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ABSTRACT

Uncertainty Quantification (UQ) research has primarily focused on closed-book
factual question answering (QA), while contextual QA remains unexplored, despite
its importance in real-world applications. In this work, we focus on UQ for the
contextual QA task and propose a theoretically grounded approach to quantify epis-
temic uncertainty. We begin by introducing a task-agnostic, token-level uncertainty
measure defined as the cross-entropy between the predictive distribution of the
given model and the unknown true distribution. By decomposing this measure,
we isolate the epistemic component and approximate the true distribution by a
perfectly prompted, idealized model. We then derive an upper bound for epistemic
uncertainty and show that it can be interpreted as semantic feature gaps in the given
model’s hidden representations relative to the ideal model. We further apply this
generic framework to the contextual QA task and hypothesize that three features
approximate this gap: context-reliance (using the provided context rather than para-
metric knowledge), context comprehension (extracting relevant information from
context), and honesty (avoiding intentional lies). Using a top-down interpretability
approach, we extract these features by using only a small number of labeled samples
and ensemble them to form a robust uncertainty score. Experiments on multiple
QA benchmarks in both in-distribution and out-of-distribution settings show that
our method substantially outperforms state-of-the-art unsupervised (sampling-free
and sampling-based) and supervised UQ methods, achieving up to a 13-point PRR
improvement while incurring a negligible inference overhead.

1 INTRODUCTION

Despite their impressive performance across a wide range of real-world tasks, Large Language Models
(LLMs) still suffer from hallucinations and incorrect generations, which limit their deployment in
high-stakes domains such as medicine and finance (Bengio et al., 2025; Ravi et al., 2024). Uncertainty
Quantification (UQ) has emerged as a key tool for detecting such errors by only using the model
itself, such as output consistency, log-probabilities, or internal activations. Recent works (Bakman
et al., 2025; Vashurin et al., 2025) have demonstrated that UQ methods exhibit strong empirical
performance across a variety of evaluation benchmarks.

While these results are encouraging, most existing works (Yaldiz et al., 2025a; Lin et al., 2024;
Kuhn et al., 2023; Duan et al., 2024) design and evaluate their methods primarily on closed-book
factual question answering (QA) tasks, which test the success of UQ methods on the model’s memory
abilities. Although this direction is important, another critical ability of LLMs that deserves more
attention from a UQ perspective is their contextual capabilities. With the increasing popularity
of Retrieval-Augmented Generation (RAG) in many LLM applications, detecting errors in model
generations conditioned on retrieved context has become more important. However, relatively little
effort has been devoted to this direction (Soudani et al., 2025; Fadeeva et al., 2025; Perez-Beltrachini
& Lapata, 2025), where the proposed approaches often rely on heuristics rather than grounded theory.

Motivated by these observations, we focus on developing a theoretically grounded UQ method for
contextual QA. In this setting, the relevant context is either already retrieved or directly provided by
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Figure 1: Derivation steps for epistemic uncertainty as feature gaps. Visualization of Section 3.

the user, and a context-relevant question is posed to the model. Our goal is to quantify the model’s
uncertainty for a given input as a means to assess whether its output is likely to be correct/reliable.

To quantify the uncertainty of an LLM, we first propose an uncertainty metric defined as the
cross-entropy between the true predictive distribution and the given model’s distribution, inspired
by Schweighofer et al. (2024). Our approach introduces a key modification to their formulation by
reversing the position of the true and given model distributions within the cross-entropy, and adapting
it specifically for LLMs. We further decompose the total uncertainty into two components: epistemic
and aleatoric uncertainty. In our problem setup, epistemic uncertainty, the model’s lack of ability or
knowledge to correctly and reliably answer a given question–context pair, is our main interest. After
approximating the true predictive distribution with a perfectly prompted hypothetical ideal model,
we show that epistemic uncertainty can be bounded by the distance between the last layer hidden
state of the given model and the ideal hypothetical model. We further show that this distance can be
expressed as the sum of distances over linearly independent model features. Importantly, this result
generalizes to any LLM task and is visualized in Figure 1. To approximate this distance specifically
in contextual question answering task, we hypothesize three desirable features that capture how far
the given model is from the ideal model: 1) Context reliancy: the model should ground its answer in
the provided context rather than relying on its parametric knowledge; 2) Context comprehension:
the model should be able to extract and integrate relevant information from the context to answer the
question accurately. 3) Honesty: the model should avoid intentionally outputting a wrong answer.

Following a top-down interpretability approach similar to Zou et al. (2025), we extract the aforemen-
tioned high-level semantic features using a small set of labeled samples to identify the optimal layer
for feature extraction. At test time, we combine the activation amount of three features to quantify
epistemic uncertainty by computing only three dot products between the model’s hidden state and
the corresponding feature vectors, one per feature, without requiring any sampling. Our method
is highly efficient and achieves substantial performance gains: it outperforms SOTA unsupervised,
sampling-free, and sampling-based approaches by up to 16 PRR points. Furthermore, with the same
amount of labeled data, it surpasses strong supervised baselines such as SAPLMA (Azaria & Mitchell,
2023) and LookbackLens (Chuang et al., 2024) by up to 13 PRR points, while exhibiting significantly
better out-of-distribution generalization compared to SAPLMA, which is an important and desirable
property for supervised UQ methods. The overview of our proposed method is visualized in Figure 1.

2 PRELIMINARIES

2.1 ALEATORIC AND EPISTEMIC UNCERTAINTY

The total uncertainty of a model is typically decomposed into two components: epistemic and
aleatoric uncertainty (Hüllermeier & Waegeman, 2021). Epistemic uncertainty arises from a lack of
knowledge. In the context of LLMs, when faced with a difficult question that the model does not
know the answer to, its output distribution tends to be more uniform, which indicates uncertainty
about which answer is correct. This uncertainty stems from the model’s inability or lack of knowledge
to provide the correct answer, and is therefore classified as epistemic. In contrast, aleatoric (or data)
uncertainty captures variability inherent to the task or data, rather than limitations in the model’s
knowledge. For example, a model may be epistemically confident, knowing the answer, but still
produce multiple valid responses due to ambiguity in the question or the presence of multiple equally
correct phrasings. This variability arises from the nature of the query and the language itself, not
from the model’s lack of ability. In the next section, we discuss how existing works conceptualize
UQ in LLMs, and how these concepts relate to epistemic and aleatoric uncertainty.
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2.2 UNCERTAINTY QUANTIFICATION OF LLMS

