
Under review as submission to TMLR

Unlocking [CLS] Features for Continual Post-Training

Anonymous authors
Paper under double-blind review

Abstract

Continual learning requires models to integrate new classes or domains over time while
preserving previously acquired knowledge. Within this paradigm, foundation models often
achieve strong performance, but they still remain subject to the stability–plasticity trade-
off, where excessive plasticity leads to forgetting of prior knowledge, and excessive stability
constrains the adaptation. This necessitates an effective post-training strategy that intro-
duces minimal yet functional modifications. To address this challenge, we first introduce
a new parameter-efficient fine-tuning module ‘Learn and Calibrate’, or LuCA, designed to
acquire task-specific knowledge through an adapter-calibrator couple, enabling well-refined
feature representations. Then, for each task, we deploy a sparse LuCA module on top of
the last classification token [CLS] just before the classifier, which we refer to as ‘Token-level
Sparse Calibration and Adaptation’, or TOSCA. By leaving the generalization capabilities
of the foundation models intact and adapting exclusively via the last token, our approach
achieves a harmonious balance between stability and plasticity while reducing both training
and inference complexity. We demonstrate that TOSCA yields state-of-the-art performance
while introducing ~8× fewer parameters compared to prior methods. Code is anonymized at
https://anonymous.4open.science/r/tosca-repo-5F2C/ and will be publicly available.

1 Introduction

Learning continuously from a series of concepts or classes using a unified model is a challenging problem due to
catastrophic forgetting (1), a phenomenon where the model’s performance on earlier concepts degrades as new
classes or domains are observed. Class-incremental learning (CIL), a branch of continual learning, addresses
this issue by enabling models to acquire knowledge from new classes while preserving their ability to correctly
classify previously learned categories (2). Until recently, most CIL methods have focused on relatively small
networks such as ResNets (3) and often trained them starting from random initialization (4; 5).

With the rise of large Foundation Models (FMs) (6; 7; 8) such as Vision Transformers (ViTs) (9), many CIL
methods now capitalize on the robust representations provided by FMs, marking a significant paradigm shift
in the field, showing that leveraging strong initial representations from large-scale pre-training significantly
enhances incremental learning (10; 11; 12). However, sequential fine-tuning of FMs inevitably alters the
pre-trained representations, leading to substantial forgetting (13; 14; 15).

To tackle this, post-training adaptation strategies1 such as learnable prompts (16; 17; 18; 19; 20; 21) and
lightweight adapters (22; 23; 24) restrict updates to small subsets of parameters. While this helps to mitigate
forgetting, they introduce new trade-offs. Learnable prompts aim to steer the FMs existing knowledge to
new tasks by introducing small trainable embeddings, keeping the model’s core parameters unchanged. This
guides the model to activate relevant pre-existing knowledge for new tasks and offers great stability, but
often limits task-specific adaptability. In contrast, adapters inserts small trainable neural networks directly
into the FM’s layers to provide localized feature refinement with high plasticity, but this flexibility often
comes at the cost of quadratic parameter growth with increasing model depth. This trade-off exemplifies
the well-known stability–plasticity dilemma (25) and motivates the central question of this work:

How can we efficiently tackle the stability-plasticity dilemma in continual post-training?

1Lightweight adaptation methods atop large frozen pre-trained backbones
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To address this question, we take inspiration from neuroscience, where the brain achieves continual learning
by forming invariant representations in the ventral visual stream (26; 27), while flexibly adapting and modu-
lating them through task-specific circuits in the prefrontal cortex (28; 29; 30). In other words, the prefrontal
cortex receives these stable visual representations and refines them through selective synaptic plasticity,
enabling flexible adaptation to task demands and effectively guiding appropriate behavioral responses.

Analogously, we aim to leverage a large pre-trained model to emulate the ventral visual stream, which extracts
stable and invariant features. To adapt these general features for specific tasks, we insert small lightweight
modules just before the decision layer, mirroring how cortical circuits flexibly refine representations based
on task-specific demands. This design avoids redundant relearning of low-level features and aligns with
biological learning principles, enhancing both efficiency and adaptability.

To this end, we first introduce a new parameter-efficient fine-tuning (PEFT) module ‘Learn and Calibrate’,
or LuCA, which comprises two components: (1) a residual adapter that applies task-specific feature trans-
formations, and (2) a calibrator that reweighs and enhances the adapted features via attention-like gating.

Then, to enable post-training in CIL setup, we train a single sparse LuCA module for each task, operating
exclusively on the final [CLS] token representation of ViTs. We refer to this approach as ‘Token-level Sparse
Calibration and Adaptation,’ or briefly TOSCA. By localizing adaptations at the final semantic aggregation
point and preserving the low/mid-level feature hierarchy, TOSCA mirrors the harmony between the ventral
visual stream and the prefrontal cortex.

Specifically, task-specific information is residually acquired just before classification through a dedicated
LuCA module, sparsified via ℓ1-regularization to promote parameter orthogonality, which improves the spe-
cialization and distinctiveness across modules. This targeted injection in a continual post-training protocol
preserves the stability of the rich, generalizable features of the FMs, while providing the necessary plas-
ticity through precise, task-specific adjustments at the point of decision-making. The inference protocol
leverages entropy minimization over task-specific predictions, as correct modules produce low-entropy class
distributions. This approach removes the reliance on task identifiers or exemplar replay while achieving
state-of-the-art performance without complicated procedures.

Our contributions are three-fold:

I. We introduce a new PEFT module LuCA designed to learn task-specific residual transformations while
refining features through additional calibration gating.

II. We propose TOSCA, a neuro-inspired and theoretically grounded continual post-training approach
that strategically integrates our LuCA module at the final semantic aggregation point in the network.
This balances stability and plasticity while maintaining a model-agnostic parameter count, unlike
many prompt- and adapter-based methods that scale linearly with the number of layers.

III. We validate TOSCA’s advantages with extensive experiments on six benchmarks. We find that TOSCA
yields (i) 7–21% higher accuracy than prompt-based methods and 4–12% higher than adapter-based
methods on out-of-distribution datasets, (ii) ~2.5× faster overall runtime, and (iii) ~8× fewer param-
eters than layer-wise adapters.

2 Related Work

CIL with Randomly Initialized Models. Not a long time ago, the focus in CIL was training deep neu-
ral networks sequentially from scratch, and the strategies can be categorized into four main approaches.
Regularization-based methods (31; 32; 33; 34) maintain the model by selectively stabilizing changes in
parameters or predictions. Replay-based methods approximate and reconstruct previously learned data
distributions by either storing (35; 36; 37; 38; 39; 40; 41; 42; 43) or generating (44; 45; 46; 47; 48) sam-
ples from past experiences. Architecture-based methods allocate distinct parameters and subspaces to
different sets of classes, whether expanding the architecture (49; 50; 51; 52; 53) or pruning the existing
one (54; 55; 56; 57; 58; 59; 60; 61) to obtain and preserve key parameters.
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Figure 1: Overview of the FM-based continual post-training methods. Prompt-based methods influence the self-
attention process of an FM, either from the input layer or across all layers. Adapter-based methods enable task-
specific adaptations by inserting lightweight neural modules into the FM’s layers. In contrast, we propose to train a
single module that operates exclusively on the final [CLS] token representation, efficiently adapting and calibrating
features just before classification. This design offers a streamlined and effective alternative to existing methods.

