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ABSTRACT

Offline policy learning methods are intended to learn a policy from logged data,
which includes context, action, and reward for each sample point. In this work
we build on the counterfactual risk minimization framework, which also assumes
access to propensity scores. We propose learning methods for problems where
rewards of some samples are missing, so there are samples with rewards and
samples missing rewards in the logged data. We refer to this type of learning as
semi-supervised batch learning from logged data, which arises in a wide range of
application domains. We derive new upper bound for the true risk under inverse
propensity score estimation to better address this kind of learning problem. Using
this bound, we propose a regularized semi-supervised batch learning method with
logged data where the regularization term is reward-independent and, as a result,
can be evaluated using the logged missing-reward data. Consequently, even though
reward feedback is only present for some samples, a parameterized policy can be
learned by leveraging the missing-reward samples. The results of experiments
derived from benchmark datasets indicate that these algorithms achieve policies
with better performance in comparison with logging policies.

1 INTRODUCTION

Offline policy learning from logged data is an important problem in reinforcement learning theory
and practice. The logged ‘known-rewards’ dataset represents interaction logs of a system with its
environment; recording context, action, propensity score (i.e., probability of the action selection
for a given context under the logging policy), and reward feedback. The literature has considered
this setting concerning contextual bandits and partially labeled observations. It is used in many
real applications, e.g., recommendation systems (Aggarwal, 2016; Li et al., 2011), personalized
medical treatments (Kosorok & Laber, 2019; Bertsimas et al., 2017) and personalized advertising
campaigns (Tang et al., 2013; Bottou et al., 2013). However, there are two main obstacles to learning
from this kind of logged data: first, the observed reward is available for the chosen action only; and
second, the logged data is taken under the logging policy so that it could be biased. Batch learning
with logged bandit feedback ( a.k.a. Counterfactual Risk Minimization (CRM) ) is a strategy for
off-policy learning from logged ‘known-rewards’ datasets, which has been proposed by Swaminathan
& Joachims (2015a) to tackle these challenges.

Batch learning with logged bandit feedback has led to promising results in some settings, including
advertising and recommendation systems. However, there are some scenarios where the logged
dataset is generated in an uncontrolled manner, posing significant obstacles such as unobserved
rewards for some chosen context and action pairs. For example, consider an advertising system
server where some ads (actions) are shown to different clients (contexts) according to a conditional
probability (propensity score). Now, suppose that the connections between the clients and the server
are corrupted momentarily such that the server does not receive any reward feedback, i.e., whether
or not the user has clicked on some ads. Under this scenario, we have access to ‘missing-rewards’
data indicating the chosen clients, the shown ads, the probability of shown ads but missing reward
feedback, and some logged data containing reward feedback. Likewise, there are other scenarios
where obtaining reward samples for some context and action (and propensity score) samples may
be challenging since it might be expensive or unethical, such as in finance (Musto et al., 2015) or
healthcare (Chakrabortty & Cai, 2018).
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We call Semi-supervised Batch Learning (S2BL) our approach to learning in these scenarios, where
we have access to the logged missing-rewards (no recorded rewards) dataset, besides the logged
known-rewards dataset, which was the typical data considered in previous approaches.

This paper proposes algorithms that leverage the logged missing-rewards and known-rewards datasets
in an off-policy optimization problem. The contributions of our work are as follows:

• We propose a novel upper bound on the true risk under the inverse propensity score (IPS) estimator
in terms of different divergences, including KL divergence and reverse KL divergence between
the logging policy and a parameterized learned policy.

• Inspired by this upper bound, we propose regularization approaches based on KL divergence or
reverse KL divergence between the logging policy and a parameterized learned policy, which are
independent of rewards and hence can be optimized using the logged missing-reward dataset. We
also propose a consistent and asymptotically unbiased estimator of KL divergence and reverse
KL divergence between the logging policy and a parameterized learned policy.

• We introduce a set of experiments conducted on appropriate datasets to assess the effectiveness of
our proposed algorithms. The results demonstrate the adaptability of our approaches in leveraging
logged missing-reward data across different configurations, encompassing both linear and deep
structures. Furthermore, we offer a comparative analysis against established baselines in the
literature.

2 RELATED WORKS

There are various methods that have been developed to learn from logged known-reward datasets. The
main approach is batch learning with a logged known-reward dataset (bandit feedback), discussed
next. We also discuss below some works on the importance weighting, the PAC-Bayesian approach.
Appendix A discusses other related topics and the corresponding literature.

Batch Learning with Logged known-reward dataset: The mainstream approach for off-policy
learning from a logged known-reward dataset is CRM (Swaminathan & Joachims, 2015a). In
particular, Joachims et al. (2018) proposed a new approach to train a neural network, where the output
of the softmax layer is considered as the policy, and the network is trained using the available logged
known-reward dataset. Our work builds on the former, albeit proposing methods to learn from logged
missing-reward data besides the logged known-reward dataset. CRM has also been combined with
domain adversarial networks by Atan et al. (2018). Wu & Wang (2018) proposed a new framework
for CRM based on regularization by Chi-square divergence between the parameterized learned policy
and the logging policy, and a generative-adversarial approach is proposed to minimize the regularized
empirical risk using the logged known-reward dataset. Xie et al. (2018) introduced the surrogate
policy method in CRM. The combination of causal inference and counterfactual learning was studied
by Bottou et al. (2013). Distributional robust optimization is applied in CRM by Faury et al. (2020).
A lower bound on the expected reward in CRM under Self-normalized Importance Weighting was
derived by Kuzborskij et al. (2021). The sequential CRM where the loggged known-reward dataset is
collected at each iteration of training is studied in Zenati et al. (2023). In this work, we introduce a
novel algorithm that leverages both the logged missing-reward dataset and the logged known-reward
dataset.

Importance Weighting: This method has been proposed for off-policy estimation and learning
(Thomas et al., 2015; Swaminathan & Joachims, 2015a). Due to its large variance in many cases
(Rosenbaum & Rubin, 1983), some truncated importance sampling methods are proposed, including
the IPS estimator with a truncated ratio of policy and logging policy (Ionides, 2008), IPS estimator
with truncated propensity score (Strehl et al., 2010) or self-normalizing estimator (Swaminathan &
Joachims, 2015b). A balance-based weighting approach for policy learning, which outperforms other
estimators, was proposed by Kallus (2018). A generalization of importance sampling by considering
samples from different policies is studied by Papini et al. (2019). The weights can be estimated
directly by sampling from contexts and actions using Direct Importance Estimation (Sugiyama et al.,
2007). A convex surrogate for the regularized true risk by the entropy of parameterized policy is
proposed in Chen et al. (2019). An exponential smoothed version of the IPS estimator is proposed by
Aouali et al. (2023). Other corrections of IPS estimator are also proposed by Metelli et al. (2021); Su
et al. (2020). This work considers the IPS estimator based on a truncated propensity score.

2



Under review as a conference paper at ICLR 2024

3 PRELIMINARIES

Notations: We adopt the following convention for random variables and their distributions in the
sequel. A random variable is denoted by an upper-case letter (e.g., Z), an arbitrary value of this
variable is denoted with the lower-case letter (e.g., z), and its space of all possible values with the
corresponding calligraphic letter (e.g., Z). This way, we can describe generic events like {Z = z}
for any z ∈ Z , or events like {g(Z) ≤ 5} for functions g : Z → R. PZ denotes the probability
distribution of the random variable Z. The joint distribution of a pair of random variables (Z1, Z2) is
denoted by PZ1,Z2 . We denote the set of integer numbers from 1 to n by [n] ≜ {1, · · · , n}.
Divergence Measures: If P and Q are probability measures over Z , the Kullback-Leibler (KL)
divergence KL(P∥Q) is given by KL(P∥Q) ≜

∫
Z log

(
dP
dQ

)
dP when P is absolutely continuous1

with respect to Q, and KL(P∥Q) ≜∞ otherwise.

The so-called ‘reverse KL divergence’ is KL(Q∥P ), with arguments in the reverse order. The
chi-square divergence is χ2(P∥Q) ≜

∫
Z(

dP
dQ )2dQ− 1. For a pair of random variables (T,Z), the

conditional KL divergence KL(PT |Z∥QT |Z) is defined as

KL(PT |Z∥QT |Z) ≜
∫
Z
KL(PT |Z=z∥QT |Z=z)dPZ(z).

The conditional chi-square divergence χ2(PT |Z∥QT |Z) is defined similarly.

Problem Formulation: Let X be the set of contexts andA the finite set of actions, with |A| = k ≥ 2.
We consider policies as conditional distributions over actions, given contexts. For each pair of context
and action (x, a) ∈ X × A and policy π ∈ Π, where Π is the set of policies, the value π(a|x) is
defined as the conditional probability of choosing action a given context x under the policy π.

A reward function r : X×A → [−1, 0], which is unknown, defines the reward of each observed pair of
context and action. However, in a logged known-reward setting, we only observe the reward (feedback)
for the chosen action a in a given context x, under the logging policy π0(a|x). We have access to the
logged known-reward dataset S = (xi, ai, pi, ri)

n
i=1 where each ‘data point’ (xi, ai, pi, ri) contains

the context xi which is sampled from unknown distribution PX , the action ai which is sampled from
(partially unknown) logging policy π0(·|xi), the propensity score pi ≜ π0(ai|xi), and the observed
reward ri ≜ r(xi, ai) under logging policy π0(ai|xi).

The true risk of a policy πθ is,
R(πθ) = EPX

[Eπθ(A|X)[r(A,X)]]. (1)
Our objective is to find an optimal π⋆

θ which minimizes R(πθ), i.e., π⋆
θ = argminπθ∈Πθ

R(πθ),
where Πθ is the set of all policies parameterized by θ ∈ Θ. We denote the importance weighted
reward function as w(A,X)r(A,X), where

w(A,X) =
πθ(A|X)

π0(A|X)
.

As discussed by Swaminathan & Joachims (2015b), we can apply the IPS estimator over logged
known-reward dataset S (Rosenbaum & Rubin, 1983) to get an unbiased estimator of the risk (an
empirical risk) by considering the importance weighted reward function as,

R̂(πθ, S) =
1

n

n∑
i=1

riw(ai, xi), (2)

where w(ai, xi) =
πθ(ai|xi)
π0(ai|xi)

. The IPS estimator as an unbiased estimator has bounded variance if
the πθ(A|X) is absolutely continuous with respect to π0(A|X) (Strehl et al., 2010; Langford et al.,
2008). For the issue of the large variance of the IPS estimator, many estimators are proposed (Strehl
et al., 2010; Ionides, 2008; Swaminathan & Joachims, 2015b), e.g., truncated IPS estimator. In this
work we consider truncated IPS estimator with threshold ν ∈ (0, 1] as follows:

R̂ν(πθ, S) =
1

n

n∑
i=1

riwν(ai, xi), (3)

1P is absolutely continuous with respect to Q if P (A) = 0 whenever Q(A) = 0, for measurable A ⊂ X .
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where wν(ai, xi) =
πθ(ai,xi)

max(ν,π0(ai,xi))
. Note that the truncation threshold ν ∈ (0, 1] implies an upper

bound on the importance weights, sup(x,a)∈X×A wν(a, x) ≤ ν−1.

In our S2BL setting, we also have access to the logged missing-reward dataset, which we shall denote
as Su = (xj , aj , pj)

m
j=1 and assume it is generated under the same logging policy for the logged

known-reward dataset, i.e., pj = π0(aj |xj). We will next propose two algorithms to learn a policy
that minimizes the true risk using logged missing-reward and known-reward datasets.

4 BOUNDS ON TRUE RISK OF IPS ESTIMATOR

In this section, we provide an upper bound on the variance of importance weighted reward, i.e.,

Var (w(A,X)r(A,X)) ≜ EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
−R(πθ)

2, (4)

where R(πθ) = EPX⊗π0(A|X) [w(A,X)r(A,X)] = EPX⊗πθ(A|X) [r(A,X)].

Throughout this section we use the simplified notations KL(πθ∥π0) = KL(πθ(A|X)∥π0(A|X)) and
KL(π0∥πθ) = KL(π0(A|X)∥πθ(A|X)). All the proofs are deferred to the Appendix C.
Proposition 1. Suppose that the importance weighted of squared reward function, i.e.,
w(A,X)r2(A,X), is σ-sub-Gaussian2 under PX ⊗ π0(A|X) and PX ⊗ πθ(A|X), and the re-
ward function has bounded range [c, b] with b ≥ 0. Then, the following upper bound holds on the
variance of the importance weighted reward function:

Var (w(A,X)r(A,X)) ≤
√
2σ2 min(KL(πθ∥π0),KL(π0∥πθ)) + b2u − c2l , (5)

where cl = max(c, 0) and bu = max(|c|, b).

We have the following Corollary for the truncated IPS estimator with threshold ν ∈ (0, 1].
Corollary 1. Assume a bounded reward function with range [c, 0] and a truncated IPS estimator
with threshold ν ∈ (0, 1]. Then the following upper bound holds on the variance of the truncated
importance weighted reward function,

Var (wν(A,X)r(A,X)) ≤ c2(ν−1
√
min(KL(πθ∥π0),KL(π0∥πθ))/2 + 1). (6)

Using Cortes et al. (2010, Lemma 1), we can provide an upper bound on the variance of importance
weights in terms of the chi-square divergence by considering r(a, x) ∈ [c, b], as follows:

Var (w(A,X)r(A,X)) ≤ b2uχ
2(πθ(A|X)∥π0(A|X)) + b2u − c2l , (7)

where cl = max(c, 0) and bu = max(|c|, b). In Appendix C.1, we discuss that, under some
conditions, the upper bound in Proposition 1 is tighter than the upper bound based on chi-square
divergence in (7). The upper bound in Proposition 1 shows that we can reduce the variance of
importance weighted reward function, i.e., w(A,X)r(A,X), by minimizing the KL divergence
or reverse KL divergence, i.e. KL(πθ∥π0) or KL(π0∥πθ). A lower bound on the variance of the
importance weighted reward function in terms of the KL divergence KL(πθ∥π0) is provided in
Appendix C.

