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Abstract

The task of dialogue topic shift detection aims001
to identify whether a topic shift occurs in the002
current sentence relative to the preceding con-003
text during a conversation. Current research004
often treats n-gram features as equally impor-005
tant; however, the significance of these features006
actually depends on the specific context, which007
influences the model’s semantic understanding008
of the entire text. To address this issue, we pro-009
pose a model based on prompt learning with010
multi-scale feature attention. Under the guid-011
ance of the prompt learning module, the multi-012
scale feature attention layer is better able to013
capture textual semantic features, thereby im-014
proving the accuracy of topic shift detection015
in dialogues. The proposed model was eval-016
uated on the Chinese CNTD dataset and the017
English TIAGE dataset. Experimental results018
demonstrate that our model achieves significant019
performance improvements compared to exist-020
ing approaches. Furthermore, we compared021
multi-scale and single-scale feature attention022
models and found that the optimal performance023
was achieved when k was set to 4. Finally, we024
conducted ablation studies and analyses to val-025
idate the effectiveness and robustness of the026
model, resulting in performance enhancements027
to varying degrees.028

1 Introduction029

Daily conversations typically revolve around spe-030

cific topics. A single dialogue may also encompass031

multiple topics, with discussions within each topic032

being relatively coherent. Topic shift, as a com-033

mon phenomenon in conversations, plays a crucial034

role in maintaining the fluency and engagement of035

dialogues. Research on topic shift has gradually036

emerged as a focal point in fields such as linguistics,037

psychology, and artificial intelligence. For exam-038

ple, in Figure 1, a dialogue between an AI customer039

service agent and a customer is illustrated. In the040

second round of the conversation, the customer041

shifts the topic from the color of the clothing to 042

its price. However, the AI fails to detect this topic 043

shift, leading to an incorrect response. 044

Hello, this is 008 at your service.

Is the white color of this item still in stock?

We're out of stock on that one, dear, but we still 
have blue and yellow available.

Are the prices for the blue and yellow ones the 
same as the white one?

The blue, yellow, and white ones are of the same style.

I was asking about the price, not the style!!!

Figure 1: Example of a Conversation Between a Cus-
tomer Service AI and a Customer.

Dialogue topic shift detection refers to the pro- 045

cess of identifying whether a topic shift occurs dur- 046

ing a conversation, which is somewhat analogous 047

to topic classification but differs in key aspects. 048

Topic classification involves segmenting and cat- 049

egorizing a piece of text or dialogue content into 050

predefined topic categories, representing a static 051

classification process. In contrast, topic shift refers 052

to the dynamic behavior of participants changing 053

the current topic of discussion and transitioning 054

to another topic during a conversation. However, 055

topic shift can also be viewed as a binary classifica- 056

tion problem. Many mainstream text classification 057

models are typically based on Convolutional Neu- 058

ral Networks (CNN) (Kim, 2014), Recurrent Neu- 059

ral Networks (RNN) (Bhowmik et al., 2018), and 060

Transformer (Vaswani et al., 2017). For instance, 061

some scholars (Wang et al., 2017) proposed using a 062

symmetric CNN to perform topic segmentation by 063

evaluating semantic coherence, thereby enabling 064

topic classification. As some scholars (Sabour et al., 065

2017) enhanced CNN by introducing capsule net- 066

works, which replace neurons in neural networks 067

with tensors, granting capsule networks more pow- 068

erful feature learning capabilities. However, dia- 069
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logue texts differ from general texts (news, novels)070