In the LLM literature, uncertainty quantification is typically used to identify incorrect or unreliable
answers generated for a given query. Unlike the well-established frameworks in classification
tasks (Gal & Ghahramani, 2016), there is no widely accepted UQ framework for generative LLMs
(Bakman et al., 2025; Vashurin et al., 2025). With a few exceptions, most approaches rely on
heuristic-based methods that estimate the correctness of a model’s (greedy or sampled) generation.
UQ methods only use the model itself to find such a score by using signals such as token probabilities
(Farquhar et al., 2024), internal representations (Chen et al., 2024), or output consistencies (Lin
et al., 2024). Although rarely stated explicitly, the underlying objective in many of these works
is to better quantify epistemic uncertainty, i.e., to produce an uncertainty score that quantifies the
model’s (lack of) certainty in the correctness of its own generation. The performance of UQ methods
is typically evaluated using threshold-free metrics such as the Area Under the ROC Curve (AUROC)
and the Prediction–Rejection Ratio (PRR) to measure which assess how well uncertainty scores
distinguish between correct and incorrect outputs. A smaller number of studies (Abbasi-Yadkori et al.,
2024; Aichberger et al., 2024) take a more theoretically grounded approach, explicitly distinguishing
between epistemic and aleatoric uncertainty. In this work, we also aim to separate epistemic and
aleatoric uncertainty through our proposed UQ formulation. In the following section, we introduce
our notation and describe the problem setup.

2.3 PROBLEM SETUP AND NOTATION

We denote the context sequence as c, and the question together with any relevant instructions as
x. The probability distribution over the token at position t produced by the model, conditioned on
the context c, query x, and previously generated tokens, is given by: P (yt | y<t,x, c, θ), where
y<t denotes the sequence of tokens generated before timestep t, and θ represents the given model
parameters. Our objective is to find an uncertainty quantification method U(x, c,y) ∈ R that is
negatively correlated with the correctness of the generated sequence y. More formally, we aim
to maximize E

[
1U(x1,c1,y1)<U(x2,c2,y2) · 1y1∈Y1 ∧ y2 /∈Y2

]
, where (x1,y1), (x2,y2) ∼ Dtest, with

Dtest denoting the evaluation dataset obtained by getting the most probable (greedy) output for a
context-query pair, and Yi representing the set of acceptable (correct) generations for instance i. This
expectation enforces a ranking consistency: correct outputs should receive lower uncertainty scores
than incorrect outputs, making high-uncertainty scored generations more likely to be wrong.

3 BOUNDING EPISTEMIC UNCERTAINTY VIA FEATURE GAPS

3.1 UNCERTAINTY QUANTIFICATION METRIC

Before introducing our uncertainty quantification metric for LLMs, we define the notion of a true
(but unknown) token generation distribution, denoted by P ∗(· | x). This distribution represents
the behavior of an ideal model that is free from epistemic uncertainty, i.e., uncertainty arising from
incomplete knowledge due to limited data, suboptimal architecture choices, imperfect training, or
insufficient instruction tuning. The concept of such epistemically optimal distributions has also been
explored in recent works (Kotelevskii et al., 2025; Abbasi-Yadkori et al., 2024).

Given the true distribution P ∗(· | x) and given model’s conditional distribution P (· | x, θ), we define
the total uncertainty of a token yt at generation step t as follows:
Definition 1 (Total Uncertainty). Let V denote the token vocabulary. The total uncertainty (TU)
of the model θ for generating token yt at timestep t, conditioned on the input x, is defined as the
cross-entropy between the true distribution and the model’s predictive distribution:

TU = −
∑
yt∈V

P ∗(yt | y<t,x) · lnP (yt | y<t,x, θ),

where y<t denotes the previously sampled tokens up to timestep t.

This definition allows us to decompose total uncertainty into aleatoric (data) and epistemic uncertainty
with an intuitive interpretation. The total uncertainty can be expressed as the sum of two terms:

TU = H (P ∗(yt | y<t,x))︸ ︷︷ ︸
Aleatoric (Data) Uncertainty

+KL (P ∗(yt | y<t,x) ∥P (yt | y<t,x, θ))︸ ︷︷ ︸
Epistemic Uncertainty

, (1)
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The first term, H(P ∗(yt | y<t,x)), is the entropy of the true distribution, which corresponds to
aleatoric (data) uncertainty. Since the true distribution P ∗(y | x) has no epistemic uncertainty, any
uncertainty in its predictions must arise from inherent randomness in the language modeling data
distribution, (x,y) ∼ D. The second term, KL(P ∗(yt | y<t,x) ∥P (yt | y<t,x, θ)), measures the
divergence between the true distribution and the predictive distribution of the actual model. This
gap captures epistemic uncertainty, uncertainty arising from the actual model’s lack of knowledge or
ability compared to the epistemically optimal distribution. Lastly, Schweighofer et al. (2024) recently
proposed a UQ metric for classification tasks that instead swaps the positions of P (yt | y<t,x, θ)
and P ∗(yt | y<t,x). We discuss the differences between our proposed formulation and theirs, along
with the motivation for our choice, in Appendix A.1.

3.2 STEP 1: APPROXIMATING THE TRUE DISTRIBUTION

The true predictive distribution P ∗(· | x) is unknown and intractable, which makes exact computation
of epistemic uncertainty infeasible. Therefore, we approximate P ∗(· | x) through our given model θ.
Specifically, we approximate the ideal model as the actual model that has been perfectly instructed
or prompted so that its output distribution is as close as possible to P ∗(· | x). Since appending an
instruction or prompt can be theoretically viewed as a form of fine-tuning, as shown by many works
(Dherin et al., 2025; Akyurek et al., 2023), this approximation corresponds to obtaining the closest
possible distribution to P ∗(· | x) by training the given model in token space. Lastly, prompting is
powerful enough to be Turing-complete: for any computable function, there exists a Transformer and
a corresponding prompt that computes it (Qiu et al., 2025).

Formally, we approximate the true distribution P ∗(· | x) by P (· | x, s∗, θ), where s∗ =
(s1, s2, . . . , sn) is the optimal token sequence that minimizes the following objective:

s∗ := argmin
s

Ex∼D [KL (P ∗(· | x) ∥P (· | x, s, θ))] . (2)

where D is the data distribution of language modeling task. This objective corresponds to finding
the optimal pre-sequence such that the resulting output distribution of the model θ is as close as
possible to the true distribution P ∗(· | x), in expectation over the data distribution D. We refer to the
approximated model P (· | x, s∗, θ) ≈ P ∗(· | x) as the ideal model. For notational simplicity, we
denote it by P (· | x, θ∗) := P (· | x, s∗, θ), since the output distribution of the optimally prompted
model can be considered as the behavior of an ideal model θ∗. These two models, θ and θ∗, share the
same architecture and weights, but their activations differ due to differences in prompting.