We can derive a high-probability bound on the true risk under the IPS estimator using the upper
bound on the variance of importance weighted reward function in Corollary 1.
Theorem 1. Suppose the reward function takes values in [−1, 0]. Then, for any δ ∈ (0, 1), the
following bound on the true risk of policy πθ(A|X) with the truncated IPS estimator (with parameter
ν ∈ (0, 1]) holds with probability at least 1− δ under the distribution PX ⊗ π0(A|X):

R(πθ) ≤ R̂ν(πθ, S) +
2 log(1δ )

3νn
+

√
(ν−1

√
2min(KL(πθ∥π0),KL(π0∥πθ)) + 2) log( 1δ )

n
. (8)

The proof of Theorem 1 leverages the Bernstein inequality together with an upper bound on
the variance of importance weighted reward function using Proposition 1. Theorem 1 shows

2A random variable X is σ-subgaussian if E[eγ(X−E[X])] ≤ e
γ2σ2

2 for all γ ∈ R.
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that we can minimize the KL divergence KL(πθ(A|X)∥π0(A|X)), or reverse KL divergence
KL(π0(A|X)∥πθ(A|X)), instead of the empirical variance minimization in CRM framework (Swami-
nathan & Joachims, 2015a) which is inspired by the upper bound in Maurer & Pontil (2009). We
compared our upper bound with (London & Sandler, 2019, Theorem 1) in Appendix E.1.

The minimization of KL divergence and reverse KL divergence can also be interpreted from another
perspective.
Proposition 2. The following upper bound holds on the absolute difference between risks of logging
policy π0(a|x) and the policy πθ(a|x):

|R(πθ)−R(π0)| ≤ min

(√
KL(πθ∥π0)

2
,

√
KL(π0∥πθ)

2

)
. (9)

Based on Proposition 2, minimizing KL divergence and reverse KL divergence would lead to a policy
close to the logging policy in KL divergence or reverse KL divergence. This phenomenon, which
is also observed in the works by Swaminathan & Joachims (2015a); Wu & Wang (2018); London
& Sandler (2019), is aligned with the fact that the parameterized learned policy should not diverge
too much from the logging policy (Schulman et al., 2015). As mentioned by Brandfonbrener et al.
(2021) and Swaminathan & Joachims (2015b), the propensity overfitting issues are solved by variance
reduction. Therefore, with the KL divergence and reverse KL divergence regularization, we can
reduce the propensity overfitting.

5 SEMI-SUPERVISED BATCH LEARNING VIA REWARD FREE
REGULARIZATION

We now propose our approach for S2BL settings: reward-free regularization. It can leverage the
availability of the logged known-reward dataset S and the logged missing-reward dataset Su. The
reward-free regularized semi-supervised batch learning is based on optimizing a regularized batch
learning objective via logged data, where the regularization function is independent of the rewards. It
is inspired by an entropy minimization approach in semi-supervised learning, where one optimizes a
label-free entropy function.

Note that the KL divergence KL(πθ∥π0) and reverse KL divergence KL(π0∥πθ) appearing in
Theorem 1 are independent of the reward function values (feedback). This motivates us to consider
them as functions that can be optimized using both the logged known-reward and missing-reward
datasets. It is worth mentioning that the regularization based on empirical variance proposed by
Swaminathan & Joachims (2015a) depends on rewards.

We propose the following truncated IPS estimator regularized by KL divergence KL(πθ∥π0) or
reverse KL divergence KL(π0∥πθ), thus casting S2BL into a semi-supervised CRM problem:

R̂KL(πθ, S, Su) ≜ R̂ν(πθ, S) + λKL(πθ(A|X)∥π0(A|X)), λ ≥ 0, (10)

R̂RKL(πθ, S, Su) ≜ R̂ν(πθ, S) + λKL(π0(A|X)∥πθ(A|X)), λ ≥ 0, (11)
where for λ = 0, our problem reduces to traditional batch learning with the logged known-reward
dataset that neglects the logged missing-reward dataset. For a large value of λ, we optimize the KL
divergence or reverse KL divergence using both logged missing-reward and known-reward datasets.
More discussion for KL regularization is provided in Appendix G.

For the estimation of KL(πθ(A|X)∥π0(A|X)) and KL(π0(A|X)∥πθ(A|X)), we can apply the
logged missing-reward dataset as follows:

L̂KL(πθ) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su∪S

πθ(ai|x) log(πθ(ai|x))− πθ(ai|x) log(p), (12)

L̂RKL(πθ) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su∪S

−p log(πθ(ai|x)) + p log(p), (13)

where mai
is the number of context, action, and propensity score tuples, i.e., (x, a, p) ∈ Su ∪S, with

the same action, e.g., a = ai (note we have
∑k

i=1 mai
= m+ n). It is possible to show that these

estimators of KL divergence and reverse KL divergence are unbiased in the asymptotic sense.
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Proposition 3. (proved in Appendix D) Suppose that KL(πθ(A|X)∥π0(A|X)) and the reverse
KL(π0(A|X)∥πθ(A|X)) are bounded. Assuming mai

→ ∞ (∀ai ∈ A), then L̂KL(πθ) and
L̂RKL(πθ) are unbiased estimations of KL(πθ(A|X)∥π0(A|X)) and KL(π0(A|X)∥πθ(A|X)), re-
spectively.

An estimation error analysis for the proposed estimators in Proposition 3 is conducted in Appendix D.
Note that another approach to minimize the KL divergence or reverse KL divergence is f -GAN (Wu
& Wang, 2018; Nowozin et al., 2016), which is based on using a logged known-reward dataset without
considering rewards and propensity scores. It is worthwhile to mention that the generative-adversarial
approach will not consider propensity scores in the logged known-reward dataset and also incur
more complexity, including Gumbel softmax sampling (Jang et al., 2016) and discriminator network
optimization. We proposed a new estimator of these information measures considering our access to
propensity scores in the logged missing-reward dataset. Since the term p log(p) in (13) is independent
of policy πθ, we ignore it and optimize the following quantity instead of L̂RKL(πθ, Su) which is
similar to cross-entropy by considering propensity scores as weights of cross-entropy:

L̂WCE(πθ) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su∪S

−p log(πθ(ai|x)). (14)

For improvement in regularization with KL divergence in the scenarios where the propensity scores in
the logged missing-reward dataset are zero, we use the propensity score truncation in (12) as follows:

L̂ν
KL(πθ) ≜

k∑
i=1

1

mai

∑
(x,ai,p)∈Su∪S

πθ(ai|x) log (πθ(ai|x))− πθ(ai|x) log(max(ν, p)), (15)

where ν ∈ [0, 1] is the same truncation parameter for truncated IPS estimator in (3). Note that in a
case of pi = 0 for some sample (xi, ai, pi) ∈ Su then we have L̂KL = −∞; hence considering ν in
L̂ν
KL will help to solve these cases.

6 ALGORITHMS AND EXPERIMENTS

We briefly present our experiments. More details and discussions can be found in Appendix F. We
consider two approaches, softmax policy with linear model inspired by Swaminathan & Joachims
(2015a); London & Sandler (2019) and the softmax policy via deep model inspired by Joachims et al.
(2018).

Softmax policy with linear model: Following the prior works Swaminathan & Joachims (2015a);
London & Sandler (2019), we consider the stochastic softmax policy as,

πθ̃(ai|x) =
exp(θ̃.ϕ(ai, x))∑k
j=1 exp(θ̃.ϕ(aj , x))

, (16)

where ϕ(ai, x) is a feature map for (ai, x) and θ̃ is the vector of parameters. Therefore, our parame-
terized learned policy is based on a linear model.

Softmax policy with deep model: Following Joachims et al. (2018), we consider the output of a
softmax layer in a neural network as a stochastic parameterized learned policy,

πθ(ai|x) =
exp(hθ(x, ai))∑k
j=1 exp(hθ(x, aj))

, (17)

where hθ(x, ai) is the i-th input to softmax layer for context x ∈ X and action ai ∈ A.

Baselines: For linear model, we consider the Bayesian CRM, London & Sandler (2019), as a baseline
to compare with our algorithms. More details for comparison of our algorithm with Bayesian CRM in
provided in Appendix E.2. For deep model, we consider the BanditNet as a baseline in our experiment.
More details regarding the BanditNet is provided in Appendix F.4.

Algorithms: The WCE-S2BL algorithm, proposed in Algorithm 1, is based on reward-free regular-
ized truncated IPS estimator in linear model via truncated weighted cross-entropy. The KL-S2BL
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algorithm is similar to Algorithm 1 by replacing L̂WCE(θ
tg ) with L̂ν

KL(θ
tg ) defined as,

L̂ν
KL(θ

tg ) =

k∑
i=1

1

mai

∑
(x,ai,p)∈Su∪S

πθtg (ai|x) log
(
πθtg (ai|x)
max(ν, p)

)
. (18)

We examine the performance of the algorithms WCE-S2BL and KL-S2BL in both linear and deep
models. For a fair comparison, we run experiments for WCE-S2BL and KL-S2BL using the logged
known-reward dataset for regularization. These algorithms are referred to as WCE-S2BLK and
KL-S2BLK, respectively. Note that in linear model, we have truncated IPS estimator. However, in
the deep model, we consider BanditNet which is based on self-normalized IPS estimator. Therefore,
in the WCE-S2BL algorithm for deep model we replace the truncated IPS estimator via BanditNet
approach Joachims et al. (2018) in Algorithm 1.

Algorithm 1: WCE-S2BL Algorithm for Linear Model
Data: S = (xi, ai, pi, ri)

n
i=1 sampled from π0, Su = (xj , aj , pj)

m
j=1 sampled from π0,

hyper-parameters λ and ν, initial policy πθ0(a|x), epoch index tg and max epochs for the
whole algorithm M

Result: An optimized policy π⋆
θ(a|x) which minimize the regularized risk by weighted

cross-entropy
while tg ≤M do

Sample n samples (xi, ai, pi, ri) from S and estimate the re-weighted loss as
R̂ν(θ

tg ) = 1
n

∑n
i=1 ri

π
θ
tg (ai|xi)

max(ν,pi)
.

Get the gradient with respect to θtg as g1 ← ∇θtg R̂ν(θ
tg ).

Sample m samples from Su and estimate the weighted cross-entropy loss (
∑k

i=1 mai = m).
L̂WCE(θ

tg ) =
∑k

i=1
1

mai

∑
(x,ai,p)∈Su∪S −p log(πθtg (ai|x)).

Get the gradient with respect to θtg as g2 ← ∇θtg L̂WCE(θ
tg ).

Update θtg+1 = θtg − (g1 + λg2).
tg = tg + 1.

end

Datasets: We apply the standard supervised to bandit transformation (Beygelzimer & Langford,
2009) on two image classification datasets: Fashion-MNIST (FMNIST) (Xiao et al., 2017) and
CIFAR-10 (Krizhevsky, 2009). In Appendix F, we also consider other datasets, including CIFAR-100
and EMNIST. This transformation assumes that each of the ten classes in the datasets corresponds to
an action. Then, a logging policy stochastically selects an action for every sample in the dataset. For
each data sample x, action a is sampled by logging policy. For the selected action, propensity score
p is determined by the softmax value of that action. If the selected action matches the actual label
assigned to the sample, then we have r = −1, and r = 0 otherwise. So, the 4-tuple (x, a, p, r) makes
up the dataset.

Logging policy: To learn logging policies with different performances, given inverse temperature3

τ ∈ {1, 5, 10, 20} we train a simplified ResNet architecture having a single residual layer in each
block with inverse temperature τ in the softmax layer on the fully-labeled dataset, FMNIST and
CIFAR-10. Then, we augment the dataset with the outputs and rewards of the trained policy, this
time with inverse temperature equal to 1 in the softmax layer. Hence, the learned policy is logged
with inverse temperature τ . Increasing τ leads to more uniform and less accurate logging policies.

We evaluate the performance of the different algorithms based on the accuracy of the trained model.
Inspired by London & Sandler (2019), we calculate the accuracy for deterministic policy where the
accuracy of model based on the argmax of the softmax layer output for a given context is computed.

To simulate the absence of rewards for logged missing-reward datasets, we pretended that the reward
was only available in ρ ∈ {0.02, 0.2} of the samples in each dataset, while the reward of the remaining

3The inverse temperature τ is defined as π0(ai|x) = exp(h(x,ai)/τ)∑k
j=1 exp(h(x,aj)/τ)

where h(x, ai) is the i-th input to

the softmax layer for context x ∈ X and action ai ∈ A.
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samples is missed. Recall that the regularization term is minimized via both logged known-reward
and logged missing-reward datasets.

For each value of τ and ρ and for both types of deep and linear models, we apply WCE-S2BL,
KL-S2BL, WCE-S2BLK and KL-S2BLK, and observe the accuracy over three runs. Figure 2
shows the accuracy of WCE-S2BL, WCE-S2BLK, KL-S2BL and KL-S2BLK methods compared to
BanditNet Joachims et al. (2018) for the deep model approach, for τ = 10 and different number of
known-reward samples, in the FMNIST and CIFAR-10 datasets. The error bars represent the standard
deviation over the three runs. Figure 1 shows similar results for the linear model. Table 2 shows
the deterministic accuracy of WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK and BanditNet
methods for τ ∈ {1, 10}, and ρ ∈ {0.02, 0.2}. More results for other values of τ and ρ are available
in Appendix F.5. More experiments about the effect of logged missing-reward dataset and the
minimization of regularization terms are available at Appendix F.9.