in that they exhibit temporal characteristics and071

variable lengths. Although CNNs can capture local072

features and contextual information through convo-073

lutional layers, they often struggle with long-range074

dependencies and fail to fully understand contex-075

tual features. RNNs are naturally suited for se-076

quential data, but traditional RNNs may encounter077

difficulties when modeling long sequences. CNNs078

typically require fixed-length inputs, which may079

necessitate additional padding or truncation when080

processing variable-length dialogue texts. RNNs081

can handle variable-length inputs, but in practice,082

long sequences may increase computational bur-083

den. As a result, a number of studies have adopted084

BiLSTM models for topic classification and topic085

shift detection. Some scholars (Xing et al., 2020)086

proposed an improved BiLSTM model for context087

modeling, which better captures semantic consis-088

tency between sentences and restricts the attention089

scope, enabling the model to focus more on the lo-090

cal contextual information of the current sentence091

and better utilize information from adjacent sen-092

tences.093

The "prompt" is a kind of cue provided to the094

pre-trained language model to allow the pre-trained095

language model to better understand human prob-096

lems. The goal is to better utilize the knowledge in097

the pre-trained model means to add additional text098

to the input.099

To better detect topic shifts in dialogue texts in100

real-time, this paper proposes a BERT-BiLSTM101

model based on prompt learning with multi-scale102

attention convolution. The multi-scale feature at-103

tention mechanism, initially proposed by other104

scholars (Wang et al., 2018), involves attention105

convolution across different window sizes to cap-106

ture diverse n-gram features of the text. Building107

on prompt learning, the multi-scale feature atten-108

tion mechanism introduced in this paper operates at109

the sentence level, utilizing varying window sizes110

to extract syntactic features of sentences at differ-111

ent scales. This model designs prompt templates112

tailored to the dialogue context, enabling a more113

effective understanding of topic shift expressions114

in sentences from large-scale pre-trained language115

models, thereby determining whether a sentence116

constitutes a topic shift. To facilitate real-time de-117

tection of topic shifts during conversations, the118

model eschews the sentence-by-sentence input ap-119

proach in favor of a method where each input con-120

sists of the preceding discourse plus the current121

sentence. Finally, we conducted topic shift experi- 122

ments on the Chinese CNTD and English TIAGE 123

datasets, with the results demonstrating the superior 124

performance of our model in topic shift detection. 125

The main contributions of this paper are as fol- 126

lows: (1) Firstly, this paper, for the first time, ap- 127

proaches the identification of topic shifts in dia- 128

logues from a novel perspective by proposing a 129

prompt learning-based method for topic shift detec- 130

tion tasks. (2) Secondly, the multi-scale feature at- 131

tention mechanism is integrated and enhanced with 132

BERT-BiLSTM to accurately extract sentence-level 133

multi-grammatical features, endowing the model 134

with robust feature learning capabilities. (3) Lastly, 135

topic shift experiments were conducted on the Chi- 136

nese CNTD and English TIAGE datasets, respec- 137

tively, with the experimental results demonstrating 138

that our model outperforms the baseline methods. 139

2 Related Work 140

2.1 Topic Shift 141

Current research on dialogue topic shift is still in its 142

preliminary stages (Erlin et al., 2013; Wang et al., 143

2020; Khatri et al., 2018; Huang et al., 2013; Zeng 144

et al., 2018). Some scholars (Xie et al., 2021) were 145

the first to construct the TIAGE dataset specifically 146

for open-domain dialogues. Their study proposed 147

three tasks to investigate topic shift behaviors in 148

dialogue scenarios: topic shift detection, topic shift- 149

triggered response generation, and topic-aware di- 150

alogue generation. Experimental results demon- 151

strated that the topic shift labels in TIAGE are ben- 152

eficial for generating topic-shifted utterances. How- 153

ever, most existing topic shift detection models rely 154

on predefined topic sets, which are dynamically 155

changing in open-domain dialogue systems, mak- 156

ing these models difficult to apply. Some scholars 157

(Konigari et al., 2021) proposed an XLNet-based 158

model to detect and correct topic shifts. Their study 159

utilized the Switchboard dataset, manually annotat- 160

ing 74 dialogues into three categories: main topics, 161

subtopics, and off-topic discussions. Additionally, 162

they introduced a System Initiative (SI) module 163

that guides users back to the main topic when the 164

XLNet model detects a topic shift. Experimental 165

results showed that the XLNet model achieved the 166

best performance in terms of precision, recall, and 167

F1-score. 168

Due to the issue of monotonous response gener- 169

ation in general open-domain dialogue generation 170

techniques, an increasing number of researchers 171
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have focused on knowledge-based dialogue gener-172