CIL with Pre-Trained Models. In contrast, recent advancements in CIL research have shifted towards
leveraging pre-trained FMs since representations derived from those models have proven to be effective not
only in facilitating knowledge transfer but also in mitigating catastrophic forgetting during downstream con-
tinual learning (10; 11) with minimal adaptations (12). Therefore, post-training methods in this context aim
to improve performance with minimal additions and modifications while freezing the FMs. L2P (18) borrows
a technique from NLP by introducing a learnable prompt pool and selecting instance-specific prompts via
a key-query matching selection mechanism to guide the FMs response. DualPrompt (19) extends L2P by
designing G-Prompt and E-Prompt, which encode task-invariant and task-specific instructions respectively.
CODAPrompt (20) uses contrastive learning to decorrelate representations of the prompts to reduce interfer-
ence and combine them by attention-based weighting method. HiDePrompt (21) leverages prompts together
with class-level feature statistics to enable implicit feature-space replay and improve class-wise alignment.
APER (22) explores various PEFT methods and shows that a simple prototypical classifier called SimpleCIL
serves as a strong baseline. RanPAC (15) extends SimpleCIL by randomly projecting features into a high-
dimensional space with a linear discriminant analysis classifier. EASE (23) attaches adapters to each layer of
FMs to create expandable subspaces, and during inference, it concatenates all feature representations from
different sets of adapters. MOS (24) adds replay generation for classifier alignment and an adapter merging
over EASE to reduce mistakenly retrieving irrelevant modules during inference due to parameter drift.

3 Background

In this section, we first formally introduce the preliminaries of the CIL and describe how FMs are utilized
to facilitate incremental learning. We then provide an overview of existing approaches, highlighting their
strengths and the key limitations they face in effectively addressing the challenges of continual learning.

3.1 Class-Incremental Learning (CIL)

CIL is a learning scenario where a model continually learns to classify new classes to build a unified
classifier (35). Formally, we train models sequentially on a series of datasets {D1, D2, ..., DB} where
Db = {(xi, yi)}nb

i=1 is the b-th training set with nb instances. Within this setting, each training instance
xi ∈ RD is associated with a class yi ∈ Yb. Here, Yb defines the set of labels for dataset b, and it is ensured
that Yb ∩ Yb′ = ∅ for any b ̸= b′, i.e. non-overlapping classes for different datasets. During the b-th training
stage, the model is updated using data exclusively from Db.
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From the model perspective, following typical FM-based CIL works (18; 19; 20; 22; 23; 24), we assume that a
foundation model is available for the initialization of the model f(x) which we define with two components:
f(x) = W⊤ϕ(x), where ϕ(·) : RH×W ×C → Rd is the feature extractor and W ∈ Rd×|Yb| is the classifier. For
a vanilla ViT (9), the initial embedding layer converts the input image into a sequence of token embeddings,
denoted as xe = [xe0 ,xe1 , . . . ,xeL

] ∈ R(L+1)×d, where L is the number of patch tokens and xe0 represents
the prepended [CLS] token. The sequence xe is then processed through subsequent transformer layers,
including multi-head self-attention and feed-forward networks, to produce the final embeddings. Following
the standard practice, we use [CLS] token xe0 as the global image representation and consider as ϕ(x).

The effectiveness of the model is evaluated across all encountered classes, collectively represented as Yb =
Y1 ∪ Y2 ∪ · · ·Yb after each learning stage. Specifically, we aim to find a model f(x) : X → Yb that minimizes
empirical risk across all test dataset without task indices by balancing between learning new classes and
retaining information about old ones in the replay-free setting (18; 19; 20; 22; 23).

3.2 Overview of Post-Training in CIL

In the era of FMs, the main idea of many works seeks to modify the pre-trained weights slightly with
post-training, to maintain the generalization strength and we can mainly divide these approaches into three.

Learning Prototypical Classifiers. These methods (15; 17; 22) focus on learning a set of prototypical
class representations, typically by computing class centroids or prototypes from the features of incremental
classes. Given an input instance x with label y ∈ Yb, let ϕ(x) be its feature vector extracted by a pre-trained
backbone. Then, the class prototype py is defined as

py = 1
nb

nb∑
i=1

ϕ(xi) (1)

and instances are classified by measuring their distance to these prototypes in the feature space. It is an
efficient solution for simple class-incremental learning tasks by training only a classifier. However, these
methods tend to rely too heavily on pre-trained knowledge and often fail to sufficiently adapt to new classes.
This limits their effectiveness in more complex learning scenarios requiring feature-space reorganization.

Learning Prompts. This body of works (18; 19; 20; 21) construct and train a learnable pool of prompts
that can be shared across all tasks to influence the self-attention process either from the input layer alone or
across all layers. This prompt pool with a size of M is denoted as P = {P1, P2, · · · , PM }, where Pj ∈ RLp×d

represents a single prompt with token length Lp and the same embedding size d as image patch embedding xe.
Each prompt is paired with a trainable key vector ki ∈ Rdk encodes task-specific information while preserving
the pre-trained backbone ϕ(·), creating a set of key-prompt pairs {(k1, P1), (k2, P2), · · · , (kM , PM )}. The
training objective jointly optimizes prompts, keys, and classifier through

min
P,K,W

ℓ(W⊤ϕ(x; P), y) + λ

N∑
i=1

γ(ϕ(x), ksi) (2)

where ℓ(·, ·) is cross-entropy loss measuring the discrepancy between the prediction and ground truth, γ(·, ·)
measures cosine similarity between keys and queries, si denotes the index of the i-th selected key from the
key-prompt set, and λ balances task performance against prompt selection efficacy. During inference, the
model first extracts key features ϕ(x) from the frozen FM without any prompts to solve the prompt retrieval
objective

K∗
x = arg min

{si}N
i=1⊆[1,M ]

N∑
i=1

γ(ϕ(x), ksi), (3)

where the argmin operator returns the index set K∗
x = {si}N

i=1, which is then used to access the correspond-
ing prompts {Ps1 , Ps2 , · · · , PsN

}. These prompts then condition the transformer’s self-attention layers via
concatenation with patch embeddings, yielding final predictions through an additional pass on the modified
encoder ϕ(x; P).
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Although they present relatively efficient adaptations, selecting the correct prompt for a given task becomes
challenging especially in long and complex scenarios, as the fixed key embedding space ϕ(·) struggles to
discriminate between semantically similar but task-distinct prompts, leading to retrieval conflicts when
γ(ki, kj) ≈ 1 for prompts Pi, Pj from incompatible tasks, resulting in forgetting.