1200 6000 12000 30000 60000
Number of logged known-reward samples

20

30

40

50

60

70

80

Ac
cu
ra
cy
 (%

)

FashionMNIST

WCE-S2BL
KL-S2BL
WCE-S2BLK
KL-S2BLK
B-CRM

1000 5000 10000 25000 50000
Number of logged known-reward samples

10

15

20

25

30

35

40

Ac
cu

ra
cy

 (%
)

CIFAR-10

WCE-S2BL
KL-S2BL
WCE-S2BLK
KL-S2BLK
B-CRM

Figure 1: Accuracy of WCE-S2BL, KL-S2BL,WCE-S2BLK, KL-S2BLK, and B-CRM for τ = 10.

1200 6000 12000 30000 60000
Number of logged known-reward samples

30

40

50

60

70

80

90

Ac
cu
ra
cy
 (%

)

FashionMNIST

WCE-S2BL
KL-S2BL
WCE-S2BLK
KL-S2BLK
BanditNet

1000 5000 10000 25000 50000
Number of logged known-reward samples

20

30

40

50

60

70

80

Ac
cu
ra
cy
 (%

)

CIFAR-10

WCE-S2BL
KL-S2BL
WCE-S2BLK
KL-S2BLK
BanditNet

Figure 2: Accuracy of WCE-S2BL, KL-S2BL,WCE-S2BLK, KL-S2BLK, and BanditNet for τ = 10.

Table 1: Comparison of different algorithms WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK
and Bayesian-CRM (B-CRM) deterministic accuracy for FMNIST and CIFAR-10 with linear layer
setup and for different qualities of logging policy (τ ∈ {1, 10}) and proportions of labeled data
(ρ ∈ {0.02, 0.2}).

Dataset τ ρ WCE-S2BL KL-S2BL WCE-S2BLK KL-S2BLK B-CRM Logging Policy

FMNIST
1 0.02 84.37± 0.14 71.67± 0.26 78.84± 0.05 74.71± 0.06 64.67± 1.44

91.730.2 83.59± 0.18 71.88± 0.31 83.05± 0.06 74.06± 0.00 70.99± 0.32

10 0.02 82.31± 0.07 26.71± 2.18 77.43± 0.13 18.35± 7.06 66.24± 00.03
20.720.2 83.15± 0.09 67.10± 5.17 81.20± 0.12 60.26± 0.88 71.02± 0.30

CIFAR-10
1 0.02 39.39± 0.15 37.21± 0.15 30.56± 0.61 30.08± 0.27 19.00± 1.77

79.770.2 40.66± 0.29 37.88± 0.58 38.22± 0.01 35.70± 0.25 29.32± 0.35

10 0.02 38.97± 0.03 10.84± 1.18 26.60± 0.89 10.03± 0.05 14.17± 2.87
43.450.2 39.69± 0.05 15.49± 2.23 35.71± 0.73 13.81± 2.74 28.24± 0.20

Our methods achieves maximum accuracy even when the logging policy’s accuracy is not well. For
example, in Tables 2 for the CIFAR-10 in deep model setup with τ = 10 and ρ = 0.2, we observe
69.40±0.47 accuracy for WCE-S2BL in comparison with 50.38±0.55 and 43.45 for BanditNet
and logging policy, respectively. We also run more experiments in Appendix F.9 to investigate the
effect of logged missing-reward dataset when size of logged known-reward dataset is fixed.

Discussion: In most cases, as shown in Tables 2 and 1 (also the extra experiments in Appendix F),
WCE-S2BL can achieve a better policy and preserve a more stable behavior compared to baselines and
the logging policy in both scenarios, linear and deep learning if we have access to both logged missing-
reward dataset and logged known-reward dataset. In KL-S2BL, which employs the KL regularization,
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Table 2: Comparison of different algorithms WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK and
BanditNet deterministic accuracy for FMNIST and CIFAR-10 with deep model setup and different
qualities of logging policy (τ ∈ {1, 10}) for different proportions of labeled data (ρ ∈ {0.02, 0.2}).

Dataset τ ρ WCE-S2BL KL-S2BL WCE-S2BLK KL-S2BLK BanditNet Logging Policy

FMNIST
1 0.2 93.16± 0.18 92.04± 0.13 82.76± 4.45 87.72± 0.53 89.60± 0.49 91.73

0.02 93.12± 0.16 91.79± 0.16 78.66± 0.90 61.46± 9.97 78.64± 1.97 91.73

10 0.2 89.47± 0.3 79.45± 0.75 88.31± 0.14 67.53± 2.06 88.35± 0.45 20.72
0.02 89.35± 0.15 69.94± 0.60 77.82± 0.73 45.18± 19.82 23.52± 3.15 20.72

CIFAR-10
1 0.2 85.06± 0.32 85.53± 0.56 58.04± 5.47 54.12± 0.51 67.96± 0.62 79.77

0.02 85.01± 0.37 84.60± 0.65 17.12± 0.97 21.63± 1.44 27.39± 3.47 79.77

10 0.2 69.40± 0.47 48.44± 0.26 55.38± 3.63 44.60± 0.19 50.38± 0.55 43.45
0.02 65.67± 1.06 37.80± 0.85 32.61± 1.14 20.66± 5.74 13.78± 1.99 43.45

KL(πθ∥π0), the policy, πθ, must be absolutely continuous with respect to the logging policy, π0.
Thus, if the logging policy is zero at an optimal action for a given context, the parameterized
learned policy cannot explore this action for the given context. Conversely, in WCE-S2BL, which
uses the reverse KL regularization, KL(π0∥πθ), the logging policy has to be absolutely continuous
with respect to the parameterized learned policy. Hence, when the logging policy is zero at an
optimal action for a given context, the reverse KL regularization minimization framework provides
an opportunity to explore this action for the given context and have more robust behaviour. It’s
notable that by minimizing WCE-S2BL and KL-S2BL using only the logged known-reward dataset
(introduced as WCE-S2BLK and KL-S2BLK, respectively), we can observe improved performance
with respect to the baselines in the most of experiments. This indicates that our regularization is
also applicable even when exclusively using a logged known-reward dataset. More discussions are
provided in Appendix F.8.

7 CONCLUSION AND FUTURE WORKS

We proposed an algorithm, namely, reward-free regularized truncated IPS estimator, for Semi-
supervised Batch Learning (S2BL) with logged data settings, effectively casting these kinds of prob-
lems into semi-supervised batch learning problems with logged known-reward and missing-reward
dataset. The main take-away in reward-free regularized batch learning is proposing regularization
terms, i.e., KL divergence and reverse KL divergence between logging policy and parameterized
learned policy, independent of reward values, and also the minimization of these terms results in
a tighter upper bound on true risk. Experiments revealed that in most cases, these algorithms can
reach a parameterized learned policy performance superior to the partially unknown logging policy
by exploiting the logged missing-reward dataset and logged known-reward dataset.

The main limitation of this work is the assumption of access to a clean propensity score relating
to the probability of an action given a context under the logging policy. We also use propensity
scores in both the main objective function and the regularization term. However, we can estimate
the propensity score using different methods, e.g., logistic regression (D’Agostino Jr, 1998; Weitzen
et al., 2004), generalized boosted models (McCaffrey et al., 2004), neural networks (Setoguchi et al.,
2008), parametric modeling (Xie et al., 2019) or classification and regression trees (Lee et al., 2010;
2011). Note that, as discussed in Tsiatis (2006); Shi et al. (2016), under the estimated propensity
scores, the variance of IPS estimator reduces. Therefore, a future line of research is to investigate how
different methods of propensity score estimation can be combined with our algorithm to optimize the
expected risk using logged known-reward and missing-reward datasets. Likewise, we believe that the
idea of KL-S2BL and WCE-S2BL can be extended to semi-supervised reward learning and using
unlabeled data scenarios in reinforcement learning (Konyushkova et al., 2020; Yu et al., 2022). We
can also apply KL-S2BL and WCE-S2BL to other corrections of IPS estimators, (Dudík et al., 2011;
Su et al., 2020; Metelli et al., 2021; Aouali et al., 2023) in order to utilize the logged missing-reward
dataset. As our current theoretical results hold for truncated IPS estimator, it would be interesting to
investigate the effect of our proposed regularization methods on the variance of self-normalized IPS
which is used in BanditNet approach.
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A OTHER RELATED WORKS

In this section, we discuss more related works about direct methods, inverse reinforcement learning,
individualized treatment effects, regularized reinforcement learning with KL divergence, semi-
supervised learning, semi-supervised reinforcement learning, causal inference with missing outcomes
and PAC-Bayesian approach.

Direct Method: The direct method for off-policy learning from logged known-reward datasets is
based on the estimation of the reward function, followed by the application of a supervised learning
algorithm to the problem (Dudík et al., 2014). However, this approach fails to generalize well,
as shown by Beygelzimer & Langford (2009). Another direct-oriented method for off-line policy
learning, using the self-training approaches in semi-supervised learning, was proposed by Gao et al.
(2022). A different approach based on policy optimization and boosted base learner is proposed to
improve the performance in direct methods London et al. (2023). Our approach differs from this area,
as the reward function is not estimated and is based on semi-supervised batch learning with logged
known-reward and missing-reward datasets.

Inverse Reinforcement Learning: Inverse RL, which aims to learn reward functions in a data-driven
manner, has also been proposed for the setting of missing-reward datasets in RL (Finn et al., 2016;
Konyushkova et al., 2020; Abbeel & Ng, 2004). The identifiability of reward function learning under
entropy regularization is studied by Cao et al. (2021). Our work differs from this line of research,
since we assume access to propensity score parameters, besides the context and action. Our logged
known-reward and missing-reward datasets are under a fixed logging policy for all samples.

Individualized Treatment Effects: The individual treatment effect aims to estimate the expected
values of the squared difference between outcomes (rewards) for control and treated contexts (Shalit
et al., 2017). In the individual treatment effect scenario, the actions are limited to two actions
(treated/not treated) and the propensity scores are unknown (Shalit et al., 2017; Johansson et al., 2016;
Alaa & van der Schaar, 2017; Athey et al., 2019; Shi et al., 2019; Kennedy, 2020; Nie & Wager,
2021).Recently, the average treatment effects in semi-supervised settings (a.k.a. limited outcome data)
from causal (or non-causal) inference perspective is studied by (Zhang et al., 2023b; Chakrabortty
et al., 2022; Kallus & Mao, 2020). Our work differs from this line of works by considering larger
action spaces and assuming the access to propensity scores for logged datasets.

Regularized Reinforcement Learning with KL Divergence: The KL divergence regularization
with a logging policy and another parameterized learned policy is studied in off-policy reinforcement
learning Wu et al. (2019); Levine et al. (2020); Rudner et al. (2021); Jaques et al. (2019). Our work
differs from this line of work by considering a counterfactual risk minimization framework. Our
datasets also contain propensity scores, which are unavailable in off-policy reinforcement learning.

Semi-Supervised Learning: There are some connections between our scenario, and semi-supervised
learning (Yang et al., 2021) approaches, including entropy minimization and pseudo-labeling. In
entropy minimization, an entropy function of predicted conditional distribution is added to the main
empirical risk function, which depends on unlabeled data (Grandvalet & Bengio, 2005). The entropy
function can be viewed as an entropy regularization and can lower the entropy of prediction on
unlabeled data. In Pseudo-labeling, the model is trained using labeled data in a supervised manner
and is also applied to unlabeled data in order to provide a pseudo label with high confidence (Lee
et al., 2013). These pseudo-labels would be applied as inputs for another model, trained based on
labeled and pseudo-label data in a supervised manner. Similar methods have been employed in the
statistics literature (see e.g., Chakrabortty & Cai, 2018; Gronsbell & Cai, 2018). Our work differs
from the aforementioned semi-supervised learning as the logging policy biases our logged data, and
the rewards for actions other than the chosen action are unavailable. In semi-supervised learning,
the label is missing for some of the data. In comparison, in our setup, the reward is missing. Note
that, inspired by the Pseudo-labeling algorithm in semi-supervised learning and also the work by
Konyushkova et al. (2020), we can use a model based on the logged known-reward dataset to assign
pseudo-rewards to the logged missing-reward dataset and then the final model is trained using the
logged known-reward dataset and logged missing-reward dataset augmented by pseudo-rewards.
Note that a regularization to reduce the variance of the IPS estimator can also be added. However, as
discussed by Beygelzimer & Langford (2009), the model fails to generalize well in the direct method
where we estimate the reward function. Therefore, we do not study this method.
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Semi-Supervised Reinforcement Learning: There are a few proposals that considered off-policy
evaluation from logged data in semi-supervised learning settings from individual treatment effect
(Sonabend-W et al., 2020b; Cheng et al., 2021). We target a different problem on offline policy
learning. Recently, Sonabend-W et al. (2020a) and Gunn et al. (2022) studied semi-supervised offline
policy learning. However, an important aspect overlooked in their proposals is the regularization of
the uncertainty associated with the value of the parameterized policy. This omission could potentially
lead to sub-optimal policies in settings where specific actions have received limited exploration, a
common occurrence in observational datasets (Levine et al., 2020).

