
Sparse maximal update parameterization: A holistic
approach to sparse training dynamics

Nolan Dey Shane Bergsma Joel Hestness
Cerebras Systems

{nolan,joel}@cerebras.net

Abstract

Several challenges make it difficult for sparse neural networks to compete with
dense models. First, setting a large fraction of weights to zero impairs forward
and gradient signal propagation. Second, sparse studies often need to test multiple
sparsity levels, while also introducing new hyperparameters (HPs), leading to
prohibitive tuning costs. Indeed, the standard practice is to re-use the learning
HPs originally crafted for dense models. Unfortunately, we show sparse and dense
networks do not share the same optimal HPs. Without stable dynamics and effective
training recipes, it is costly to test sparsity at scale, which is key to surpassing
dense networks and making the business case for sparsity acceleration in hardware.
A holistic approach is needed to tackle these challenges and we propose sparse
maximal update parameterization (SµPar) as one such approach. For random
unstructured static sparsity, SµPar ensures activations, gradients, and weight up-
dates all scale independently of sparsity level. Further, by reparameterizing the
HPs, SµPar enables the same HP values to be optimal as we vary both spar-
sity level and model width. HPs can be tuned on small dense networks and
transferred to large sparse models, greatly reducing tuning costs. On large-
scale language modeling, SµPar shows increasing improvements over standard
parameterization as sparsity increases, leading up to 11.9% relative loss improve-
ment at 99.2% sparsity. A minimal implementation of SµPar is available at
https://github.com/EleutherAI/nanoGPT-mup/tree/supar.

1 Intro

Sparsity has emerged as a key technique to mitigate the increasing computational costs of training
and inference in deep neural networks. This work focuses on weight sparsity, whereby a significant
fraction of model weights are kept at zero. It has long been known that dense neural networks can be
heavily pruned after training [30]. With the goal of reducing costs during training, recent work has
explored static weight sparsity from initialization. In this work we focus on random unstructured
static sparsity, which has re-emerged as a surprisingly effective strategy [33, 58]. This type of sparsity
can be accelerated by CPUs, Cerebras, Graphcore, and SambaNova. Furthermore, GPUs and TPUs
support 2:4 block structured sparsity which is quite similar to 50% unstructured sparsity.

Unfortunately, several challenges have hindered progress in weight-sparse neural networks. First,
sparsity impairs signal propagation during training [31, 11, 1]. Second, with today’s techniques,
sparse training is costly. Sparse techniques typically introduce extra hyperparameters (HPs), e.g.,
number of pruning iterations at initialization [60, 7, 56], and it is common to train models across
different sparsity levels. Since tuning should be performed at each level and the search space grows
exponentially with the number of HPs, the tuning costs essentially “defeat the purpose” of sparsity,
i.e., to reduce computation [60]. Finally, today there is only a nascent ecosystem of hardware
acceleration for unstructured sparsity, so most researchers get little sparsity benefit when tuning.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/EleutherAI/nanoGPT-mup/tree/supar


2 11 2 9 2 7

Learning Rate

3.5

3.6

3.7

3.8

3.9

4.0

Tr
ai

n 
Lo

ss

Standard practice

2 9 2 8 2 7 2 6 2 5 2 4

Learning Rate

S Par (Our work)

Sparsity
0.0
0.5
0.75
0.875
0.9375
0.96875
0.984375

optimum shifts optimum stable

Figure 1: SµPar (Our work) allows stable optimum HPs
for any sparsity level, unlike standard practice.

Prohibitive tuning

Inconclusive results

Unclear path to scale

Dense still dominant

Standard practice

Cheap tuning

Robust to width/density

Ready for next-level scale

Ready to surpass dense

SµPar approach

Figure 2: SµPar enables sparse training
at scale, helping to surpass dense and
motivate sparsity in hardware.

These costs have led to the standard practice of simply re-using HPs that were previously optimized
for the baseline dense models (Section 2). One might hope that sparse models thrive with the same
learning rates and other HPs as their dense counterparts. Unfortunately, they do not: optimal HPs
systematically vary with sparsity level (Figure 1, left). With impaired training dynamics, prohibitive
tuning cost, and lacking the established training recipes enjoyed by dense models, it is often inefficient
to train sparse networks at scale (Figure 2).

To remedy this situation, we propose sparse maximal update parameterization (SµPar, pronounced
“soo-pahr”), a novel, holistic approach to stabilize sparse training dynamics. SµPar fulfills the Feature
Learning Desiderata (Section 3) by parameterizing weight initialization and learning rates with
respect to change in width and sparsity level. As a generalization of maximal update parameteri-
zation (µP) [64, 63], SµPar enjoys well-controlled activation, gradient, and weight update scales in
expectation, avoiding exploding or vanishing signal when changing both sparsity and model width.

2
6

2
4

2
2

2
0

Density

2.6

2.8

3.0

3.2

3.4

3.6

3.8

Va
lid

at
io

n 
Lo

ss

SP
P

S Par

Figure 3: For LLMs, SµPar forms the
Pareto frontier loss across sparsity levels,
with no HP tuning required.

By reparameterizing HPs in this way, SµPar enables the
same HP values to be optimal as sparsity varies (Figure 1,
right). We therefore enjoy µTransfer: we can tune small
proxy models and transfer optimal HPs directly to mod-
els at scale. In fact, we discovered our µP HPs, tuned
for dense models in prior work (and equivalent to SµPar
with sparsity=0%), correspond to the optimal learning rate
and initial weight variance for all sparse models tuned in
this paper! As sparsity increases, our formulation shows
the standard parameterization (SP) and µP suffer from
vanishing signal, further clarifying prior observations of
gradient flow issues in sparse networks. The improve-
ments enabled by SµPar set the Pareto-frontier best loss
across sparsity levels. Figure 3 previews this improvement
for large language models trained from compute-optimal
configurations [23]. Here, SµPar benefits grow with in-
creasing sparsity, to 11.9% better loss than SP and 1.9%
better loss than µP at 99.2% random unstructured sparsity.
See Section 4.3 for details on this experiment.

2 Related work

Sparse training landscape Sparse training can be divided into static sparsity, where the connec-
tivity is fixed (our focus) and dynamic sparsity, where the sparsity mask can evolve [22]. We use
unstructured sparsity, though our approach generalizes to structured approaches where a particular
sparsity pattern increases efficiency on specific hardware [67, 26, 38, 14, 29, 1]. Unstructured connec-
tivity may be based on both random pruning [40, 18, 57, 33, 58] and various pruning-at-initialization
criteria [32, 60, 61, 56, 7]. Liu et al. [33] found that as models scale, the relative performance of
randomly pruned networks grow. Furthermore, Frantar et al. [15] found the optimal level of sparsity
increases with the amount of training data. Together, these findings suggest that as neural networks

2



continue to get wider and deeper, and trained on more and more data, very sparse randomly-pruned
networks may emerge as an attractive option.

Improving sparse training dynamics Many prior works identify various sparse training dynamics
issues. In particular, prior works note sparsity impacts weight initialization [35, 31, 49, 11], activation
variance [29], gradient flow [61, 37, 57, 11, 1], and step sizes during weight updates [15]. These
prior works each only address a subset of these issues in targeted ways, often showing benefits to
sparse model training loss. We advocate for a holistic approach, and discuss the relationship between
these prior works and our approach in Section 5 after describing and evaluating SµPar.

Sparse sensitivity to HPs Due to the costs of training with fixed weight sparsity, re-using dense
HPs is standard practice. Such re-use is typically indicated in appendices or supplemental materials,
e.g., [40, 32, 35, 31, 16, 60, 61, 56, 13, 7, 18, 57, 33, 58]. Also, dynamic sparsity approaches often
compare to fixed sparsity; these baselines are likewise reported to re-use the dense HPs [2, 41, 10,
34, 11, 59]. However, some prior work has suggested such training is sensitive to HPs, e.g., learning
rates [35, 57], learning rate schedules [16], or training length [28], although systematic tuning was not
performed. For dynamic sparse training (DST), it is also conventional to re-use dense HPs, whether in
dense-to-sparse [37, 15] or sparse-to-sparse (evolving mask) training [2, 8, 34, 11, 59]. As with fixed
sparsity, work here has also suggested sensitivity to HPs, e.g., to dropout and label smoothing [16].
DST may also benefit from extra training steps [10] or smaller batch sizes [34], although in DST this
may mainly be due to a greater number of opportunities for connectivity exploration [34].

3 Sparse maximal update parameterization (SµPar)

We now provide background, motivation, and derivation for SµPar, first introducing notation (Section
3.1) and then defining Feature Learning Desiderata (Section 3.2) with a brief overview of µP (Section
3.3). Finally we motivate SµPar and provide an overview of the parameterization (Section 3.4).