ation. By integrating external knowledge bases173

with generative models as supplementary infor-174

mation, the generated responses become more en-175

gaging and informative. However, previous stud-176

ies on knowledge selection in dialogues overly re-177

lied on dialogue context, neglecting the intrinsic178

connections and transitions between knowledge179

pieces. This often led to models ignoring the se-180

lected knowledge (Lian et al., 2019), resulting in181

responses unrelated to the knowledge (Zhou et al.,182

2018). To address these issues, some scholars183

(Zhan et al., 2021) proposed a method combin-184

ing "unsupervised learning + supervised learning185

+ neural learning". Their paper introduced the186

SKT-KG model, which utilizes a BiLSTM-CRF187

model to simulate the transition probabilities be-188

tween knowledge labels and employs unsupervised189

learning to pre-train a Transformer model, enabling190

it to better learn the language model. The study191

used two public datasets, DuConv and Wizard of192

Wikipedia, and the experimental results demon-193

strated superior performance compared to baseline194

models. The approach generated more informa-195

tive and diverse responses and achieved higher196

accuracy and F1 scores in knowledge selection,197

proving the effectiveness of the sequential knowl-198

edge transition module. Some scholars (Yang199

et al., 2022) integrated a topic shift module with a200

knowledge selection module, creating the TAKE201

model, which leverages topic transition informa-202

tion to guide knowledge selection, thereby more203

accurately selecting knowledge relevant to the dia-204

logue content and improving the accuracy of topic205

shift detection. Experimental results on the Wizard206

of Wikipedia (WoW) dataset showed that, com-207

pared to strong baseline models, the TAKE model208

not only selected knowledge more accurately, espe-209

cially on unseen test sets, but also generated more210

informative and engaging responses.211

But Lin et al. (2023b) addressed the challenge of212

unknown responses in dialogue topic shift tasks by213

proposing a hierarchical contrastive learning frame-214

work based on a teacher-student relationship to pre-215

dict topic shifts without responses. They annotated216

the Chinese Natural Topic Dialogue (CNTD) corpu,217

which contains 1,308 dialogues, thereby filling a218

gap in Chinese natural dialogue topic corpora. Ex-219

perimental results demonstrated that the proposed220

model outperformed baseline models in precision,221

recall, and F1-score on the CNTD dataset. In re-222

sponse to prior work that primarily focused on223

encoding utterances using pre-trained models for 224

topic shift detection without delving into the gran- 225

ularity of topics at various levels or understanding 226

the dialogue content, Lin et al. (2023a) further pro- 227

posed a multi-granularity prompt-based dialogue 228

topic shift detection model. This model leverages 229

prompt learning techniques to extract dialogue in- 230

formation at three granularity levels—label, turn, 231

and topic—constructs target sentences, and guides 232

the model to learn deeper topic information within 233

dialogues. Additionally, it combines the strengths 234

of classification and generative models, using the 235

classification model for topic shift prediction while 236

employing the generative model to better under- 237

stand dialogue topics and generate more natural lan- 238

guage expressions. The proposed model achieved 239

superior performance over baseline models on both 240

the Chinese CNTD and English TIAGE datasets. 241

2.2 Prompt Learning 242

With the advancement of pre-trained models, we 243

are currently undergoing a second major transfor- 244

mation, where the "pre-train, fine-tune" paradigm 245

is being replaced by what we refer to as the "pre- 246

train, prompt, and predict" paradigm Liu et al. 247

(2023). In this new approach, downstream tasks 248

are no longer adapted to pre-trained language mod- 249

els (LMs) through objective engineering. Instead, 250

downstream tasks are reformulated to resemble 251

tasks solved during the original LM training with 252

the assistance of textual prompts, a method known 253

as prompt learning. In recent years, research based 254

on prompt learning has gained significant momen- 255

tum. For instance, Brown et al. (2020) proposed the 256

"pre-train, prompt, predict" paradigm and demon- 257

strated the substantial potential of GPT-3 in few- 258

shot learning. The advantage of this method is 259

that, given an appropriate set of prompts, a single 260

LM trained in a fully unsupervised manner can 261

be used to solve a wide range of tasks. And Shin 262

et al. (2020) introduced the AutoPrompt method, 263

which utilizes automatically generated prompts to 264

guide language models in knowledge probing. Au- 265

toPrompt’s prompts enable more accurate factual 266

knowledge extraction from masked language mod- 267

els (MLMs). So Schick and Schütze (2021) pro- 268

posed a semi-supervised training method called 269

PET (Pattern-Exploiting Training) to address natu- 270

ral language processing tasks in low-resource set- 271

tings. The core idea of PET is to transform task 272

descriptions into cloze-style phrases and use pre- 273

trained language models (PLMs) to predict the 274

3



most suitable words to fill in the blanks.275

3 Model276

We propose a topic shift model based on prompt277

learning with multi-scale feature attention. This278

model capitalizes on the strengths of large-scale279

pre-trained models to design contextual prompt280

modules that incorporate both preceding context281

and the current sentence. The aim is to enable the282

model to better learn topic shift features through283

the utilization of pre-trained models. As shown284

in Figure 2, the proposed prompt learning-based285

multi-scale feature attention topic shift model con-286

sists of the following modules: (1) the prompt learn-287

ing module, (2) the pre-trained model, and (3) the288

model training module.289

TextBDoes this sentence TextA represent a shift in topic to [MASK]TextBDoes this sentence TextA represent a shift in topic to [MASK]