Learning Adapters. These approaches (22; 23; 24) address catastrophic forgetting by inserting lightweight
neural modules called adapters into the FM’s layers, enabling task-specific adaptations while preserving
frozen base parameters. Each set of adapters, Ab = {A1, A2, . . . , AN }, for task b operates via residual
connections across N transformer layers. These adapters typically project features through a low-dimensional
bottleneck, given an intermediate feature as defined in

A(z) = z + ψ(zWdown)Wup, Wdown ∈ Rd×r, Wup ∈ Rr×d (4)

where z represents the output of the MLP block in a transformer layer, ψ denotes a non-linear activation
function, typically GELU, and the adapter’s projection layers follow the constraint r ≪ d. Task-specific
adapter sets then can be trained using either a feature concatenation strategy or a module merging strategy.
Under the feature concatenation strategy (23), adapter sets are trained sequentially for each session and
their outputs are concatenated with the FM features at the cost of quadratic scaling or a linear increase in
dimensionality. In contrast, the module merging strategy (24) builds on previous adapter sets where each
new set Ab refines the representation produced by the preceding set Ab−1 to produce a gradual and unified
feature representation. This is more parameter-efficient compared to the feature concatenation strategy,
but it risks accumulating feature drift over successive tasks, especially when new class distributions diverge
significantly from those of earlier sessions.

Although they modify the pre-trained model’s feature representations via residual additions, inserting
adapters into all N transformer layers incurs substantial parameter overhead, requiring (B × N × 2dr)
additional parameters, where B denotes the number of tasks, r is the bottleneck projection dimension, and
d is the embedding size. Moreover, these residual modifications introduce subtle yet cumulative deviations
from the original pre-trained feature space, which become particularly pronounced in deeper layers. Conse-
quently, while individual adapters are lightweight, their pervasive placement across layers poses challenges
for overall parameter efficiency during both training and inference.

4 Methodology

Adapter

Calibrator

ϕ(x)'

ϕ(x)

Figure 2: LuCA.

Here, we first introduce our general-purpose PEFT module LuCA and then present the
details of TOSCA, a specialized instantiation of LuCA designed for post-training in CIL,
with theoretical insights into the stability-plasticity trade-off of the feature manifolds.

LuCA Module. Our module is based on an adapter-style design, where it learns re-
fined task-specific information. In particular, LuCA separates feature transformation
from discriminative feature enhancement through a dual adapter–calibrator structure,
enabling fine-grained control over parameter updates. LuCA can process any interme-
diate representation z ∈ Rd through two sequential operations:

L(z) = C(A(z)), (5)

where A(·) is a residual adapter that applies bottlenecked feature modulation with
Eq. (4) to preserve original semantics via skip connections while learning task-specific
offsets. The calibrator C(·) then reweights the adapter’s output features through an
attention-like gating, and refines the more discriminative features with

C(z) = z ⊙ σ(zVdown)Vup, Vdown ∈ Rd×r, Vup ∈ Rr×d (6)

5
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where ⊙ denotes the Hadamard product and σ indicates a sigmoid activation function. We call this compo-
nent a ‘calibrator’ because its gating mechanism performs task-dependent feature calibration: it produces a
soft importance mask that rescales each feature dimension according to how informative it is for the current
task. This operation corrects over-activated or noisy channels while amplifying stable and discriminative
ones, thereby calibrating the representation before it is passed to the classifier. Compared to complete fine-
tuning that scales with O(d2), LuCA provides an efficient and flexible mechanism for task adaptation with
only 4 × d× r trainable parameters, leading to a significantly reduced O(dr) complexity, where r ≪ d.

TOSCA: Specialization for Continual Post-Training. In this work, to enable continual post-training
with neuroscientific inspirations, we instantiate the LuCA module as TOSCA which is a strategic implemen-
tation operating exclusively on the final [CLS] token just before the classifier. Given an input x, the frozen
pre-trained backbone generates features ϕ(x) of the last [CLS] token, and TOSCA refines them through

ϕ(x)′ = L(ϕ(x)) = C(A(ϕ(x))). (7)

The design of placing it at the last token is a deliberate architectural choice with three advantages: First, by
localizing adaptation to the final [CLS] token, TOSCA preserves the feature hierarchy: low- and mid-level
representations remain stable, while only the high-level abstractions adapt to new tasks. This minimizes
disruption to learned invariant features (stability) while still injecting flexible task-specific adjustments (plas-
ticity) at the final semantic aggregation point, mirroring the functional synergy between the ventral visual
stream and the prefrontal cortex where stable representations from the ventral stream (26; 27) are integrated
and modulated by task-specific circuits in the prefrontal cortex (28; 29; 30) just before driving behavioral
responses. Second, the last [CLS] token inherently aggregates all semantic information, making it an opti-
mal locus for task-specific refinement, in contrast to input-layer modifications of prompt-based approaches,
which indirectly influence later representations through the self-attention mechanism. Third, this design
avoids modifying multiple layers and ensures that the total parameter count remains architecture-agnostic,
with a fixed footprint of 4dr that does not scale with model depth. In contrast, layer-wise adapters scale
linearly as N × 2dr for N layers. This significant reduction in parameters leads to decreased training and
inference complexity.

Training Protocol. We completely freeze the parameters of FM and only train the TOSCA’s parameters
Θ = {Wdown,Wup, Vdown, Vup} together with the prototypical classifier W⊤. We utilize a new TOSCA
module for each incremental stage b with the parameters Θb, which encodes task-specific information by
optimizing a composite objective function that combines cross-entropy loss with ℓ1-regularization as

min
Θ

b
∪W ⊤

∑
(x,y)∈Db

ℓCE

(
W⊤ϕ(x)′

b, y
)

+ λ∥Θb∥1, ϕ(x)′
b = Lb(ϕ(x)) (8)

where λ controls the regularization strength. The ℓ1 term induces to use of only a sparse subset of weights in
the module, which encourages orthogonality. This orthogonal specialization enables each module to specialize
on distinct feature dimensions, preventing interference between the tasks (62; 63). After training, we store
Θb while keeping the pre-trained backbone ϕ(·) intact.

Inference Protocol. We divide our inference protocol into a two-stage design for computational effi-
ciency with minimal overhead. In the first stage, a single forward pass through the frozen backbone extracts
a shared representation ϕ(x) for the input batch, up to the classifier. In the second stage, each TOSCA
module independently processes this representation to produce task-specific predictions. This design avoids
redundant computation and enables efficient reuse of features across all modules. Each transformed feature
ϕ(x)′

b produces a task-specific probability distribution, and the module with the lowest output entropy is
selected to make the final prediction over the union of all classes. This leverages the fact that an appropriate
task-specific module typically yields lower uncertainty due to its specialized feature calibration and orthog-
onality, thereby enabling selection of the relevant module without access to task labels. The procedure can
be formalized as in Eq. (9), where H(·) denotes the Shannon entropy and πb represents task priors, assumed
uniform by default.
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ŷ = arg min
y∈Yb

H

(
B∑

b=1
πbpb(y|x)

)
, pb(y|x) = softmax(W⊤ϕ(x)′

b) (9)

Summary. Although prompt-based methods are primarily better at stability by modulating the self-
attention dynamics within frozen foundation models, adapter-based strategies focus more on promoting
plasticity through lightweight residual adaptations that fine-tune task-specific knowledge. Despite the success
of both directions in CIL, they often address only one side of the stability–plasticity dilemma. To combine the
complementary benefits of both, we introduce a new general-purpose PEFT module LuCA that integrates
an adapter with a calibrator to yield more coherent and refined feature representations. Unlike existing
continual post-training methods that place modules at every layer, we strategically position a sparse LuCA
module to operate solely on the final [CLS] token just before the classifier, which we refer to as TOSCA.
This neuro-inspired design encourages each module to specialize orthogonally in its feature subspace, prevents
task interference during inference, and efficiently achieves an elegant balance between stability and plasticity,
without relying on complex tricks, offering a principled step forward to post-training in CIL. Please refer to
Appendix A.1 for the theoretical underpinnings and algorithmic flow.