3.1 Notation

The operations for a single sparse training step are illustrated in Figure 4. The definition and
dimensions are: batch size B, learning rate η, loss function L, forward pass function F , input
dimension din, input activations X ∈ RB×din , input activation gradient ∂L

∂X = ∇XL ∈ RB×din , output
dimension dout, output activations Y ∈ RB×dout , output activation gradient ∂L

∂Y = ∇YL ∈ RB×dout ,
weights W ∈ Rdin×dout , initialization variance σW for weights W, weight update ∆W ∈ Rdin×dout ,
and ∆Y ∈ RB×dout is the effect of the weight update on output activations: ∆Y = X(∆W ⊙M).
Unless otherwise specified, M ∈ {0, 1}din×dout is an unstructured random static mask with sparsity
s and density ρ = 1 − s. When changing model scale or sparsity, we refer to a width multiplier
md = din

din, base
= dout

dout, base
and density multiplier mρ = ρ

ρbase
.

X F

W ⊙ M

∂F∇XL

+ ∆W ⊙M Optimizer ∇YL

Y

Forward

Backward

Weight Update

Figure 4: The three operations associated with training a layer with weights that perform the function
F : Forward activation calculation, backward gradient propagation, and the weight update.

If we apply sparsity to a linear layer (i.e., F is a fully-connected layer), our aim is to control:

1. Forward pass: Y = F(X,W ⊙M) = X(W ⊙M).

3



2. Backward pass: ∇XL = (∇YL) · (W ⊙M)⊤.

3. Effect of weight update ∆W on Y: ∆Y = X(∆W ⊙M)1.

3.2 Feature learning: Defining the goal of µP and SµPar

Prior works [64, 63, 65] introduce the Feature Learning Desiderata (FLD) to ensure stable training
dynamics as width is varied. Building on prior works, we include gradients ∇XL in the desiderata.

Feature Learning Desiderata (FLD): For layer l and token i, we desire that ∥Yl
i∥2 =

Θ(
√
dout), ∥∇XLl

i∥2 = Θ(
√
din), ∥∆Yl

i∥2 = Θ(
√
dout),∀i,∀l.

Recall that if all the entries of some vector v ∈ Rn are some constant c, then ∥v∥2 = Θ(
√
n) with

respect to width n. Therefore we can satisfy the FLD by ensuring the typical element size of Y, ∇XL,
and ∆Y is Θ(1) with respect to some variable(s) we would like to scale. Variables to scale include
width [64, 63, 65], depth [66, 4], and sparsity (this work). The FLD prescribes a holistic signal
propagation approach of controlling each of the three operations in a training step, not a subset2.

3.3 Maximal update parameterization (µP)

Here we provide a brief overview of maximal update parameterization (µP) [64, 63, 65]. With the
standard parameterization (SP), Yang and Hu [64] show the scale of activations throughout training
increases as model width increases, motivating the development of µP. µP [64, 63] is defined as the
unique parameterization that satisfies the FLD by ensuring the typical element size of Y, ∇XL, and
∆Y is Θ(1) with respect to change in width md. The FLD can also be satisfied by controlling the
spectral norm of weights [65]. µP enables µTransfer: the optimum learning rate, initialization weight
variance, scalar multipliers, and learning rate schedule all remain consistent as width is increased
for µP models [63]. µTransfer can be leveraged to take a tune small, train large approach where
hyperparameters are extensively tuned for a small model then transferred, enabling reduced tuning
budgets and superior tuning for large models compared to standard practice.

3.4 Sparse maximal update parameterization (SµPar)

Yang et al. [63] show activation magnitudes explode with increasing model width. In Figure 5 we
show sparsity has the opposite effect: increasing sparsity causes shrinking activation magnitudes.

10 2

10 1

100

101

102

103

At
te

nt
io

n
M

ea
n 

Ab
so

lu
te

 A
ct

iv
at

io
n

SP
t=0
t=1
t=2
t=3
t=4
t=5
t=6
t=7
t=8
t=9

P S Par

2 4 2 3 2 2 2 1 20

Density

10 2

100

102

104

Fe
ed

 F
or

wa
rd

M
ea

n 
Ab

so
lu

te
 A

ct
iv

at
io

n

2 4 2 3 2 2 2 1 20

Density
2 4 2 3 2 2 2 1 20

Density

increasing sparsity

Figure 5: Mean absolute value activations for attention and feed forward blocks after training step
t (10 seeds). In SP and µP models, decreasing density causes activations to vanish (note axes on
log-scale). In SµPar models, density has little effect on activation scales and there is no vanishing.

1After a weight update ∆W is applied, new output activations can be written as Y+∆Y = X(W⊙M) +
X(∆W ⊙M). Our goal is to control ∆Y.

2For example, initialization methods alone can only control ∥Y∥F and ∥∇XL∥F at the first time step.

4



Finding 1: Increasing sparsity causes vanishing activations and gradients with both SP and µP.

SµPar is defined as the unique parameterization that satisfies the FLD by ensuring the typical element
size of Y, ∇XL, and ∆Y is Θ(1) with respect to change in width md and change in density
mρ. SµPar enables stable activation scales across sparsity levels (Figure 5, right). In this section, we
walk through the changes required to control each of the three operations in a sparse training step,
providing an overview of the SµPar derivation. We focus on the AdamW [36] optimizer used in our
experiments. For a more detailed derivation, including both SGD and Adam, see Appendix D.

Forward pass at initialization To ensure the typical element size of Y is Θ(1) with respect to
change in width mdin and change in density mρ, we can control the mean and variance of Yij . Since
at initialization E[W] = 0, E[Y] = 0, and W ⊥ Y, the mean is controlled. The variance of Yij can
be written as:

Var(Yij) = mdindin,basemρρbaseσ
2
W (Var(X) + E[X]2) (1)

To ensure Var(Yij) scales independent of mdin and mρ, we choose σ2
W =

σ2
W,base

mdinmρ
.

Backward gradient pass at initialization To ensure the typical element size of ∇XL is Θ(1) with
respect to change in width mdout and change in density mρ, we can control the mean and variance of
∇XL. Since at initialization E[W] = 0, E[∇XL] = 0 and the mean is controlled3. The variance of
∇XLij can be written as:

Var(∇XLij) = mdoutdout,basemρρbaseσ
2
WVar(∇YL) (2)

To ensure Var(∇XLij) scales independent of mdout and mρ, we choose σ2
W =

σ2
W,base

mdoutmρ
. Typically

mdout = mdin , allowing the same σ2
W to control both forward and backward scales.

Effect of Adam weight update ∆W on Y To ensure the typical element size of ∆Y is Θ(1) with
respect to change in width mdout and change in density mρ. By the law of large numbers, the expected
size of each element can be written as:

E[∆Yij ] → ηmdindin,basemρρbaseE

Xik

 ∑T
t γt

∑B
b Xt

bk∇YLt
bj√∑T

t ωt

∑B
b (X

t
bk∇YLt

bj)
2

 , as (dinρ) → ∞

(3)

To ensure ∆Yij and ∥∆Y∥F are scale invariant to mdin ,mρ, we choose η = ηbase
mdinmρ

.

Implementation summary Table 1 summarizes the differences between SP, µP, and SµPar. Since
we only sparsify hidden weights, SµPar matches µP for input, output, bias, layer-norm, and attention
logits. Also note width multipliers md and density multipliers mρ are usually the same for all layers,
allowing simplified notation. This correction is equivalent to µP [63] when ρ = 1 and mρ = 1. The
correction to hidden weight initialization we derive is similar to the sparsity-aware initialization
in prior work [35, 49, 11]. SµPar should also easily extend to 2:4 sparsity patterns because, in
expectation, the rows and columns of M l should have equal density. A minimal implementation of
SµPar is available at https://github.com/EleutherAI/nanoGPT-mup/tree/supar.

4 SµPar Training Results

Here, we present empirical results showing the effectiveness of SµPar over SP and µP when training
sparse models. When using SP or µP, optimal HPs drift as we change the sparsity level, possibly
leading to inconclusive or even reversed findings. SµPar has stable optimal HPs across both model
width and sparsity level, and we show it improves over SP and µP across different scaling approaches.
Taken together, we see that SµPar sets the Pareto frontier best loss across all sparsities and widths,

3Although the gradients ∇YL will have some correlation with weights W even at initialization, we assume
for simplicity that they are fully independent. Future work could investigate this assumption more deeply.