M Model

label words

Yes No

Output

m
o

d
el train

in
g

TextBDoes this sentence TextA represent a shift in topic to [MASK]

M Model

label words

Yes No

Output

m
o

d
el train

in
g

针对上文TextB TextA 发生话题转移了吗？ [MASK]

Input

Figure 2: Flow chart of the Topic Shift Model Based on
Prompt Learning.

3.1 Prompt Learning Module290

To adapt the prompt learning module to the topic291

shift detection task, this paper builds upon the292

prompt-based template proposed by Liang et al.293

(2022), constructing topic-oriented ironic expres-294

sion templates in the form of prefix prompt tem-295

plates for input samples. Consequently, this paper296

utilizes the masked language model of pre-trained297

language models to fill in the [MASK] token po-298

sitions with appropriate words. The advantage of299

using the masked language model lies in its ability300

to leverage large-scale pre-trained corpora, utiliz-301

ing features from the non-masked regions to predict302

suitable words for the [MASK] position, thereby303

predicting the appropriate category labels. The con-304

structed prompt learning template for the topic shift305

detection task is defined as follows: 306

T = Does this sentence {a} represent a shift 307

in topic to {b}? [MASK] (1) 308

In the T, "ch" and "en" represent the definitions 309

of the prompt learning templates for Chinese and 310

English, respectively; "a" denotes all the preceding 311

context before "b"; and "b" represents the current 312

sentence. Here, the words "Yes" and "No" are used 313

as the category label words for the model. That 314

is, the label word set t = "Yes; No", corresponding 315

to the topic shift category and the no-topic-shift 316

category, respectively. 317

Based on this, the prompt learning template for 318

the topic shift detection task can be derived for 319

the input sample. Subsequently, it is necessary to 320

utilize the pre-trained language model to predict 321

the category label word at the [MASK] position, 322

thereby determining whether the current sentence 323

constitutes a topic shift relative to the preceding 324

context. 325

3.2 Pre-trained Model 326

This module uses an improved BERT-BiLSTM 327

model based on multi-scale feature attention for 328

feature learning. This module is illustrated in Fig- 329

ure 3. 330

This paper initially employs a Chinese pre- 331

trained language model (BERT-base-Chinese) to 332

model the input samples. The input representation 333

of the model is as follows: 334

text = (x1, x2, x3, . . . , xm)m×t (2) 335

336
r = [CLS]T [SEP] (3) 337

In the equation, T includes both ch and en, rep- 338

resenting two languages. 339

Subsequently, the model inputs the data into the 340

pre-trained model M (The BERT-BiLSTM model 341

based on multi-scale feature attention), and pre- 342

dicts the distribution of category label words at the 343

[MASK] position in a masked language modeling 344

manner: 345

PM = M(r) (4) 346

For the model M, the first component is the 347

BERT model, which excels at extracting features of 348

words within sentences. The BERT model adopts 349

an encoder-only architecture, which allows it to 350

focus more on understanding the input sequence 351

rather than generating an output sequence. This is 352
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one of the reasons why the BERT model is widely353