3.3 STEP 2: DERIVING AN UPPER BOUND FOR EPISTEMIC UNCERTAINTY

Finding the optimal sequence s∗ requires an exponential enumeration over all possible token se-
quences, which is computationally infeasible. However, we can derive an upper bound on epistemic
uncertainty in terms of the model’s internal representations.
Lemma 1 (Epistemic Uncertainty Upper Bound). For any token yt,

KL(P (yt | y<t,x, θ
∗) ∥P (yt | y<t,x, θ)) ≤ 2∥W∥ ∥h∗

t − ht∥,

where h∗
t ∈ Rd and ht ∈ Rd are the last-layer hidden states of the ideal and actual models with

dimension of d, respectively, and W ∈ RV×d is the vocabulary projection matrix at the last layer.

The proof of Lemma 1 begins by expressing the probability distributions in terms of the model’s
internal representations and leveraging the fact that both models share the same vocabulary projection
matrix. The complete derivation is provided in Appendix A.2. Lemma 1 implies that epistemic
uncertainty is bounded by the norm of the difference between the last-layer hidden states, scaled by
2∥W∥. Since 2∥W∥ is fixed and we are interested in the relative magnitude of uncertainty rather
than its absolute value, estimating this hidden-state distance is sufficient for our purposes.

3.4 STEP 3: INTERPRETING THE UPPER BOUND AS FEATURE GAPS

Although we have bounded epistemic uncertainty in terms of the distance to the last-layer hidden
state of the ideal model, the hidden state of θ∗ remains unknown. To better understand this hidden
state difference, we leverage one of the key hypotheses in interpretability in language models.
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Figure 2: Approximating the bound in contextual QA as an ensemble of three features.

Hypothesis 1 (Linear Representation (Informal)). High-level semantic features are encoded approxi-
mately linearly in the activation space of language models, often as single directions.

This hypothesis is broadly accepted and supported by substantial empirical evidence from prior
work (Park et al., 2024; Nanda et al., 2023; Templeton et al., 2024). As an example, we can identify a
vector in intermediate layers that corresponds to a feature such as “toxicity”: the activation along this
direction increases when the model produces toxic outputs, and decreases otherwise.

Let ht and h∗
t denote the d-dimensional last layer hidden states of the actual and ideal models,

respectively. Due to residual connections, both ht and h∗
t can be written as the sum of layer outputs:

ht =
∑L

l=1 h
l
t and h∗

t =
∑L

l=1 h
l∗
t , where hl

t is the output of layer l at timestep t. For a desired
decomposition at layer l, let F l be a set of feature vectors vli ∈ Rd, where |F l| ≥ d and rank(F l) = d.
Then, the hidden states can be expressed as: ht =

∑L
l=1

∑
vl
i∈Fl αl

iv
l
i and h∗

t =
∑L

l=1

∑
vl
i∈Fl βl

iv
l
i,

where αl
i and βl

i are the coefficients for the actual and ideal models, respectively. For simplicity, let
F = F1 ∪ F2 ∪ · · · ∪ FL. Then we can write: ht =

∑
vi∈F αivi and h∗

t =
∑

vi∈F βivi.

The norm of the difference between the hidden states then becomes:

∥h∗
t − ht∥ =

∥∥∥∥∥∑
vi∈F

(βi − αi)vi

∥∥∥∥∥ . (3)

Note that the above derivation holds for any language model with the same architecture without
the linear representation hypothesis. However, the linear representation hypothesis provides a
crucial interpretability advantage: it allows us to decompose each layer into semantically meaningful
features F . Since the actual model and the ideal model differ only by the input prompt, sharing the
same architecture and weights, their feature vectors vi correspond to the same semantic concepts.
This alignment enables us to interpret the error term in Equation 3 as a collection of feature gaps,
(βi − αi), that quantify how the actual model deviates from the ideal model along interpretable
semantic directions. This whole introduced UQ framework is visualized in Figure 1

Remark 1. All derivations up to this point have been generic to any language modeling task, such
as factual QA, mathematics, coding, or contextual QA.

4 COMPUTING EPISTEMIC UNCERTAINTY IN CONTEXTUAL QA

4.1 SELECTING A REPRESENTATIVE FEATURE SET FOR CONTEXTUAL QA

Since the error term in Equation 3 may consist of arbitrarily many feature directions vi, computing
the bound exactly is infeasible. We therefore hypothesize a small set of features that are most likely to
contribute to the gap between the actual and ideal models in the contextual QA setting. For example,
selecting a syntactic feature would not be meaningful, as modern LLMs already exhibit strong mastery
of grammar and sentence structure (OpenAI, 2023). Thus, the potential gap along such dimensions is
expected to be negligible. Instead, we focus on the features where current LLMs are more likely to
deviate from the ideal model. Intuitively, if the model grounds its answer in the provided context,
fully comprehends the contextual information, and outputs its understanding honestly, then it can
behave similarly to the ideal model. Following this reasoning, we hypothesize that three high-level
semantic features can approximate the gap in Equation 3: The first is Context Reliance: in contextual
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QA, the model’s parametric knowledge may contradict the information contained in the provided
context (Longpre et al., 2021). Models often default to their internal knowledge (which may be
outdated or incorrect), resulting in unreliable answers. The second is Context Comprehension:
in many contextual QA tasks, the answer may not be explicitly stated in the context but must be
extracted or inferred from it. The third is Honesty: language models may sometimes generate false
information deliberately. An example of this is LLM sycophancy (Sharma et al., 2025), where the
model fabricates answers to align with user expectations rather than admitting ignorance. Now, our
approximation becomes:

∥∥∑
vi∈F (βi − αi)vi

∥∥ ≈
∥∥∑

vi∈H(βi − αi)vi
∥∥ where F denotes the

full set of latent features and H is the restricted set consisting of the three features defined above.

4.2 FEATURE EXTRACTION AND ENSEMBLING

Feature Extraction. To extract these three features, we adopt a top-down interpretability approach
similar to Zou et al. (2025), which requires only a small amount of labeled data. Suppose we have
access to a set of T labeled samples, each consisting of a question–instruction pair x and a context c.
We first obtain the greedy answer y from the model under the standard instruction. For each feature,
we then construct contrastive instruction–input pairs designed to isolate that feature. Concretely, this
involves two forward passes with carefully designed prompts. For example, to capture the context
reliance feature, we run one forward pass with the instruction “look at the context” and another with
“use your own knowledge”. This difference is expected to capture the “context-parametric knowledge
reliance” direction in representation space. After repeating this procedure over the dataset, we find
the strongest direction through PCA, which corresponds to the desired feature vector. Formally:

ml
i = θl(yi,xi + “look at the context”, ci)− θl(yi,xi + “use your own knowledge”, ci), (4)

M l = [ml
1,m

l
2, . . . ,m

l
T ], (5)

vl = PCA(M l) (6)

where θl denotes the hidden representation at layer l. We follow a similar procedure for the other two
features. For context comprehension, we perform one pass with the original context c and another
with c+ "{ ground truth }". This ground truth append simulates the model having already resolved
the relevant information from the context, thereby isolating the context comprehension feature. For
honesty, we contrast the instructions “be honest” versus “be a liar.”

