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Abstract001

Generative large language models (LLMs) have002
achieved remarkable success in various indus-003
trial applications, owing to their promising In-004
Context Learning capabilities. However, the005
issue of long context in complex tasks poses006
a significant barrier to their wider adoption,007
manifested in two main aspects: (i) The ex-008
cessively long context leads to high costs and009
inference delays. (ii) A substantial amount of010
task-irrelevant information introduced by long011
contexts exacerbates the "lost in the middle"012
problem. Existing methods compress context013
by removing redundant tokens using metrics014
such as self-information or perplexity (PPL),015
which is inconsistent with the objective of re-016
taining the most important tokens when con-017
ditioning on a given query. In this study, we018
introduce information bottleneck theory (IB) to019
model the problem, offering a novel perspective020
that thoroughly addresses the essential prop-021
erties required for context compression. Ad-022
ditionally, we propose a cross-attention-based023
approach to approximate mutual information in024
IB, which can be flexibly replaced with suitable025
alternatives in different scenarios. Extensive026
experiments on four datasets demonstrate that027
our method achieves a 25% increase in com-028
pression rate compared to the state-of-the-art,029
while maintaining question answering perfor-030
mance. In particular, the context compressed031
by our method even outperform the full context032
in some cases.033

1 Introduction034

In recent years, LLMs (Achiam et al., 2023) have035

been widely applied to various tasks in multiple do-036

mains, such as text classification (Sun et al., 2023),037

question answering systems (Wang et al., 2023a),038

and etc.. As one of the most promising capabil-039

ities of these models, In-Context Learning (ICL)040

(Brown, 2020) plays a critical role by enabling the041

effective use of large language models without re-042

quiring additional training. However, in complex043

Figure 1: Comparison of our method and baseline ap-
proaches for preserving key information in model re-
sponses. Our method effectively retains critical context
("Thief"), ensuring accurate interpretation, while base-
line methods fail to do so.

tasks, the need to guide the model’s adaptation to 044

the task or provide supplementary knowledge of- 045

ten results in excessively long context, leading to 046

high computational costs, increased inference la- 047

tency, and the "lost in the middle" problem (Tay 048

et al., 2020). Therefore, how to compress context 049

while maintaining model performance has become 050

a widely studied topic. 051

In the literature, Liu et al. (2023) utilize lan- 052

guage models to compress context in a generative 053

manner, while other methods select the most im- 054

portant lexical units (tokens, words, or sentences) 055

from the original context in an extractive man- 056

ner. Specifically, the generative-based compression 057

methods typically construct compressors by fine- 058

tuning models to generate summaries of the origi- 059

nal text, but they are often constrained by inherent 060

limitations of language models, such as restricted 061

context windows, hallucination phenomena, and 062

the "lost in the middle" problem. The extractive- 063

based compression methods is to design appropri- 064

ate metrics (e.g., self-information (Shannon, 1951), 065
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perplexity (PPL), self-attention) to assign impor-066

tance scores to each unit, thereby identifying and067

removing less salient units. However, the metrics068

used in previous works are not aligned with the op-069

timization goals of the compressor, which may lead070

to suboptimal results. For example, these metrics071

often place excessive emphasis on nouns, while072

overlooking other crucial elements like preposi-073

tional phrases, quantifiers or verbs, which may074

have lower information entropy. However, ne-075

glecting such information can result in highly frag-076

mented compression that is difficult to understand,077

ultimately leading to incorrect model outputs, as078

shown in Figure 2.079

In this paper, we formulate this problem from an080

Information Bottleneck (IB) (Tishby et al., 2000;081

Fischer, 2020) perspective, deriving mutual infor-082

mation as our metric. We also provide a math-083

ematical proof that using mutual information is084

equivalent to maximizing the likelihood of the com-085

pressed output, which is precisely the compressor’s086

optimization objective. In summary, our contribu-087

tions are twofold:088

• Applying Information Bottleneck Theory to089

Context Compression: We introduce a novel090

perspective by utilizing Information Bottle-091

neck theory to analyze the properties of con-092

text compression. This results in the mutual093

information metric, and we mathematically094

prove that it is equivalent to maximizing the095

likelihood of the compressed generation.096

• Experimental Validation: We conduct ex-097

tensive experiments that show significant098

improvements over previous work on long-099

context question answering. Moreover, our100

method reduces memory usage to 50% of the101

most memory-efficient baseline while achiev-102

ing a 25% improvement in accuracy compared103

to the best-performing baseline.104

2 Related Work105

2.1 Extractive Context Compression106

Generative LLMs have achieved strong perfor-107

mance across various tasks, but they encounter108

computational challenges when processing long109

documents and extended conversations due to in-110

creased token counts and context truncation. ICL111

(Brown, 2020) helps mitigate some of these is-112

sues by providing task-relevant context directly,113

Figure 2: LLMLingua2 overly focuses on high-entropy
nouns like ’barn’ and ’farmhouse,’ while neglecting
relational words (e.g., ’near’) and verbs, resulting in
highly fragmented compression and leading to incorrect
answers (’on a farm’). In contrast, QUITO-X retains
key relational phrases (’in a barn near a farmhouse’),
preserving full meaning and yielding the correct answer.