PAC-Bayesian Approach: Some theoretical works for error analysis in this field are focused
on the PAC-Bayesian approach (see Hellström et al. (2023) for a recent review), e.g., London &
Sandler (2019); Sakhi et al. (2023); Aouali et al. (2023). London & Sandler (2019) leveraged PAC-
Bayesian theory inspired by McAllester (2003) to derive an upper bound on the population risk of
the parameterized policy for truncated IPS in terms of the KL divergence, with prior and posterior
distributions over the hypothesis space. Tighter generalization upper bounds via PAC-Bayesian
approach is proposed by Sakhi et al. (2023). Aouali et al. (2023) also applied the PAC-Bayesian
approach to analyze the error of the proposed estimator. In this work, our approach is different from
the PAC-Bayesian approach, and we provide an upper bound on the variance of the IPS estimator
based on the KL divergence between the parameterized and logging policies.

Pessimism Method and Off-policy Reinforcement Learning: The pessimism concept is originally
introduced in offline reinforcement learning (RL) (Buckman et al., 2020; Jin et al., 2021), aims
to derive an optimal policy within Markov decision processes (MDPs) by utilizing pre-existing
datasets (Rashidinejad et al., 2022; 2021; Yin & Wang, 2021; Yan et al., 2023). This concept has also
been adapted to contextual bandits, viewed as a specific MDP instance. Recently, a ‘design-based’
version of the pessimism principle is proposed by (Jin et al., 2022) where the author propose a
data-dependent and policy-dependent regularization inspired by a lower confidence bound (LCB) on
the estimation uncertainty of the augmented-inverse-propensity-weighted (AIPW)-type estimators
which also includes IPS estimators. Our work differs from (Jin et al., 2022), as our regularization is
inspired by variance reduction of truncated IPS estimator. However, the regularization in (Jin et al.,
2022) is motivated by a LCB. In addition, our regularization, can be implemented by deep neural
networks. It is also interesting to apply our method in Proposition 2 to provide a lower confidence
bound in pessimistic framework in terms of KL-divergence or reverse-KL divergence.

B PRELIMINARIES

Lemma 1. Suppose that f(X) is σ-sub-Gaussian under distribution QX . Then, considering the
difference of expectations of f(X) with respect to a distribution PX and the distribution QX , the
following upper bound holds:

|EPX
[f(X)]− EQX

[f(X)]| ≤
√

2σ2KL(PX∥QX) (19)

Proof. From the Donsker-Varadhan representation of KL divergence (Polyanskiy & Wu, 2014), for
γ ∈ R we have:

KL(PX∥QX) ≥ EPX
[γf(X)]− log(EQX

[eγf(X)]) (20)

≥ γ(EPX
[f(X)]− EQX

[f(X)])− γ2σ2

2
(21)

where (21) is the result of sub-Gaussian assumption. We have:

γ2σ2

2
− γ(EPX

[f(X)]− EQX
[f(X)]) + KL(PX∥QX) ≥ 0. (22)

As in (22), we have a quadratic in γ, which is positive and has a non-positive discriminant, then the
final result holds.

C PROOFS OF SECTION 4

We first prove the following Lemma:
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Proposition 1. (restated) Suppose that the importance weighted of squared reward function, i.e.,
w(A,X)r2(A,X), is σ-sub-Gaussian under PX ⊗ π0(A|X) and PX ⊗ πθ(A|X), and the reward
function has bounded range [c, b] with b ≥ 0. Then, the following upper bound holds on the variance
of the importance weighted reward function:

Var (w(A,X)r(A,X)) ≤
√
2σ2 min(KL(πθ∥π0),KL(π0∥πθ)) + b2u − c2l , (23)

where cl = max(c, 0), bu = max(|c|, b), KL(πθ∥π0) = KL(πθ(A|X)∥π0(A|X)) and
KL(π0∥πθ) = KL(π0(A|X)∥πθ(A|X)).

Proof. Note that c2l ≤ R2(πθ) ≤ b2u where cl = max(c, 0) and bu = max(|c|, b).

Var (w(A,X)r(A,X)) = EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
−R2(πθ) (24)

≤ EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
− c2l (25)

where cl = max(c, 0). We need to provide an upper bound on EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
.

First, we have:

EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
= EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
r(A,X)

)2
]

(26)

= EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
(27)

Using Lemma 1 and assuming sub-Gaussianity under PX ⊗ π0(A|X) we have:∣∣∣∣EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
− EPX⊗π0(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]∣∣∣∣
≤
√
2σ2KL(πθ(A|X)∥π0(A|X)|PX), (28)

and since r(A,X) ∈ [c, b], we have:

EPX⊗π0(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
= EPX⊗πθ(A|X)

[
(r(A,X))

2
]
≤ b2u. (29)

Considering (29) and (28), the following result holds:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
≤
√
2σ2KL(πθ(A|X)∥π0(A|X)) + b2u, (30)

By a similar argument and the sub-Gaussianity under PX ⊗ πθ(A|X), we have:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
≤
√
2σ2KL(π0(A|X)∥πθ(A|X)) + b2u, (31)

And the final result holds by considering (30), (31), and (26).

Corollary 1. (restated) Suppose the reward function has a bounded range [c, 0] and a truncated IPS
estimator with ν ∈ (0, 1]. Then the following upper bound holds on the variance of the truncated
importance weighted reward function:

Var(A,X)∼π0(A|X)⊗PX
(wν(A,X)r(A,X)) ≤ c2ν−1

√
min(KL(πθ∥π0),KL(π0∥πθ))/2 + c2,

(32)

where wν(A,X) = πθ(A,X)
max(ν,π0(A,X)) , KL(πθ∥π0) = KL(πθ(A|X)∥π0(A|X)) and KL(π0∥πθ) =

KL(π0(A|X)∥πθ(A|X)).

Proof. Define Rν(πθ) := E(A,X)∼π0(A|X)⊗PX
[wν(A,X)r(A,X)]. Note that 0 ≤ R2

ν(πθ) ≤ c2.

Var (w(A,X)r(A,X)) = EPX⊗π0(A|X)

[
(wν(A,X)r(A,X))

2
]
−R2

ν(πθ) (33)
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≤ EPX⊗π0(A|X)

[
(wν(A,X)r(A,X))

2
]
. (34)

We need to provide an upper bound on EPX⊗π0(A|X)

[
(wν(A,X)r(A,X))

2
]
. First, we have:

EPX⊗π0(A|X)

[
(wν(A,X)r(A,X))

2
]
= EPX⊗π0(A|X)

[(
πθ(A|X)

max(π0(A|X), ν)
r(A,X)

)2
]

(35)

≤ EPX⊗πθ(A|X)

[
πθ(A|X)

max(π0(A|X), ν)
(r(A,X))

2

]
. (36)

Using Lemma 1 and the fact that the function

0 ≤ πθ(A|X)

max(π0(A|X), ν)
(r(A,X))

2 ≤ c2

ν
,

is c2

2ν -sub-Gaussian under any distribution, then we have:∣∣∣∣EPX⊗πθ(A|X)

[
πθ(A|X)

max(π0(A|X), ν)
(r(A,X))

2

]
− EPX⊗π0(A|X)

[
πθ(A|X)

max(π0(A|X), ν)
(r(A,X))

2

]∣∣∣∣
≤ c2

ν
√
2

√
KL(πθ(A|X)∥π0(A|X)), (37)

and since r(A,X) ∈ [c, 0], we have:

EPX⊗π0(A|X)

[
πθ(A|X)

max(π0(A|X), ν)
(r(A,X))

2

]
= EPX⊗πθ(A|X)

[
(r(A,X))

2
]
≤ c2. (38)

Considering (29) and (28), the following result holds:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
≤ c2ν−1

√
KL(πθ(A|X)∥π0(A|X))/2 + c2. (39)

By a similar argument and the sub-Gaussianity under PX ⊗ πθ(A|X), we have:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
≤ c2ν−1

√
KL(π0(A|X)∥πθ(A|X))/2 + c2. (40)

And the final result holds by considering (30), (31), and (26).

We now provide a novel lower bound on the variance of the weighted reward function in the following
Proposition.

Proposition 4. (proved in Appendix C) Suppose that q ≤ eEPX⊗πθ(A,X)[log(|r(A,X)|)], the reward
function has bounded range [c, b] with b ≥ 0, and consider bu = max(|c|, b). Then, the following
lower bound holds on the variance of importance weighted reward function,

Var (w(A,X)r(A,X)) ≥ q2eKL(πθ(A|X)∥π0(A|X)) − b2u. (41)

Proof. Note that c2l ≤ R2(πθ) ≤ b2u where cl = max(c, 0) and bu = max(|c|, b).

Var (w(A,X)r(A,X)) = EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
−R2(πθ) (42)

≥ EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
− b2u. (43)

First, we have:

EPX⊗π0(A|X)

[
(w(A,X)r(A,X))

2
]
= EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
r(A,X)

)2
]

(44)

= EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
. (45)
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Considering (45), we provide a lower bound on EPX⊗πθ(A|X)

[
πθ(A|X)
π0(A|X) (r(A,X))

2
]

as follows:

EPX⊗πθ(A|X)

[
πθ(A|X)

π0(A|X)
(r(A,X))

2

]
= EPX⊗πθ(A|X)

[
e
log(

πθ(A|X)

π0(A|X)
)+2 log(|r(A,X)|)

]
(46)

≥ e
EPX⊗πθ(A|X)[log(

πθ(A|X)

π0(A|X)
)+2 log(|r(A,X)|)] (47)

= eKL(πθ(A|X)∥π0(A|X))(eEPX⊗πθ(A|X)[log(|r(A,X)|)])2

≥ q2eKL(πθ(A|X)∥π0(A|X)).

Where (47) is based on Jensen-inequality for an exponential function.

Remark 1. If we consider r(a, x) ∈ [c, b] with b ≥ 0, then we can consider q = max(0, c).

The lower bound on the variance of importance weights in Proposition 4 can be minimized by
minimizing the KL divergence or reverse KL divergence between πθ and π0.
Theorem 1. (restated) Suppose the reward function takes values in [−1, 0]. Then, for any δ ∈ (0, 1),
the following bound on the true risk of policy πθ(A|X) with the truncated IPS estimator (with
parameter ν ∈ (0, 1]) holds with probability at least 1− δ under the distribution PX ⊗ π0(A|X):

R(πθ) ≤ R̂ν(πθ, S) +
2 log(1δ )

3νn
+

√
(ν−1

√
2min(KL(πθ∥π0),KL(π0∥πθ)) + 2) log( 1δ )

n
, (48)

where KL(πθ∥π0) = KL(πθ(A|X)∥π0(A|X)) and KL(π0∥πθ) = KL(π0(A|X)∥πθ(A|X)).

Proof. Define Rν(πθ) := E(A,X)∼π0(A|X)⊗PX
[wν(A,X)r(A,X)]. Note that we have 0 ≤

R2
ν(πθ) ≤ 1 and

R(πθ) ≤ Rν(πθ).

Let us consider Z = πθ(A|X)
max(π0(A|X),ν)r(A,X) and |Z| ≤ ν−1. Then, we have:

Var(Z) = EPX⊗π0(A|X)

[(
πθ(A|X)

max(π0(A|X), ν)
r(A,X)

)2
]
−R2

ν(πθ) (49)

≤ ν−1

√
min(KL(πθ∥π0),KL(π0∥πθ))

2
+ 1,

where KL(πθ∥π0) = KL(πθ(A|X)∥π0(A|X)) and KL(π0∥πθ) = KL(π0(A|X)∥πθ(A|X)). Using
Bernstein inequality (Boucheron et al., 2013), we also have:

Pr
(
Rν(πθ)− R̂ν(πθ, S) > ϵ

)
≤ exp

(
−nϵ2/2

Var(Z) + ϵν−1/3

)
. (50)

By setting δ = exp
(

−nϵ2/2
Var(Z)+ϵν−1/3

)
to match the upper bound in (50) and using the variance upper

bound (49), the following upper bound with probability at least (1− δ) holds under PX ⊗ π0(A|X):

R(πθ) ≤ Rν(πθ) (51)

≤ R̂ν(πθ, S) +
ν−1 log( 1δ )

3n

+

√
ν−2 log2( 1δ )

9n2
+

(ν−1
√

2min(KL(πθ∥π0),KL(π0∥πθ)) + 2) log( 1δ )

n
, (52)

By applying
√
x+ y ≤

√
x+
√
y to the last term in (52), the final result holds.

Proposition 2. (restated) The following upper bound holds on the absolute difference between risks
of logging policy π0(a|x) and the policy πθ(a|x):

|R(πθ)−R(π0)| ≤ min

(√
KL(πθ∥π0)

2
,

√
KL(π0∥πθ)

2

)
, (53)

where KL(πθ∥π0) = KL(πθ(A|X)∥π0(A|X)) and KL(π0∥πθ) = KL(π0(A|X)∥πθ(A|X)).
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Proof. We have:

R(πθ) = EPX
[Eπθ(A|X)[r(A,X)]]. (54)

R(π0) = EPX
[Eπ0(A|X)[r(A,X)]]. (55)

As the reward function is bounded in [−1, 0], then it is 1
2 -sub-Gaussian under all distributions. By

considering Lemma 1, the final result holds.

C.1 PROPOSITION 1 COMPARISON

Without loss of generality, let us consider r(a, x) ∈ [−1, 0]. For sup(x,a)∈X×A
πθ(a|x)
π0(a|x) = ν−1 <∞.