5 Experiments

In this section, we describe our setup and present results on seven benchmarks, comparing our approach
with state-of-the-art algorithms. Additionally, we compare against a joint training performance and provide
task-wise accuracies to demonstrate the adaptivity capacity of each method. Finally, we share a parameter
and run-time analysis, along with an ablation study and offer deeper insights with further discussion.

5.1 Experimental Setup

Datasets. Since FMs often exhibit substantial knowledge of upstream tasks, we adopt the evaluation
framework proposed in (18; 19; 20; 22; 23; 24) to assess their performance across a diverse set of benchmarks.
These include CIFAR-100 (64), CUB-200 (65), ImageNet-R (66) ImageNet-A (67), OmniBenchmark (68),
and VTAB (69). These datasets encompass both standard CIL benchmarks and out-of-distribution datasets
which exhibit significant domain shifts relative to the dataset used for pre-training, e.g. ImageNet (70).
Furthermore, to assess true out-of-distribution performance, we use the EuroSAT (71), a dataset with a
fundamentally different satellite imagery domain. CIFAR-100 has 100 classes of natural images, each with
500 training images. CUB-200 dataset consists of images from 200 bird classes, with about 30 images
per class for training. ImageNet-R includes 24000 for training images from 200 classes with abstract forms.
ImageNet-A consists of 200 classes and 7500 training samples that are usually misclassified by ResNet models.
Omnibenchmark with 300 classes and VTAB with 50 classes are designed to evaluate the generalization of
visual representations. Finally, EuroSAT contains 10 satellite imagery classes, each with roughly 2,000–3,000
samples, totaling 27,000 geo-referenced images. To perform class-incremental learning, we follow (22; 23; 24)
and adopt the notation ‘B-m Inc-n’, where m denotes the number of classes in the initial stage and n indicates
the number of classes introduced at each incremental stage.

Comparison Methods. We select state-of-the-art continual post-training methods for comparison: Sim-
pleCIL (22), RanPAC (15), L2P (18), DualPrompt (19), CODAPrompt (20), HiDePrompt (21), APER (22),
EASE (23) and MOS (24). All of them work under the FM-based replay-free CIL setting, except HiDePrompt
and MOS which generate pseudo-replay from class statistics for classifier alignment. We also include one
lower-bound and one upper-bound reference point: ‘Finetune’ sequentially fine-tunes the FM; and ‘joint’
trains the model with all classes at the same time. All methods are implemented using the same FM.

Evaluation Metrics. We compare the methods with well-recognized continual learning metrics which are
based on the accuracy over all stages obtained after last stage, and the accuracy across all stages (35). We
denote the Top-1 accuracy after the b-th stage as Ab and use AB to represent the performance after the final
stage. The average performance across all incremental stages is then measured by Ā = 1

B

∑B
b=1 Ab.
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Table 1: Average accuracy (Ā) and last accuracy (AB) on six datasets with ViT-B/16-IN21K. ‘IN-R/A’ stands for
‘ImageNet-R/A,’ and ‘OmniBench’ stands for ‘OmniBenchmark.’ We report all compared methods with their source
code and show the best performance in bold. ‘–’ denotes non-applicability under the released implementation.

Method
CIFAR B0 Inc5 CUB B0 Inc10 IN-R B0 Inc20 IN-A B0 Inc20 OmniBench B0 Inc30 VTAB B0 Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Joint − 96.21 ± 1.0 − 92.62 ± 1.1 − 81.92 ± 1.4 − 67.97 ± 1.9 − 85.44 ± 1.2 − 94.96 ± 1.2

Finetune 60.65 ± 5.6 48.12 ± 3.3 55.78 ± 2.8 33.13 ± 3.3 59.09 ± 3.7 49.46 ± 3.3 30.98 ± 3.4 19.86 ± 1.8 63.71 ± 1.0 45.45 ± 1.0 31.60 ± 6.0 21.63 ± 8.3

SimpleCIL 86.48 ± 0.8 81.28 ± 0.1 91.58 ± 1.3 86.73 ± 0.1 61.31 ± 0.4 54.55 ± 0.1 58.92 ± 1.0 48.77 ± 0.1 79.59 ± 1.5 73.13 ± 0.1 90.65 ± 1.1 84.43 ± 0.1

RanPAC 93.41 ± 0.8 90.02 ± 0.8 93.35 ± 0.7 89.27 ± 0.5 81.31 ± 0.9 75.44 ± 1.3 64.22 ± 1.4 54.76 ± 1.2 83.38 ± 1.1 78.33 ± 0.6 94.91 ± 1.7 91.93 ± 1.9

L2P 84.90 ± 1.2 80.06 ± 1.4 73.22 ± 1.8 61.55 ± 1.7 75.92 ± 0.7 70.88 ± 0.7 50.13 ± 1.8 42.80 ± 1.1 73.96 ± 2.0 64.63 ± 0.6 78.61 ± 4.2 64.81 ± 2.9

DualPrompt 85.61 ± 1.3 79.92 ± 0.4 81.36 ± 1.8 70.51 ± 1.1 71.48 ± 0.5 66.09 ± 1.3 51.57 ± 0.4 40.56 ± 1.6 75.58 ± 1.4 66.46 ± 0.8 86.86 ± 2.8 75.86 ± 3.7

CODAPrompt 87.64 ± 0.4 81.46 ± 0.3 77.65 ± 1.0 68.44 ± 1.0 76.25 ± 0.3 71.39 ± 0.3 58.82 ± 0.78 47.18 ± 0.9 73.73 ± 0.5 69.46 ± 0.7 87.60 ± 0.5 86.71 ± 0.8

HiDePrompt 85.99 ± 0.4 82.95 ± 0.7 83.86 ± 0.7 79.56 ± 1.0 79.63 ± 0.8 74.06 ± 1.3 - - - - - -
APER-Adapter 89.57 ± 0.9 84.91 ± 0.2 91.62 ± 1.2 86.72 ± 0.2 74.81 ± 0.8 66.97 ± 0.8 59.57 ± 1.6 49.46 ± 0.4 80.48 ± 1.2 74.04 ± 0.3 90.59 ± 1.0 84.28 ± 0.2