reducing the need for specific task Supervised Fine- 114

Tuning (SFT) and lowering costs. However, ICL 115

also increases token numbers and inference costs. 116

To address this, extractive context compression 117

methods have been developed. These methods typ- 118

ically treat tokens, phrases, or sentences in context 119

as lexical units, retaining only the most essential 120

units and removing others to shorten the prompt 121

length, while maintaining the accuracy of LLM 122

outputs. Selective context (Li et al., 2023b) uses 123

self-information as a metric to determine which 124

tokens are more important and should be retained. 125

LLMlingua (Pan et al., 2024; Jiang et al., 2023b,a) 126

employs a coarse-to-fine iterative approach, pro- 127

cessing longer documents into small chunks and 128

then deciding what proportion of each chunk to 129

retain based on PPL. The QUITO (Wang et al., 130

2024) method is similar to Selective Context but 131

uses self-attention from a smaller language model 132

instead. 133

These methods typically rely on a metric (e.g., 134

self-information, PPL) to assess the importance of 135

lexical units (Wang et al., 2023b). However, these 136

metrics often do not align with their optimization 137

objectives. Previous work has generally framed 138

their optimization goal as minimizing the KL diver- 139

gence between the outputs before and after com- 140

pression, but they lack a detailed analysis of the re- 141

lationship between the chosen metric and the objec- 142

tive being optimized. Specifically, when selecting 143
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the "most important" lexical units based on the cho-144

sen metric, it is unclear whether this will actually145

lead to the optimization objective being achieved.146

In practice, these metrics could be sub-optimal.147

For example, these metrics often focus on nouns148

and may overlook seemingly low-entropy words149

like conjunctions or transitional phrases, which, al-150

though having low individual entropy, are crucial151

for LLM comprehension.152

In contrast, we adopt minimizing the IB score as153

our optimization objective. We prove that, under154

our setting, this objective is equivalent to maximiz-155

ing the likelihood of the model’s output. Further-156

more, we derive an mutual information metric that157

aligns with this optimization goal.158

2.2 Information Bottleneck159

The IB theory (Tishby et al., 2000; Fischer, 2020)160

offers a principled framework for balancing data161

compression and relevant information preservation.162

The core objective of IB is to learn a representa-163

tion T of input X that maximizes the mutual infor-164

mation I(T ;Y ) with target Y , while minimizing165

I(T ;X):166

LIB = I(T ;X)− βI(T ;Y ), (1)167

where β controls the trade-off between compres-168

sion and informativeness.169

In deep learning, IB has been used to analyze the170

role of intermediate representations, revealing how171

neural networks progressively discard irrelevant172

features (Shwartz-Ziv and Tishby, 2017). Exten-173

sions such as Variational Information Bottleneck174

(VIB) (Alemi et al., 2016) introduce variational ap-175

proximations for tractable optimization, enabling176

applications in NLP tasks like text classification177

and summarization.178

Recognizing the limitations of current context179

management strategies, recent work (Zhu et al.,180

2024) has turned to IB theory to mitigate context181

noise by optimizing mutual information. Build-182

ing on this, our approach leverages cross-attention183

scores as a proxy for I(T ;Y ), representing the mu-184

tual information between the query and context.185

This allows us to selectively retain the most rele-186

vant portions of the context, ensuring the model fo-187

cuses on critical information for accurate response188

generation.189

By integrating IB principles into context com-190

pression, our work addresses the inefficiencies of191

processing lengthy reasoning contexts and provides192

a robust framework for managing noisy or redun- 193

dant information in long-context tasks. 194

3 Method 195

3.1 Theorem 196

Problem Formulation. Given the original con- 197

text X = (xi)
L
i=1 and the query Q, our objective is 198

to filter out unnecessary content from the context 199

X = (xi)
L
i=1 into a reduced context X̄ = (x̄i)

L̄
i=1, 200

while maximizing the likelihood of the ground truth 201

output Y of the large language model (LLM). This 202

can be formulated as: 203

max
X̄

E
[
log

(
P (Y | X̄,Q)