5

https://github.com/EleutherAI/nanoGPT-mup/tree/supar


Table 1: Summary of SP, µP, and SµPar implementations.
Parameterization SP µP SµPar

Embedding Init. Var. σ2
base σ2

base σ2
base

Embedding LR ηbase ηbase ηbase
Embedding Fwd. X0Wemb αinput ·X0Wemb αinput ·X0Wemb
Hidden Init. Var. σ2

base σ2
base/md σ2

base/(mdmρ)
Hidden LR (Adam) ηbase ηbase/md ηbase/(mdmρ)
Unembedding Fwd. XLW⊤

emb αoutputX
LW⊤

emb/md αoutputX
LW⊤

emb/md

Attention logits Q⊤K/
√
dhead Q⊤K/dhead Q⊤K/dhead

including when we scale to a large dense model with width equal to GPT-3 XL [5]. Optimal dense
µP HPs—when adjusted using SµPar—are also optimal HPs for all sparse models that we test here.

All tests in this section use GPT-like transformer language models [48, 9], trained on the SlimPajama
dataset [54] with a 2048 token context length. We apply random unstructured static sparsity to all
projection weights in attention and feedforward blocks while keeping embedding, layer normalization,
and bias parameters dense. We refer the reader to Appendix E for full methodology of all experiments.

4.1 Sparse hyperparameter transfer

We first show sparsifying a dense model using either SP or µP leads to significant drift in optimal
HPs as the sparsity level changes. Figure 6 shows train loss for SP, µP, and SµPar models when
trained with varying sparsity levels and sweeping across different peak learning rates. For the SP
configuration, as sparsity increases, the optimal learning rate increases in a somewhat unpredictable
way. µP experiences similar shift in optimal learning rate, though shifts are even more abrupt. For
SµPar, the optimal learning rate is consistently near 2−6 across all sparsity levels.

2 11 2 9 2 7

Learning Rate

3.5

3.6

3.7

3.8

3.9

4.0

Tr
ai

n 
Lo

ss

SP

2 7 2 5 2 3

Learning Rate

P

2 9 2 7 2 5

Learning Rate

S Par

s = 0.0
s = 0.5
s = 0.75
s = 0.875
s = 0.9375
s = 0.96875
s = 0.984375
Optimum
Dense Optimum

Transferred

Figure 6: SµPar ensures stable optimal learning rate for any sparsity s, unlike SP and µP (3 seeds).

We also sweep base weight initialization values and find even more chaotic behaviors for SP and µP
with different sparsity levels (Figure 7, left and center, respectively)4. µP even shows discontinuities
in optimal initialization values at different sparsity levels. We attribute this discontinuity to widely
varying expected activation scales between embedding and transformer decoder layers, where embed-
ding activation scales will tend to dominate for high sparsity levels. SµPar shows consistent optimal
initialization (right plot). Figures 6 and 7 demonstrate our second finding.

Finding 2: With SP and µP, dense and sparse networks do not share the same optimal HPs.

Figure 8 summarizes our HP transfer tests, showing loss for each parameterization across all sparsities.
Even when selecting the best learning rate at each sparsity level for SP and µP, SµPar (largely) forms
the Pareto frontier with an average gap of 0.8% better than SP and 2.1% better than µP.

4These results are taken from a point early in training as models with widely varying initialization tend to
become unstable later in training.

6



2 8 2 6 2 4

W at initialization

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Tr
ai

n 
Lo

ss

SP

2 6 2 4 2 2 20

W at initialization

P

2 6 2 4 2 2 20

W at initialization

S Par
s = 0
s = 0.5
s = 0.75
s = 0.875
s = 0.9375
s = 0.96875
s = 0.984375
Optimum
Dense Optimum

Transferred

Figure 7: Across sparsity s, SP and µP show unstable optimal initialization. SµPar is stable (3 seeds).

2 10 2 9 2 8 2 7 2 6 2 5

Learning Rate

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

4.5

Tr
ai

n 
Lo

ss

SP

2 8 2 6 2 4

Learning Rate

P

2 9 2 7 2 5

Learning Rate

S Par
s=0, d=768
s=0.5, d=1088
s=0.75, d=1536
s=0.875, d=2176
Optimum
Dense Optimum

Transferred

Figure 9: SµPar ensures stable optimal learning rate in Iso-Parameter sparse + wide scaling (3 seeds).

4.2 Studying SµPar indicates how some sparse scaling techniques appear to work

2 6 2 5 2 4 2 3 2 2 2 1 20

Density

3.55

3.60

3.65

3.70

3.75

3.80

3.85

Tr
ai

n 
lo

ss
 w

ith
 o

pt
im

al
 L

R

SP
P

S Par

Figure 8: Summarizing loss results from
Figure 6 with the optimal learning rate
for each parameterization and sparsity.

So far, we see SµPar can transfer optimal HPs across spar-
sity levels, but we have also designed it to transfer HPs
across different model widths (hidden sizes), similar to
µP. Here, we further demonstrate that SµPar transfers op-
timal HPs across width. More generally, sparse scaling
that keeps a fixed number of non-zero weights per neuron
allows SP and µP to also transfer HPs.

Figure 9 shows learning rate transfer tests when changing
both the model’s hidden size, dmodel, and sparsity level in
a common scaling approach called Iso-Parameter scaling
[18, 10, 59]. Iso-Parameter scaling keeps the model’s num-
ber of non-zero parameters approximately the same, as
width and sparsity are varied5. Here, we see the common
result that SP models starting from dense HPs do tend to
significantly improve as we increase width and sparsity. Note, though, the optimal learning rate for
each sparsity level still shifts. When we correct dense HPs using µP or SµPar, the dense baseline
significantly improves, but only SµPar shows consistent loss improvement and stable HPs.

Based on the SµPar formulation: When the number of non-zero weights per neuron (WPN) in the
network is the same, µP and SµPar become synonymous, because initialization and learning rate
adjustment factors will be constant (i.e., dmodel ·ρ = WPN = O(1)). Optimized SP HPs will also tend
to work well. We define this new scaling setting, which we call Iso-WPN, to verify this hypothesis. In
Figure 11, we test SP HPs with Iso-WPN scaling and see the optimal learning rate stays consistently
between 2−7 and 2−6 with roughly aligned curves (we omit similar µP and SµPar plots for space,
because their corrections are the same). The conclusion is that when scaling SP models in an Iso-WPN
sparse setting, HPs should maintain similar training dynamics. More generally, as WPN decreases

5Not perfectly Iso-Parameter due to unsparsified layers (embedding, bias, layer-norm, etc.)

7



(e.g., by increasing sparsity), the optimal learning rate will tend to increase proportionally, and vice
versa6.

s=0
d=768

s=0.5
d=1088

s=0.75
d=1536

s=0.875
d=2176

3.3

3.4

3.5

3.6

3.7

3.8

Tr
ai

n 
Lo

ss

SP
P

S Par

Figure 10: Losses at the end of training when
Iso-Parameter scaling.

2 9 2 8 2 7 2 6 2 5 2 4

Learning Rate

3.8

4.0

4.2

4.4

4.6

4.8

Tr
ai

n 
Lo

ss

SP
d=256, s=0
d=512, s=0.5
d=1024, s=0.75
d=2048, s=0.875
Optimum
Dense Optimum

Transferred

Figure 11: The SP optimized LR is relatively
stable with iso-WPN scaling (3 seeds).

Figures 5, 6, 7, and 9 show SµPar is the only parameterization that ensures stable activation scales
and stable optimal HPs across model widths and sparsities, satisfying the FLD.

Finding 3: SµPar enables stable activation and stable optimal HPs for any width and sparsity.

4.3 SµPar scaling to large language model pretraining

We conclude this section reflecting on the demonstration of SµPar improvements in a large-scale
language model. We train 610M parameter models starting from a Chinchilla [23] compute-optimal
training configuration with 20 tokens per parameter from the SlimPajama dataset. This larger model—
with hidden size 2048, 10 layers, and attention head size 64—permits sweeping over a larger range of
sparsity levels, so we test up to 99.2% sparsity (density 2−7).

Figure 3 shows validation loss for each parameterization as we sweep sparsity levels. Additionally,
in Table 2, we evaluate the models from Figure 3 on five downstream tasks: ARC-easy, lambada,
RACE, PIQA, and BoolQ, which collectively test for common sense reasoning, world knowledge, and
reading comprehension. As sparsity increases, results across pretraining loss and average downstream
task accuracy consistently show SP and µP fall farther behind SµPar. Since these models are trained
with a large number of tokens, we attribute the widening loss gap mostly to increasingly under-tuned
learning rates for SP and µP as sparsity increases–the weight updates lose gradient information
throughout training. Figure 8 shows retuning SP and µP could recover some of the gap to SµPar,
but that could be costly: These runs take 3-6 hours on a Cerebras CS-3 system (or > 9 days on an
NVIDIA A100 GPU).

Finally, returning to the Iso-Parameter scaling setting, Figure 10 shows losses for 111M parameter
models trained on 1B tokens and scaled up while using dense optimal HPs. The SP and µP models
experience detuning as sparsity increases, allowing SµPar to achieve superior losses7.

Finding 4: Sparse networks trained with SµPar improve over SP and µP due to improved tuning.