EASE 90.79 ± 0.8 85.97 ± 0.6 92.51 ± 1.3 86.49 ± 1.2 80.35 ± 1.0 75.74 ± 0.8 64.00 ± 1.5 54.99 ± 1.0 81.11 ± 0.8 74.16 ± 2.0 90.26 ± 3.6 82.07 ± 3.0

MOS 93.45 ± 0.9 90.04 ± 0.6 93.42 ± 1.2 90.07 ± 0.9 82.26 ± 1.0 77.62 ± 0.9 63.57 ± 2.0 54.60 ± 0.8 84.73 ± 1.1 79.97 ± 0.9 92.75 ± 1.0 92.74 ± 0.9

TOSCA (ours) 96.37 ± 0.5 95.64 ± 0.8 93.47 ± 1.9 91.09 ± 1.8 82.27 ± 1.9 79.28 ± 1.9 66.92 ± 3.0 65.37 ± 2.9 84.75 ± 2.6 82.35 ± 1.0 96.59 ± 1.6 93.87 ± 2.0
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Figure 3: Last accuracy (AB) after each learning session on different methods under different settings. All methods
are initialized with ViT-B/16-IN1K. We annotate the relative improvement of TOSCA above the runner-up method
with numerical numbers at the last incremental stage.

Implementation Details. We conduct experiments on an NVIDIA A100, and reproduce the compared
methods using PyTorch (72) and Pilot (73). Consistent with (22; 23; 24), we utilize two representative
FMs: ViT-B/16-IN21K and ViT-B/16-IN1K. Both models are pre-trained on ImageNet21K, with the latter
further fine-tuned on ImageNet1K. For TOSCA, we train the model with SGD using a batch size of 48 over
20 epochs. The learning rate follows cosine annealing schedule, starting at 2.5e−2. The projection dimension
r is set to 48 and the ℓ1 contribution λ is set to 5e−4. We perform multiple runs with five different random
seeds and report mean and standard deviation for each method.
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Table 2: Task-wise accuracy (Ab) on fine-grained CUB B0 Inc10 with ViT-B/16-IN21K. TOSCA returns the
highest average task-wise accuracy, illustrating its superior plasticity against existing approaches.

Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20 Avg

SimpleCIL 100 97.6 97.9 97.2 98.1 89.1 89.6 96.4 93.9 87.5 92.1 83.2 86.9 88.9 84.9 95.1 87.3 93.2 82.5 82.6 91.2

RanPAC 100 96.1 97.9 97.2 98.1 90.9 92.4 97.1 94.7 91.1 94.7 87.6 88.7 91.5 87.3 96.7 91.0 95.2 83.3 87.6 92.9

L2P 100 85.2 71.1 77.3 85.9 91.8 71.7 87.2 78.2 64.7 85.2 59.3 79.4 66.1 62.7 75.8 70.2 59.2 54.5 59.2 74.2

DualPrompt 100 96.9 97.4 90.9 95.3 81.9 76.4 95.0 88.7 77.2 86.1 73.4 84.1 58.5 59.2 75.8 76.8 69.9 62.1 58.2 80.2

CODAPrompt 97.3 98.3 72.4 87.4 97.6 85.7 59.6 84.4 93.9 89.3 80.8 69.1 59.8 83.8 46.4 40.9 72.9 61.9 94.3 86.9 78.1

HiDePrompt 99.5 92.6 77.2 86.2 82.9 90.9 70.3 90.8 92.9 92.3 88.5 79.1 67.8 87.0 65.7 88.5 87.5 80.7 90.6 88.6 84.9

APER-Adapter 100 97.6 97.9 97.3 98.1 89.1 89.6 96.4 94.7 87.5 92.2 83.2 86.9 88.9 84.9 95.1 87.3 93.2 82.6 82.6 91.3

EASE 100 97.6 97.9 97.2 97.2 88.3 93.4 96.5 95.5 88.2 92.2 87.6 87.8 88.9 86.5 94.3 88.1 95.2 85.6 86.7 92.2

MOS 98.3 97.7 97.9 98.1 98.1 95.5 94.3 97.8 94.7 91.1 95.6 91.1 89.0 93.2 89.6 95.9 91.0 90.9 88.5 92.8 94.1

TOSCA (ours) 100 97.7 98.9 99.1 100 96.4 100 100 100 97.1 99.1 99.1 90.6 91.5 99.3 96.8 99.2 99.0 94.7 93.9 97.6
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Figure 4: Performance of TOSCA across different perspectives. (a) Memory & computational cost highlights
TOSCA’s efficiency, (b) Hyperparameter analysis illustrates effect of ℓ1 strength (λ) and projection dimension (r) on
accuracy, (c) Design and component ablation presents the impact of different components and flows on accuracy.

5.2 State-of-the-Art Comparison

We compare TOSCA with leading state-of-the-art continual learning methods across six benchmark datasets
and multiple pre-trained foundation models. Table 1 summarizes the final-stage accuracy using ViT-B/16
pre-trained on IN21K for each method. TOSCA consistently achieves the highest performance across all six
benchmarks, significantly surpassing existing approaches such as EASE and MOS. Notably, MOS relies on
replay generation for classifier alignment and is therefore not strictly replay-free, whereas TOSCA achieves
superior results without requiring a replay. To further examine learning dynamics, we report the incremental
performance trends over successive training sessions in Figure 3. Across datasets, TOSCA outperforms the
next-best methods by 4%−12% on CIFAR100, ImageNet-R, and ImageNet-A, as indicated by the annotations
at the end of learning sessions. These improvements are particularly pronounced on out-of-distribution
datasets, highlighting TOSCA’s robustness and capacity to generalize under distributional shifts. Please see
our Appendix A.2 for more results.

5.3 Comparison to Joint Training

To provide a more complete picture, we also compare TOSCA to a traditional 100-epoch joint training
baseline, which represents an upper-bound for performance since it has access to all data at once. While
joint training still holds the top spot, TOSCA demonstrates highly competitive performance despite only
training a single, lightweight module for each new task. This is a crucial finding, as TOSCA delivers near-
optimal performance while drastically reducing computational cost and training time. Unlike full joint
training, it avoids the need to revisit all past data, making it a practical and scalable solution for real-world
continual learning scenarios where memory and compute are limited.
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Table 3: Task-wise accuracy (Ab) on out-of-distribution scenario
with EuroSAT B0 Inc2 to show adaptation of each approach.