)]
(2) 204

where L and L̄ represent the sequence lengths of 205

the original context X and the reduced context X̄ , 206

respectively. The compression ratio τ is defined as 207

τ = L̄
L 208

IB Perspective. To balance τ and the likelihood 209

of Y , we formulate our task as an optimization 210

problem from an information bottleneck perspec- 211

tive(Tishby et al., 2000): 212

LIB = I(X̄;X | Q)− βI(X̄;Y | Q) (3) 213

where minimizing the first term improves effi- 214

ciency, and maximizing the second term ensures 215

correctness. 216

In the following discussion, we fix the compres- 217

sion ratio τ as a constant k. Under this condition, 218

the cost savings from compression are fixed, allow- 219

ing us to ignore the first term and focus solely on 220

maximizing the second term: 221

max
X̄

I(X̄;Y | Q) s.t. τ = k (4) 222

The following Theorem 1 demonstrates the consis- 223

tency between our modeling and the optimization 224

objective of the task. 225

Theorem 1. Under our setting, our optimization 226

objective (5) is equivalent to (4): 227

max
X̄

IQ(X̄;Y ) ∼ max
X̄

E[logP (Y | X̄,Q)]

s.t. τ = k.
(5) 228

The detailed proof is provided in the Appendix B. 229

Using the chain rule of Mutual Information, we 230

have 231

I(X;Y | Q) = IQ(x1;Y | Q) + ...

+ IQ(xn;Y | x1, x2...xn−1, Q)
(6) 232
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Figure 3: Overview of the proposed method for extracting cross-attention scores using a T5 model. The figure
illustrates the process of filtering the context to retain the most relevant information for answering a specific query.

Thus, We can break the mutual information be-233

tween X and Y into the mutual information be-234

tween each token xi and Y . we utilize235

s(xi) = I(xi;Y | x1, x2, ...xi−1, Q)236

as a metric to measure the importance score of237

token xi, from which we can identify the tokens to238

retain and those to remove. However, it is difficult239

to compute the mutual information s(xi) directly240

due to the following reasons:241

1. We cannot access the ground truth output Y242

in practical scenarios.243

2. Even if we use the output of a language model244

YLM to approximate Y , the result of s(xi) can-245

not be directly inferred from the probability246

sampled by the language model.247

Therefore, we need to establish a computationally248

feasible metric to approximate mutual information.249

Inspired by works in the fields of computer vision250

and multi-modal learning (Dosovitskiy et al., 2021;251

Esser et al., 2024), which often measure the cor-252

relation between two types of information I1 and253

I2 using either cross-attention between them or254

self-attention after concatenating I1 and I2, We255

conducted several detailed experiments, exploring256

various strategies for both cross-attention and self-257

attention, along with other metrics, to determine258

which method best approximates mutual informa-259

tion. Ultimately, we found that using an encoder-260

decoder architecture, with X and Q as inputs, and261

leveraging the cross-attention values between the262

first token of the output Y and xi, is the most suit-263

able approach to approximate mutual information264

in our case. The specific experimental details are265

provided in the Appendix A.266

Merging into Lexical Units. Following Li et al. 267

(2023b), we also merge tokens into words as lex- 268

ical units to avoid disjoint contexts. We denote 269

w as a word, lw as the length of the word, and 270

xi, xi+1, . . . , xi+lw−1 as the tokens comprising the 271

word w and xprev represents the preceding context. 272

Benefited from the addition of mutual information, 273

I(xi, ..., xi+lw−1 | xprev, Y,Q) = I(xi | xprev, Y,Q)

+...+ I(xi+lw−1 | xprev, xi, ..., xi+n−2, Q)
(7) 274

we can directly sum the s(xi) of all tokens xi in a 275

word w to represent s(w). 276

Gaussian Smoothing. We observed that relying 277

solely on independent metrics for each lexical unit 278

often prioritizes nouns, which typically have high 279

information entropy, while overlooking interme- 280

diate conjunctions, verbs, and prepositions. This 281

leads to semantic ambiguity and hampers under- 282

standing by large models. To mitigate this issue 283

further, we applied a Gaussian filter on word-level 284

scores 285

s(w) =
K∑

k=−K

s(w + k) · g(k) 286

287

g(k) =
1

σ
√
2π

exp (− k2

2σ2
) 288

which helps preserve the information surrounding 289

important units. The detail could be found in sec- 290

tion 3.2 291

3.2 Algorithm 292

Our method compresses long contexts into concise, 293

informative representations through three key steps, 294

as shown in Figure 3: 295
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1. Concat and Encode: The X and Q are con-296

catenated into a single input sequence X +Q297

and fed into the fenc. This produces a se-298

quence of hidden representations that captures299

the semantic and positional information of the300

input tokens:301

{ht} = fenc(X +Q) (8)302

Here, ht represents the hidden representation303

of the t-th token.304

2. Measuring Token Importance: During the305

decoding process, the cross-attention mecha-306

nism fattn is leveraged to compute the impor-307

tance of each token in the context relative to308

the query. Specifically, hidden representation309

of the decoder’s first token h<start> attends310

to all tokens in the encoded sequence via the311

cross-attention mechanism:312

{at} = fattn({ht}, h<start>) (9)313

Here, at denotes the attention score assigned314

to the t-th token, reflecting its relative impor-315

tance with respect to the query.316

3. Post-processing of Importance Score: The317

attention weights for context tokens are ex-318

tracted, averaged across all attention heads,319

and normalized using a softmax function.320

s(t) =
exp at∑

token∈ftok(X) exp atoken
, t ∈ ftok(X)