used in the field of NLP.354

For the output of BERT model, after that it will355

be accessed to BiLSTM neural network, which is356

intended to have a better learning and representa-357

tion of the Token that already has a certain feature358

representation in the temporal relationship, BiL-359

STM is combined by Forward LSTM and Reverse360

LSTM, for the output of BERT, BiLSTM can learn361

the dependency between the front and back of the362

sentence in a deeper level. After two models, the363

output size at this time is [B, S, 2*H] (B is Batch364

size, S is sequence length, H is the Hidden dim365

of LSTM, which is 2*H by using BiLSTM). The366

output is represented as:367

c = BiLSTM(r) (5)368

Multi-scale feature attention aims to enable the369

model to adaptively select multi-gram features for370

each word. This paper employs this method to pre-371

cisely capture the multi-gram features present in372

the text. Multi-scale feature attention consists of373

two steps: convolutional feature aggregation and374

scale feature weighting. Convolutional feature ag-375

gregation aims to represent the l-gram feature vec-376

tor c of x with a scalar zl; scale feature weighting377

uses zl as input, and outputs a softmax distribution378

of attention weights to re-weight the multi-gram379

features at different scales.380

For a convolutional kernel of size k, the convolu-381

tion operation can be expressed as:382

zil = F (cil) (6)383

In the equation, F(•) denotes the summation of384

each component of the input vector.385

Weighted Summation: Based on the computed386

attention weights, a weighted summation is per-387

formed for each scale of n-gram features to obtain388

the comprehensive feature representation at that389

position. The process of weighted summation can390

be expressed as:391

ciatt =
L∑
l=1

cil × wi
l (7)392

wi
l = softmax(MLP(zil )) (8)393

In the equation, cil represents the comprehen-394

sive feature representation at position i, where l395

denotes the size and quantity of the convolutional396

kernel, and wi
l represents the corresponding atten- 397

tion weight. MLP stands for Multi-Layer Percep- 398

tron. 399

At this stage, the output incorporates both tem- 400

poral information and textual feature information. 401

This output is then fed into the multi-scale feature 402

attention module. Through multi-scale attention, 403

the calculation can be performed using Equation 404

6. By applying convolutional kernels of different 405

sizes to the input, the system logically integrates 406

data for words of varying lengths. For instance, 407

when the text contains the phrase "not cute", it is 408

necessary to place more emphasis on the convo- 409

lutional kernel of size 3 rather than size 2, which 410

would only capture the word "cute". 411

After the convolutional operations are com- 412

pleted, Equations 7 and 8 are used to compute the 413

attention scores for all convolutional results. These 414

scores evaluate the contributions of different words 415

across various convolutional kernels. Subsequently, 416

a weighted average of the results from each con- 417

volutional kernel is computed to obtain the final 418

sequence information. This sequence information 419

is then passed through a linear layer to calculate 420

the final output. To facilitate seamless connections 421

between different models, a linear layer is added 422

at the end of each model to transition feature in- 423

formation by converting between different hidden 424

dimension sizes. 425

3.3 Model Training Module 426

By utilizing the pre-trained language model M, we 427

can predict the probability distribution of each label 428

word t in the label word set within the text X. To 429

convert word probabilities into label probabilities, 430

this paper introduces a mapping function f (Liang 431

et al., 2022), which maps words from the label 432

word set t to the category distribution space Y : 433

{f : t → Y }. Consequently, for the input text X, 434

the calculation of the category distribution P(y|X) 435

corresponding to the predicted label word t is as 436

follows: 437

P (y|X) = Q(PM (t|X)) (9) 438

In the equation, Q(•) represents the function that 439

transforms the probability of label words into the 440

probability of category labels. 441

The proposed model is trained and optimized by 442

minimizing the cross-entropy loss: 443

τ = −
N∑
i=1

L∑
j=1

yji log(ŷ
j
i ) + λ ||θ||2 (10) 444
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Figure 3: Architecture of our BERT-BiLSTM Model Based on Multi-Scale Feature Attention.