4.4 Dynamic sparsity hyperparameter transfer

In Figure 12 we test the transfer of optimal learning rate across sparsity levels for two popular
dynamic sparse training methods: Rigging the Lottery (RigL) [10]8 and Gradual Magnitude Pruning
(GMP) [68]9. We show that none of SP, µP, or SµPar achieve transfer of optimal learning rate across
sparsity levels. For SP and µP we see that higher sparsity levels have higher optimal learning rates.

6Our results generalize the Yang et al. finding that optimal LR decreases as width increases [63, Figure 1].
7Note this is not an Iso-FLOP comparison because increasing dmodel also increases attention dot product and

embedding FLOPs, which aren’t be sparsified. This is so significant that our 87.5% sparse model from Figure 10
has double the training FLOPs of the dense baseline, with virtually unchanged loss.

8RigL: Uniform sparsity distribution, drop fraction of 0.3, and mask updates every 100 steps.
9GMP: Uniform sparsity distribution, cubic sparsity schedule, and mask updates every 100 steps.

8



This is because sparsity reduces activation and gradient scales such that a larger learning rate is
needed to counteract this. SµPar sees the opposite trend where higher sparsity levels have lower
optimal learning rates, indicating that SµPar is “overcorrecting”.

Dynamic sparse methods can make updates to the weight mask such that the distribution of
unmasked/non-zero weights changes to something non-Gaussian, which prevents SµPar from being
correct in expectation. Compared to random pruning, a mask obtained from magnitude pruning will
better preserve the size of activations and gradients seen in the dense network. Since SµPar assumes
weights are drawn from a Gaussian distribution, SµPar ends up “overcorrecting” the initialization and
learning rate. In future work it would be impactful to develop a parameterization which generalizes
SµPar to work for an arbitrary sparse training algorithm.

2 11 2 9 2 7

Learning rate

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

Tr
ai

n 
Lo

ss

RigL + SP

2 9 2 7 2 5

Learning rate

RigL + P

2 9 2 7 2 5

Learning rate

RigL + S Par

2 11 2 9 2 7

Learning rate

3.8

4.0

4.2

4.4

4.6

4.8

5.0

5.2

Tr
ai

n 
Lo

ss

GMP + SP

2 9 2 7 2 5

Learning rate

GMP + P

2 9 2 7 2 5

Learning rate

GMP + S Par
s=0.0
s=0.5
s=0.75
s=0.875
s=0.9375
s=0.96875
s=0.984375
Dense Optimum

Transferred

Figure 12: For dynamic sparse training methods RigL and GMP, none of SP, µP, or SµPar achieve
stable optimal learning rate across sparsity (3 seeds). Missing points indicate diverged training runs.

5 Discussion

To improve sparse training, prior works make targeted corrections which arise from observations that
sparsity can cause degraded activation, gradient, and/or weight update signal propagation. We review
these observations and corrections to advocate for holistic control of sparse training dynamics.

Sparsifying Can Cause Vanishing Activations Evci et al. [11] note that by initializing weights
using dense methods (e.g., [17, 21]), the “vast majority” of sparse networks have vanishing activations.
Lasby et al. [29, App. A] analyze activation variance as a guide for selecting structured sparsity. The
FLD suggest activation norms be measured and controlled with respect to sparsity, so activation
variance can be considered a proxy to whether sparsity might negatively impact training dynamics.
Evci et al. [11] ultimately initialize variances via neuron-specific sparse connectivity, while Liu et al.
[35] and Ramanujan et al. [49] propose scaling weight variances proportional to layer sparsity. These
corrections, however, only target controlling activations but not weight updates.

Gradient Flow Partially Measures the Weight Update µDesideratum Sparsity also impairs
gradient flow—the magnitude of the gradient to the weights—during training [11, 1]. Since gradient
flow is measured using the norm of the weight gradients, it measures a piece of the weight update.
Unfortunately, gradient flow does not directly measure the effect of the weight update step, which can
also involve adjustments for things like optimizer state (e.g., momentum and velocity), the learning
rate, and weight decay. Prior works propose techniques to improve gradient flow during sparse

9



training and pruning by adjusting individual hyperparameters or adding normalization [61, 37, 11, 1].
However, these techniques might overlook the effects of the optimizer and learning rates in weight
updates. Notably, Tessera et al. [57] do consider some of these effects, but their proposed techniques
maintain gradient flow only in the Iso-Parameter scaling setting rather than arbitrary sparsification.

Frantar et al. [15, App. A.1] also endeavor to control weight updates, where they observe diminished
step sizes when optimizing sparse networks with Adafactor [52]. They correct this by computing
Adafactor’s root-mean-square scaling adjustments over unpruned weights and updates. However,
such normalization does not prevent activations from scaling with model width [63, 65]. In this sense,
sparsity-aware fixes to Adafactor can improve dynamics, but will not address instability holistically.
In Figure 14 we show the SµPar LR correction alone is not even sufficient to achieve stable optimal η.

Weight Initialization Only Controls Dynamics at Initialization We noted works above that
adjust sparse weight initializations [11, 35, 49]. Additionally, Lee et al. [31] explore orthogonal
weight initialization [46], both before pruning (to ensure SNIP [32] pruning scores are on a similar
scale across layers) and after (to improve trainability of the sparse network). While adjusting weights
can improve sparse training dynamics at initialization, such adjustments are insufficient to stabilize
signals after multiple steps of training, in the same way that standard weight initializations fail to
stabilize training of dense networks. In Figure 13 we show the SµPar init. alone is not even sufficient
to achieve stable optimal σW .

6 Limitations

As Section 4.4 shows, SµPar requires further extension for dynamic sparse training due to unpre-
dictable changes in weight distributions. The same applies to methods which prune at initialization or
after pretraining in a non-random fashion. Iterative magnitude pruning (IMP) is an interesting case
since it involves rewinding weights back to their initial values while maintaining the same mask [12].
If the IMP mask at initialization still allows the non-zero weights to have a Gaussian distribution,
then SµPar would apply to this case. Therefore, it’s possible SµPar could prevent “HP detuning” in
later IMP iterations, and potentially improve IMP losses, though we do not explore this. SµPar would
also work for random structured pruning of entire neurons at initialization because this case simply
reduces to training with a narrower dense model.

For weight sparsity more generally, the most pressing limitation is the lack of hardware accelera-
tion [38]. While new software [50, 29, 43] continues to better leverage existing hardware, the growth
of software and hardware co-design is also encouraging [59, 6], as effective sparsity techniques can
be specifically optimized in deep learning hardware. But to effectively plan hardware, we need to
train and test sparse prototypes at next-level sizes, at scales where the optimum sparsity level may be
higher than in current networks [15]. Performing such scaling law-style studies requires incredible
resources even for dense models with well-established training recipes [27, 23]. As SµPar reduces
training and tuning costs, it can help unlock these studies and guide future hardware design.

Finally, the scaling factors for the weight update need to be derived for each optimizer, which
might limit the usability of SµPar in practice. For a discussion of the broader impacts of SµPar, see
Appendix A.

7 Conclusion

Nobody said training with sparsity was easy. We showed that with the standard parameterization
and µP, increasing sparsity level directly correlates with vanishing activations. Impaired training
dynamics prevent sparse models from sharing the same optimal hyperparameters, suggesting prior
results based on re-use of dense HPs merit re-examination. In contrast, by holistically controlling the
training process, SµPar prevents vanishing activations and enables HP transfer (across both width
and sparsity). LLMs trained with SµPar improve over µP and the standard parameterization. As such,
we hope SµPar makes things a little easier for sparsity research going forward.

10



Acknowledgements

We would like to thank Gavia Gray, who provided helpful feedback on the manuscript, and Gurpreet
Gosal, who tuned the µTransferred hyperparameters seen throughout the document.

References
[1] Abhimanyu Rajeshkumar Bambhaniya, Amir Yazdanbakhsh, Suvinay Subramanian, Sheng-

Chun Kao, Shivani Agrawal, Utku Evci, and Tushar Krishna. 2024. Progressive Gradient Flow
for Robust N:M Sparsity Training in Transformers. arXiv preprint arXiv:2402.04744 (2024).

[2] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. 2017. Deep rewiring:
Training very sparse deep networks. arXiv preprint arXiv:1711.05136 (2017).

[3] Emily M Bender, Timnit Gebru, Angelina McMillan-Major, and Shmargaret Shmitchell. 2021.
On the dangers of stochastic parrots: Can language models be too big?. In Proceedings of the
2021 ACM conference on fairness, accountability, and transparency. 610–623.

[4] Blake Bordelon, Lorenzo Noci, Mufan Bill Li, Boris Hanin, and Cengiz Pehlevan. 2024.
Depthwise Hyperparameter Transfer in Residual Networks: Dynamics and Scaling Limit. In
The Twelfth International Conference on Learning Representations. https://openreview.
net/forum?id=KZJehvRKGD

[5] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. 2020. Language
models are few-shot learners. Advances in Neural Information Processing Systems 33 (2020),
1877–1901.