(10)321

We use ftok for tokenization, these scores rep-322

resent the relevance of each token in the tok-323

enized context to the given query.324

The normalized token scores are aggregated325

at the word level:326

s(w) =
∑
t∈w

s(t), w ∈ X (11)327

To account for the contextual importance of328

words, a Gaussian filter is applied to the word-329

level scores. This ensures that words appear-330

ing near important terms also receive elevated331

scores:332

s(w) =
K∑

k=−K

s(w + k) · g(k) (12)333

334

g(k) =
1

σ
√
2π

exp (− k2

2σ2
) (13)335

Based on the smoothed scores, we retain only 336

the most relevant words to form the com- 337

pressed context. The compression ratio τ can 338

be adjusted to control the level of detail re- 339

tained. The function ftop selects words whose 340

scores are among the top τ proportion: 341

X̄ = ftop({s(w)}, τ), w ∈ X (14) 342

This algorithm effectively reduces context length 343

while retaining essential information, ensuring ac- 344

curate and efficient performance in downstream 345

tasks. 346

4 Experiments 347

4.1 Datasets and Metrics 348

We conduct experiments on five datasets that vary 349

in text length, covering both manageable and ex- 350

cessively long contexts: 351

• CoQA (Reddy et al., 2019) and Quoref 352

(Dasigi et al., 2019): These datasets feature 353

texts of moderate length, within the process- 354

ing capability of large models, making them 355

ideal for standard evaluations of model perfor- 356

mance. 357

• 2WikiMultiHopQA (Ho et al., 2020), Hot- 358

potQA (Yang et al., 2018), and MuSiQue 359

(Trivedi et al., 2022): These datasets, sourced 360

from LongBench (Bai et al., 2023), contain 361

excessively long texts, leading to challenges 362

such as the "lost in the middle" phenomenon. 363

Effective techniques for handling long con- 364

texts are essential to improve model perfor- 365

mance on these datasets. 366

To evaluate model accuracy, we adopt the Exact 367

Match (EM) metric, which measures the percent- 368

age of predictions that exactly match the ground 369

truth answers. 370

4.2 Implementation Details 371

We employed the FLAN-T5-small model (Chung 372

et al., 2024) for compression. Our approach lever- 373

ages Huggingface Transformers and PyTorch 2.1.0 374

with CUDA-12.1. For question-answering tasks, 375

we utilized LongChat-13B-16k (Li et al., 2023a) 376

and LLaMA3-8B-Instruct (AI@Meta, 2024). 377

In our experiments, we observed that the choice 378

of the parameter σ in (13) does not significantly 379

impact the compression performance as long as 380
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Algorithm Architecture Model Parameters

Selective Context Transformer Decoder-Only GPT-2 124M
LLMLingua Transformer Decoder-Only Llama-2-7b 7B

LongLLMLingua Transformer Decoder-Only Llama-2-7b 7B
LLMLingua2 Transformer Encoder-Only XLM-RoBERTa-large 355M

QUITO Transformer Decoder-Only Qwen2-0.5b-Instruct 500M
QUITO-X Transformer Encoder-Decoder FLAN-T5-small 80M

Table 1: Comparison of different compression algorithms in terms of architecture, model, and parameter size. Our
method, based on the FLAN-T5-small model, demonstrates the effectiveness of a compact Transformer Encoder-
Decoder architecture with only 80M parameters, significantly reducing computational cost while maintaining or
exceeding performance compared to larger models like LLMLingua (7B) and QUITO (500M).

dataset model ratio Selective-Context LLMLingua LongLLMLingua LLMLingua2 QUITO QUITO-X

Q
uo

re
f L

on
gC

ha
t 1.00 70.6 70.6 70.6 70.6 70.6 70.6

0.75 65.3 46.4 46.5 65.7 65.6 68.1
0.50 55.8 34.5 34.6 55.0 59.4 65.1
0.25 40.9 28.2 28.7 41.5 52.3 60.8
0.00 2.9 2.9 2.9 2.9 2.9 2.9

L
la

m
a-

3

1.00 93.1 93.1 93.1 93.1 93.1 93.1
0.75 90.3 64.9 65.3 90.7 89.8 92.6
0.50 81.3 51.1 51.4 82.6 84.4 90.2
0.25 59.3 43.2 43.3 65.5 75.8 86.8
0.00 6.8 6.8 6.8 6.8 6.8 6.8