In the equation, N denotes the size of the train-445

ing set, and L represents the number of categories.446

yji and ŷji correspond to the true category distribu-447

tion and the predicted category distribution, respec-448

tively, for the training sample i. θ encompasses449

all trainable parameters in the model, and λ is the450

coefficient for L2 regularization.451

4 Experiments452

4.1 Experiment Settings453

We evaluated our model on two datasets: the Chi-454

nese dataset CNTD and the English dataset TIAGE.455

The partitioning of the Chinese CNTD dataset and456

the English TIAGE dataset follows the same ap-457

proach as Lin et al. (2023a). For both the Chinese458

CNTD dataset and the English TIAGE dataset, we459

selected the context (previous sentences and the460

current sentence) of each dialogue as input, and fed461

the context (previous sentences and the current sen-462

tence) along with the labels into the prompt module463

for enhanced learning. In our experiments, the la-464

bel for the first sentence of each dialogue was set465

to 0 (indicating no topic shift). For the evaluation466

of all experiments in this study, we utilized Pre-467

cision (P), Recall (R), and Macro-F1 scores. All468

experiments were conducted on a 4090 GPU, with469

a batch size of 8 and a training epoch of 20 for each470

experiment. The Adam optimizer was employed,471

and different dropout rates were set for different472

experiments. 473

4.2 Experiment Results 474

The most of representative models for the topic 475

shift detection task are still BERT and T5. There- 476

fore, we selected the following models (Lin et al., 477

2023a) for comparative experiments: (1) RoBERTa 478

(Liu et al., 2019), an improved version of BERT; 479

(2) BERT (Devlin et al., 2019), a Transformer- 480

based bidirectional encoder used for text encod- 481

ing; (3) Hier-BERT (Zhang et al., 2019), a hierar- 482

chical structure based on the Transformer model; 483

(4) T5 (Xie et al., 2021), a modified architecture 484

based on the Transformer; (5) BERT+BiLSTM 485

(Lukasik et al., 2020), a bidirectional long short- 486

term memory network integrated with BERT; 487

(6) Ours, BERT+BiLSTM+Multi-Scale+Prompt 488

(scale=4; size=1-4; D=0.50). 489

Model P R F1

RoBERTa 84.4 75.4 78.6
BERT 82.9 79.2 80.8

Hier-BERT 85.6 79.0 81.7
T5 83.0 79.7 81.1

BERT+BiLSTM 82.8 82.0 82.4
Ours 86.1 83.8 84.9

Table 1: Experimental Results on the Chinese CNTD
Dataset (p < 0.01).
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Model P R F1

RoBERTa 84.4 75.4 78.6
BERT 82.9 79.2 80.8

Hier-BERT 85.6 79.0 81.7
T5 83.0 79.7 81.1

BERT+BiLSTM 82.8 82.0 82.4
Ours 86.1 83.8 84.9

Table 2: Experimental Results on the Chinese CNTD
Dataset (p < 0.01).

The experimental results are presented in Table490

1. Comparative experiments on the Chinese CNTD491

dataset indicate that the RoBERTa model among492

the pre-trained models performed the worst, with493

a P-value of only 84.4, an R-value of 75.4, and an494

F1-score of 78.6. The BERT+BiLSTM and Hier-495

BERT models exhibited the best performance, with496

Hier-BERT achieving a P-value as high as 85.6, and497

BERT+BiLSTM attaining R-value and F1-score of498

82.0 and 82.4, respectively. Clearly, compared to499

single pre-trained models, the combination of mul-500

tiple models is more suitable for tasks such as text501

classification and topic shift. Furthermore, when502

comparing our experimental model, it is evident503

that our model outperformed the others, achiev-504

ing a P-value of 86.1, an R-value of 83.8, and an505

F1-score of 84.9.506

The comparative experimental results on the En-507

glish TIAGE dataset are shown in Table 2. The re-508

sults demonstrate that among the pre-trained mod-509

els, the BERT model performed the worst on the510

topic shift task in the English dataset, with a P-511

value of only 68.5, an R-value of 65.4, and an512

F1-score of 66.6. The T5 model performed the513

best, even achieving a P-value of 76.5. Addition-514

ally, compared to all the aforementioned models,515

our model surpassed them in terms of the average516

of the three experimental metrics, thereby proving517

the effectiveness of our experimental model.518

Moreover, we observed that our model per-519

formed better on the Chinese dataset, while its ex-520

perimental results on the English dataset were less521

satisfactory.522

4.3 Comparative Experiments Between523

Multi-Scale and Single-Scale Approaches524

To evaluate the impact of multi-scale feature atten-525

tion convolution sizes on model performance, we526

conducted comparative experiments on the CNTD527

dataset. For the multi-scale feature attention convo-528

lution, we selected different values of k=4, 5, 6 and 529

various dropout rates of 0.4, 0.45, 0.5, and 0.55 for 530

comparative experiments. The results are presented 531

in Table 3. 532

Scale SIZE D P R F1

4 1-4 0.40 84.9 83.4 84.1
4 1-4 0.45 82.3 83.0 82.6
4 1-4 0.50 86.1 83.8 84.9
4 1-4 0.55 85.4 81.9 83.4
5 1-5 0.50 85.3 82.7 83.9
6 1-6 0.50 85.9 81.7 83.5

Table 3: Comparative Experiments on Attentional Con-
volution of Multiscale Features.