[6] Cerebras Systems. 2024. Train a Model with Weight Sparsity. Cerebras Systems Documen-
tation. https://docs.cerebras.net/en/2.1.1/wsc/how_to_guides/sparsity.html
Version 2.1.1.

[7] Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory Rogez, and Puneet K
Dokania. 2020. Progressive skeletonization: Trimming more fat from a network at initialization.
arXiv preprint arXiv:2006.09081 (2020).

[8] Tim Dettmers and Luke Zettlemoyer. 2019. Sparse networks from scratch: Faster training
without losing performance. arXiv preprint arXiv:1907.04840 (2019).

[9] Nolan Dey, Daria Soboleva, Faisal Al-Khateeb, Bowen Yang, Ribhu Pathria, Hemant Khachane,
Shaheer Muhammad, Zhiming Chen, Robert Myers, Jacob Robert Steeves, Natalia Vassilieva,
Marvin Tom, and Joel Hestness. 2023. BTLM-3B-8K: 7B Parameter Performance in a 3B
Parameter Model. arXiv:2309.11568 [cs.AI]

[10] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. 2020. Rigging
the lottery: Making all tickets winners. In International conference on machine learning. PMLR,
2943–2952.

[11] Utku Evci, Yani Ioannou, Cem Keskin, and Yann Dauphin. 2022. Gradient flow in sparse
neural networks and how lottery tickets win. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 36. 6577–6586.

[12] Jonathan Frankle and Michael Carbin. 2018. The lottery ticket hypothesis: Finding sparse,
trainable neural networks. arXiv preprint arXiv:1803.03635 (2018).

[13] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. 2020.
Pruning neural networks at initialization: Why are we missing the mark? arXiv preprint
arXiv:2009.08576 (2020).

[14] Elias Frantar and Dan Alistarh. 2023. SparseGPT: Massive language models can be accurately
pruned in one-shot. In International Conference on Machine Learning. 10323–10337.

11

https://openreview.net/forum?id=KZJehvRKGD
https://openreview.net/forum?id=KZJehvRKGD
https://docs.cerebras.net/en/2.1.1/wsc/how_to_guides/sparsity.html


[15] Elias Frantar, Carlos Riquelme, Neil Houlsby, Dan Alistarh, and Utku Evci. 2023. Scaling laws
for sparsely-connected foundation models. arXiv preprint arXiv:2309.08520 (2023).

[16] Trevor Gale, Erich Elsen, and Sara Hooker. 2019. The state of sparsity in deep neural networks.
arXiv preprint arXiv:1902.09574 (2019).

[17] Xavier Glorot and Yoshua Bengio. 2010. Understanding the Difficulty of Training Deep
Feedforward Neural Networks. In Proceedings of the Thirteenth International Conference on
Artificial Intelligence and Statistics (PMLR).

[18] Anna Golubeva, Behnam Neyshabur, and Guy Gur-Ari. 2020. Are wider nets better given the
same number of parameters? arXiv preprint arXiv:2010.14495 (2020).

[19] Hila Gonen and Yoav Goldberg. 2019. Lipstick on a pig: Debiasing methods cover up systematic
gender biases in word embeddings but do not remove them. arXiv preprint arXiv:1903.03862
(2019).

[20] Yiwen Guo, Chao Zhang, Changshui Zhang, and Yurong Chen. 2018. Sparse dnns with improved
adversarial robustness. Advances in neural information processing systems 31 (2018).

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers:
Surpassing human-level performance on ImageNet classification. In Proceedings of the IEEE
international conference on computer vision. 1026–1034.

[22] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. 2021. Sparsity
in deep learning: Pruning and growth for efficient inference and training in neural networks.
Journal of Machine Learning Research 22, 241 (2021), 1–124.

[23] Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom
Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia
Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and
Laurent Sifre. 2022. An Empirical Analysis of Compute-optimal Large Language Model
Training. In The Conference on Neural Information Processing Systems (NeurIPS).

[24] Sara Hooker, Aaron Courville, Gregory Clark, Yann Dauphin, and Andrea Frome. 2019. What
do compressed deep neural networks forget? arXiv preprint arXiv:1911.05248 (2019).

[25] Sara Hooker, Nyalleng Moorosi, Gregory Clark, Samy Bengio, and Emily Denton. 2020.
Characterising bias in compressed models. arXiv preprint arXiv:2010.03058 (2020).

[26] Hyeong-Ju Kang. 2019. Accelerator-aware pruning for convolutional neural networks. IEEE
Transactions on Circuits and Systems for Video Technology 30, 7 (2019), 2093–2103.

[27] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. 2020. Scaling Laws for Neural
Language Models. arXiv:2001.08361 [cs.LG] https://arxiv.org/abs/2001.08361

[28] Denis Kuznedelev, Eldar Kurtic, Eugenia Iofinova, Elias Frantar, Alexandra Peste, and Dan
Alistarh. 2023. Accurate neural network pruning requires rethinking sparse optimization. arXiv
preprint arXiv:2308.02060 (2023).

[29] Mike Lasby, Anna Golubeva, Utku Evci, Mihai Nica, and Yani Ioannou. 2023. Dynamic Sparse
Training with Structured Sparsity. arXiv preprint arXiv:2305.02299 (2023).

[30] Yann LeCun, John Denker, and Sara Solla. 1989. Optimal brain damage. Advances in Neural
Information Processing Systems 2 (1989).

[31] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip HS Torr. 2019. A
signal propagation perspective for pruning neural networks at initialization. arXiv preprint
arXiv:1906.06307 (2019).

[32] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS Torr. 2018. SNIP: Single-shot network
pruning based on connection sensitivity. arXiv preprint arXiv:1810.02340 (2018).

12

https://arxiv.org/abs/2001.08361


[33] Shiwei Liu, Tianlong Chen, Xiaohan Chen, Li Shen, Decebal Constantin Mocanu, and Mykola
Wang, Zhangyang an d Pechenizkiy. 2022. The unreasonable effectiveness of random pruning:
Return of the most naive baseline for sparse training. arXiv preprint arXiv:2202.02643 (2022).

[34] Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. 2021. Do we
actually need dense over-parameterization? In-time over-parameterization in sparse training. In
International Conference on Machine Learning. PMLR, 6989–7000.

[35] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. 2018. Rethinking the
value of network pruning. arXiv preprint arXiv:1810.05270 (2018).

[36] Ilya Loshchilov and Frank Hutter. 2017. Decoupled Weight Decay Regularization. In Interna-
tional Conference on Learning Representations.

[37] Ekdeep Singh Lubana and Robert P Dick. 2020. A gradient flow framework for analyzing
network pruning. arXiv preprint arXiv:2009.11839 (2020).

[38] Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh,
Chong Yu, and Paulius Micikevicius. 2021. Accelerating sparse deep neural networks. arXiv
preprint arXiv:2104.08378 (2021).

[39] Margaret Mitchell, Simone Wu, Andrew Zaldivar, Parker Barnes, Lucy Vasserman, Ben Hutchin-
son, Elena Spitzer, Inioluwa Deborah Raji, and Timnit Gebru. 2019. Model cards for model
reporting. In Proceedings of the conference on fairness, accountability, and transparency.
220–229.

[40] Decebal Constantin Mocanu, Elena Mocanu, Phuong H Nguyen, Madeleine Gibescu, and
Antonio Liotta. 2016. A topological insight into restricted Boltzmann machines. Machine
Learning 104 (2016), 243–270.

[41] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. 2018. Scalable training of artificial neural networks with adaptive
sparse connectivity inspired by network science. Nature communications 9, 1 (2018), 2383.

[42] Moin Nadeem, Anna Bethke, and Siva Reddy. 2020. StereoSet: Measuring stereotypical bias in
pretrained language models. arXiv preprint arXiv:2004.09456 (2020).

[43] Neural Magic. 2024. DeepSparse. GitHub repository. https://github.com/neuralmagic/
deepsparse

[44] Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
Jan Leike, and Ryan Lowe. 2022. Training Language Models to Follow Instructions With
Human Feedback. arXiv:2203.02155 [cs.CL] https://arxiv.org/abs/2203.02155

[45] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel
Rothchild, David So, Maud Texier, and Jeff Dean. 2021. Carbon emissions and large neural
network training. arXiv preprint arXiv:2104.10350 (2021).

[46] Jeffrey Pennington, Samuel Schoenholz, and Surya Ganguli. 2017. Resurrecting the sigmoid in
deep learning through dynamical isometry: theory and practice. Advances in neural information
processing systems 30 (2017).

[47] Ofir Press, Noah Smith, and Mike Lewis. 2022. Train Short, Test Long: Attention with
Linear Biases Enables Input Length Extrapolation. In International Conference on Learning
Representations.

