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Abstract— Visual object recognition in unseen and cluttered
indoor environments is a challenging problem for mobile robots.
Toward this goal, we extend our previous work [1] to propose
the TOPS2 descriptor, and an accompanying recognition frame-
work, THOR2, inspired by a human reasoning mechanism
known as object unity. We interleave color embeddings obtained
using the Mapper algorithm [2] for topological soft clustering
with the shape-based TOPS descriptor to obtain the TOPS2
descriptor. THOR2, trained using synthetic data, achieves
substantially higher recognition accuracy than the shape-based
THOR framework and outperforms RGB-D ViT [3] on the
UW-IS Occluded dataset recorded using commodity hardware.
Therefore, THOR?2 is a promising step toward achieving robust
recognition in low-cost robots.

I. INTRODUCTION

Object recognition is crucial for successful manipulation
of objects in unseen environments. Deep learning-based
methods run into difficulties in such environments due to the
covariate shift in the data distribution [4]. Further, domain
adaptation methods require data from the target domain,
and domain generalization methods require abundant real-
world training data, which poses deployment barriers on
robots with commodity hardware. [5]. Instead, we consider
a single synthetic source domain to obtain object representa-
tions suitable for recognition across multiple target domains.
Considering this paradigm, our previous work [1] proposes a
topological descriptor, TOPS, computed from depth images.
When used with the human-inspired recognition framework,
THOR, it shows promising robustness to occlusions, but
recognition using 3D shape alone is challenging [6], [7].

Multimodal convolutional neural networks [8] and
transformer-based approaches [3] for recognition using shape
and color have been proposed. However, our paradigm re-
quires color representations that transfer well from simula-
tion to the real world. Obtaining them is challenging because
the observed chromaticity of objects varies with the lighting
conditions [9]. To account for this variation, we follow an
approach inspired by the MacAdam ellipses [10] in humans
(regions containing indistinguishable colors; we identify the
color regions using a topological soft clustering technique,
known as the Mapper algorithm [2], and use them to compute
the representations. Similar to classical approaches [6], [11]—
[15], we then fuse them with TOPS to obtain TOPS2. Our
key contributions are:

1E. U. Samani was with the Department of Mechanical Engineering,
University of Washington, Seattle, WA 98195, USA, during this work
eusamani@gmail.com

2A. G. Banerjee is with the Department of Industrial & Systems En-
gineering and the Department of Mechanical Engineering, University of
Washington, Seattle, WA 98195, USA, ashisb@uw.edu

s N ~ )
o
gell: :
: o
bt o a
» o
= % 0 TOPS
X . " Aligned view) i
2 Object point cloud ss
. . from depth image for ’“°'" training
i
| i ' N o
: o
-1 -0
e g ToPS
0
- v a ‘ . o
lAll possible poses| TOPS2
of all objects Normalized Sliced object Persistence  Color Topsz raining

point cloud images embeddings

\ (o occlusion) } {  view )

(a) THOR? training stage
7 /Ocelusion-induced\

incompleteness

L })

Object point cloud

iz

t "I, Pred-
from depth image e

RGB-D v E iction
image 0
. a
a

.
- Trained
TOPS2
Segmentation Normalized Sliced object Persistence  Color TOPS2 b
map )\ view point cloud images embeddings

(b) THOR? testing stage

Fig. 1: Proposed framework, THOR2, for 3D shape and
color-based recognition using object unity [18], facilitated
by the similarity in the TOPS and TOPS2 descriptors of
unoccluded and occluded objects.

« We identify color regions (clusters of similar colors) in the
standard RGB color space using the Mapper algorithm [2]
and capture their connectivity in a color network.

o We propose a color network-based computation of color
embeddings to obtain the TOPS2 descriptor for 3D shape
and color-based recognition of occluded objects using an
accompanying framework THOR?2.

o We show that THOR2, trained with synthetic data, outper-
forms a state-of-the-art transformer adapted for RGB-D
object recognition in unseen cluttered environments.

II. METHOD: THOR2

Given a real-world RGB-D image of an unseen cluttered
scene and the corresponding instance segmentation map [16],
[17], our goal is to recognize all the objects in the scene.
First, we obtain colored point clouds for every object in
the scene and compute the corresponding TOPS and TOPS2
descriptors. The color network used for obtaining TOPS2
is pre-computed (offline) using the Mapper algorithm. We
then perform recognition using two classifiers (one for each
descriptor) trained on synthetic RGB-D images (see Fig. 1).

A. Color Network Generation

We consider the colors represented by the standard RGB
(sRGB) color space, where values for each color channel



range from 0 to 255. Let X,.¢;, denote the set of these colors.
But, the sRGB color space is not perceptually uniform.
Therefore, following [9], we convert all the elements in X,.g;,
to the CIELAB (i.e., L*a*b*) color space to obtain Xjgp.