Task T1 T2 T3 T4 T5 Avg

SimpleCIL 99.7 85.1 85.8 70.0 88.8 85.9
RanPAC 100 98.6 98.2 95.2 98.8 98.1
L2P 99.9 89.6 56.2 46.0 91.7 76.7
DualPrompt 100 92.6 60.6 23.7 75.5 70.5
CODAPrompt 99.9 88.8 92.8 90.0 72.1 88.7
APER-Adapter 99.9 87.2 86.2 67.3 90.8 86.3
EASE 99.9 93.6 92.1 71.1 93.4 90.0
MOS 100 96.1 96.0 93.6 98.2 96.8

TOSCA (ours) 99.9 99.6 99.3 98.8 98.8 99.3

Figure 5: Last accuracy (AB) performance after
each learning session on EuroSAT B0 Inc2.
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5.4 Task-Wise Plasticity

Plasticity is a critical property for continual learning models, as it reflects the model’s ability to effectively
adapt to new tasks. A potential concern for the plasticity of TOSCA may be that its adaptation is restricted
to a single module that acts only on the final layer’s [CLS] token, whereas other methods perform adjust-
ments across multiple layers. To investigate this, we give a detailed breakdown of the task-wise accuracy
performance, evaluating across all methods. In particular, to truly evaluate plasticity, we examine perfor-
mance on the CUB B0 Inc10 scenario which is highly fine-grained and presents a long sequence of tasks, and
stresses the model’s ability to distinguish subtle inter-class differences over many incremental learning stages.
Our results in Table 2 show that TOSCA consistently achieves high task-wise accuracy, often matching or
surpassing methods that adapt multiple layers. This indicates that, despite its single-module design, TOSCA
is capable of strong task-specific adaptation. We attribute this performance to the strategic placement of
the module just before the classification layer, which allows it to modulate features directly relevant to the
decision without disrupting the pretrained, stable representations in earlier layers.

5.5 Parameter and Run-Time Analysis

We further investigate FM-based continual post-training approaches in terms of accuracy, computational cost,
and parameter efficiency on CIFAR B0 Inc5 benchmark in Figure 4a. TOSCA achieves the top performance
while maintaining a low computational cost and parameter overhead per task. In contrast, methods like
CODAPrompt and EASE require significantly more parameters and longer run times, making them less
efficient. Notably, MOS also attains high accuracy, but it comes at a higher computational expense due
to additional processes such as adapter merging and replay generation. Overall, TOSCA demonstrates its
effectiveness in CIL with minimal parameter overhead and shorter run-time, striking a balance between
efficiency and performance.

5.6 Out-of-Distribution Performance

Although existing continual learning benchmarks incorporate certain levels of domain shift, evaluating ro-
bustness under more drastic distribution changes remains an open and compelling testbed. We therefore
compare all methods on the EuroSAT benchmark which introduces a substantial domain shift to assess
true out-of-distribution performance. Our results in Figure 5 reveal that all approaches except RanPAC,
MOS, and TOSCA exhibit substantial performance degradation as tasks progress. While some methods
achieve strong task-wise performance, they fail to retain this knowledge incrementally. For example, EASE
attains high per-task accuracy with an average of 90% in Table 3, yet its overall incremental performance
drops to 78.5%, highlighting pronounced forgetting under distribution shift. Despite the significant domain
shift, TOSCA outperforms all competing approaches, demonstrating more robust generalization beyond the
pretraining distribution. Notably, this performance gain is achieved with minimal additional computation,
reinforcing TOSCA as a practical and scalable solution for continual learning under severe distribution shifts.
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Figure 6: Cosine similarity of modules with increasing ℓ1 strength (λ). It encourages modules to become more
orthogonal, leading to learn different representations while facilitating to select the most suitable module at inference.

5.7 Ablation Study

We also perform an ablation study on CIFAR B0 Inc10, evaluating the incremental performance across
different learning settings. First, we analyze the impact of ℓ1-regularization strength (λ) and projection
dimension (r) on performance, as shown in Figure 4b. Our findings indicate that ℓ1 regularization improves
accuracy, with performance reaching peak at λ = 5e−4. This promotes orthogonality among different mod-
ules, improving module selection during inference. However, excessive sparsity degrades performance by
excessively constraining representations, thereby reducing expressiveness and learning capacity. Similarly,
increasing the projection dimension (r) improves accuracy up to r = 48, beyond which performance deteri-
orates due to the larger bottleneck. Based on these observations, we identify the optimal configuration as
λ = 5e−4 and r = 48, achieving an accuracy of 95.3%. Additionally, we compare the performance of differ-
ent components, alternative module designs and configurations against TOSCA in Figure 4c. This includes
a reversed variant, TOSCA_r, which integrates new information atop the calibrated pre-trained features,
formulated as ϕ(x)′ = A(C(ϕ(x))). We attribute this behavior to the ordering of the modules: when calibra-
tion operates on unmodified features before adaptation, the flexibility to modify representations is reduced,
whereas introducing task-specific adjustments first and selectively regularizing them after calibration enables
more effective adaptation on newly acquired features, explaining the performance gap between TOSCA and
TOSCA_r. Therefore, our results highlight the crucial role of the calibrator while TOSCA surpasses all
variants by effectively harmonizing its two modules working together. We further discuss this behavior and
provide a step-by-step analysis of the functioning of our approach below.

5.8 Further Analysis and Discussion

We first analyze the effect of the ℓ1 on the learned module representations by computing pairwise cosine
similarities between modules under different regularization strengths. We reveal in Figure 6 that a monotonic
drop in off-diagonal cosine similarity as λ increases, indicating substantial redundancy and overlap in their
functional roles. The underlying mechanism is straightforward: ℓ1 regularization induces sparsity, and
sparsity reduces overlap in the active feature dimensions across modules. When two modules rely on fewer
shared coordinates, their output directions exhibit lower cosine similarity. In other words, ℓ1 pushes modules
toward using disjoint subsets of features, which manifests as reduced correlation and hence more ‘orthogonal’
representations in practice. This explanation aligns precisely with the trends in Figure 4b: at λ = 5e−4, the
representations become substantially more decorrelated, with similarities dropping toward ≈ 0.3–0.4.

We next analyze how architectural components influence representational structure using t-SNE embeddings
of [CLS] features under three configurations as presented in Figure 7. The pretrained ViT exhibits diffuse
and overlapping cluster geometry, producing an inter/intra-class distance ratio of 1.97. Adding the adapter
expands and separates clusters by performing task-sensitive residual transformations while geometrically
shifting representations towards a new task-relevant subspace, yielding a class-separation measure of 5.32,
around 1.5× improvement over the pretrained baseline, but clusters remain elongated and partially entangled.
Incorporating the calibrator after the adapter leads to compact, well-aligned, and cleanly separated clusters,
achieving a class-separation distance of 9.19, corresponding to an almost 4× improvement.
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Figure 7: t-SNE visualization of different architectural choices. (a) Vanilla pretrained ViT shows substantial overlap
in the CLS token space. (b) Adding an adapter improves separability but still exhibits noticeable spread and mixing.
(c) TOSCA module further calibrates representations, leading to a clearly distinct clusters with minimal overlap.

This refinement occurs because the calibrator amplifies or suppresses the adapter’s task-specific signal ac-
cording to relevance, which in result creates shrunk and well-grouped clusters. Critically, this adapter-then-
calibrator ordering ensures that first the adjustment is introduced, then selectively regularized; inverting
this order weakens enforcement, as calibration would operate on unmodified features before task-specific
adaptation occurs.