[48] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
2019. Language Models are Unsupervised Multitask Learners. https://d4mucfpksywv.
cloudfront.net/better-language-models/language-models.pdf

[49] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad
Rastegari. 2020. What’s hidden in a randomly weighted neural network?. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 11893–11902.

13

https://github.com/neuralmagic/deepsparse
https://github.com/neuralmagic/deepsparse
https://arxiv.org/abs/2203.02155
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf
https://d4mucfpksywv.cloudfront.net/better-language-models/language-models.pdf


[50] Erik Schultheis and Rohit Babbar. 2023. Towards Memory-Efficient Training for Extremely
Large Output Spaces – Learning with 670k Labels on a Single Commodity GPU. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases. Springer,
689–704.

[51] Noam Shazeer. 2020. GLU Variants Improve Transformer. arXiv:2002.05202 [cs.LG] https:
//arxiv.org/abs/2002.05202

[52] Noam Shazeer and Mitchell Stern. 2018. Adafactor: Adaptive learning rates with sublinear
memory cost. In International Conference on Machine Learning. PMLR, 4596–4604.

[53] Emily Sheng, Kai-Wei Chang, Premkumar Natarajan, and Nanyun Peng. 2019. The woman
worked as a babysitter: On biases in language generation. arXiv preprint arXiv:1909.01326
(2019).

[54] Daria Soboleva, Faisal Al-Khateeb, Robert Myers, Jacob R Steeves, Joel
Hestness, and Nolan Dey. 2023. SlimPajama: A 627B token cleaned and
deduplicated version of RedPajama. https://www.cerebras.net/blog/
slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama.
https://huggingface.co/datasets/cerebras/SlimPajama-627B

[55] Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and policy considera-
tions for deep learning in NLP. arXiv preprint arXiv:1906.02243 (2019).

[56] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya Ganguli. 2020. Pruning neural net-
works without any data by iteratively conserving synaptic flow. Advances in neural information
processing systems 33 (2020), 6377–6389.

[57] Kale-ab Tessera, Sara Hooker, and Benjamin Rosman. 2021. Keep the gradients flowing: Using
gradient flow to study sparse network optimization. arXiv preprint arXiv:2102.01670 (2021).

[58] Vithursan Thangarasa, Abhay Gupta, William Marshall, Tianda Li, Kevin Leong, Dennis
DeCoste, Sean Lie, and Shreyas Saxena. 2023. SPDF: Sparse pre-training and dense fine-tuning
for large language models. In Uncertainty in Artificial Intelligence. 2134–2146.

[59] Vithursan Thangarasa, Shreyas Saxena, Abhay Gupta, and Sean Lie. 2023. Sparse-IFT: Sparse
Iso-FLOP transformations for maximizing training efficiency. arXiv preprint arXiv:2303.11525
(2023).

[60] Stijn Verdenius, Maarten Stol, and Patrick Forré. 2020. Pruning via iterative ranking of
sensitivity statistics. arXiv preprint arXiv:2006.00896 (2020).

[61] Chaoqi Wang, Guodong Zhang, and Roger Grosse. 2020. Picking winning tickets before
training by preserving gradient flow. arXiv preprint arXiv:2002.07376 (2020).

[62] Alexander Wei, Nika Haghtalab, and Jacob Steinhardt. 2023. Jailbroken: How does LLM safety
training fail? Advances in Neural Information Processing Systems 36 (2023).

[63] Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. 2021. Tuning Large Neural Networks
via Zero-Shot Hyperparameter Transfer. In Advances in Neural Information Processing Systems.

[64] Greg Yang and Edward J Hu. 2020. Feature learning in infinite-width neural networks. arXiv
preprint arXiv:2011.14522 (2020).

[65] Greg Yang, James B Simon, and Jeremy Bernstein. 2023. A spectral condition for feature
learning. arXiv preprint arXiv:2310.17813 (2023).

[66] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. 2023. Feature Learning in Infinite Depth
Neural Networks. In International Conference on Learning Representations.

[67] Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang, and Lanshun Nie. 2019. Balanced
sparsity for efficient DNN inference on GPU. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 5676–5683.

[68] Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring the efficacy of
pruning for model compression. arXiv preprint arXiv:1710.01878 (2017).

14

https://arxiv.org/abs/2002.05202
https://arxiv.org/abs/2002.05202
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://www.cerebras.net/blog/slimpajama-a-627b-token-cleaned-and-deduplicated-version-of-redpajama
https://huggingface.co/datasets/cerebras/SlimPajama-627B


A Broader impacts

Sparsity is recognized to reduce carbon emissions [45] and offset well-known environmental and
financial costs of large model training [3]. For example, unstructured sparsity can be accelerated by
the Cerebras Wafer-Scale Engine10 and 2:4 block sparsity can be accelerated by NVIDIA Ampere
GPUs11. There is growing recognition that HP tuning is a key contributor to these costs. HP tuning is
costly, possibly undermining equity in AI research due to financial resources [55]. During model
retraining, sensitivity to HPs also leads to downstream costs [55]. SµPar can reduce these costs and
sensitivities and thus improve equity.

Sparsity also has potential drawbacks. Hooker et al. [24] showed that even when top-line performance
metrics are comparable, pruned networks may perform worse on specific subsets of the data (including
on underrepresented groups [25]), may amplify sensitivity to adversarial examples, and may be more
sensitive to distribution shift. These sensitivities may depend on the degree of sparsity [20]. It remains
an open question whether such drawbacks occur only with pruning or when training with sparsity
from scratch (as in SµPar) [22], and how such sensitivity may impact susceptibility to misuse [62].
We require sparsity-specific methods to detect [53, 42] and mitigate [19, 44] harm. Moreover, since
many large models are later pruned for deployment, we recommend testing and documenting in the
model card [39] any adverse affects of sparsification at the time of model release.

B Downstream task comparison of parameterizations

In Table 2, we evaluate the models from Figure 3 on five downstream tasks: ARC-easy, lambada,
RACE, PIQA, and BoolQ, which collectively test for common sense reasoning, world knowledge,
and reading comprehension. We also specifically chose tasks that are easy enough for even extremely
sparse models to significantly outperform random chance.

Sparsity - 0 0.5 0.75 0.875
Rand. SP µP SµPar SP µP SµPar SP µP SµPar SP µP SµPar

ARC-easy 0.25 0.49 0.51 0.51 0.45 0.49 0.48 0.44 0.45 0.45 0.42 0.43 0.44
LAMBADA 0.00 0.32 0.36 0.36 0.27 0.31 0.32 0.22 0.27 0.28 0.20 0.23 0.25
RACE 0.25 0.30 0.30 0.30 0.29 0.31 0.30 0.28 0.30 0.29 0.27 0.28 0.28
PIQA 0.50 0.67 0.67 0.67 0.63 0.65 0.67 0.63 0.64 0.64 0.62 0.63 0.63
BoolQ 0.50 0.53 0.57 0.57 0.58 0.55 0.51 0.57 0.62 0.52 0.61 0.62 0.62
Avg. 0.30 0.46 0.48 0.48 0.44 0.46 0.46 0.43 0.46 0.44 0.42 0.44 0.44
Sparsity - 0.9375 0.96875 0.984375 0.992188

Rand. SP µP SµPar SP µP SµPar SP µP SµPar SP µP SµPar
ARC-easy 0.25 0.41 0.40 0.43 0.39 0.42 0.41 0.38 0.38 0.41 0.37 0.38 0.38
LAMBADA 0.00 0.19 0.20 0.21 0.16 0.18 0.19 0.13 0.15 0.17 0.12 0.13 0.14
RACE 0.25 0.25 0.27 0.28 0.24 0.25 0.27 0.24 0.24 0.25 0.25 0.24 0.26
PIQA 0.50 0.61 0.61 0.61 0.60 0.61 0.60 0.59 0.60 0.59 0.58 0.60 0.60
BoolQ 0.50 0.62 0.62 0.61 0.57 0.62 0.62 0.45 0.62 0.61 0.41 0.61 0.61
Avg. 0.30 0.42 0.42 0.43 0.39 0.42 0.42 0.36 0.40 0.41 0.34 0.39 0.40

Table 2: Downstream evaluation accuracy; higher is better: SµPar performs best or within 0.01 of
best across all sparsity levels and tasks, except boolq at 50% and 75% sparsity. Even at 99% sparsity,
SµPar models maintain 40%+ average accuracy, whereas the SP model drops to 34%, close to the
30% accuracy of the random baseline.

C Individual ablations of SµPar initialization and learning rate corrections

In Figures 13 and 14, we individually ablate the effect of the SµPar initialization and the SµPar
learning rate. We show that using only the SµPar initialization in conjunction with µP (µP + SµPar
initialization only) does not allow for transfer of optimal initialization standard deviation or optimal
learning rate across sparsity levels. We also show that using only the SµPar learning rate in conjunction
with µP does not achieve transfer either. Therefore, both the SµPar initialization and learning rate
corrections are required to achieve optimal hyperparameter transfer across sparsity levels.