We then perform topological soft clustering on X, using
the Mapper algorithm. Specifically, let kp«, kq«, and kp«
represent the L*, a*, and b* components of a color k in
Xiap- We use a chroma and hue-based lens (i.e., projection)
function, fj, to transform the three-dimensional data in X,
to a two-dimensional space. We define f; as follows.

filk) = (,/kg* + k2., & + arctan (:b» . (D

where ¢ is a constant offset selected based on the cover.
Following Chazal et al. [19], we build a cubical cover U by
considering a set of regularly spaced intervals of equal length
covering the set fj(Xjqp). Let 1 and ro (where 71,79 > 0)
denote the lengths of the intervals (i.e., the resolution of the
cover) along the two dimensions of f;(X;4p), respectively.
Let g1 and g» denote the respective percentages of overlap
(i.e., the gain of the cover) between two consecutive inter-
vals. For each U € U, a clustering algorithm is applied to
£ 1(U) to obtain the refined pullback cover R of Xjqp,. We
use the HyAB distance metric [20], defined as follows, to
compute the distance between two colors m and n during
clustering.

HyAB(m,n) ar = Na=)? +

(my =2 (2)

Next, the nerve of R is constructed by collapsing each cluster
R € R into a vertex and creating a p-simplex to represent
each (p + 1)-way intersection of R’s. Therefore, in the re-
sulting network, the vertices represent color regions, and the
edges represent the overlap between the corresponding color
regions. Since a cubical cover does not capture the cyclic
nature of the chroma-related dimension of f;(X;4s), we add
edges connecting the vertices corresponding to the first and
last intervals along that dimension. We then eliminate the
redundant vertices to obtain the final color network (Fig. 2).

Let G = (V, E) be the color network, representing a non-
empty set of vertices V' and a set of edges E. Let n. represent
the number of vertices in G, i.e., the number of color regions.
We define a similarity matrix, A, of size n. X n, to capture
the similarity and connectivity between the different color
regions in G. We define A as follows
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where d;/;, represents the similarity between the i’-th and
j'-th nodes. Since every edge in FE does not represent the
same perceptual difference between the color regions, first,
we assign a weight to each edge. Let 7,/;; be an edge in E/
that connects the 4’-th and j’-th nodes. To assign the weight,
first, we compute the mean color [7] of the i'-th and j'-th
colors nodes. The edge n;/;/ is then assigned a weight equal
to the HyAB distance between the mean colors of the i’-th
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Fig. 2: The color network that captures the connectivity
among color regions identified using the Mapper algorithm.

and j'-th nodes. We then set & = 17—
g

the weight of minimum weight path connecting the ¢’-th and
j'-th nodes. This matrix A is used for computing TOPS?2.

, where [y is

B. TOPS?2 Descriptor Computation

Consider a colored object point cloud P in R3. Similar to
[1], first, we reorient the point cloud to a reference orientation
by performing view normalization. Next, we rotate the view-
normalized point P by an angle v about the y-axis to obtain a
suitably aligned point cloud P. As in [1], we slice P along
the z-axis to get slices S?, where i € Z N [0, :1] Here,
h is the dimension of the axis-aligned bounding box of P
along the z-axis, and o, is the thickness of the slices. Let
s = (s, Sy, 5») represent a point in S*. For every slice S,
we modify the z-coordinates Vs € S to s/, where s, = io;.

Next, we perform further slicing of S? along the x-axis
to obtain strips 7, where j € Z N [0, 2]. Here, w is the
dimension of the axis-aligned bounding box of the slice along
the x-axis, and o9 represents the ’thickness’ of a strip. For
every strip €/, we obtain corresponding color vectors ®/ =

[¢1 b2 .. P ]T as follows.
1y, (W)
br= > )
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rgb
where A € {1,...,n.} represents the A-th color region,

w represents the color of a point in Q7 (in the sRGB
color space), 1 denotes the indicator function of a set, and
X ;\gb represents the set of colors (in the SRGB color space)
belonging to the A-th color region. Consequently, the color
vectors &7 approximately represent the color constitution (in
terms of the color regions) of the strips 7.

We then stack the color vectors (with appropriate zero
padding) to obtain an n™%® x n, dimensional color matrix C*.
Let C' =[O .. @1 @2 ... @y . O}T where n is the number
of strips in the corresponding slice S¢, n™%% is the maximum
number of strips in any given slice, and O represents a 1, X 1
dimensional zero matrix. Consequently, the color matrix C?
approximately represents the color constitution (in terms of
the color regions) of the slice S? in a spatially-aware manner.
Last, we obtain a corresponding embedding £ as follows.

&=’ (5)

Fig. 3 shows this embedding generation for a sample object’s
slice. We then vectorize the color embeddings and interleave
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Fig. 3: Visualization of the color embedding computation
for obtaining the TOPS2 descriptor. Example of an aligned
object point cloud, the slices obtained from it, and the color
embedding for one of its slices.

them with the vectorized persistence images from the corre-
sponding TOPS descriptor to obtain the TOPS2 descriptor.

