO with Greedy Strategy972

Algorithm 3 MeZO with Greedy Strategy

Require: Parameters θ ∈ Rd, loss function L(θ;B), step budget T , perturbation scale ϵ, batch size B,
learning rate η, weight decay λ, candidate perturbations M

1: for iteration t = 1 to T do
2: Sample minibatch Bt ∼ D and random seed s
3: Compute optimal perturbation: z∗ ← COMPUTEGREEDYPERTURBATION(θ,M, ϵ, s,Bt)
4: GREEDYPERTURBATION(θ, +ϵ, z∗)
5: Evaluate L+ ← L(θ;Bt)
6: GREEDYPERTURBATION(θ, −2ϵ, z∗)
7: Evaluate L− ← L(θ;Bt)
8: GREEDYPERTURBATION(θ, +ϵ, z∗)
9: Estimate directional gradient: g ← (L+ − L−)/(2ϵ)

10: Update parameters: θ ← θ − η · (g · z∗)
11: end for
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Algorithm 4 Subroutines for MeZO with Greedy Strategy

1: Subroutine: COMPUTEGREEDYPERTURBATION(θ, M , ϵ, s, B)
2: Initialize perturbation set O ← ∅
3: for particle i = 1 to M do
4: Generate unique seed si ← Hash(s⊕ i)
5: RANDOMPERTURBATION(θ, ϵ, si)
6: Evaluate fitness li ← L(θ;B)
7: RANDOMPERTURBATION(θ, −ϵ, si)
8: Store perturbation zi and loss li
9: O ← O ∪ {(li, zi)}

10: end for
11: Find the optimal perturbation:
12: z∗ ← arg min(li,zi)∈Oli
13: Return z∗

14:

15: Subroutine: GREEDYPERTURBATION(θ, ϵ, z∗)
16: for each parameter θj ∈ θ do
17: θj ← θj + ϵ · z∗j
18: end for
19:

20: Subroutine: RANDOMPERTURBATION(θ, ϵ, s)
21: Reset random number generator with seed s
22: for each parameter θj ∈ θ do
23: zj ∼ N (0, 1)
24: θj ← θj + ϵ · zj
25: end for

F Proofs 973

Proof Lemma 1: 974

Proof. Using Matrix Bernstein theorem, we have P (||Sk − Id|| ≥ t) ≤ d · exp( −kt2

σ2+Lt
3

), where σ2 = 1
k 975

and L = ||zi||2 ≤ d+O(
√
d). Let t = ϵ ,d · exp( −kt2

σ2+Lt
3

) = δ and the proof is completed. 976

Proof Lemma 2: 977

Proof. It is not difficult to see that V = (V T g)g + V⊥, V∥ = (V T g)g and V⊥ = V − V∥ = 978
1
k

∑k
i=1 z

T
i gzi,⊥. E[V∥] = g,E[V⊥] = 0, E[||V⊥||2] = Trace(Cov(V⊥)) = Trace( 1k (Id − ggT )) = 979

d−1
k . 980

Proof Lemma 3: 981

Proof. Suppose we sample k points, and we have 982

Y1 < Y2 < Y3 < ... < Yk, Yi = zTi g 983

Beacuse selecting the i-th smallest value from k samples implies that this value should fall below 984

approximately i
k+1 of all possible samples in the overall distribution. Therefore Yi aligns with the i

k+1 -th 985

quantile of the normal distribution: 986

E[Yi] ≈ Φ−1

(
i

k + 1

)
≈ 987

988{
Φ−1(p) ≈

√
−2 log(1− p) p→ 1

Φ−1(p) ≈ −
√
−2 log(p) p→ 0

989
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We can get |Y1| ≈
√

2log(k)990

Proof Lemma 4:991

Proof.

ẑ =
1

s
(
∑
i∈∧1

zi −
∑
j∈∧2

zj) =
1

s
(
∑
i∈∧1

(Yig + Zi,⊥)−
∑
j∈∧2

(Yjg + Zj,⊥))992

993

ẑ =
1

s


∑

i∈∧1

Yi −
∑
j∈∧2

Yj


︸ ︷︷ ︸

m∈R

g +

∑
i∈∧1

Zi,⊥ −
∑
j∈∧2

Zj,⊥


︸ ︷︷ ︸

N∈Rd

994

995

V = ẑẑT g =
1

s
(m2g +mN) = V∥ + V⊥996

m =

∑
i∈∧1

Yi −
∑
j∈∧2

Yj

 = 2 ∗
∑
i∈∧1

Yi ≈ −2
s∑

i=1

√
2log

k

i
997

998

m ≈ −2s
√

2logk(1− logs

2logk
)999

1000

N =

∑
i∈∧1

Zi,⊥ −
∑
j∈∧2

Zj,⊥

 , Zp,⊥ ∼ N(0, Id − ggT )1001

1002
N ∼ N(0, 2s(Id − ggT ))1003

so we can get that,1004

||N || ≈
√
2s(d− 1)1005

ratio1 =
||V∥||
||V⊥|| =

|m|
||N || ≈

2
√
slogk√
d−1

1006

ratio2 =
||V∥||
||g|| = m2

s ≈ 8slogk1007
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