10https://www.cerebras.net/blog/harnessing-the-power-of-sparsity-for-large-gpt-ai-models
11https://www.nvidia.com/en-us/data-center/ampere-architecture/

15

https://www.cerebras.net/blog/harnessing-the-power-of-sparsity-for-large-gpt-ai-models
https://www.nvidia.com/en-us/data-center/ampere-architecture/


2 5 2 3 2 1 21

W at initialization

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

Tr
ai

n 
Lo

ss

P + S Par init only

2 5 2 3 2 1 21

W at initialization

P + S Par LR only

2 6 2 4 2 2 20

W at initialization

S Par
s = 0
s = 0.5
s = 0.75
s = 0.875
s = 0.9375
s = 0.96875
s = 0.984375
Optimum
Dense Optimum

Transferred

Figure 13: SµPar ensures stable optimal weight initialization standard deviation, unlike SP, µP, µP +
SµPar init only, and µP + SµPar LR only.

2 7 2 5 2 3

Learning Rate

3.5

3.6

3.7

3.8

3.9

4.0

Tr
ai

n 
Lo

ss

P + S Par init only

2 8 2 7 2 6 2 5

Learning Rate

P + S Par LR only

2 9 2 7 2 5

Learning Rate

S Par

s = 0.0
s = 0.5
s = 0.75
s = 0.875
s = 0.9375
s = 0.96875
s = 0.984375
Optimum
Dense Optimum

Transferred

Figure 14: SµPar ensures stable optimal learning rate (Bottom), unlike SP, µP, µP + SµPar init only,
and µP + SµPar LR only.

D SµPar detailed derivation

D.1 Forward pass at initialization

The first stage where we would like to control training dynamics is in the layer’s forward function.
For a random unstructured sparsity mask M, since each column of M has dinρ non-zero elements in
expectation, we can rewrite the forward pass as:

Yij = [X(W ⊙M)]ij =

din∑
q=1

Xiq(Wqj ·Mqj) =

dinρ∑
k:Mkj=1

XikWkj (4)

To satisfy the FLD, we desire the typical element size of Y is Θ(1) with respect to change in width
mdin and change in density mρ. To achieve this we can ensure the mean and variance of Yij are
invariant to mdin and mρ.

Mean: As expectation is linear and X and W are independent at initialization:

E[Yij ] = E

 dinρ∑
k:Mkj=1

YikWkj

 =

dinρ∑
k:Mkj=1

E[XikWkj ] =

dinρ∑
k:Mkj=1

E[Xik]E[Wkj ] (5)

Therefore, since at initialization E[Wij ] = 0, E[Yij ] = 0 and the mean is controlled.

Variance: As expectation is linear and each weight element is IID:

Var(Yij) = Var

 dinρ∑
k:Mkj=1

XikWkj

 =

dinρ∑
k:Mkj=1

Var(XikWkj) (6)

16



Then, since X and W are independent at initialization:

Var(Yij) =

dinρ∑
k:Mkj=1

(Var(Xik) + E[Xik]
2)(Var(Wkj) + E[Wkj ]

2)− (E[Xik]E[Wkj ])
2 (7)

Finally, since at initialization E[Wkj ] = 0 and redefining Var(Wkj) = σ2
W:

Var(Yij) =

dinρ∑
k:Mkj=1

(Var(Xik) + E[Xik]
2)Var(Wkj) = dinρσ

2
W(Var(X) + E[X]2) (8)

Rewriting in terms of multipliers for the width mdin =
din

din, base
and the change in density mρ = ρ

ρbase
:

Var(Yij) = mdindin, basemρρbaseσ
2
W(Var(X) + E[X]2) (9)

Solution: To satisfy the FLD and ensure Var(Yij) scales independently of mdin and mρ, we choose

to set σ2
W =

σ2
W,base

mdinmρ
. This ensures typical entry size of Y is invariant to changes in width mdin and

density mρ.

Note that this correction is equivalent to µP [63] when mρ = 1. Further, the sparsity factor in the
denominator matches the correction for sparsity-aware initialization from Evci et al. [11].

D.2 Backward gradient pass at initialization

The next stage we would like to control training dynamics is in the layer’s backward pass. For
a random unstructured sparsity mask M, since each row of M has doutρ non-zero elements in
expectation, we can rewrite the backward pass as:

∇XLij =
[
∇YL(W ⊙M)⊤

]
ij
=

dout∑
q

∇YLiq(Wjq ·Mjq) =

doutρ∑
k:Mjk=1

∇YLikWjk (10)

To satisfy the FLD, we desire the typical element size of ∇XL is Θ(1) with respect to change in
width mdout and change in density mρ. To achieve this, we can ensure the mean and variance of ∇XL
are invariant to mdout and mρ.

Mean: Although the gradients ∇YL will have some correlation with weights W even at initializa-
tion, we assume for simplicity that they are fully independent. Future work could investigate this
assumption more deeply. As expectation is linear:

E[∇XLij ] = E

 doutρ∑
k:Mjk=1

∇YLikWjk

 =

doutρ∑
k:Mjk=1

E[∇YLikWjk] =

doutρ∑
k:Mjk=1

E[∇YLik]E[Wjk]

(11)

Therefore, since at initialization E[Wjk] = 0, E[∇XLij ] = 0, the mean is controlled.

Variance: As expectation is linear and each weight element is IID:

Var(∇XLij) = Var

 doutρ∑
k:Mjk=1

∇YLikWjk

 =

doutρ∑
k:Mjk=1

Var(∇YLikWjk) (12)

From the backward pass mean derivation, we know E[∇YLij ] = 0. Then, similar to the forward pass
variance derivation, we can simplify using the facts that at initialization, ∇YL and W are (roughly)
independent and E[W] = 0. Similarly we can also define Var(Wl

kj) = σ2
W and rewrite in terms of

width multiplier mdout =
dout

dout,base
and changes in density mρ = ρ

ρbase
:

Var(∇XLij) = mdoutdout,basemρρbaseσ
2
WVar(∇YL) (13)

Solution: To satisfy the FLD and ensure Var(∇XLij) scales independently of mdout and mρ, we

choose to set σ2
W =

σ2
W,base

mdoutmρ
. This ensures the typical entry size of ∇XL is invariant to changes

17



in width mdout and density mρ. Typically, we scale model width such that mdout = mdin . This
equal scaling allows the same initialization variance to correct both forward activation and backward
gradient scales, making them independent of width. Further, since we assume random sparsity across
layer’s weights, the sparsity initialization correction factor, mρ, is the same for both the forward
activations and backward gradients.

D.3 Effect of weight update ∆W on Y

To satisfy the FLD, we desire the typical element size of the weight update ∆Y is Θ(1) with respect
to change in width mdin and change in density mρ. To achieve this we examine the expected size of
each element. Here, we use η to be the learning rate for this layer. For a random unstructured sparsity
mask M, since each column of M has dinρ non-zero elements in expectation:

∆Yij = [ηX(∆W ⊙M)]ij = η

din∑
q=1

Xiq(∆Wqj ·Mqj) = η

dinρ∑
k:Mkj=1

Xik∆Wkj (14)

Mean: As expectation in linear:

E[∆Yij ] = E

η dinρ∑
k:Mkj=1

Xik∆Wkj

 = η

dinρ∑
k:Mkj=1

E[Xik∆Wkj ] (15)

Since ∆W was derived from X, there is covariance between these variables and E[Xik∆Wkj ] is
non-zero. By the Law of Large Numbers:

E[∆Yij ] → ηdinρE [Xik∆W] , as (dinρ) → ∞ (16)

Rewriting in terms of width and density multipliers:

E[∆Yij ] → ηmdindin,basemρρbaseE [Xik∆W] , as (dinρ) → ∞ (17)

Equation 17 will be used as intermediate result in the following sections.

D.3.1 Effect SGD weight update ∆W on Y

Following the formulation in [63], stochastic gradient descent (SGD) weight updates take the form:

∆Wl
kj =

[
(X)⊤(∇YL)

din

]
kj

=
1

din

B∑
b=1

Xbk(∇YL)bj (18)

so we can rewrite Equation 17 as:

E[∆Yij ] → ηmρρbaseE

[
Xik

B∑
b=1

Xbk(∇YL)bj

]
, as (dinρ) → ∞ (19)

Solution: For SGD updates, to satisfy the FLD and ensure E[∆Yij ] and the typical entry size of ∆Y
are scale invariant to md and mρ, we choose η = ηbase/mρ. Note this correction is equivalent to µP
[63] when ρ = 1,mρ = 1.