0.4 0.4
5 0.5 0.5

5

D（Scale=4；SIZE=1-4）

88

87

86

85

84

83

82

81

80

P
R
F1

Figure 4: Multi-scale Feature Attention Convolution
Comparative Experiment Diagram (Scale=4; SIZE=1-4;
D=0.40, 0.45, 0,50, 0.55).

The experimental results presented in Table 3 533

and Figure 4 indicate that for feature attention con- 534

volutions with four scales (1-4), the best perfor- 535

mance is achieved when the dropout rate is set to 536

0.5, while a dropout rate of 0.45 yields relatively 537

poorer results. Furthermore, when comparing fea- 538

ture attention convolutions with four (1-4), five (1- 539

5), and six (1-6) scales, the four-scale (1-4) feature 540

attention convolution demonstrates the best per- 541

formance. As the number of scales increases, the 542

performance gradually declines, suggesting that for 543

each dialogue in this dataset, a four-scale sentence- 544

level feature attention convolution is the most ef- 545

fective one. 546

To assess the impact of different single-scale 547
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convolution sizes on the model, we conducted ex-548

periments on the CNTD dataset. For the single-549

scale feature attention convolution experiments, we550

selected five different single-scale features, namely551

1, 2, 3, 4, and 5, for comparative analysis. The552

dropout rate was consistently set to 0.5 to ensure553

optimal performance ( demonstrated by the results554

in Table 3), which confirmed that a dropout rate555

of 0.5 yields the best outcomes. The experimental556

results are summarized in Table 4.557

SIZE D P R F1

1 0.5 83.5 83.2 83.3
2 0.5 83.0 82.8 82.9
3 0.5 84.3 82.9 83.6
4 0.5 86.1 81.5 83.5
5 0.5 84.4 81.3 83.2

Table 4: Comparative Experiments on Single-Scale Fea-
ture Attention Convolution (Scale=1).

The experimental results of the single-scale fea-558

ture attention convolution are presented in Table559

4. The findings reveal that the feature attention560

convolution with a scale of 4 achieves the best per-561

formance in the single-scale experiments. Further-562

more, when the single-scale value is less than 4, the563

performance improves progressively as the scale564

increases. However, when the single-scale value ex-565

ceeds 4, the performance gradually declines. These566

results highlight the importance of selecting an ap-567

propriate scale for single-scale feature attention568

convolution to optimize model performance.569

4.4 Ablation Study570

To evaluate the effectiveness of various components571

of the model, this paper conducted experiments572

on the CNTD dataset to investigate the contribu-573

tions of the model’s key components. Theoretically,574

these components can be categorized into the fol-575

lowing types: (1) multi-scale feature attention, and576

(2) prompt learning module.

Model P R F1

BERT+BiLSTM 82.8 82.0 82.4
+mul 85.8 82.7 84.8

+mul+prompt 86.1 83.8 84.9

Table 5: Ablation Experiments on the Chinese Dataset
CNTD.