C
oQ

A L
on

gC
ha

t 1.00 59.1 59.1 59.1 59.1 59.1 59.1
0.75 56.6 44.9 45.4 57.5 54.6 59.6
0.50 47.0 36.3 36.4 50.3 50.4 59.5
0.25 32.1 30.4 25.9 41.0 41.4 55.5
0.00 13.8 13.8 13.8 13.8 13.8 13.8

L
la

m
a-

3

1.00 79.3 79.3 79.3 79.3 79.3 79.3
0.75 76.5 62.3 61.8 74.8 73.1 79.5
0.50 64.1 50.9 50.4 69.4 64.6 78.1
0.25 45.3 43.0 37.3 57.7 53.5 75.5
0.00 18.1 18.1 18.1 18.1 18.1 18.1

Table 2: Experimental results of various compression methods applied at different compression ratios on the
Quoref and CoQA datasets. The table shows the effectiveness of different methods, including Selective-Context,
LLMLingua, LongLLMLingua, LLMLingua2, QUITO, and QUITO-X, across different compression ratios (1.00,
0.75, 0.50, 0.25, and 0.00). Our method consistently achieves the best performance at all ratios.

σ ̸= 0. Therefore, for consistency, we set σ = 1381

for all subsequent experiments. Detailed parameter382

search results are provided in the Appendix D.383

For CoQA (Reddy et al., 2019) and Quoref384

(Dasigi et al., 2019), we evaluated model accu-385

racy using the original context and without any386

context, aiming to assess the models’ ability to387

summarize with full information and rely on prior388

knowledge. Next, we tested five baseline methods389

and our proposed approach at compression ratios of390

0.75, 0.50, and 0.25, measuring accuracy with the 391

compressed context using both LongChat-13B-16k 392

and LLaMA3-8B-Instruct models. 393

For datasets with long contexts, including 2Wiki- 394

MultiHopQA (Ho et al., 2020), HotpotQA (Yang 395

et al., 2018), and MuSiQue (Trivedi et al., 2022), 396

sourced from LongBench (Bai et al., 2023), we 397

focused on the LLaMA3-8B-Instruct model. To 398

handle the extreme length of these texts, a chunk- 399

ing strategy was adopted, dividing the context into 400
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dataset ratio Selective-Context QUITO LLMLingua2 strategy 1 strategy 2

2w
ik

im
qa 1.00 55.0 55.0 55.0 55.0 55.0

0.75 59.0 56.0 64.0 64.0 60.5
0.50 54.5 58.5 68.0 67.5 69.0
0.25 49.0 51.0 53.5 61.5 60.0

ho
tp

ot
qa

1.00 15.5 15.5 15.5 15.5 15.5
0.75 19.0 21.5 25.5 31.0 30.0
0.50 38.5 57.0 57.5 65.5 63.0
0.25 46.5 55.0 52.5 63.0 69.5

m
us

iq
ue

1.00 2.5 2.5 2.5 2.5 2.5
0.75 2.5 2.5 2.5 4.0 3.5
0.50 10.0 37.0 40.5 41.5 43.5
0.25 35.0 36.0 40.0 43.0 49.0

Table 3: Performance comparison on 2WikiMultiHopQA, HotpotQA, and MuSiQue datasets under different
compression ratios. The table shows results for Selective-Context, QUITO, LLMLingua2 and two strategies
proposed in our method. Bold numbers indicate the best performance for each dataset and ratio combination.