C. THOR2: Training and Testing

Similar to [1], we consider a training set comprising
synthetic RGB-D images corresponding to all the possible
views of all the objects. We do not consider any object
occlusion scenarios in our training set owing to the slicing-
based design of the TOPS2 descriptor; it embodies object
unity [18], enabling an association between the visible part
of an occluded object with the original unoccluded object.
We generate colored object point clouds from the RGB-D
images, scale them by a factor of o, perform view normal-
ization, and compute the TOPS and TOPS2 descriptors for
them. We train one classifier using the TOPS descriptor and
another using the TOPS2 descriptor.

When testing on a real RGB-D image of a cluttered scene,
first, we generate the individual colored point clouds of all
the objects using the instance segmentation maps and scale
them by a factor of o,. Consider a scaled object point cloud
P:. To recognize P, first, we perform view normalization
to obtain P;. Next, we determine if the object corresponding
to 75,5 is occluded, as described in [1]. If it is occluded, we
rotate P, by 7 about the z-axis. We then compute the TOPS
and TOPS2 descriptors, and use the corresponding classifier
models to obtain two predictions. We choose the prediction
with the highest probability as our final prediction.

IITI. EXPERIMENTS AND RESULTS

We use the CIE standard illuminant D65 for obtaining
Xiap from X, 45 and use the Kepler Mapper library [21], [22]
to compute the color network from Xj.p. We set § = ¢,
and build a cover by choosing g; = 10% and g2 = 25%.
We set r1 and ro to divide the corresponding dimensions
into three and eight equally-spaced intervals, respectively.
For clustering, we use the DBSCAN algorithm [23]. In the
case of THOR and THOR?2, we use multi-layer perceptrons
trained using synthetic training data as described in [1].

We compare the performance of THOR, THOR2, and a
Vision Transformer (ViT) adapted for RGB-D object recog-
nition [3] in different environments of the UW-IS Occluded
dataset [1] under varying degrees of occlusion. Table I
shows that THOR?2, which uses both 3D shape and color,
achieves higher recognition accuracy than the exclusively
shape-based THOR framework in all the scenarios of the
UW-IS Occluded dataset. Moreover, THOR2 outperforms

TABLE I: Comparison of mean recognition accuracy (in %)
in two different environments of the UW-IS Occluded dataset
under varying degrees of occlusion.

. ‘ THOR ‘ THOR2 ‘ RGB-D ViT [3]
Env. Occlusion

| Synthetic | Synthetic |  Synthetic S+20% YCB  S+100% YCB
None 51.62 £ 0.53 | 61.40 & 0.37 | 43.65 £ 0.70 48.14 £ 1.72 4939 + 2.57
Warehouse Low 48.07 £ 0.28 | 58.00 & 0.49 | 45.11 £+ 1.37 4756 +£ 1.62  47.25 + 3.01
High 4426 £ 0.25 | 59.38 + 0.35 | 42.52 +£ 1.07 4838 £+ 2.37 46.45 £+ 2.87
None 56.72 £ 0.60 | 64.29 + 0.34 | 39.14 £ 2.07 4472 £2.16 46.84 + 2.66
Lounge Low 54.45 £ 0.24 | 65.87 + 0.64 | 43.06 £ 0.60 47.41 £ 0.76 47.51 £ 226
High 51.88 £ 0.46 | 59.95 + 0.52 | 43.50 = 1.07  46.68 £ 1.75 47.11 £ 2.90
All ‘ 5222 £0.33 ‘ 62.58 + 0.36 ‘ 4296 £ 0.87 47.04 &+ 1.44 47.41 £ 2.70

Note: S + x% YCB indicates that x% real images from the YCB dataset
are used along with the entire synthetic dataset for training and validation.

Fig. 4: Sample results (green and red boxes indicate correct
and incorrect recognition, respectively) from the UW-IS
Occluded dataset.

RGB-D ViT, irrespective of the amount of real-world data
(from the YCB dataset [24]) used to train it. Fig. 4 shows a
few sample results. These results also demonstrate that the
TOPS and TOPS2 descriptors transfer well to the real world,
unlike representations learned using an RGB-D ViT trained
on synthetic and limited real-world training data. However,
we note that similar to THOR, THOR?2 faces difficulty in
the case of under-segmentation errors and specific heavy
occlusion scenarios [1]. We also successfully implement
THOR2 on a LoCoBot equipped with an Intel RealSense
D435 camera and an NVIDIA Jetson AGX Xavier processor.
THOR? runs at an average rate of 0.7s per frame in a scene
with six objects on this platform.

IV. CONCLUSIONS

This work presents the TOPS2 descriptor and an accom-
panying human-inspired recognition framework, THOR2, for
3D shape and color-based recognition of occluded objects
in unseen indoor environments. In addition to the persis-
tence images in the TOPS descriptor, TOPS2 comprises
color embeddings based on the similarity and connectivity
among different colors in a color network obtained using
the Mapper algorithm. Our slicing-based approach ensures
similarities between the descriptors of the occluded and the
corresponding unoccluded objects, facilitating object unity-
based recognition. Results show that THOR2 benefits from
color information and outperforms RGB-D ViT [3] trained
using synthetic and limited real-world data. In the future, we
plan to extend THOR?2 to incorporate multiple viewpoints to
improve the recognition of heavily occluded objects.
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