The upper bound in Corollary 1 by considering the KL divergence KL(πθ∥π0) can be written as

EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
r(A,X)

)2
]
≤ ν−1

√
KL(πθ(A|X)∥π0(A|X))

2
+ 1. (56)

The upper bound on the second moment of importance weighted reward function in (Cortes et al.,
2010, Lemma 1) is as follows:

EPX⊗π0(A|X)

[(
πθ(A|X)

π0(A|X)
r(A,X)

)2
]
≤ χ2(πθ(A|X)∥π0(A|X)) + 1. (57)

It is shown by Sason & Verdú (2016) that:

D(πθ(A|X)∥π0(A|X)) ≤ log(χ2(πθ(A|X)∥π0(A|X)) + 1). (58)

Using (58) in (56) and comparing to (57), then for ν−1 < e2 − 1, ∃C ∈ [0, ν−1], e.g. if ν−1 = 2 we
have C ≈ 1.28, where if χ2(πθ(A|X)∥π0(A|X)) ≥ C, then we have:

log(χ2(πθ(A|X)∥π0(A|X)) + 1) ≤ 2(χ2(πθ(A|X)∥π0(A|X)))2

ν−2
. (59)

Therefore, the upper bound in Proposition 1 is tighter than (Cortes et al., 2010, Lemma 1) for
χ2(πθ(A|X)∥π0(A|X)) ≥ C if ν−1 < e2 − 1 and C is the solution of log(1 + x)− 2x2/ν−2 = 0.

D PROOFS OF SECTION 5

Proposition 3. (restated) Suppose that KL(πθ(A|X)∥π0(A|X)) and the reverse
KL(π0(A|X)∥πθ(A|X)) are bounded. Assuming mai → ∞ (∀ai ∈ A), then L̂KL(πθ) and
L̂RKL(πθ) are unbiased estimations of KL(πθ(A|X)∥π0(A|X)) and KL(π0(A|X)∥πθ(A|X)),
respectively.

Proof. First, we have the following decomposition:

KL(πθ(A|X)∥π0(A|X)) =

k∑
i=1

EPX

[
(πθ(A = ai|X) log

(πθ(A = ai|X)

π0(A = ai|X)

)]
(60)

KL(π0(A|X)∥πθ(A|X)) =

k∑
i=1

EPX

[
π0(A = ai|X) log

(π0(A = ai|X)

πθ(A = ai|X)

)]
. (61)

It suffices to show that:

R̂KL(πθ) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su∪S

πθ(ai|x) log
(πθ(ai|x)

p

)
, (62)

R̂RKL(πθ) ≜
k∑

i=1

1

mai

∑
(x,ai,p)∈Su∪S

−p log(πθ(ai|x)) + p log(p), (63)
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As we assume the divergences KL(πθ(A|X)∥π0(A|X)) and KL(π0(A|X)∥πθ(A|X)) are bounded,
then EPX

[π0(ai|X) log(π0(ai|X)
πθ(ai|X) )] and EPX

[πθ(ai|x) log(πθ(ai|x)
π0(ai|x) )] ∀i ∈ [k] exist and they are

bounded. Due to the Law of Large Numbers Hsu & Robbins (1947), we have that:
1

mai

∑
(x,ai,p)∈Su

π0(ai|x) log
(π0(ai|x)
πθ(ai|x)

)
mai

→∞
−−−−−→ EPX

[
π0(ai|X) log

(π0(ai|X)

πθ(ai|X)

)]
, (64)

and
1

mai

∑
(x,ai,p)∈Su

πθ(ai|x) log
(πθ(ai|x)
π0(ai|x)

)
mai

→∞
−−−−−→ EPX

[
πθ(ai|x) log

(πθ(ai|x)
π0(ai|x)

)]
. (65)

By considering (62), (63) and mai
→∞, ∀i ∈ [k], the final results hold.

We also provide an upper bound on the estimation error of the proposed estimator in Proposition 3.
Let us define

fKL(x, a) := πθ(A = a|X = x) log
(πθ(A = a|X = x)

π0(A = a|X = x)

)
,

and

gRKL(x, a) := π0(A = a|X = x) log
(π0(A = a|X = x)

πθ(A = a|X = x)

)
.

Note that
EPX

[fKL(X, ai)] = KL(πθ(A = ai|X)∥π0(A = ai|X)),

and
EPX

[gRKL(X, ai)] = KL(π0(A = ai|X)∥πθ(A = ai|X)).

Proposition 5. Assume that |fKL(x, a)| ≤ B and |gRKL(x, a)| ≤ C for all x ∈ X and a ∈ A.
Then, the following upper bounds hold on estimators of KL divergence and reverse KL divergence in
Proposition 3, under distribution PX with probability at least 1− kδ for δ ∈ (0, 1/k],∣∣∣KL(πθ(A|X)∥π0(A|X))− R̂KL(πθ)

∣∣∣ ≤ B
√

2 log(1/δ)

k∑
i=1

√
1

mai

, (66)

and similarly, we have∣∣∣KL(π0(A|X)∥πθ(A|X))− R̂RKL(πθ)
∣∣∣ ≤ C

√
2 log(1/δ)

k∑
i=1

√
1

mai

. (67)

Proof. From Hoeffding’s inequality Boucheron et al. (2013), for each action ai ∈ A, the following
upper bound holds with probability at least (1− δ) under distribution PX ,∣∣∣EPX

[fKL(X, ai)]−
1

mai

mai∑
j=1

fKL(xj , ai)
∣∣∣ ≤ B

√
2 log(1/δ)

mai

, (68)

and similarly ∣∣∣EPX
[gRKL(X, ai)]−

1

mai

mai∑
j=1

gRKL(xj , ai)
∣∣∣ ≤ C

√
2 log(1/δ)

mai

. (69)

Using the Union bound Vershynin (2018) and considering |A |= k, the following upper bound
holds on the estimation error of the proposed estimator in Proposition 3 under distribution PX with
probability at least (1− kδ) for δ ∈ (0, 1/k],∣∣∣KL(πθ(A|X)∥π0(A|X))− R̂KL(πθ)

∣∣∣
≤

k∑
i=1

∣∣∣KL(πθ(A = ai|X)∥π0(A = ai|X))− 1

mai

mai∑
j=1

fKL(xj , ai)
∣∣∣

≤ B
√
2 log(1/δ)

k∑
i=1

√
1

mai

,

(70)
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and similarly, we have,∣∣∣KL(π0(A|X)∥πθ(A|X))− R̂RKL(πθ)
∣∣∣

≤
k∑

i=1

∣∣∣KL(π0(A = ai|X)∥πθ(A = ai|X))− 1

mai

mai∑
j=1

gRKL(xj , ai)
∣∣∣

≤ C
√
2 log(1/δ)

k∑
i=1

√
1

mai

.

(71)

E COMPARISON WITH BAYESIAN-CRM

In this section, we compare our work with London & Sandler (2019) from both theoretical and
algorithm perspectives.

E.1 COMPARISON WITH THEOREM 1

We compare our Theorem 1 result with (London & Sandler, 2019, Theorem 1). The upper bound on
true risk in (London & Sandler, 2019, Theorem 1) is derived by using the PAC-Bayesian approach,
where stochastic policies with action distributions induced by distributions over hypotheses. In
particular, the probability of an action a ∈ A given a context x ∈ X , is equal to the probability of
a random hypothesis for mapping h : x 7→ a, where the probability of random hypothesis can be
induced by prior or posterior distribution, Q or P.

Suppose that we fix the parameter space for hypotheses set. As discussed, in (London & Sandler,
2019, Section 3.1), if we consider the prior distribution equal to logging policy, then KL diver-
gence KL(P∥Q) can be interpreted as KL(πθ∥π0). Therefore, we can compare our upper bound in
Theorem 1 with (London & Sandler, 2019, Theorem 1) as follows:

• Our upper bound is based on the minimum of KL divergence D(πθ(A|X)∥π0(A|X)) and
reverse KL divergence D(π0(A|X)∥πθ(A|X)) and the upper bound in (London & Sandler,
2019, Theorem 1) is based on reverse KL divergence only.

• The upper bound in (London & Sandler, 2019, Theorem 1) has the dominating term with

rate O(
√

log(n)
n ) and our upper bound contains a term with rate O( 1√

n
) which dominates

the bound.

It is worthwhile to mention that the main advantage of our bound over the PAC-Bayesian is the
dependency over the reverse KL divergence, i.e KL(π0∥πθ). It helps us to define the WCE-S2BL
algorithm based on KL(π0∥πθ) as regularization.

E.2 COMPARISON WITH ALGORITHMS

There are two main methods proposed in London & Sandler (2019).

• IPS-LPR: It is inspired by (London & Sandler, 2019, Proposition 1) and the authors propose
to minimize the following objective function,

min
θ

1

n

n∑
i=1

ri
πθ(ai|xi)

max(pi, ν)
+ λb∥θ − θ0∥2, (72)

where λb is the hyper-parameter and θ0 is the mean of parameter under prior (logging policy).
If we know the logging policy, we can compute the θ0. Otherwise, we should estimate the
mean of logging policy distribution via logged known-reward dataset. The parameterized
policy is trained via the logged known-reward dataset. It is worthwhile to mention that
in B-CRM, (72), it is assumed that the posterior variance, or variance of parameters θ,
is fixed to some small value, e.g., n−1. However, in our setup, we directly, estimate the
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Table 3: Statistics of the datasets used in our experiments.

DATA SET TRAINING SAMPLES TEST SAMPLES NUMBER OF ACTIONS DIMENSION

FMNIST 60000 10000 10 28× 28
EMNIST 60000 10000 10 28× 28
CIFAR-10 50000 10000 10 32× 32× 3
CIFAR100 50000 10000 100 32× 32× 3
KUAIREC 12,530,806 4,676,570 10,728 1555

KL divergence and we have no assumption on variance of parameters. In (72), after the
estimation of θ0, the regularization is similar to L2- regularization of model parameters and
it is minimized jointly with the truncated IPS estimator via logged-known reward dataset to
derive the parameterized logging policy.

• WNLL-LPR: Another algorithm is also proposed in London & Sandler (2019) as WNLL-
LPR where the following regularized function would be minimized,

min
θ

1

n

n∑
i=1

ri
log(πθ(ai|xi))

max(pi, ν)
+ λb∥θ − θ0∥2. (73)

Note that the main objective function in WNLL-LPR is an upper bound on IPS-LPR as the
rewards are non-positive, ri ∈ [−1.0]. It’s also observable that, contrasting with IPS-LPR,
which can have negative values, WNLL-LPR remains positive. Therefore, WNLL-LPR
is not a tight upper bound. Similarly to IPS-LPR, the regularization is minimized via the
logged known-reward dataset after setting θ0.

F EXPERIMENTS

F.1 SETUP DETAILS

In our experiments, we use the following image classification datasets, Fashion-MNIST (FM-
NIST) (Xiao et al., 2017), EMNIST (Cohen et al., 2017), CIFAR-10 and CIFAR-100 (Krizhevsky,
2009). We also use KuaiRec dataset as a real-world example, details explained in section F.7. A
summary of the statistics of these datasets is provided in Table 3. We use a combination of manual
and automatic hyper-parameter tuning for the learning rate values and regularization coefficient λ.
To be more specific, for the deep model we manually test different hyper-parameters for τ = 1, 5
and use them to set search intervals for other values of τ and all values of τ for the deep model. For
automatic search we use optuna library. We train each model by 120 and 60 epochs for deep and
linear models respectively and use a learning rate multiplier of 0.5 in every 25 epochs. Inspired by
BanditNet experiments in Joachims et al. (2018), for the CIFAR-10 dataset, we ignore samples with
less than ν = 0.001 propensity score, while for the FMNIST dataset after grid search, we consider
ν = 0.001 as the truncation parameter. Table 4 illustrates the experiment settings (Real-world dataset
settings are separately in section F.7)

F.2 DEEP MODEL ARCHITECTURE

We use two simple versions of ResNet architecture. For ResNet-v1 we use a single residual layer in
each of the four blocks. For ResNet-v2 we use two residual layers in each of the blocks.

F.3 BANDIT DATASET GENERATION

We create a bandit dataset consisting of samples (x, y, a, p, r) where x is the context, y is the true
label (optimal action), a is the logging policy’s action, p is the propensity score, and r is the reward of
the action. To do so, starting with a labeled dataset (CIFAR-10, CIFAR-100, EMNIST and FMNIST
in our experiments) containing only the pair (x, y) for each sample, we first train a logging policy
using the true labels y, with fully supervised feedback. For each context x in the labeled dataset,
we sample an action a and compute propensity score p from the trained logging policy according
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Table 4: Experiment setup details for the softmax policy with deep learning

Deep model Linear model

Optimizer SGD SGD
ν 0.001 0.001

Network ResNet-v2 Linear
Learning rate 0.005 0.0005

Max epochs (M ) 120 60
Batch size 128 128

to the softmax output of the model, and compute the reward value r. Hence the tuple (x, y, a, p, r)
is created. In order to decrease the performance of the logging policy in a controlled manner, for
each τ ∈ {1, 5, 10, 20} we train a logging policy with temperature τ . During dataset generation, we
sample from the logging policy with temperature τ = 1. So the trained logging policy’s performance
decreases as τ increases. For each ρ ∈ {1, 0.5, 0.2, 0.1, 0.02}, we randomly select ρ proportion of
the samples and remove the reward from other samples.
Therefore for each labeled dataset, we create 20 = 4× 5 bandit datasets for different values of τ and
ρ. For a fair comparison between different methods, we create and store these datasets once, and
apply the models on the same dataset for each setting.
For CIFAR-10, FashionMNIST, and EMNIST datasets in linear model, we flatten the image to get
a 3072, 784, and 784 dimensional feature vector respectively. For CIFAR-100 we use ResNet-50
pretrained features. We use this vector as the context x.
The architecture of the logging policy is ResNet-v1 for CIFAR-10, FMNIST, and EMNIST. For
CIFAR-100 we use ResNet-v2.
Note that for linear experiments on CIFAR-10 and FMNIST, we trained a deep logging policy.
However for EMNIST and CIFAR-100, we used a linear model for the logging policy. Table 5 shows
a summary of features and models in a linear setting. The reason behind the different settings is to
observe the difference in performance when the logging policy is of different architectures. We also
carried out experiments on CIFAR-10 with linear logging policy, explained in section F.6.