Selecting Optimal Layers and Ensembling. We use the same dataset employed for feature extraction
to select the most informative layer for each feature. For each sample and each layer l, we compute
the dot product between the hidden state hl (averaged across all tokens in y) and the extracted feature
vector vl: sl = hl⊤vl. We then measure the correlation between these scores [sl1, s

l
2, . . . , s

l
T ] and the

generation correctness using PRR. The layer with the highest PRR is selected as the feature layer.

To ensemble the three features, we need to estimate the coefficients βi. In principle, any function
could be used for this estimation. For simplicity, we define βi = wiαi, i.e., a scaled version of
αi, where the scaling factors wi are trained to minimize the cross-entropy error with respect to the
correctness of a generation. This formulation reduces the learning problem to training only three
parameters (w1, w2, w3), which is why only a small number of labeled samples is sufficient. After
learning the weights, the final ensemble reduces to a linear combination of all three features:∑

vi∈H
(βi − αi)vi =

∑
vi∈H

(wi − 1)αivi. (7)

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our approach on three contextual question answering datasets: (i)
Qasper (Dasigi et al., 2021), a dataset for question answering over scientific research papers; (ii)
HotpotQA (Yang et al., 2018), a Wikipedia-based dataset consisting of multi-hop question–answer
pairs with supporting passages provided; and (iii) NarrativeQA (Kočiský et al., 2018), a dataset
of stories and associated questions designed to test reading comprehension, particularly over long
documents. We use 1000 samples from the each dataset.

Models. We use three models: LLaMA-3.1-8B, Mistral-v0.3-7B, and Qwen2.5-7b.
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Performance Metrics. We evaluate uncertainty quantification methods using two widely adopted
metrics (Vashurin et al., 2025): Area Under the Receiver Operating Characteristic Curve (AUROC)
and Prediction–Rejection Ratio (PRR). AUROC measures a method’s ability to discriminate between
correct and incorrect outputs across all possible thresholds, with values ranging from 0.5 (random
performance) to 1.0 (perfect discrimination). PRR quantifies the relative precision gain achieved by
rejecting low-confidence predictions, ranging from 0.0 (random rejection) to 1.0 (perfect rejection).

Correctness Measure. As our tasks involve free-form generation, model outputs may be semantically
correct even when they do not exactly match the reference answers lexically. To account for this,
we adopt the LLM-as-a-judge paradigm, following prior work (Bakman et al., 2025; Farquhar et al.,
2024). Concretely, we prompt a language model (Gemini-2.5-flash) with the question, the
generated answer, the reference answer, and the context, and ask it to output a correctness judgment.

Baselines. We compare our method against several widely used unsupervised and supervised UQ
methods by using TruthTorchLM library (Yaldiz et al., 2025b). Specifically, we include: Perplex-
ity (Malinin & Gales, 2021), which computes the average negative log-probability of the greedy
output; Entropy (Malinin & Gales, 2021), which samples multiple generations and averages their
log-probabilities; Semantic Entropy (Farquhar et al., 2024), which samples generations, clusters
semantically equivalent outputs, and then computes entropy over the clusters; MARS (Bakman et al.,
2024), which weights token probabilities by their contribution to meaning; SAR (Duan et al., 2024),
which incorporates relevance scores of sampled generations into the entropy calculation and weights
tokens by their relevancy to the sentence; Mini-Check (Tang et al., 2024), which trains a small
model to check logical entailment between the generation and the context;LLM-Judge (Zheng et al.,
2023), which queries an LLM directly to verify whether a generation is supported by the provided
context; PTrue Kadavath et al. (2022a) which asks the model’s generation corretness and get the
probability of token "True" at the end; Kernel Language Entropy (KLE) (Nikitin et al., 2024)
and Eccentricity (Lin et al., 2024), both of which sample multiple generations, compute pairwise
similarities, and apply linear-algebraic operations to quantify uncertainty; SAPLMA (Azaria &
Mitchell, 2023), a supervised approach that trains a classifier on the internal hidden states of the
model to predict correctness; Average Token-level Mahalanobis Distances (ATMD) Vazhentsev
et al. (2025), which calculates the Mahalanobis distance between generated tokens and the average
of correct output tokens in the training set, then train a classifier which takes distances as input and
predict the correctnes of the generation; LookBackLens (Chuang et al., 2024), another supervised
method that leverages attention ratios between generated tokens and context tokens. For all methods
requiring sampling, we generate 5 samples per input. For all supervised methods, we use a total of
256 labeled examples. Additional experiments in lower data regimes (64 and 128 labeled samples)
are presented in Section 5.5.

5.2 RESULTS

The results of our method compared to the baselines are presented in Table 1. Our approach achieves
consistently superior performance (first or second rank) in both PRR and AUROC across all datasets
and models, with the sole exception of Mistral-7B on NarrativeQA. We attribute this drop in
performance to the limited context window of Mistral-7B (32k tokens) relative to the long
contexts in NarrativeQA (13.3% of samples exceed 32k tokens). As a result, the model may fail to
produce reliable feature activations for such long contexts, which lie outside its effective training
distribution (potentially even shorter than the theoretical 32k limit (Hsieh et al., 2024)). Moreover,
our method requires neither sampling nor additional forward passes, which makes it substantially
faster than sampling-based approaches such as Semantic Entropy, KLE, and Eccentricity. Lastly,
LookBackLens could only be evaluated on the HotpotQA dataset. For the other datasets (Qasper and
NarrativeQA), extracting all attention weights was computationally infeasible with the HuggingFace
implementation/interface on 8× 40GB NVIDIA A100 GPUs, as it resulted in out-of-memory errors.

5.3 OUT-OF-DISTRIBUTION EVALUATION

A key challenge for supervised UQ methods is their performance under distribution shift, i.e., when
the test distribution differs from the training data. To evaluate robustness, we evaluate two supervised
methods, our method and SAPLMA, under out-of-distribution (OOD) settings. For each of the three
datasets, we construct a 3× 3 train-test matrix, where we train on one dataset in a pair and test on
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the other. The results, shown in Figure 3, demonstrate that our method is more robust to distribution
shifts compared to SAPLMA. This indicates that our feature-based formulation generalizes more
effectively across domains, which provides more reliable uncertainty estimates compared to direct
supervised training on model activations.