512-token chunks. Two strategies were tested:401

Strategy 1: Compressing each chunk individually402

and then merging the compressed representations.403

Strategy 2: Calculating attention scores between404

each chunk and the query, merging these attention405

scores across all chunks, and then performing a406

unified compression on the merged context.407

4.3 Baseline408

We compared against the following context com-409

pression baselines in Table 1:410

1. Selective Context (Li et al., 2023b): Uses411

GPT-2 (Radford et al., 2019) to retain context412

segments based on self-information.413

2. LLMLingua (Pan et al., 2024): Employs414

Llama-2-7b (Touvron et al., 2023) with dy-415

namic compression driven by context PPL.416

3. LongLLMLingua (Jiang et al., 2023b): Ex-417

tends LLMLingua for longer contexts, also418

using Llama-2-7b (Touvron et al., 2023).419

4. LLMLingua2 (Pan et al., 2024): Utilizes420

XLM-RoBERTa-large (Conneau, 2019), intro-421

ducing data distillation for compression.422

5. QUITO (Wang et al., 2024): Applies Qwen2-423

0.5B-Instruct (Yang et al., 2024) with atten-424

tion mechanisms to selectively retain query-425

relevant context.426

For datasets with manageable text lengths, such427

as CoQA (Reddy et al., 2019) and Quoref (Dasigi428

et al., 2019), we evaluated our method against all 429

listed baselines. These datasets allowed us to test 430

the effectiveness of each approach in compressing 431

contexts without encountering extreme text length 432

challenges. 433

For datasets with long contexts, including 2Wiki- 434

MultiHopQA (Ho et al., 2020), HotpotQA (Yang 435

et al., 2018), and MuSiQue (Trivedi et al., 2022), 436

which present significant challenges such as the 437

“lost in the middle” phenomenon, we focus our 438

comparison on LLMLingua2, as well as two ad- 439

ditional baselines: Selective Context and Quito. 440

These baselines provide a more comprehensive 441

evaluation of our method’s performance in long- 442

context scenarios. 443

4.4 Experimental Results 444

The results shown in Table 2 and Table 3 com- 445

prehensively demonstrate the effectiveness of our 446

proposed methods across various datasets and com- 447

pression ratios. 448

For the Quoref and CoQA datasets (Table 2), 449

our proposed QUITO-X consistently outperforms 450

existing baselines, including Selective-Context, 451

LLMLingua, LongLLMLingua, LLMLingua2, and 452

QUITO, under all tested compression ratios (1.00, 453

0.75, 0.50, 0.25, and 0.00). Remarkably, QUITO- 454

X achieves superior performance even at higher 455

compression ratios, where significant portions of 456

context are removed. This robust performance high- 457

lights the capability of our method in retaining 458

critical information despite substantial context re- 459
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Figure 4: Ablation study results on four datasets (CoQA, Quoref, DROP, SQuAD) under three compression ratios
(0.25, 0.5, 0.75). The top row shows the impact of the Gaussian filter on accuracy and information coverage,
demonstrating consistent improvements across all datasets and compression ratios. The bottom row illustrates the
effect of the merging module, highlighting its importance in recovering meaningful representations, particularly
under higher compression ratios.

ductions. In some cases, particularly noted in the460

underlined sections of Table 2, our method even461

surpasses the performance of the original, uncom-462

pressed context. This suggests that our approach463

not only removes irrelevant noise but also enables464

the model to focus better on relevant portions of465

the context, thereby improving prediction quality.466

For long-text datasets (Table 3), including 2Wiki-467

MultiHopQA, HotpotQA, and MuSiQue, the sup-468

plementary experiments validate the adaptabil-469

ity and robustness of our strategies under vary-470

ing compression levels. Both proposed strate-471

gies—Strategy 1 and Strategy 2—consistently472

outperform the baselines. In 2WikiMultiHopQA,473

Strategy 1 achieves the best performance at a com-474

pression ratio of 0.75, while Strategy 2 excels at475

a 0.50 ratio. Similarly, for HotpotQA, Strategy476

2 achieves the highest scores at compression ra-477

tios of 0.50 and 0.25. In MuSiQue, Strategy 2478

consistently outperforms other methods at lower479

compression ratios, particularly under the most ag-480

gressive compression of 0.25.481

These results collectively underscore the robust-482

ness, adaptability, and overall effectiveness of our483

proposed methods for handling compressed con-484

texts across a variety of datasets and compression485

scenarios.486

4.5 Ablation Study487

Gaussian Filter. The top row of Figure 4 shows488

the effect of the Gaussian filter across different489

datasets and compression ratios (0.25, 0.5, 0.75).490

For CoQA and Quoref, we use accuracy as the eval-491

uation metric, while for DROP and SQuAD, we 492

adopt information coverage, which we explain fur- 493

ther in the Appendix C. The Gaussian filter consis- 494

tently improves performance, particularly at lower 495

ratios. For example, in SQuAD, information cov- 496

erage increases significantly (from 71.5 to 87.8) at 497

the 0.25 ratio. These results demonstrate its effec- 498

tiveness in retaining critical context information 499

during compression. 500

Merging. The bottom row of Figure 4 highlights 501

the impact of the merging module. Merging consis- 502

tently boosts accuracy and information coverage, 503

especially at the 0.25 ratio where context loss is 504

severe. For instance, in DROP, merging improves 505

information coverage by nearly 10 points. This 506

confirms its role in preserving meaningful context 507

under high compression. 508

5 Conclusion 509

In this paper, we aim to tackle the challenge of 510

context compression. Leveraging information bot- 511

tleneck theory, we derive mutual information as 512

the optimization objective, which we prove to be 513

equivalent to maximizing likelihood. Our method 514

significantly outperforms strong baselines in both 515

inference latency and performance. Furthermore, it 516

excels on long texts, occasionally surpassing mod- 517

els that utilize the original context, likely by elim- 518

inating inherent redundancy in the context. More 519

effective chunking strategies for long texts are left 520

for future exploration. 521
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Limitations522