Table 5: Summary of models and features in linear experiments

Logging policy Trained Policy Features

FMNIST deep linear raw
CIFAR-10 deep linear raw
EMNIST linear linear raw

CIFAR-100 linear linear pre-trained

F.4 BASELINES

We consider two baselines in our experiments for linear and deep setup.

Linear Model: In this setup, as we are focused on truncated IPS estimator, therefore we choose the
Bayesian-CRM (B-CRM) method based on (London & Sandler, 2019, Proposition 1) introduced in
(72). For B-CRM as our baseline, we estimate µ0 using logged known-reward dataset.

Deep Model: In this setup, we consider the BanditNet Joachims et al. (2018) as baseline. Note
that, in BanditNet, instead of an IPS estimator, we have a self-normalized IPS (SNIPS) estimator. In
particular, the SNIPS estimator is defined as

SNIPS :=

∑n
i=1 ri

πθ(ai|xi)
π0(ai|xi)∑n

i=1
πθ(ai|xi)
π0(ai|xi)

. (74)

However, the SNIPS estimator in (74) can not be optimized by SGD and Joachims et al. (2018)
proposed BanditNet as a constraint optimization version of (74) which can be optimized by SGD.
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F.5 RESULTS

For CIFAR-10 and FMNIST, in Tables 6 and 8, we compare the performance of all proposed
algorithms, WCE-S2BL, KL-S2BL, WCE-S2BLK and KL-S2BLK in both deep and linear models
with the baselines, BanditNet in deep model and Bayesian CRM in linear model for τ ∈ {1, 5, 10, 20}
and ρ ∈ {0.02, 0.1, 0.2, 0.5, 1}. Similarly, for CIFAR-100 and EMNIST the results are presented
in Tables 9 and 7. Note that, for ρ = 1, where we have access to all logged known-reward dataset,
WCE-S2BL and KL-S2BL are the same as WCE-S2BLK and KL-S2BLK, respectively.

Table 6: Comparison of different algorithms WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK
and BanditNet deterministic policy accuracy for FMNIST and CIFAR-10 with deep model setup
and different qualities of logging policy (τ ∈ {1, 5, 10, 20}) and proportions of labeled data (ρ ∈
{0.02, 0.1, 0.2, 0.5, 1}).

Dataset τ ρ WCE-S2BL KL-S2BL WCE-S2BLK KL-S2BLK BanditNet Logging Policy

FMNIST
1 0.02 93.12± 0.16 91.79± 0.16 78.66± 0.90 61.46± 9.97 78.64± 1.97

91.73
0.1 93.26± 0.05 91.73± 0.08 85.83± 0.85 77.75± 9.10 84.64± 4.24
0.2 93.16± 0.18 92.04± 0.13 82.76± 4.45 87.72± 0.53 89.60± 0.49
0.5 93.19± 0.21 91.94± 0.04 88.72± 0.37 86.30± 1.43 91.59± 0.03
1 93.10± 0.15 92.48± 0.6 − − 93.54± 0.03

5 0.02 90.99± 0.09 83.54± 0.66 81.67± 0.36 34.27± 27.64 47.11± 12.51

53.97
0.1 90.79± 0.14 81.65± 0.02 87.93± 0.07 73.48± 13.26 86.73± 0.63
0.2 91.43± 0.07 82.71± 0.59 89.47± 0.06 88.94± 0.34 89.17± 0.26
0.5 91.74± 0.04 88.36± 0.15 89.18± 0.47 90.45± 0.12 90.42± 0.56
1 91.41± 0.16 92.42± 0.12 − − 92.65± 0.04

10 0.02 89.35± 0.15 69.94± 0.60 77.82± 0.73 45.18± 19.82 23.52± 3.15

20.72
0.1 89.31± 0.16 80.68± 0.46 85.55± 0.39 80.54± 6.88 82.96± 3.03
0.2 89.47± 0.3 79.45± 0.75 88.31± 0.14 67.53± 2.06 88.35± 0.45
0.5 90.05± 0.13 89.38± 0.13 89.81± 0.23 89.63± 0.98 90.44± 0.08
1 91.00± 0.19 91.45± 0.17 − − 92.21± 0.07

20 0.02 52.60± 1.36 45.20± 4.74 41.69± 2.19 22.23± 3.30 44.04± 7.50

10.54
0.1 77.52± 0.63 76.89± 0.39 76.29± 0.48 71.28± 5.14 75.64± 1.65
0.2 84.02± 0.28 82.25± 0.60 82.85± 0.94 82.69± 0.41 80.63± 0.13
0.5 86.83± 0.22 87.48± 0.26 86.51± 0.32 87.77± 0.17 87.61± 0.10
1 87.05± 0.01 89.11± 0.10 − − 89.03± 0.16

CIFAR-10
1 0.02 85.01± 0.37 84.6± 0.65 17.12± 0.97 21.63± 1.44 27.39± 3.47

79.77
0.1 83.03± 1.49 84.34± 0.11 51.84± 0.92 46.24± 0.41 52.78± 0.56
0.2 85.06± 0.32 85.53± 0.56 58.04± 5.47 54.12± 0.51 67.96± 0.62
0.5 84.79± 0.4 84.5± 0.09 79.23± 0.30 78.74± 0.56 71.36± 1.91
1 84.63± 0.38 84.25± 0.45 − − 86.82± 0.87

5 0.02 73.57± 0.36 51.14± 2.25 17.12± 0.97 21.63± 1.44 15.81± 5.12

53.97
0.1 74.13± 1.43 58.31± 0.52 54.75± 0.39 33.21± 0.88 24.68± 3.74
0.2 76.96± 0.35 63.19± 0.51 62.98± 0.81 46.35± 0.10 30.03± 12.75
0.5 76.46± 0.7 64.24± 2.09 70.50± 0.86 55.92± 0.66 58.34± 8.69
1 77.53± 1.19 69.53± 1.09 − − 70.12± 6.89

10 0.02 65.67± 1.06 37.8± 0.85 32.61± 1.14 20.66± 5.74 13.78± 1.99

43.45
0.1 69.81± 0.87 43.00± 0.73 51.15± 0.64 35.87± 1.11 21.19± 3.35
0.2 69.4± 0.47 48.44± 0.26 55.38± 3.63 44.60± 0.19 50.38± 0.55
0.5 75.08± 0.18 64.39± 0.05 71.90± 0.14 16.19± 0.99 68.92± 0.68
1 75.58± 0.29 79.82± 0.36 − − 78.8± 0.53

20 0.02 26.24± 1.42 15.09± 1.5 16.46± 1.77 12.56± 2.01 13.25± 1.36

20.72
0.1 33.61± 0.58 30.67± 1.35 27.38± 2.44 27.74± 8.23 21.12± 1.01
0.2 34.49± 4.01 36.95± 0.77 32.91± 6.95 34.27± 2.55 32.69± 2.17
0.5 46.95± 0.89 50.12± 4.43 47.69± 0.63 41.45± 9.93 36.79± 2.78
1 47.68± 3.03 64.34± 0.85 − − 55.27± 3.39

F.6 CIFAR-10 WITH PRE-TRAINED FEATURES

The linear experiments for CIFAR-10 and FashionMNIST, Table 1, are trained based on a deep
logging policy. Due to the fact that the complexity of logging policy as a deep model is more than a
linear model, the linear CIFAR-10 model accuracy is worse than the logging policy. However, our
algorithms, WCE-S2BL and KL-S2BL, outperform the baseline, B-CRM, Table 1. The reason behind
this setting is that a simple linear model doesn’t work well on the raw flattened image and pre-trained
features inject unknown prior information into the input of the models. To observe the difference
between these two settings, in the experiments for the CIFAR-10 dataset, we use a linear model for
both the logging policy and the trained policy, using pre-trained features as image representation in
Table 10.
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Table 7: Comparison of different algorithms WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK and
BanditNet deterministic policy accuracy for EMNIST and CIFAR-100 with deep model setup and
different qualities of logging policy (τ ∈ {10, 20} for EMNIST and τ ∈ {1, 5, 10} for CIFAR-100)
and proportions of labeled data (ρ ∈ {0.02, 0.1, 0.2, 0.5, 1}).

Dataset τ ρ WCE-S2BL KL-S2BL WCE-S2BLK KL-S2BLK BanditNet Logging Policy

EMNIST 10 0.02 98.77± 0.06 93.76± 0.46 93.25± 0.65 67.46± 40.63 95.44± 0.12

51.26
0.1 98.75± 0.01 98.14± 0.15 96.61± 0.25 98.60± 0.10 98.46± 0.01
0.2 98.81± 0.02 98.49± 0.01 98.13± 0.06 98.66± 0.04 99.11± 0.01
0.5 99.16± 0.04 99.03± 0.00 99.17± 0.01 99.09± 0.02 99.25± 0.07
1 99.38± 0.05 99.39± 0.02 − − 99.46± 0.02

20 0.02 96.54± 0.06 84.98± 3.04 79.49± 1.87 93.47± 0.50 89.50± 5.04

25.58
0.1 97.79± 0.14 97.83± 0.02 97.88± 0.11 98.31.0.04 98.14± 0.12
0.2 98.49± 0.04 98.33± 0.02 98.50± 0.05 98.42± 0.07 98.59± 0.05
0.5 98.83± 0.08 98.81± 0.03 98.79± 0.05 98.83± 0.11 99.07± 0.04
1 99.08± 0.03 99.35± 0.03 − − 99.16± 0.02

CIFAR-100 1 0.02 38.60± 0.23 15.67± 2.06 5.58± 1.06 1.76± 0.54 1.40± 0.29

26.48
0.1 39.17± 0.65 17.02± 1.20 17.04± 1.50 16.21± 0.52 1.48± 0.23
0.2 41.02± 0.54 18.36± 0.56 11.96± 0.45 22.18± 0.31 1.28± 0.21
0.5 41.42± 3.71 39.79± 0.24 32.13± 3.68 26.56± 3.46 1.91± 0.49
1 42.93± 0.40 35.59± 1.79 2.09± 0.28

5 0.02 11.61± 0.83 3.04± 1.07 1.51± 0.50 1.0± 0.00 1.14± 0.20

4.58
0.1 18.73± 0.78 4.76± 0.35 5.13± 0.15 1.46± 0.29 1.19± 0.27
0.2 17.71± 0.07 4.30± 1.15 9.71± 0.79 1.26± 0.38 1.45± 0.12
0.5 19.13± 0.44 4.04± 0.17 15.64± 0.49 2.34± 0.30 1.32± 0, 29
1 19.71± 0.08 3.27± 1.15 − − 1.5± 0.26

10 0.02 6.57± 0.64 1.50± 0.25 1.25± 0.18 1.0± 0.00 1.04± 0.06

1.73
0.1 5.59± 0.48 1.75± 0.28 1.97± 0.27 1.22± 0.13 1.26± 0.15
0.2 8.9± 0.32 1.86± 0.26 3.05± 0.10 1.52± 0.16 1.48± 0.24
0.5 8.21± 0.12 1.96± 0.24 6.28± 0.52 1.39± 0.21 1.36± 0.17
1 9.22± 0.21 1.85± 0.23 1.39± 0.30

F.7 REAL-WORLD EXPERIMENTS

We also carried out experiments on KuaiRec which is a dataset of human interactions with played
videos in a mobile application. We adopt the setting introduced in Zhang et al. (2023a) for our
experiments. Our logging policy is a random sampler choosing between items available for each user
with random probabilities with the constraint to achieve 70% average reward. We assign random
scores in [0.001, 1.0] to each item that the user rated and normalize items with the same reward
together and multiply the score of items with reward 1 by 0.7 and other items by 0.3 to get the 70%
average reward. We don’t use explicit truncation for propensity scores in this dataset. For each user,
we sample 5 items according to the logging policy to create the logged bandit dataset.
Because in KuaiRec, as a recommendation system dataset, each user (context) can have multiple
preferred items (actions), the accuracy of the learned policy (proportion of correctly suggested items)
can’t give a complete evaluation of the model’s performance. We use the empirical IPS, evaluated
based on test dataset.
We train the models with batch-size 32 and an initial learning rate of 0.01 with a cosine annealing
learning rate scheduler and use automatic hyper-parameter tuning for other hyper-parameters. We
repeat each experiment 5 times and report the average and standard deviation of scores. Table 11
shows our results.

F.8 DISCUSSION

The boost in performance is reliant on the quality of the initial logging policy. For example, both
Tables 6 and 8 demonstrate that when the logging policy is nearly uniform (i.e., Large τ ), superior
performance is predominantly realized through WCE-S2BL and KL-S2BL. It should be noted that the
improvement is also dependent on the available portion of the logged known-reward dataset, denoted
as ρ. For example, it is observed that in the majority of cases, when we have access to a relatively
minor segment of the logged known-reward dataset (e.g., ρ = 0.02), the performance of WCE-S2BL
is superior. This superior performance is particularly evident within the FMNIST and CIFAR-10
dataset for deep model, where WCE-S2BL typically surpasses the performance of other proposed
methods and B-CRM as baseline. In the Linear model at τ = 1, wherein the performance of the
logging policy exceeds 90%, there is an absence of algorithms demonstrating superior performance
relative to the logging policy. It can be due to complexity of feature space and the limitation of linear
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Table 8: Comparison of different algorithms WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK
and Bayesian-CRM (B-CRM) deterministic policy accuracy for FMNIST and CIFAR-10 with linear
model setup and different qualities of logging policy (τ ∈ {1, 5, 10, 20}) and proportions of labeled
data (ρ ∈ {0.02, 0.1, 0.2, 0.5, 1}).