Model Category UQ Method Qasper HotpotQA NarrativeQA
PRR AUROC PRR AUROC PRR AUROC

LLama3.1 - 8B

No Sampling

Unsupervised

Perplexity 47.7 68.8 50.8 69.9 57.9 72.6
MARS 48.3 68.4 46.6 67.9 56.4 72.2

MiniCheck 48.5 68.2 26.7 61.9 24.1 59.3
LLM-Judge 35.7 60.7 12.1 55.6 15.4 54.1

Ptrue 57.4 74.2 46.1 68.8 36.7 68.2

Multi-Sampling

Unsupervised

Entropy 29.1 58.4 41.0 63.1 39.7 62.1
KLE 43.9 66.4 39.8 68.7 47.3 71.6

Eccentricity 42.1 66.1 42.7 70.0 50.0 73.2
SAR 53.9 71.9 53.5 71.7 59.7 75.2

Semantic Entropy 42.7 67.2 47.6 69.0 51.9 72.3

No Sampling

Supervised

ATMD 32.0 62.8 26.8 60.9 21.1 57.1
LookBackLens - - 53.3 73.4 - -

SAPLMA 59.9 74.7 53.0 72.8 47.3 67.5
Feature-Gaps (ours) 64.9 75.3 66.6 78.0 59.7 74.0

Mistralv0.3 - 7B

No Sampling

Unsupervised

Perplexity 51.2 70.4 28.8 62.5 43.0 67.8
MARS 54.8 73.2 25.7 60.6 47.0 69.6

MiniCheck 28.3 63.2 44.0 69.4 35.9 66.1
LLM-Judge 39.2 65.5 28.8 64.0 22.4 61.4

Ptrue -51.9 36.7 -9.68 49.3 9.71 56.8

Multi-Sampling

Unsupervised

Entropy 51.3 70.3 34.3 64.3 40.1 65.5
KLE 33.4 63.1 45.8 71.9 48.6 74.7

Eccentricity 37.7 65.2 44.1 70.7 55.5 76.3
SAR 54.9 71.3 36.0 68.1 51.0 70.9

Semantic Entropy 51.6 69.6 42.1 68.9 54.4 75.1

No Sampling

Supervised

ATMD 37.7 66.4 43.4 68.1 21.6 69.5
LookBackLens - - 52.2 71.4 - -

SAPLMA 44.4 69.1 53.2 73.3 53.8 71.3
Feature-Gaps (ours) 59.7 75.9 54.2 71.4 38.5 65.1

Qwen2.5 - 7b

No Sampling

Unsupervised

Perplexity 42.7 66.9 27.9 58.6 42.3 65.2
MARS 42.4 66.1 26.5 57.8 42.7 65.0

MiniCheck 41.8 65.0 48.3 71.7 31.4 60.9
LLM-Judge 10.9 52.7 19.6 54.5 8.6 50.7

Ptrue 37.4 63.9 -9.68 49.3 7.79 54.1

Multi-Sampling

Unsupervised

Entropy 41.9 67.0 28.8 59.5 43.4 66.0
KLE 34.5 62.8 29.4 66.9 45.5 69.9

Eccentricity 28.5 64.1 32.2 67.5 42.3 70.1
SAR 45.1‘ 67.4 36.5 65.6 48.5 69.0

Semantic Entropy 41.4 67.1 35.8 65.1 47.5 69.5

No Sampling

Supervised

ATMD 37.7 66.4 43.4 68.1 21.6 59.5
LookBackLens - - 60.0 74.5 - -

SAPLMA 59.1 75.2 57.9 76.2 45.1 68.8
Feature-Gaps (ours) 58.5 73.3 62.6 76.1 51.0 70.7

Table 1: AUROC and PRR performances of UQ methods on Qasper, HotpotQA, and NarrativeQA.

5.4 PERFORMANCE OF INDIVIDUAL FEATURES

Features Qasper HotpotQA NarrtvQA

L
L

am
a Honesty 62.0 57.7 56.7

C. Rel. 43.6 38.8 -16.9
C. Comp. 59.6 66.8 52.2
Ensemble 64.9 66.6 59.7

M
is

tr
al Honesty 51.4 54.9 37.3

C. Rel. 60.7 52.4 21.8
C. Comp. 27.4 52.3 21.4
Ensemble 59.6 54.2 38.5

Q
w

en

Honesty 52.9 35.1 44.2
C. Rel. 42.5 56.9 48.0

C. Comp. 33.5 61.8 56.9
Ensemble 58.5 62.6 51.0

Table 2: PRR scores of individual features on
Qasper, HotpotQA, and NarrativeQA.

An important ablation study is to understand
how much of the performance gain comes from
the ensemble itself, compared to the contribu-
tion of individual features. To investigate this,
we evaluate each feature separately across all
model–dataset pairs, measuring PRR as an in-
dicator of its ability to predict correctness (i.e.,
to serve as a reliable measure of epistemic un-
certainty). Results are reported in Table 2. We
find that individual features already act as strong
epistemic uncertainty estimators on their own.
The ensemble offers little to no additional per-
formance gain in terms of PRR. However, the
role of the ensemble is not simply additive but
rather regularizing. The best-performing feature
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Figure 3: Out-of-distribution evaluation results. In-distribution performances are with darker shades.

varies depending on the dataset and model be-
cause of the inherent randomness of the proposal, which uses a small number of labeled examples for
feature extraction. As shown in Table 2, the top feature differs across datasets. In such cases, the
ensemble balances these fluctuations, which yields a more stable and consistent uncertainty quantifier
across datasets and, importantly, under OOD conditions (see Section 5.3).

5.5 PERFORMANCE IN LOW DATA REGIMES

Num Samples Qasper HotpotQA NarrtvQA
L

L
am

a 64 64.4 57.0 57.5
128 63.2 62.0 63.2
256 64.9 66.6 59.7

M
is

tr
al 64 38.3 49.5 39.4

128 52.2 55.2 38.7
256 59.7 54.2 38.5

Q
w

en 64 41.1 60.5 37.2
128 51.8 60.9 52.0
256 58.5 62.6 51.0

Table 3: PRR performances of Feature-Gaps on
low data regimes.

All supervised methods, including ours, are
primarily evaluated using 256 labeled samples.
However, the performance of our approach un-
der more limited supervision is critical for its
applicability in extreme low-data settings. To
assess this, we further evaluate our method with
only 128 and 64 labeled samples. Results are
reported in Table 3. The findings are encourag-
ing: with 128 samples, performance is largely
preserved, showing only marginal degradation
compared to the 256-sample setting. Even with
as few as 64 samples, although some perfor-
mance drop is observed, our method remains
substantially stronger than alternative baselines reported in Table 1. These results demonstrate that
our approach is highly data-efficient and remains effective even in extreme low-data regimes, which
highlights its practicality for real-world scenarios where labeled correctness data is scarce.