577

The ablation experiments were conducted to ex- 578

amine the impact of the multi-scale feature atten- 579

tion layer and the prompt learning module on the 580

model’s performance. As shown in Table 5, both 581

the multi-scale feature attention convolution and 582

the prompt learning module significantly influence 583

the model’s performance. Specifically, the P-value 584

increased from 82.8 to 85.8 after incorporating the 585

multi-scale feature attention convolution and fur- 586

ther rose to 86.1 upon adding the prompt learning 587

module. These results demonstrate the effective- 588

ness of our model. 589

5 Conclusion 590

In this paper, we address the issue that the signifi- 591

cance of multi-scale feature attention convolution 592

size should be determined by specific contextual 593

information by proposing a topic shift model based 594

on prompt learning. This model is composed of 595

two key components: (1) prompt learning (2) multi- 596

scale feature attention convolution. The multi-scale 597

feature attention convolution in this paper is based 598

on a multi-scale feature attention-enhanced BERT- 599

BiLSTM model (MLM version), which captures 600

diverse syntactic features according to specific con- 601

textual information. We conducted comparative 602

experiments on both the Chinese CNTD dataset 603

and the English TIAGE dataset. The results demon- 604

strate that our model achieves significant perfor- 605

mance improvements compared to current state-of- 606

the-art approaches. Additionally, we performed 607

comparative experiments with different sizes of 608

multi-scale feature attention convolution and var- 609

ious types of single-scale feature attention convo- 610

lution. Our findings reveal that multi-scale feature 611

attention convolution outperforms single-scale fea- 612

ture attention convolution, proving that the impor- 613

tance of multi-scale feature attention convolution 614

size is context-dependent, with the optimal perfor- 615

mance achieved when k is set to 4. Finally, we 616

conducted ablation experiments to validate the ef- 617

fectiveness and robustness of our model. 618

Limitations 619

However, upon analyzing and observing the infor- 620

mation extracted at different scales, it is evident 621

that these key pieces of information are subject to 622

errors and noise. Our future work will focus on 623

enhancing the reliability of conversational infor- 624

mation mining and exploring finer granularity in 625

scenarios of topic shifts within dialogues. 626
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A Datasets 823

Category Train Val Test Sum

Health 85 11 11 107
Education 167 22 21 210
Technology176 22 22 220
Sports 347 45 46 438
Games 86 11 11 108
Entertain
-ment

180 23 22 225

Total 1041 134 133 1308

Table 6: Category and proportion of the CNTD corpus.

Min Max Avg

Dialogue
Turns

20 26 20.1

Utterance
Words

1 141 21.0

Dialogue
Words

194 888 421.7

Dialogue
Topics

2 9 5.2

Topic
Turns

1 17 4.2

Table 7: Details of CNTD.

Tables 6 and 7 provide a detailed explanation of 824

the CNTD dataset used in our study, along with its 825

division into training, testing, and validation sets. 826

10

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://doi.org/10.1609/AAAI.V34I05.6454
https://doi.org/10.1609/AAAI.V34I05.6454
https://doi.org/10.1609/AAAI.V34I05.6454
https://doi.org/10.1609/AAAI.V34I05.6454
https://doi.org/10.1609/AAAI.V34I05.6454
https://doi.org/10.18653/v1/D17-1139
https://doi.org/10.18653/v1/D17-1139
https://doi.org/10.18653/v1/D17-1139
https://doi.org/10.24963/ijcai.2018/621
https://doi.org/10.24963/ijcai.2018/621
https://doi.org/10.24963/ijcai.2018/621
https://doi.org/10.18653/v1/2021.findings-emnlp.145
https://doi.org/10.18653/v1/2021.findings-emnlp.145
https://doi.org/10.18653/v1/2021.findings-emnlp.145
https://doi.org/10.18653/v1/2020.aacl-main.63
https://doi.org/10.18653/v1/2020.aacl-main.63
https://doi.org/10.18653/v1/2020.aacl-main.63
https://aclanthology.org/2022.coling-1.20/
https://aclanthology.org/2022.coling-1.20/
https://aclanthology.org/2022.coling-1.20/
https://api.semanticscholar.org/CorpusID:52190560
https://api.semanticscholar.org/CorpusID:52190560
https://api.semanticscholar.org/CorpusID:52190560
https://doi.org/10.18653/v1/2021.naacl-main.446
https://doi.org/10.18653/v1/2021.naacl-main.446
https://doi.org/10.18653/v1/2021.naacl-main.446
https://doi.org/10.18653/v1/2021.naacl-main.446
https://doi.org/10.18653/v1/2021.naacl-main.446
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499
https://doi.org/10.18653/v1/P19-1499


Train Dev Test

Dialogs 300 100 100
Instances 4,767 1,546 1,548
AvgTurns 15.6 15.5 15.6

Table 8: Details of TIAGE.

The details of the TIAGE dataset are presented827

in Table 8, which includes information on Dialogs,828

Instances, and AvgTurns. The dataset is divided829

into Train, Dev, and Test sets.830

B The template for prompt learning831

T1 = Does this sentence {a} represent a shift832

in topic to {b}? [MASK]833

834

T2 = Is there a change in topic from {a} to835

{b}? [MASK]836

837

T3 = Does {a} indicate a transition in subject838

matter to {b}? [MASK]839

We conducted tests on the templates used in840

prompt learning by employing different phrasings841

while maintaining the same meaning, as illustrated842

by T1, T2, and T3. Our findings revealed no signifi-843

cant difference in their effectiveness. Consequently,844

we concluded that the choice of prompt learning845

templates does not influence the detection of topic846

shifts in dialogues.847
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