Dataset τ ρ WCE-S2BL KL-S2BL WCE-S2BLK KL-S2BLK B-CRM Logging Policy

FMNIST
1 0.02 84.37± 0.14 71.67± 0.26 78.84± 0.05 74.71± 0.06 64.67± 1.44

91.73
0.1 84.18± 0.00 75.43± 0.04 82.35± 0.05 72.45± 0.01 70.38± 0.09
0.2 83.59± 0.18 71.88± 0.31 83.05± 0.06 74.06± 0.00 70.99± 0.32
0.5 84.14± 0.20 71.03± 0.13 83.85± 0.00 71.05± 1.79 71.76± 0.03
1 84.24± 0.07 69.44± 1.20 − − 72.42± 0.01

5 0.02 83.51± 0.01 19.60± 0.42 75.24± 2.89 19.48± 0.33 64.49± 01.04

53.97
0.1 83.99± 0.02 36.33± 11.60 80.11± 0.09 29.55± 3.72 70.21± 0.07
0.2 83.91± 0.07 54.83± 1.68 82.69± 0.19 51.02± 9.33 71.14± 0.10
0.5 83.91± 0.01 59.49± 0.61 83.47± 0.02 72.13± 0.24 71.86± 0.14
1 83.62± 0.01 73.11± 0.60 − − 72.33± 0.06

10 0.02 82.31± 0.07 26.71± 2.18 77.43± 0.13 18.35± 7.06 66.24± 00.03

20.72
0.1 82.30± 0.04 56.51± 9.65 77.59± 0.34 47.93± 5.15 70.33± 0.33
0.2 83.15± 0.09 67.10± 5.17 81.20± 0.12 60.26± 0.88 71.02± 0.30
0.5 83.27± 0.01 74.97± 0.17 82.85± 0.10 70.02± 1.41 71.72± 0.01
1 83.00± 0.09 73.92± 0.27 − − 72.25± 0.10

20 0.02 47.44± 2.83 32.24± 4.95 51.21± 2.52 21.66± 1.89 63.99± 1.01

10.54
0.1 75.10± 0.09 69.22± 4.09 75.02± 0.04 59.04± 0.59 68.43± 0.33
0.2 77.19± 0.02 74.43± 0.78 77.36± 0.02 73.36± 1.51 69.21± 0.24
0.5 73.89± 0.00 79.04± 0.17 77.5± 0.17 78.92± 0.04 71.17± 0.05
1 78.51± 0.01 74.36± 0.01 − − 71.74± 0.16

CIFAR-10
1 0.02 39.39± 0.15 37.21± 0.15 30.56± 0.61 30.08± 0.27 19.00± 1.77

79.77
0.1 40.18± 0.08 37.74± 0.02 35.76± 0.04 33.42± 0.24 27.72± 0.37
0.2 40.66± 0.29 37.88± 0.58 38.22± 0.01 35.70± 0.25 29.32± 0.35
0.5 40.81± 0.08 38.55± 0.14 39.64± 0.14 36.97± 0.06 30.67± 0.28
1 40.77± 0.01 38.07± 0.42 − − 31.32± 0.36

5 0.02 34.60± 0.06 10.26± 0.37 14.18± 5.92 10.00± 0.00 12.76± 3.07

53.97
0.1 39.91± 0.84 10.90± 1.02 35.08± 0.08 10.40± 0.57 24.50± 1.00
0.2 40.15± 0.06 11.58± 2.09 37.50± 1.09 11.52± 2.15 27.70± 0.47
0.5 39.90± 0.54 31.61± 0.19 38.67± 0.03 20.51± 0.17 29.50± 0.19
1 40.52± 0.07 32.50± 0.84 − − 30.22± 0.81

10 0.02 38.97± 0.03 10.84± 1.18 26.60± 0.89 10.03± 0.05 14.17± 2.87

43.45
0.1 39.04± 0.02 14.70± 5.24 34.42± 0.10 11.54± 2.18 24.17± 3.25
0.2 39.69± 0.05 15.49± 2.23 35.71± 0.73 13.81± 2.74 28.24± 0.20
0.5 39.57± 0.12 28.52± 0.36 38.53± 0.36 20.80± 0.28 29.78± 0.42
1 38.87± 0.23 28.07± 0.92 − − 30.09± 0.47

20 0.02 17.03± 0.08 11.1± 1.56 16.39± 0.68 10.01± 0.02 10.25± 0.07

20.72
0.1 20.46± 0.03 11.54± 1.59 18.87± 0.04 11.46± 1.47 15.28± 1.963
0.2 22.06± 0.17 10.55± 0.65 20.23± 0.02 12.92± 1.03 19.58± 1.10
0.5 23.30± 0.14 14.35± 0.59 21.11± 0.16 16.99± 0.79 24.77± 1.69
1 25.35± 0.12 23.21± 0.19 − − 25.40± 2.03

model. The same phenomena is also observed in CIFAR-10 for linear model. In deep model setup,
we observe that WCE-S2BL for τ = 1 and FMNIST has better performance with respect to other
proposed method.

It is worthwhile to mention that for the logging policy close to uniform, our methods have better
performance in both linear and deep models.

Regarding the performance of WCE-S2BLK and KL-S2BLK with respect to WCE-S2BL and KL-
S2BL, we can observe that in all cases, the logged missing-reward dataset, can help us to achieve a
better performance. From Proposition 5, we expected that the error of estimators of KL divergence
and reverse KL divergence would reduce by using more data samples. Therefore, the logged missing-
reward dataset, can help to minimize the KL divergence and reverse KL divergence with a better
estimation error.

Given that the same logged data were applied in both the linear and deep models, an apparent
observation is the enhanced performance displayed by the deep model for all datasets, i.e., FMNIST,
CIFAR-10, CIFAR-100 and EMNIST.
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Table 9: Comparison of different algorithms WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK and
Bayesian-CRM (B-CRM) deterministic policy accuracy for EMNIST and CIFAR-100 with linear
model setup and different qualities of logging policy (τ ∈ {1, 5, 10, 20}) and proportions of labeled
data (ρ ∈ {0.02, 0.1, 0.2, 0.5, 1}).

Dataset τ ρ WCE-S2BL KL-S2BL WCE-S2BLK KL-S2BLK B-CRM Logging Policy

EMNIST
1 0.02 87.00± 0.01 77.18± 0.37 86.10± 0.06 52.52± 0.68 76.91± 0.12

76.55
0.1 87.52± 0.00 69.79± 0.56 86.92± 0.07 52.80± 1.65 80.84± 0.07
0.2 87.60± 0.01 79.83± 0.50 87.46± 0.04 76.11± 0.69 81.61± 0.08
0.5 87.69± 0.04 76.52± 0.42 87.71± 0.03 77.79± 0.30 82.02± 0.09
1 87.68± 0.02 80.83± 0.73 − − 82.57± 0.01

5 0.02 74.14± 0.02 33.86± 0.38 70.68± 0.03 15.14± 4.23 56.13± 0.42

41.06
0.1 82.10± 2.21 59.92± 0.57 62.42± 0.33 49.00± 1.58 62.79± 0.20
0.2 82.21± 2.60 69.39± 0.37 77.55± 4.55 51.28± 6.94 68.21± 0.22
0.5 84.91± 2.87 85.22± 0.13 76.38± 3.00 68.51± 6.12 73.12± 0.17
1 80.03± 2.03 86.81± 0.05 − − 75.38± 0.25

10 0.02 82.91± 0.01 33.54± 1.24 80.08± 0.04 9.67± 0.38 55.89± 0.05

31.86
0.1 82.95± 0.03 55.02± 0.79 82.40± 0.01 35.56± 0.97 65.94± 0.33
0.2 83.9± 3.19 84.27± 0.07 79.15± 0.04 83.16± 0.31 69.70± 0.17
0.5 88.01± 0.15 86.42± 0.04 85.28± 2.68 86.40± 0.02 73.43± 0.20
1 88.98± 0.35 86.77± 0.01 − − 75.18± 0.19

20 0.02 82.17± 0.04 23.34± 0.40 78.25± 0.16 22.71± 2.07 54.02± 0.93

23.83
0.1 87.72± 0.14 63.02± 2.19 86.89± 0.01 56.22± 2.29 67.20± 0.46
0.2 88.66± 0.06 82.93± 0.25 84.06± 0.05 82.21± 0.32 70.70± 0.10
0.5 89.66± 0.09 84.76± 0.14 89.78± 0.05 84.18± 0.03 73.94± 0.12
1 89.37± 0.17 80.00± 0.10 − − 76.08± 0.05

CIFAR-100
1 0.02 13.59± 0.08 6.81± 2.94 11.92± 0.24 2.59± 2.24 4.23± 0.26

12.32
0.1 13.65± 0.05 7.53± 0.35 12.60± 0.06 4.73± 0.51 8.29± 0.05
0.2 13.73± 0.02 9.07± 0.53 13.48± 0.02 5.73± 0.27 9.45± 0.13
0.5 13.70± 0.02 11.46± 0.33 13.56± 0.10 9.89± 0.43 10.94± 0.03
1 13.75± 0.06 11.99± 0.99 − − 12.32± 0.03

5 0.02 16.38± 0.04 1.85± 1.21 2.18± 0.32 1.0± 0.00 3.56± 0.01

6.01
0.1 16.14± 0.05 2.83± 1.39 15.30± 0.07 1.06± 0.08 6.68± 0.09
0.2 16.63± 0.04 4.67± 0.70 16.13± 0.10 1.90± 0.60 8.46± 0.23
0.5 16.62± 0.04 9.57± 0.48 16.49± 0.06 4.90± 0.34 9.83± 0.09
1 16.90± 0.01 12.24± 0.29 − − 10.86± 0.07

10 0.02 15.43± 0.30 1.25± 0.36 1.17± 0.27 1.0± 0.00 2.99± 0.15

3.4
0.1 15.90± 0.11 2.47± 0.67 10.81± 0.03 0.99± 0.01 6.01± 0.11
0.2 16.21± 0.09 2.84± 0.18 14.53± 0.08 1.44± 0.20 7.62± 0.09
0.5 16.71± 0.06 6.17± 0.60 16.80± 0.04 3.10± 0.56 8.77± 0.06
1 16.87± 0.08 6.04± 1.18 − − 10.25± 0.09

20 0.02 18.65± 0.06 1.00± 0.00 1.36± 0.27 1.17± 0.16 4.16± 0.14

3.22
0.1 18.29± 0.01 1.60± 0.42 12.43± 0.09 1.07± 0.07 7.46± 0.05
0.2 16.99± 0.10 2.90± 0.34 5.31± 0.23 1.06± 0.09 8.80± 0.09
0.5 19.43± 0.02 4.38± 0.21 19.22± 0.05 2.19± 0.70 10.23± 0.15
1 20.36± 0.11 5.96± 1.01 − − 11.43± 0.01

F.9 EFFECT OF LOGGED MISSING-REWARD DATASET AND MINIMIZATION OF THE
REGULARIZATION

We also run experiments to investigate the effect of logged missing-reward dataset size. For this
purpose, we fix the number of logged known-reward dataset to 1000 samples for CIFAR-10 and
1200 for FMNIST. Then, we add 1000, 4000, 9000, 24000 missing-reward samples to the dataset and
compute the accuracy of the parameterized learned policy. Figure 3 shows the accuracy for different
numbers of added missed-reward samples for CIFAR-10 and FMNIST datasets over different ratio of
logged missing-reward samples to logged known-reward samples. We can observe that by increasing
the number of missing-reward logged data samples (the ratio of logged missing-reward samples
to logged known-reward samples with fixed logged known-reward sample size), the deterministic
accuracy is improved. To provide more insight with respect to minimization of regularization,
we run some experiments for deep model, to investigate the performance if we just minimize the
regularization terms, i.e., KL divergence or reverse KL divergence, via the logged known-reward
dataset and missing-reward datasets. The results are shown in Table 12. It can be noted that, under all
circumstances, it is essential to minimize the regularized version of BanditNet for better accuracy.
Therefore, both main loss and regularization are needed for better performance.
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Table 10: Comparison of different algorithms WCE-S2BL, KL-S2BL, WCE-S2BLK, KL-S2BLK
and Bayesian-CRM (B-CRM) deterministic policy accuracy for CIFAR-10 with linear model setup
and different qualities of logging policy (τ ∈ {1, 5, 10, 20}) and proportions of labeled data (ρ ∈
{0.02, 0.1, 0.2, 0.5, 1}).