D.3.2 Effect of Adam weight update ∆W on Y

Following the formulation in Yang et al. [63], Adam weight updates take the form:

∆Wkj =

∑T
t γt

∑B
b Xl,t

bk(∇YL)tbj√∑T
t ωt

∑B
b (X

t
bk(∇YL)tbj)2

(20)

where T is the current training step and γt, ωt are the moving average weights at each training step.
Here, we can just consider the weight update associated with an unpruned weight, since a pruned

18



weight will have value and update 0 (i.e., pruned weights trivially satisfy that their effect on forward
activations cannot depend on width or sparsity). We can rewrite Equation 17 as:

E[∆Yij ] → ηmdindin,basemρρbaseE

Xik

 ∑T
t γt

∑B
b Xt

bk∇YLt
bj√∑T

t ωt

∑B
b (X

t
bk∇YLt

bj)
2

 , as (dinρ) → ∞

(21)

Solution: For Adam updates, to satisfy the FLD and ensure E[∆Yij ] and the typical entry size of
∆Y are scale invariant to mdin and mρ, we choose η = ηbase

mdinmρ
. Note that this correction is equivalent

to µP [63] when ρ = 1,mρ = 1.

D.4 Additional notes about derivation

We make a few supplementary notes about the above derivation:

• Throughout our derivation, we use ρ to refer to the density level. Note that since this
derivation is local to a single layer in the model, the density (or sparsity) level can also
be parameterized independently for each layer. If a sparsity technique will use layer-wise
independent sparsity levels, appropriate corrections should be made for each layer.

• Similar to the ρ notation, we use η to denote the learning rate, but this learning rate can be
layer-specific depending on sparsity level. Appropriate corrections must be made if using
layer-wise independent sparsities.

• The use of the Law of Large Numbers in portions of the above derivation indicate that
SµPar is expected to provide stable training dynamics as the number of non-zero weights
per neuron (WPN) tends to infinity. However, in sparse settings, the WPN can tend to be
small. If WPN is small, training dynamics may be affected, and this might be a direction for
future work.

• In this work, we only consider sparsifying linear projection layers. As a result, SµPar matches
µP for other layers like input, output, bias, layer-norm, and attention logits. Depending on
the sparsification technique, these other layers might need to be reviewed for their effects on
training dynamics.

E Experimental details

SµPar base hyperparameter tuning To find the optimized set of hyperparameters for SµPar, we
actually tune µP HPs on a dense proxy model. By formulation of SµPar, these HPs transfer optimally
to all the sparse models trained for this work. This dense proxy model is a GPT-2 model, but with
small changes: ALiBi position embeddings [47] and SwiGLU nonlinearity [51]. We configure it with
width: dmodel = dmodel,base = 256, number of layers: nlayers = 24, and head size: dhead = 64, resulting
in 39M parameters. We trained this proxy model on 800M tokens with a batch size of 256 sequences
and sequence length 2048 tokens. We randomly sampled 350 configurations of base learning rates,
base initialization standard deviation, and embedding and output logits scaling factors. From this
sweep we obtained the tuned hyperparameters listed in Table 3.

Table 3: Tuned hyperparameters for our dense proxy model.
Hyperparameter Value

σW,base 0.08665602
ηbase 1.62E-2
αinput 9.1705
αoutput 1.0951835

Experimental details for all figures In Table 4, we provide extensive details on hyperparameters,
model size, and training schedule for all experiments in this paper. All models in this paper were
trained on the SlimPajama dataset [54], a cleaned and deduplicated version of the RedPajama dataset.

19



Ta
bl

e
4:

E
xp

er
im

en
ta

ld
et

ai
ls

fo
ra

ll
fig

ur
es

in
th

is
pa

pe
r.

L
R

w
ar

m
-

Fi
gu

re
d

m
od

el
L

d
he

ad
B

L
R

In
it.

St
de

v.
α

in
pu

t
α

ou
tp

ut
L

R
de

ca
y

up
st

ep
s

St
ep

s
To

ke
ns

Fi
g.

1,
40

96
2

64
12

8
V

ar
ia

bl
e

SP
:2

.1
66

E
-2

9.
17

05
1.

09
5

10
x

lin
ea

r
11

6
11

69
30

6M
6,

8,
14

µP
,S

µP
ar

:0
.0

87
Fi

g.
7,

13
40

96
2

64
8

1.
62

E
-2

V
ar

ia
bl

e
9.

17
05

1.
09

5
C

on
st

an
t

0
10

0
1.

6M
Fi

g.
3

20
48

10
64

50
4

SP
:2

e-
4

SP
:0

.0
2

9.
17

05
1.

09
5

D
ec

ay
to

ze
ro

11
75

11
75

2
12

.1
3B

µP
,S

µP
ar

:1
.6

2E
-2

µP
,S

µP
ar

:0
.0

87
Fi

g.
5

20
48

2
32

4
1.

68
E

-0
2

0.
10

1
11

.2
2

1
C

on
st

an
t

0
10

82
K

µP
,S

µP
ar

:1
.6

2E
-2

Fi
g.

9
V

ar
ia

bl
e

2
64

12
8

V
ar

ia
bl

e
SP

:0
.0

2
9.

17
05

1.
09

5
10

x
lin

ea
r

11
6

11
69

30
6M

µP
,S

µP
ar

:0
.0

87
Fi

g.
10

V
ar

ia
bl

e
10

64
25

6
SP

,d
m

od
el
≤

10
88

:6
E

-4
SP

:0
.0

2
9.

17
05

1.
09

5
10

x
lin

ea
r

19
0

19
07

1B
SP

,d
m

od
el
>

10
88

:2
E

-4
µP

,S
µP

ar
:0

.0
87

µP
,S

µP
ar

:1
.6

2E
-2

Fi
g.

11
V

ar
ia

bl
e

2
64

12
8

V
ar

ia
bl

e
0.

08
7

fo
rS

P.
N

/A
N

/A
10

x
lin

ea
r

11
6

11
69

30
6M

Fi
g.

12
10

24
2

64
12

8
V

ar
ia

bl
e

SP
:2

.1
66

E
-2

9.
17

05
1.

09
5

10
x

lin
ea

r
11

6
11

69
30

6M
µP

,S
µP

ar
:0

.0
87

20



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Sections 6 and A contain a discussion of limitations and broader impact.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

21



Justification: In Section 3 we provide a short proof sketch to provide intuition behind both
SµPar and µP. Then in Section D we provide a detailed derivation for SµPar (which also
reduces to µP when ρ = 1).
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: To ensure reproducibility, in Section E we provide extensive details on all
experiments contained in the paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

22



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All tests in this paper use GPT-like transformer language models [48, 9],
trained on the SlimPajama dataset [54], which are both open. Section E contains sufficient
detail to faithfully reproduce the main experimental results. A minimal implementation of
SµPar is available at https://github.com/EleutherAI/nanoGPT-mup/tree/supar.
We also provide a simple breakdown of the code changes required in Table 1.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: To ensure reproducibility, in Section E we provide extensive details on all
experiments contained in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In most of our experiments, we sample multiple seeds and plot the mean loss as
a solid line, as well as the standard error of the mean as a shaded area of the same color. We
disclose the number of seeds used for each experiment in the corresponding figure captions.

Guidelines:

• The answer NA means that the paper does not include experiments.

23

https://github.com/EleutherAI/nanoGPT-mup/tree/supar
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: In Section E we provide extensive experimental details which can be used to
easily derive compute requirements based on a reader’s specific hardware setting.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We do not conduct any research with human participants. Also, we consider
the broader impacts and limitations of our work in Sections A and 6. Finally, we provide
extensive experimental details in Section E to improve reproducibility.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

24

https://neurips.cc/public/EthicsGuidelines


Justification: See Section A.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper presents a new neural network parameterization SµPar and does
not release any models or datasets.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite all datasets and architectures in accordance with their licenses.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.

25



• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not introduce new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We do not conduct any research involving crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We do not conduct any research involving human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

26

paperswithcode.com/datasets


• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Intro
	Related work
	Sparse maximal update parameterization (SµPar)
	Notation
	Feature learning: Defining the goal of mup and smup
	Maximal update parameterization (µP)
	Sparse maximal update parameterization (smup)

	smup Training Results
	Sparse hyperparameter transfer
	Studying smup indicates how some sparse scaling techniques appear to work
	smup scaling to large language model pretraining
	Dynamic sparsity hyperparameter transfer

	Discussion
	Limitations
	Conclusion
	Broader impacts
	Downstream task comparison of parameterizations
	Individual ablations of smup initialization and learning rate corrections
	smup detailed derivation
	Forward pass at initialization
	Backward gradient pass at initialization
	Effect of weight update W on Y
	Effect SGD weight update W on Y
	Effect of Adam weight update W on Y

	Additional notes about derivation

	Experimental details