5.6 COMPARISON WITH BASELINE DIRECTIONS

Directions Qasper HotpotQA NarrtvQA

L
L

am
a

Random 34.5 29.5 17.4
Positive-PCA 45.4 47.1 46.2
Negative-PCA 40.5 61.3 54.0

All-PCA 4.0 26.1 18.1
Mean-Diff 48.5 53.1 36.6

Feature-Gaps 64.9 66.6 59.7

M
is

tr
al

Random 11.1 24.4 7.6
Positive-PCA 39.0 45.4 41.8
Negative-PCA 52.0 52.9 33.2

All-PCA 4.1 36.7 12.8
Mean-Diff 51.7 49.0 48.5

Feature-Gaps 59.6 54.2 38.5

Q
w

en

Random 17.9 4.3 6.1
Positive-PCA -3.6 26.7 32.6
Negative-PCA 2.2 31.3 36.4

All-PCA -4.3 20.1 36.0
Mean-Diff 57.3 49.3 47.6

Feature-Gaps 58.5 62.6 51.0

Table 4: PRR scores of baseline directions on Qasper,
HotpotQA, and NarrativeQA.

Demonstrating the effectiveness of each com-
ponent of our method is essential for a rigor-
ous scientific evaluation. To this end, we com-
pare our extracted feature directions against
several alternative baselines that could plausi-
bly serve as candidates: Random: three ran-
dom directions are chosen instead of using
our feature extraction process. Positive-PCA:
PCA is applied directly on positive samples
(e.g. "be honest"), omitting the contrastive dif-
ference step. Negative-PCA: similar to Posi-
tive, but using only negative samples (e.g. "be
a liar"). All-PCA: the strongest direction is ex-
tracted from regular prompts without forming
contrastive pairs. Mean-Diff: a supervised
baseline similar to SAPLMA, where we com-
pute the mean hidden states of correct and
incorrect samples at each layer and use their
difference as a correctness direction.

9
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The results, shown in Table 4, highlight the
importance of our design choices. Ablating critical steps, such as contrastive differencing and finding
features, leads to substantial performance drops. Moreover, Mean-diff underperforms compared to
our approach, which demonstrates that explicitly extracting and combining feature directions is more
effective than simply contrasting the mean of hidden states of correct and wrong generations.

6 CONCLUSION

In this work, we introduced a task-agnostic metric for total uncertainty. By approximating the ideal
model to the true (unknown) distribution, we showed that the epistemic uncertainty can be bounded by
the norm of the difference in hidden states between the given model and the ideal model, which can be
interpreted as feature gaps under the linear representation hypothesis. We then applied this framework
to contextual QA and hypothesized that three features, context-reliance, context comprehension,
and honesty, serving as effective approximations of this gap. Using only a small number of labeled
samples, our method achieves superior performance compared to popular baselines. We believe this
framework provides a foundation for future research on epistemic uncertainty, including the discovery
of additional features and the development of automatic, task-agnostic feature extraction methods,
ultimately enabling more robust and generalizable epistemic uncertainty quantifiers.

7 LIMITATIONS AND FUTURE WORK

Our method currently requires supervised examples. Making this framework work with unlabeled
data, or even without any external data by relying solely on synthetically generated samples, would
be an important direction for future research. Although our experiments focus on contextual QA,
the feature-gaps framework is general and can be applied to a wide range of language-model tasks.
Extending it to other domains such as reasoning or long-form generations, is another promising
direction. At present, our method relies on heuristic feature selection. However, this is not a
fundamental limitation: developing an automatic procedure for selecting features would be a valuable
extension. In addition, our experiments use only a small number of labeled samples (256). Scaling
the framework to larger training sets is important. This can be achieved by selecting more features
to better approximate the gap, or by selecting more layers per feature, as we demonstrated in
Appendix A.5.1. Lastly, in our experiments, we don’t consider the potential noise coming from the
context-retriever/provider. Retrieving the wrong/useless context is common in RAG systems, and that
noise/uncertainty can be modeled in future works. Overall, we believe the feature-gaps framework
offers a strong approximation to epistemic uncertainty and has the potential to generalize better than
other supervised approaches such as SAPLMA.
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risk to uncertainty: Generating predictive uncertainty measures via bayesian estimation. In
The Thirteenth International Conference on Learning Representations, 2025. URL https:
//openreview.net/forum?id=cWfpt2t37q.

Lorenz Kuhn, Yarin Gal, and Sebastian Farquhar. Semantic uncertainty: Linguistic invariances
for uncertainty estimation in natural language generation. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
VD-AYtP0dve.

12

https://aclanthology.org/2024.acl-long.276
https://aclanthology.org/2024.acl-long.276
https://arxiv.org/abs/2505.21072
https://proceedings.mlr.press/v48/gal16.html
https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/2311.08718
https://arxiv.org/abs/2311.08718
https://openreview.net/forum?id=kIoBbc76Sy
https://openreview.net/forum?id=kIoBbc76Sy
https://arxiv.org/abs/2207.05221
https://aclanthology.org/Q18-1023
https://openreview.net/forum?id=cWfpt2t37q
https://openreview.net/forum?id=cWfpt2t37q
https://openreview.net/forum?id=VD-AYtP0dve
https://openreview.net/forum?id=VD-AYtP0dve


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Generating with confidence: Uncertainty quantifi-
cation for black-box large language models. Transactions on Machine Learning Research, 2024.
ISSN 2835-8856. URL https://openreview.net/forum?id=DWkJCSxKU5.

Chen Ling, Xujiang Zhao, Xuchao Zhang, Wei Cheng, Yanchi Liu, Yiyou Sun, Mika Oishi, Takao
Osaki, Katsushi Matsuda, Jie Ji, Guangji Bai, Liang Zhao, and Haifeng Chen. Uncertainty
quantification for in-context learning of large language models. In Kevin Duh, Helena Gomez,
and Steven Bethard (eds.), Proceedings of the 2024 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies (Volume 1:
Long Papers), pp. 3357–3370, Mexico City, Mexico, June 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.naacl-long.184. URL https://aclanthology.org/
2024.naacl-long.184/.

Shayne Longpre, Kartik Perisetla, Anthony Chen, Nikhil Ramesh, Chris DuBois, and Sameer Singh.
Entity-based knowledge conflicts in question answering. In Marie-Francine Moens, Xuanjing
Huang, Lucia Specia, and Scott Wen-tau Yih (eds.), Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pp. 7052–7063, Online and Punta Cana, Dominican
Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.
emnlp-main.565. URL https://aclanthology.org/2021.emnlp-main.565/.