Dataset τ ρ WCE-S2BL KL-S2BL WCE-S2BLK KL-S2BLK B-CRM Logging Policy

CIFAR-10
1 0.02 62.95± 0.08 28.29± 11.35 9.49± 0.72 10.02± 0.02 55.02± 0.14

52.89
0.1 62.97± 0.27 21.79± 14.50 60.89± 0.13 10.00± 0.00 56.59± 0.26
0.2 62.83± 0.06 26.29± 6.92 62.90± 0.10 14.08± 1.58 57.75± 0.42
0.5 63.49± 0.07 46.15± 1.16 62.89± 0.07 43.25± 1.21 58.81± 0.03
1 63.85± 0.09 44.07± 0.79 − − 59.24± 0.05

5 0.02 56.84± 0.07 15.03± 6.04 51.40± 0.29 13.74± 2.47 44.48± 1.02

40.96
0.1 57.47± 0.28 17.69± 1.21 55.85± 0.19 9.96± 0.06 50.88± 0.32
0.2 58.50± 0.02 18.74± 1.58 58.22± 0.05 13.26± 3.54 52.56± 0.21
0.5 59.47± 0.09 23.60± 2.68 60.03± 0.03 18.06± 2.84 53.44± 0.28
1 60.97± 0.01 34.35± 2.59 − − 54.13± 0.09

10 0.02 54.47± 1.34 11.60± 1.13 41.93± 1.25 10.08± 0.12 44.66± 0.29

36.6
0.1 55.47± 0.29 19.19± 0.19 54.84± 0.02 10.00± 0.00 50.76± 0.25
0.2 56.99± 0.00 22.83± 0.46 56.94± 0.19 13.69± 2.69 52.09± 0.43
0.5 60.27± 0.08 30.11± 3.22 60.77± 0.00 24.60± 2.35 53.19± 0.42
1 61.14± 0.04 40.54± 0.48 − − 53.75± 0.14

20 0.02 56.33± 0.16 13.92± 5.55 46.27± 2.51 10.00± 0.00 45.11± 0.82

41.63
0.1 57.23± 0.00 20.79± 0.03 56.43± 0.18 13.92± 0.52 50.69± 0.43
0.2 57.87± 0.11 16.3± 4.20 57.90± 0.27 11.73± 1.90 51.88± 0.22
0.5 59.05± 0.14 24.16± 0.67 59.10± 0.30 19.23± 0.37 53.08± 0.14
1 61.76± 0.16 33.98± 0.88 − − 53.51± 0.16

Table 11: Comparison of different algorithms WCE-S2BL, KL-S2BL, BanditNet empirical IPS for
KuaiRec with different proportions of labeled data (ρ ∈ {0.02, 0.1, 0.2, 0.5, 1}).

Dataset ρ WCE-S2BL KL-S2BL BanditNet

KuaiRec

0.02 0.73± 0.33 0.88± 0.28 0.74± 0.43
0.1 0.73± 0.27 0.69± 0.19 0.58± 0.09
0.2 0.70± 0.13 0.62± 0.19 0.69± 0.34
0.5 0.76± 0.26 0.72± 0.20 0.66± 0.17
1.0 0.94± 0.20 0.73± 0.12 0.66± 0.23

F.10 CODE

We thank the authors of Aouali et al. (2023) for kindly sharing their code with us. The code for this
study is written in Python. We use Pytorch for the training of our model. The supplementary material
includes a zip file named rl_without_reward.zip with the following files:

• preprocess_raw_dataset_from_model.py: The code to generate the base pre-processed
version of the datasets with raw input values.
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Figure 3: Accuracy of WCE-S2BL and KL-S2BL for different ratio of missing-reward data samples
to known-reward data samples. We fix the number of known-reward data samples to 1000 samples.
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Table 12: Comparison of WCE-S2BL, KL-S2BL deterministic accuracy trained with ρ = 0.1 and
their counterpart without Self- normalized IPS (SNIPS) as main loss in BanditNet. Accuracy on
FMNIST and CIFAR-10 datasets is reported for τ ∈ {1, 5, 10, 20}.

Dataset τ WCE-S2BL WCE-S2BL w/o SNIPS KL-S2BL KL-S2BL w/o SNIPS

FMNIST

1 93.26± 0.05 92.89± 0.09 91.73± 0.08 85.51± 1.20
5 90.79± 0.14 90.69± 0.19 81.65± 0.02 78.15± 1.57

10 89.31± 0.16 88.32± 0.16 80.68± 0.46 74.76± 0.73
20 77.52± 0.63 14.15± 0.50 76.89± 0.39 13.86± 0.95

CIFAR-10

1 83.03± 1.49 83.34± 0.09 84.34± 0.11 64.69± 0.6
5 74.13± 1.43 72.87± 0.76 58.31± 0.52 59.30± 0.56

10 69.81± 0.87 66.75± 0.91 43.00± 0.73 42.92± 0.44
20 33.61± 0.58 28.40± 0.07 30.67± 1.35 10.89± 0.71

• preprocess_feature_dataset_from_model.py: The code to generate the base pre-processed
version of the datasets with pre-trained features.

• The data folder consists of any potentially generated bandit dataset (which can be generated
by running the scripts in code).

• The code folder contains the scripts and codes written for the experiments.
– requirements.txt contains the Python libraries required to reproduce our results.
– readme.md includes the syntax of different commands in the code.
– accs: A folder containing the result reports of different experiments.
– saved_logs: Training log for different experiments.
– data.py & data_rec.py code to load data for image datasets and KuaiRec dataset

respectively.
– config: Contains different configuration files for different setups.
– runs: Folder containing different batch running scripts.
– train_logging_policy.py: Script to train the logging policy.
– create_bandit_dataset.py: Code for the generation of the bandit dataset using the

logging policy.
– main_semi_ot.py: Main training code which implements different methods proposed

by our paper.
– main_semi_rec.py: Main training code for KuaiRec dataset.
– create_kuairec_dataset.ipynb: Code for preparing and preprocessing KuaiRec

dataset.

To use this code, the user needs to first download the CIFAR-10 dataset from this Link and make sure
that the data_batch files are inside the folder data/cifar/. Then, install the Python libraries listed in
the file requirements.txt. Then run the preprocess scripts to convert the datasets to the appropriate
format. For the FashionMNIST dataset, no manual download is required.

All our experiments were run using 3 servers, each one with a GTX 3090 GPU and 32GB of RAM,

G TRUE RISK REGULARIZATION

We can choose the KL divergence instead of the square root of the KL divergence as a regularizer for
IPS estimator minimization. In this section, we study the true risk regularization using KL divergence
KL(πθ(A|X)∥π0(A|X)), as follows:

min
πθ

R(πθ) + λKL(πθ(A|X)∥π0(A|X)), λ ≥ 0. (75)

It is possible to provide the optimal solution to regularized minimization (75).
Theorem 2. Considering the true risk minimization with KL divergence regularization,

min
πθ

R(πθ) + λKL(πθ(A|X)∥π0(A|X)), λ ≥ 0, (76)
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the optimal parameterized policy is:

π⋆
θ(A = a|X = x) =

π0(A = a|X = x)e−
1
λ r(a,x)

Eπ0
[e−

1
λ r(a,x)]

(77)

Proof. The minimization problem (75) can be written as follows:

min
πθ

EPX
[Eπθ(A|X)[r(A,X)]] + λKL(πθ(A|X)∥π0(A|X)), λ ≥ 0 (78)

Using the same approach by Zhang (2006); Aminian et al. (2021) and considering 1
λ as the inverse

temperature, the final result holds.

The optimal parameterized policy under KL divergence regularization, i.e.,

π⋆
θ(A = a|X = x) =

π0(A = a|X = x)e−
1
λ r(a,x)

Eπ0
[e−

1
λ r(a,x)]

(79)

provides the following insights:

• The optimal parameterized policy, π⋆
θ(A|X), is a stochastic policy.

• The optimal parameterized policy is invariant with respect to constant shifts in the reward
function.

• For asymptotic condition, i.e., λ→ 0, the optimal parameterized policy will be deterministic
policy.

H FURTHER DISCUSSION

H.1 Q-LEARNING APPROACH

Inspired by Pseudo-labeling approach in semi-supervised learning, we can propose Q-learning
approach (reward-function estimation). In this approach, we first estimate the reward function using a
logged known-reward dataset. Using the model for reward function, we assign pseudo-rewards to the
logged missing-reward dataset. Then we train the final model via truncated IPS estimator using both
logged known-reward and Pseudo-reward datasets.

For experiments, we employed a logistic regression with a sigmoid activation function and a linear
layer. Note that, in this scenario the rewards are binary. Second, we generate pseudo-rewards by
applying the reward function estimator to the logged missing-reward dataset. Finally, we train the
truncated IPS estimator with both the logged known-reward dataset and the pseudo-reward dataset.

In Table 13, we present the results (accuracy) of our algorithms (WCE-S2BL and KL-S2BL) and
Q-learning under the EMNIST dataset with varying ratios of missing-reward data to known-reward
data.

As we can observe, the performance of Q-learning approach in EMNIST is worse than our algorithms,
WCE-S2BL and KL-S2BL. Note that the Pseudo-reward for logged missing-reward samples be
different from true reward. Therefore, we have some noise in reward and the (truncated) IPS
estimator underperforms under noisy-rewards, Wang et al. (2017). It is interesting to explore other
estimator which are robust to noise in rewards and can improve the Q-learning approach under both
known-reward and missing-reward datasets.

H.2 LOGGED MISSING-REWARD DATASET AND REGULARIZATION ESTIMATORS

We conducted experiments on WCE-S2BL and KL-S2BL by utilizing the logged known-reward
dataset for regularization, denoting these algorithms as WCE-S2BLK and KL-S2BLK, respectively,
Appendix F. In these WCE-S2BLK and KL-S2BLK variations, our focus is directed towards mini-
mizing the (estimated) KL divergence or reverse-KL divergence solely via the logged known-reward
dataset.
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Table 13: Comparison of different algorithms WCE-S2BL, KL-S2BL and Q-learning for EMNIST
with linear model setup and different qualities of logging policy (τ ∈ {1, 5, 10, 20}) and proportions
of labeled data (ρ ∈ {0.02, 0.1, 0.2, 0.5, 1}).

Dataset τ ρ WCE-S2BL KL-S2BL Q-Learning Logging Policy

EMNIST 1

0.02 87.00± 0.01 77.18± 0.37 26.16± 1.30

76.55
0.1 87.52± 0.00 69.79± 0.56 22.34± 0.48
0.2 87.60± 0.01 79.83± 0.50 21.99± 0.93
0.5 87.69± 0.04 76.52± 0.42 11.17± 0.25
1.0 87.68± 0.02 80.83± 0.73 10.00± 0.00

5

0.02 74.14± 0.02 33.86± 0.38 10.0± 0.00

41.06
0.1 82.10± 2.21 59.92± 0.57 21.37± 4.35
0.2 82.21± 2.60 69.39± 0.37 12.74± 3.87
0.5 84.91± 2.87 85.22± 0.13 59.80± 5.12
1.0 80.03± 2.03 86.81± 0.05 81.08± 7.16

10

0.02 82.91± 0.01 33.54± 1.24 30.43± 4.50

31.86
0.1 82.95± 0.03 55.02± 0.79 22.2± 8.80
0.2 83.90± 3.19 84.27± 0.07 24.14± 10.54
0.5 88.01± 0.15 86.42± 0.04 59.22± 0.59
1.0 88.98± 0.35 86.77± 0.01 82.12± 3.56

20

0.02 82.17± 0.04 23.34± 0.40 27.97± 2.03

23.83
0.1 87.72± 0.14 63.02± 2.19 26.76± 0.18
0.2 88.66± 0.06 82.93± 0.25 36.71± 4.00
0.5 89.66± 0.09 84.76± 0.14 50.48± 3.67
1.0 89.37± 0.17 80.00± 0.10 84.46± 3.17

However, our findings indicate that WCE-S2BLK and KL-S2BLK algorithms demonstrate inferior
performance compared to WCE-S2BL and KL-S2BL algorithms, which incorporate the logged
missing-reward dataset in addition to minimizing the estimation of KL divergence (or reverse-KL
divergence). This suggests that the inclusion of the logged missing-reward dataset is beneficial for
optimizing KL divergence (or reverse-KL divergence), leading to a more accurate estimation and
reduced variance of the IPS estimator.

H.3 REGRET UPPER BOUND

Using our current theoretical results, we can derive an upper bound on regret, i.e., |R(π⋆
θ)−R(πr

θ)|,
where the solution to our regularized risk minimization, denoted by πr

θ .

Theorem 3. Suppose that the reward function takes values in [−1, 0]. Then for any δ ∈ (0, 1),
the following bound on the regret of πr

θ(A|X) with the truncated IPS estimator (with parameter
ν ∈ (0, 0.5]) holds with probability at least (1− 2δ) under distribution PX ⊗ π0(A|X),

|R(π⋆
θ)−R(πr

θ)| ≤ R̂ν(π
⋆
θ , S)− R̂ν(π

r
θ , S) +

4 log(1/δ)

3νn
+

√
2 log(1/δ)M

n
,

where M = min
(
KL(π⋆

θ∥π0),KL(π0∥π⋆
θ)
)
+min

(
KL(πr

θ∥π0),KL(π0∥πr
θ)
)
.

Proof. In Theorem 1, our upper bound holds on true risks of any parameterized policy πθ(A|X).
Therefore, it also holds for optimal π⋆

θ and Therefore, using the following decomposition, we have

R(π⋆
θ)−R(πr

θ) = I1 + I2 + I3,

where
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I1 := R(π⋆
θ)− R̂ν(π

⋆
θ , S),

I2 := R̂ν(π
⋆
θ , S)− R̂ν(π

r
θ , S),

I3 := R̂ν(π
r
θ , S)−R(πr

θ).

Note that we have,

|R(π⋆
θ)−R(πr

θ)| ≤ |I1|+ I2 + |I3|,

where we can apply Theorem 1 on |I1| and |I3|, to provide an upper bound. Therefore, the following
upper bound holds on regret of our regularized algorithm with probability at least 1− 2δ,

|R(π⋆
θ)−R(πr

θ)| ≤ R̂ν(π
⋆
θ , S)− R̂ν(π

r
θ , S) +

4 log(1/δ)

3νn
+

√
2 log(1/δ)M

n
,

where M = min
(
KL(π⋆

θ∥π0),KL(π0∥π⋆
θ)
)
+ min

(
KL(πr

θ∥π0),KL(π0∥πr
θ)
)
. Therefore, our

results can be applied to provide an upper bound on the regret of our algorithm.

We can observe from Theorem 3, where the upper bound on the regret depends on KL divergence or
reverse-KL divergence between the pair (π⋆

θ , π0). Therefore, for a bounded upper bound on regret of
our algorithms, we need to have absolutely continuous assumption between these two distributions.
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