Together, these analyses clarify the behavior of our approach: ℓ1 regularization encourages modules to rely on
distinct subsets of representation space, yielding decorrelated outputs that function as orthogonal experts.
Meanwhile, the adapter and calibrator produce complementary geometric effects by separating and then
refining class structure and ultimately driving the gains observed in our ablations and main results.

6 Conclusions

In this paper, we introduced LuCA, a new parameter-efficient fine-tuning module that combines a lightweight
adapter with a calibrator to refine feature representations and facilitate the integration of new information.
Building upon this, we proposed TOSCA, a neuro-inspired continual post-training framework based on
foundation models, which leverages a single sparse LuCA module applied exclusively to the final [CLS]
token before the classifier for each task. This targeted adaptation enables highly efficient, task-specific
modulation while maintaining orthogonality between tasks, resulting in minimal memory and computational
overhead. Extensive experiments across multiple benchmark datasets demonstrate that TOSCA consistently
achieves state-of-the-art performance. It effectively balances the stability–plasticity trade-off, outperforming
prior methods with substantially fewer additional parameters, while retaining a scalable and model-agnostic
design suitable for advancing continual learning with foundation models.

Limitations and future works. Although TOSCA shows strong performance, it relies on pre-trained
foundation models and its effectiveness depends on the generalizability of these models when adapting
through a single token. Future work would explore extending TOSCA to additional modalities or multimodal
models and diverse continual learning scenarios, including few-shot, blurry, and class-revisiting incremental
settings.

Broader Impact

This paper aims to advance the field of machine learning, with a focus on replay-free class-incremental
post-training. By introducing a lightweight, trainable module that enables continual adaptation without the
need to store past data, the proposed approach addresses key concerns related to privacy, memory efficiency,
computational overhead, and scalability. These properties make it particularly suitable for deployment
in privacy-sensitive or resource-constrained settings, such as personalized models in healthcare, adaptive
vision systems for assistive technologies. While the method does not raise immediate ethical concerns, its
application in high-stakes domains may require additional safeguards to ensure responsible use.
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A Appendix

A.1 Compared Methods and TOSCA

Here, we provide an overview of the methods evaluated in the main paper. To ensure a fair and consistent
basis for comparison, all methods utilize the same FM. This standardization allows us to isolate the contri-
butions of each method’s unique approach and compare their performance more accurately. Additionally,
we present the pseudocode for TOSCA, providing a clear and detailed description of its working algorithm.
This helps to better understand how TOSCA operates, offering insights into its efficiency and functionality
within the context of class-incremental post-training.

Joint: This method adheres to the traditional supervised batch learning paradigm, where all classes are
presented simultaneously and trained over multiple epochs. It serves as the upper bound for class-incremental
learning methods, as it does not experience forgetting.

Finetune: This method updates all parameters of the pretrained model when continually trained on new
tasks. While it can achieve strong performance, it is susceptible to catastrophic forgetting, where previous
knowledge is lost when learning new tasks.

SimpleCIL (22): SimpleCIL uses the FM in its original form, combined with a prototypical classifier. It
constructs a prototype for each class and utilizes a cosine classifier for classification, aiming for efficient task
learning without additional adaptations.

RanPAC (15) extends SimpleCIL by randomly projecting the features into the high-dimensional space and
learning the online LDA classifier for final classification.

L2P (18): L2P integrates visual prompt tuning into class-incremental learning with a pre-trained Vision
Transformer (ViT). The method places the prompt only in the initial embedding layer, ensuring that the
prompt adjusts the features at the early stage of the model while maintaining the frozen structure of the
rest of the pretrained model.

DualPrompt (19): DualPrompt builds on L2P by introducing two types of prompts: general prompts
(G-Prompt) and expert prompts (E-Prompt). The G-Prompts are applied to the earlier transformer blocks,
allowing for broad task-specific adaptation. E-Prompts, on the other hand, are used in the latter blocks of
the transformer, providing more specialized tuning for later stages of task processing. This separation allows
for more efficient adaptation.

CODAPrompt (20): It addresses the challenges of selecting instance-specific prompts by introducing
prompt reweighting. It enhances the selection process through an attention mechanism that dynamically
weights prompts, improving task-specific performance.

HiDePrompt (21): This method leverages task-specific prompts and class-level feature statistics to perform
implicit feature-space replay, explicitly optimizing task-identity and task-adaptive prediction. While effective
for classifier calibration under self-supervised pre-training, it introduces additional optimization stages and
bookkeeping of representation statistics.

APER (22): This approach builds on SimpleCIL by introducing an adapter to each transformer layer, but
only for the initial task. This adapter helps the pre-trained model to extract task-specific features during the
first incremental phase, ensuring better adaptation to the new task while minimizing forgetting in subsequent
tasks.

EASE (23): This method adds adapters to each layer of FM for every task. This approach leads to good
performance by concatenating the feature representations of multiple task-specific backbones, but it comes
with an increase in model complexity due to the addition of task-specific adapters at every stage.

MOS (24): It also trains adapters for each FM layer for every task. However, MOS introduces the concept
of adapter merging and replay generation for classifier correction. These processes increases computational
complexity, particularly during training, as the model must handle the merging of multiple task-specific
adapters with an increasing number of parameters.
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Algorithm 1 TOSCA for Continual Post-Training
Require: Incremental datasets: {D1,D2, . . . ,DB},

Pre-trained embedding: ϕ(x)
1: for b = 1, 2, . . . , B do
2: Get the incremental training set Db

3: Initialize a module Lb with parameters Θb on top of last [CLS] token
4: Optimize the parameters Θb of the module Lb and prototypical classifier W⊤ via Eq. (8)
5: Test the model with all classes seen so far via Eq. (9)
6: end for

TOSCA (ours): It trains a lightweight adapter–calibrator pair per task on the final [CLS] token immedi-
ately before classifier. This neuroscience-inspired formulation reduces computational and memory overhead
without sacrificing expressiveness, leading to better-calibrated representations and improved performance.
Please see our Algorithm 1 for formal and more detailed flow.

Theoretical underpinnings of our approach. The core theoretical strength of TOSCA lies in its ability
to preserve these representations by avoiding broad modifications to the feature space and instead localizing
adaptation to the final layer’s [CLS] token, while existing methods alter the feature space throughout the
network and risk compromising the high-quality representations carefully learned from FMs. Its surgical
design not only safeguards representational fidelity, but also provides a principled mechanism to maintain
stability while enabling precise, task-specific plasticity. Specifically, the design of TOSCA guarantees that,
for all layers n < N , the feature manifolds Hn of the FM are preserved as in Eq. (10), meaning the feature
distributions remain identical to the FM’s distributions up to the penultimate layer:

∀n < N : HT OSCA
n = HP T M

n (10)

Adapting solely through the [CLS] token of the final layer N , TOSCA allows a small bounded deviation in
the feature manifold while maintaining backward compatibility of the pre-trained features. This bounded
deviation mechanism can be expressed as Eq. (11), where ϵ is a small constant controlled by the residual
connection and constrains changes in the feature space, ensuring that the representations remain robust
while providing task-specific flexibility during post-traning, thus achieving a principled stability–plasticity
balance.