Andrey Malinin and Mark Gales. Uncertainty estimation in autoregressive structured prediction. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=jN5y-zb5Q7m.

Neel Nanda, Andrew Lee, and Martin Wattenberg. Emergent linear representations in world models
of self-supervised sequence models. In Yonatan Belinkov, Sophie Hao, Jaap Jumelet, Najoung
Kim, Arya McCarthy, and Hosein Mohebbi (eds.), Proceedings of the 6th BlackboxNLP Workshop:
Analyzing and Interpreting Neural Networks for NLP, pp. 16–30, Singapore, December 2023.
Association for Computational Linguistics. doi: 10.18653/v1/2023.blackboxnlp-1.2. URL https:
//aclanthology.org/2023.blackboxnlp-1.2/.

Alexander V Nikitin, Jannik Kossen, Yarin Gal, and Pekka Marttinen. Kernel language entropy:
Fine-grained uncertainty quantification for LLMs from semantic similarities. In The Thirty-
eighth Annual Conference on Neural Information Processing Systems, 2024. URL https:
//openreview.net/forum?id=j2wCrWmgMX.

OpenAI. GPT-4 Technical Report, 2023.

Kiho Park, Yo Joong Choe, and Victor Veitch. The linear representation hypothesis and the geometry
of large language models, 2024. URL https://arxiv.org/abs/2311.03658.

Laura Perez-Beltrachini and Mirella Lapata. Uncertainty quantification in retrieval augmented
question answering, 2025. URL https://arxiv.org/abs/2502.18108.

Ruizhong Qiu, Zhe Xu, Wenxuan Bao, and Hanghang Tong. Ask, and it shall be given: On the
turing completeness of prompting. In The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.net/forum?id=AS8SPTyBgw.

Selvan Sunitha Ravi, Bartosz Mielczarek, Anand Kannappan, Douwe Kiela, and Rebecca Qian.
Lynx: An open source hallucination evaluation model, 2024. URL https://arxiv.org/
abs/2407.08488.

Kajetan Schweighofer, Lukas Aichberger, Mykyta Ielanskyi, and Sepp Hochreiter. On information-
theoretic measures of predictive uncertainty. arXiv preprint arXiv:2410.10786, 2024.

Mrinank Sharma, Meg Tong, Tomasz Korbak, David Duvenaud, Amanda Askell, Samuel R. Bowman,
Newton Cheng, Esin Durmus, Zac Hatfield-Dodds, Scott R. Johnston, Shauna Kravec, Timothy
Maxwell, Sam McCandlish, Kamal Ndousse, Oliver Rausch, Nicholas Schiefer, Da Yan, Miranda
Zhang, and Ethan Perez. Towards understanding sycophancy in language models, 2025. URL
https://arxiv.org/abs/2310.13548.

13

https://openreview.net/forum?id=DWkJCSxKU5
https://aclanthology.org/2024.naacl-long.184/
https://aclanthology.org/2024.naacl-long.184/
https://aclanthology.org/2021.emnlp-main.565/
https://openreview.net/forum?id=jN5y-zb5Q7m
https://openreview.net/forum?id=jN5y-zb5Q7m
https://aclanthology.org/2023.blackboxnlp-1.2/
https://aclanthology.org/2023.blackboxnlp-1.2/
https://openreview.net/forum?id=j2wCrWmgMX
https://openreview.net/forum?id=j2wCrWmgMX
https://arxiv.org/abs/2311.03658
https://arxiv.org/abs/2502.18108
https://openreview.net/forum?id=AS8SPTyBgw
https://arxiv.org/abs/2407.08488
https://arxiv.org/abs/2407.08488
https://arxiv.org/abs/2310.13548


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Heydar Soudani, Evangelos Kanoulas, and Faegheh Hasibi. Why uncertainty estimation meth-
ods fall short in RAG: An axiomatic analysis. In Wanxiang Che, Joyce Nabende, Ekaterina
Shutova, and Mohammad Taher Pilehvar (eds.), Findings of the Association for Computational
Linguistics: ACL 2025, pp. 16596–16616, Vienna, Austria, July 2025. Association for Compu-
tational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.findings-acl.852. URL
https://aclanthology.org/2025.findings-acl.852/.

Liyan Tang, Philippe Laban, and Greg Durrett. MiniCheck: Efficient fact-checking of LLMs on
grounding documents. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), Pro-
ceedings of the 2024 Conference on Empirical Methods in Natural Language Processing, pp.
8818–8847, Miami, Florida, USA, November 2024. Association for Computational Linguis-
tics. doi: 10.18653/v1/2024.emnlp-main.499. URL https://aclanthology.org/2024.
emnlp-main.499/.

Adly Templeton, Tom Conerly, Jonathan Marcus, Jack Lindsey, Trenton Bricken, Brian Chen,
Adam Pearce, Craig Citro, Emmanuel Ameisen, Andy Jones, Hoagy Cunningham, Nicholas L
Turner, Callum McDougall, Monte MacDiarmid, C. Daniel Freeman, Theodore R. Sumers,
Edward Rees, Joshua Batson, Adam Jermyn, Shan Carter, Chris Olah, and Tom Henighan.
Scaling monosemanticity: Extracting interpretable features from claude 3 sonnet. Trans-
former Circuits Thread, 2024. URL https://transformer-circuits.pub/2024/
scaling-monosemanticity/index.html.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human feedback. In Houda Bouamor, Juan Pino,
and Kalika Bali (eds.), Proceedings of the 2023 Conference on Empirical Methods in Natural
Language Processing, pp. 5433–5442, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL https://aclanthology.org/
2023.emnlp-main.330/.

Roman Vashurin, Ekaterina Fadeeva, Artem Vazhentsev, Lyudmila Rvanova, Akim Tsvigun, Daniil
Vasilev, Rui Xing, Abdelrahman Boda Sadallah, Kirill Grishchenkov, Sergey Petrakov, Alexander
Panchenko, Timothy Baldwin, Preslav Nakov, Maxim Panov, and Artem Shelmanov. Benchmarking
uncertainty quantification methods for large language models with lm-polygraph, 2025. URL
https://arxiv.org/abs/2406.15627.

Artem Vazhentsev, Lyudmila Rvanova, Ivan Lazichny, Alexander Panchenko, Maxim Panov, Timothy
Baldwin, and Artem Shelmanov. Token-level density-based uncertainty quantification methods for
eliciting truthfulness of large language models. In Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.),
Proceedings of the 2025 Conference of the Nations of the Americas Chapter of the Association for
Computational Linguistics: Human Language Technologies (Volume 1: Long Papers), pp. 2246–
2262, Albuquerque, New Mexico, April 2025. Association for Computational Linguistics. ISBN
979-8-89176-189-6. doi: 10.18653/v1/2025.naacl-long.113. URL https://aclanthology.
org/2025.naacl-long.113/.