Despite the clear advantages demonstrated by our523

method, there are some inherent limitations that524

need to be acknowledged. For example, due to the525

context window limitation of smaller models, we526

must rely on chunking strategies to handle long527

texts. While applying chunking has shown good528

performance across multiple evaluation sets, it may529

overlook the relevance between tokens that are far530

apart within a long text. How to address this issue531

or quantify the potential performance loss intro-532

duced by chunking remains an open problem.533

Another limitation stems from computational re-534

source constraints, which have restricted us from535

conducting large-scale tests across broader and536

more diverse datasets. As a result, the robustness of537

certain hyperparameters, such as the σ value in the538

Gaussian filter, has not been extensively validated.539

While our experiments suggest that variations in540

σ within a reasonable range do not significantly541

affect performance, the scalability and stability of542

the method under different configurations remain543

areas for further exploration with larger-scale ex-544

periments.545
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A Experimental Selection of Mutual 702

Information Metric 703

A.1 Motivating Observation 704

To identify a metric that best approximates the mu- 705

tual information I(X;Y | Q), we designed the 706

following experiment: we filtered a subset from 707

the Drop QA dataset, denoted as D = {Di}ni=1 = 708

{Xi, Yi, Qi}ni=1. In D, Yi is a substring of Xi. The 709

substring Yi within Xi (hereafter referred to as 710

SubYi) captures the majority of the mutual informa- 711

tion between Xi and Yi. Informally, the higher 712

the relative value of a metric on the tokens of 713

these substrings, the better the metric can measure 714

I(X;Y | Q). 715

A.2 Experiment 716

We tested several commonly used metrics, includ- 717

ing self-attention (Wang et al., 2024) and self- 718

information (Li et al., 2023b). Cross-attention is 719

a prevalent metric for measuring the correlation 720

between two pieces of information. We used Flan- 721

T5-small (Chung et al., 2024) to compute cross- 722

attention and implemented the following two strate- 723

gies for each Di: 724

cross attn first. Compute only the cross-attention 725

scores between the first token <start> in Yi and 726

each token in Xi. 727
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Figure 5: MRR results

cross attn total. Autoregressively generate Yi728

and compute the average sum of the cross-attention729

scores between all tokens in Yi and all tokens in730

Xi.731

We adopted Mean Reciprocal Rank (MRR)732

(Kwok et al., 2001; Radev et al., 2002) to evaluate733

which metric better represents mutual information.734

Specifically, for each metric, we first calculate the735

MRR for each data point Di = {Xi, Yi, Qi} indi-736

vidually. For a given Di, we calculate the value of737

each token based on the metric, sort them to obtain738

their rank array, and then compute MRR assuming739

SubYi has a length of len and appears at positions740

k, . . . , k + len− 1:741

MRRi =
1

len

len∑
j=1

1

rankk+j−1
742

Finally, the overall MRR for the dataset D is ob-743

tained by averaging MRRi across all data points:744

MRR =
1

|D|

|D|∑
i=1

MRRi745

A.3 Result746

The experimental results are presented in Figure 5.747

The results indicate that using the cross-attention748

value between the first token of output Y and each749

xi yields a significantly higher MRR compared to750

other methods.751

B Proof of Theorem 1752

Let X be the original context, Q be the query, Y753

be the output, and X̄ be the extractive compressed754

result. Denote τ as the compression rate, and let k755

be a constant such that k ∈ (0, 1].756

Theorem

max
X̄

IQ(X̄;Y ) ∼ max
X̄

E[logP (Y | X̄,Q)]

s.t. τ = k.
(15) 757

(To simplify the notation, we use IQ to represent 758

the condition on Q.) 759

Proof: We start by expanding the mutual infor- 760

mation term IQ(X̄;Y ): 761

IQ(X̄;Y ) = 762∫
x̄,y,q

P (x̄, y | q) log
(

P (x̄, y | q)
P (x̄ | q)P (y | q)

)
dx̄ dy dq 763

=

∫
x̄,y,q

P (x̄, y | q) log
(
P (x̄, y | q)
P (x̄ | q)

)
dx̄ dy dq 764

−
∫
y,q

logP (y | q)(
∫
x̄
P (x̄, y | q)dx̄) dy dq 765

=

∫
x̄,y,q

P (x̄, y | q) log
(
P (x̄, y | q)
P (x̄ | q)

)
dx̄ dy dq 766

−
∫
y,q

logP (y | q)P (y | q) dy dq 767

Since
∫
y,q logP (y | q)P (y | q) dy dq does not 768

affect the optimization, we ignore it: 769

IQ(X̄;Y ) 770

∼
∫
x̄,y,q

P (x̄, y | q) log
(
P (x̄, y | q)
P (x̄ | q)

)
dx̄ dy dq 771

= EX̄,Y,Q [logP (y | x̄, q)] . 772

Here x̄, y, q represent specific data points sampled 773

from the random variables X̄, Y,Q, respectively. 774

This completes the proof. 775

C Information Coverage 776

In this section, we explain the Information Cover- 777

age metric used in our ablation study for DROP and 778

SQuAD datasets. Unlike accuracy, which directly 779

measures the correctness of the model’s predic- 780

tions, Information Coverage focuses on whether 781

key information (i.e., the source of the answer) is 782

preserved after context compression. 783

Specifically, we adopt EM as the evaluation met- 784

ric for measuring coverage. Given a compressed 785

context and a target answer, EM evaluates whether 786

the answer’s source can still be precisely matched 787

within the compressed context. This ensures that 788

critical information needed to derive the answer is 789

retained post-compression. A higher EM score in- 790

dicates better preservation of essential information, 791
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Figure 6: Information coverage on Drop.