γ(HP T M
N ,HT OSCA

N ) ≤ ϵ (11)

A.2 Additional Results

In this section, we provide Table A for pre-trained ViT-B/16-IN1K and Figure A that illustrate each
incremental step with ViT-B/16-IN21K, showcasing the performance of our proposed method. The slight
drop in average accuracy Ā observed in few benchmarks with ViT-B/16-IN1K, compared to existing ap-
proaches, stems from its relatively limited generalization capacity compared to ViT-B/16-IN21K, given that
TOSCA introduces only a single trainable module per task. This design choice is intentional, prioritizing
computational and parameter efficiency while maintaining adaptability in continual learning settings. No-
tably, our approach consistently achieves superior last incremental accuracy Ab across all evaluated datasets,
underscoring its effectiveness. Overall, TOSCA improves the incremental performance with a minimal over-
head cost during both the training and inference phases, emphasizing the efficiency of our method, and
making it highly suitable for real-world applications. Furthermore, to verify that TOSCA accurately selects
the appropriate adapter–calibrator pair at inference time, we evaluate the accuracy of its entropy-based
module selection strategy across all incremental tasks on the CIFAR-100 dataset. Specifically, we report the
percentage of samples for which the selected module matches the ground-truth task identity. The results,
summarized in Table B, demonstrate the high reliability of the proposed selection mechanism, especially
with higher ℓ1 strength.
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Table A: Average accuracy (Ā) and last accuracy (AB) on six datasets with ViT-B/16-IN1K. ‘IN-R/A’ stands for
‘ImageNet-R/A,’ and ‘OmniBench’ stands for ‘OmniBenchmark.’ We report all compared methods with their source
code and show the best performance in bold. ‘–’ denotes non-applicability under the released implementation.

Method
CIFAR B0 Inc5 CUB B0 Inc10 IN-R B0 Inc20 IN-A B0 Inc20 OmniBench B0 Inc30 VTAB B0 Inc10
Ā AB Ā AB Ā AB Ā AB Ā AB Ā AB

Joint − 95.88 ± 1.0 − 90.19 ± 1.4 − 83.87 ± 1.4 − 74.05 ± 1.9 − 83.08 ± 1.1 − 93.24 ± 1.8

Finetune 44.4 ± 8.4 39.7 ± 6.1 57.27 ± 2.9 34.76 ± 1.1 66.96 ± 3.2 53.64 ± 1.5 28.64 ± 4.5 14.26 ± 1.8 63.35 ± 2.1 45.70 ± 1.0 67.84 ± 4.9 51.12 ± 5.6

SimpleCIL 82.21 ± 0.7 76.24 ± 0.1 90.42 ± 1.4 85.16 ± 0.1 66.89 ± 0.5 61.27 ± 0.1 58.70 ± 1.1 49.44 ± 0.1 78.67 ± 1.4 72.20 ± 0.1 90.50 ± 1.2 83.61 ± 0.1

RanPAC 92.43 ± 0.4 87.92 ± 0.8 91.05 ± 0.8 86.77 ± 1.1 83.11 ± 1.3 76.59 ± 0.6 69.60 ± 1.1 59.64 ± 0.7 83.78 ± 0.8 77.80 ± 0.3 92.26 ± 1.6 90.54 ± 1.4

L2P 83.37 ± 1.7 78.64 ± 1.6 70.64 ± 1.7 58.70 ± 1.1 77.22 ± 0.5 72.35 ± 0.3 52.32 ± 2.2 44.30 ± 0.8 72.76 ± 1.8 63.10 ± 0.6 81.25 ± 3.0 66.71 ± 1.7

DualPrompt 82.41 ± 1.7 76.39 ± 0.6 75.78 ± 2.2 63.47 ± 1.5 74.37 ± 0.5 69.58 ± 2.0 56.42 ± 1.1 46.99 ± 0.3 73.21 ± 1.8 63.63 ± 0.8 82.84 ± 4.7 70.39 ± 5.5

CODAPrompt 86.67 ± 0.5 80.68 ± 1.1 70.75 ± 1.1 61.61 ± 1.1 78.37 ± 0.5 73.07 ± 0.5 63.61 ± 0.9 52.32 ± 0.4 72.22 ± 0.3 68.26 ± 0.6 84.88 ± 1.1 82.94 ± 1.6

HiDePrompt 84.67 ± 1.5 79.59 ± 1.3 81.46 ± 1.6 77.11 ± 0.9 80.32 ± 1.5 76.06 ± 0.4 - - - - - -
APER-Adapter 88.46 ± 0.8 83.16 ± 0.4 87.64 ± 1.2 80.63 ± 0.1 78.25 ± 0.5 72.07 ± 0.8 66.86 ± 1.3 58.83 ± 0.2 77.66 ± 1.0 70.72 ± 0.4 89.59 ± 1.2 82.60 ± 0.1

EASE 89.94 ± 1.0 84.39 ± 0.6 87.93 ± 1.2 81.00 ± 0.3 82.96 ± 0.3 77.45 ± 0.1 70.49 ± 1.6 62.36 ± 0.5 78.40 ± 0.8 71.60 ± 1.0 90.71 ± 1.6 83.39 ± 0.7

MOS 92.71 ± 1.1 88.82 ± 0.7 92.24 ± 0.9 88.02 ± 0.2 83.53 ± 0.7 78.94 ± 0.3 69.14 ± 1.1 61.24 ± 1.8 85.33 ± 1.1 78.28 ± 0.5 91.81 ± 0.5 91.77 ± 0.2

TOSCA (ours) 96.03 ± 0.9 95.37 ± 0.7 91.55 ± 1.8 89.05 ± 1.9 83.57 ± 0.6 82.25 ± 0.6 74.48 ± 2.1 72.30 ± 1.8 82.48 ± 1.8 79.65 ± 1.2 94.33 ± 2.0 91.80 ± 1.9
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Figure A: Last accuracy (AB) after each learning session on different methods under different settings with ViT-
B/16-IN21K. Relative improvement of TOSCA is annotated above the runner-up method at the last incremental
stage.

Table B: Per-task module-selection success rate [%] across different ℓ1 regularization strengths. Increased strength
leads to more distinct modules and better module selection performance.

Task T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17 T18 T19 T20

λ = 0 88.2 85.4 83.9 87.1 84.3 82.6 92.5 94.1 86.7 93.2 84.9 88.7 90.2 83.4 89.3 87.1 91.5 85.6 88.3 92.1

λ = 1e-4 92.4 89.7 90.1 92.6 90.8 88.9 97.3 98.1 91.5 98.7 89.6 92.9 94.3 88.7 93.5 91.2 95.4 90.6 92.9 96.1

λ = 5e-4 95.3 94.1 96.3 94.2 92.9 92.5 100 100 93.4 100 94.7 96.5 97.8 100 96.9 95.1 98.6 94.3 96.8 99.2
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