Figure 7: Information coverage on SQuAD.

thus reflecting the compression method’s effective-792

ness in maintaining important content.793

Figures 6 and 7 showcase the Information Cov-794

erage at different compression ratios (from 1.0 to795

0.25) on the DROP and SQuAD datasets. These796

results are independent of the ablation experiments797

and are intended to highlight the robustness of our798

proposed method under varying levels of compres-799

sion.800

From the figures, it is evident that across all com-801

pression ratios, our method consistently achieves802

the highest Information Coverage compared to803

baseline approaches. This demonstrates the ef-804

fectiveness of our method in preserving critical805

answer-related information, even as the context806

length is reduced. Notably, at lower compression807

ratios (e.g., 0.25), where information loss is more808

severe, our approach still outperforms other meth-809

ods by a clear margin, underscoring its ability to810

prioritize and retain essential content.811

These findings further confirm that our method812

can effectively mitigate the challenges of informa-813

tion loss during compression while maintaining814

performance in downstream tasks.815

D Parameter Search for σ 816

In our experiments, we examined the effect of dif- 817

ferent values of the parameter σ on the performance 818

of the compression technique. Specifically, σ con- 819

trols the variance of the Gaussian filter used during 820

context compression. To explore its impact, we 821

conducted a parameter search across several values 822

of σ, ranging from 1 to 5, to assess how variations 823

in σ influence model performance at different com- 824

pression ratios. 825

Figure 8 shows the results of this search, where 826

we measured the model’s accuracy and information 827

coverage at compression ratios of 0.75, 0.50, and 828

0.25. 829

From our observations, we found that the value 830

of σ had minimal impact on performance for non- 831

zero values, with only a slight variation in both 832

accuracy and information coverage. Based on these 833

findings, we chose σ = 1 as the default value for all 834

subsequent experiments, ensuring both consistent 835

and efficient compression without substantial loss 836

in performance. 837

For a detailed breakdown of the parameter 838

search, see the plot in Figure 8, which illus- 839

trates how σ affects model performance across all 840

datasets tested. 841

E Computational Overhead Analysis 842

The computational overhead of our approach pri- 843

marily arises from calculating the cross-attention 844

during inference with a relatively small proxy 845

model. Similarly, the PPL-based method incurs 846

additional time overhead from computing log- 847

likelihood during inference using the same proxy 848

model. In both methods, the time overhead is ap- 849

proximately equivalent to one round of inference 850

by the proxy model. 851

E.1 Inference Time per 512 Tokens 852

The table below details the inference time per 512 853

tokens for different models: 854

Model Time per 512 Tokens
Llama3-8B 2.4251s

Flan-T5-Small 0.3238s

Table 4: Inference time per 512 tokens for different
models.

For our method, we use FLAN-T5-Small, a 855

model with only 80M parameters, as the proxy 856

model. This makes the additional time overhead 857
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Figure 8: parameter search across several values of σ

negligible. The efficiency gains from our approach858

far outweigh this minimal time cost. Furthermore,859

it is important to note that while our method and the860

PPL-based method theoretically share the same ad-861

ditional time cost when employing the same proxy862

model, prior works typically use much larger mod-863

els as proxies. This makes our method more effi-864

cient in practice.865

F Comparison with Different FLAN-T5866

Model Sizes867

To demonstrate the versatility of our approach,868

we compared models with different sizes of the869

encoder-decoder architecture. Specifically, we used870

various models from the Flan-T5 series (Flan-T5-871

small, Flan-T5-base, Flan-T5-large), as there are872

no other encoder-decoder models that rival Flan-873

T5 within the same time frame. Older models like874

BART (2019) and T5 (2019) show a significant per-875

formance gap compared to Flan-T5. For efficiency876

reasons, we primarily utilized Flan-T5-Small in877

our experiments. We also benchmarked Flan-T5-878

Base and Flan-T5-Large, with their results showing879

similarly promising trends, as shown in the table 5.880

Ratio Dataset Small Base Large
0.75 Squad 97.3 98.3 98.2
0.5 94.1 96.4 95.6
0.25 88.1 92.1 90.4
0.75 Quoref 92.6 92.4 92.2
0.5 90.2 90.1 90.3
0.25 86.8 89.4 89.9
0.75 CoQA 79.5 80.3 80.1
0.5 78.1 78.6 79.9
0.25 75.5 77.8 77.5

Table 5: Evaluation results for different sizes of FLAN-
T5 models on various datasets.
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