Duygu Nur Yaldiz, Yavuz Faruk Bakman, Baturalp Buyukates, Chenyang Tao, Anil Ramakr-
ishna, Dimitrios Dimitriadis, Jieyu Zhao, and Salman Avestimehr. Do not design, learn: A
trainable scoring function for uncertainty estimation in generative LLMs. In Luis Chiruzzo,
Alan Ritter, and Lu Wang (eds.), Findings of the Association for Computational Linguistics:
NAACL 2025, pp. 691–713, Albuquerque, New Mexico, April 2025a. Association for Computa-
tional Linguistics. ISBN 979-8-89176-195-7. URL https://aclanthology.org/2025.
findings-naacl.41/.

Duygu Nur Yaldiz, Yavuz Faruk Bakman, Sungmin Kang, Alperen Öziş, Hayrettin Eren Yildiz,
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 COMPARISON WITH THE INFORMATION-THEORETIC UNCERTAINTY QUANTIFIER OF
SCHWEIGHOFER ET AL. (2024)

Schweighofer et al. (2024) propose to quantify total uncertainty in classification tasks as

TU = −
∑
y∈C

P (y | x, θ) · lnP ∗(y | x, θ),

where C is the set of classes. In their formulation, the roles of the actual model P (y | x, θ) and the
true distribution P ∗(y | x, θ) are swapped compared to ours. The natural decomposition of their
metric is

TU = H(P (y | x, θ))︸ ︷︷ ︸
Aleatoric (Data) Uncertainty

+KL(P (y | x, θ) ∥P ∗(y | x))︸ ︷︷ ︸
Epistemic Uncertainty

.

We argue that this decomposition is problematic. Data (aleatoric) uncertainty should arise from the
input x or the data distribution of the task D, and should be independent of the specific training
outcome. While the actual model θ is indeed trained on a sampled set of D, Dtrain ∼ D, the sampled
data may be insufficient and may lead to epistemically sub-optimal models. Besides, training a model
is not a deterministic function of Dtrain, different random seeds and hyperparameter settings can yield
infinitely many possible models, θrandom

Dtrain−−−→ θ ∼ Θ. Consequently, properties of θ cannot not
directly determine the data uncertainty.

Consider an extreme case: if we train θ with pathological hyperparameters (e.g., excessively high
learning rates), the resulting model may output predictions nearly at random. The entropy term in their
decomposition would then be very high, suggesting extreme data uncertainty. Yet, this uncertainty
arises entirely from poor model training (epistemic uncertainty), not from the data distribution itself.
By contrast, in our formulation where P (y | x, θ) and P ∗(y | x, θ) are swapped, the aleatoric
component is defined in terms of P ∗(y | x, θ), which is independent of any part of training where
epistemic uncertainty could arise. Lastly, a more recent work Kotelevskii et al. (2025) also does a
similar formulation with ours from the Bayesian risk perspective (see Table 1). For these reasons,
we argue that our quantifier provides a more reasonable decomposition of epistemic and aleatoric
uncertainty. Nonetheless, we acknowledge that the formulation of Schweighofer et al. (2024) was an
important inspiration for our work and served as a foundation for adapting these ideas to language
models.

A.2 PROOF OF LEMMA 1

Proof. For notational simplicity, let us denote

P (yt | θ∗) = P (yt | y<t,x, θ
∗).

We begin by explicitly writing the KL term

KL(P (yt | θ∗) ∥P (yt | θ))

KL(P (yt | θ∗) ∥P (yt | θ)) =
∑
i∈V

P (yi | θ∗) ln
P (yi | θ∗)
P (yi | θ)

.
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Since the probability of a token under model θ is given by

P (yi | θ) =
eV

⊤
i Wht∑

j∈V eV
⊤
j Wht

,

where W ∈ R|V|×d is the vocabulary projection matrix and Vi is the one-hot vector of token yt for
token i, we can re-write KL in terms of model internals:∑

i∈V
P (yi | θ∗) · V ⊤

i W (h∗
t − ht) +

∑
i∈V

P (yi | θ∗)

(
ln
∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t

)
.

as both models share the same vocabulary matrix W . Focusing on the first term, we have∑
i∈V

P (yi | θ∗) · V ⊤
i W (h∗

t − ht) ≤
∑
i∈V

P (yi | θ∗) ∥Vi∥ ∥W (h∗
t − ht)∥

by Cauchy–Schwarz. Since Vi is a one-hot vector, ∥Vi∥ = 1, so this simplifies to∑
i∈V

P (yi | θ∗) · ∥W (h∗
t − ht)∥ = ∥W (h∗

t − ht)∥,

because
∑

i∈V P (yi | θ∗) = 1. Moreover, by Cauchy-Schwarz inequality,

∥W (h∗
t − ht)∥ ≤ ∥W∥ ∥h∗

t − ht∥.

For the second term, observe that∑
i∈V

P (yi | θ∗)

(
ln
∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t

)
= ln

∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t ,

since
∑

i∈V P (yi | θ∗) = 1.

Define f(x) := ln
(∑d

i=1 e
xi
)
, the log-sum-exp function. Then

ln
∑
j∈V

eV
⊤
j Wht − ln

∑
j∈V

eV
⊤
j Wh∗

t = f(Wht)− f(Wh∗
t ).

By the mean value theorem, there exists c on the line segment between Wht and Wh∗
t such that

f(Wht)− f(Wh∗
t ) = ∇f(c)⊤(Wht −Wh∗

t ).

Since ∇f(x) = softmax(x), we have

f(Wht)−f(Wh∗
t ) = softmax(c)⊤(Wht−Wh∗

t ) ≤ ∥softmax(c)∥ ∥Wht−Wh∗
t ∥ ≤ ∥Wht−Wh∗

t ∥,

because ∥softmax(c)∥ ≤ 1. Lastly, ∥Wht −Wh∗
t ∥ ≤ ∥W∥ ∥h∗

t − ht∥

Combining both terms. From the above bounds, we conclude

KL(P (yt | θ∗) ∥P (yt | θ)) ≤ 2 ∥W∥ ∥h∗
t − ht∥.

A.3 RELATED WORK

A large body of recent work has focused on Uncertainty Quantification (UQ) for language models.
These methods can be broadly categorized into four groups, though some approaches span multiple
categories. Most existing methods are heuristic in nature:

1. Output-probability based methods, such as Semantic Entropy (Kuhn et al., 2023), Sequence-
Probability (Aichberger et al., 2024), Mutual Information (Abbasi-Yadkori et al., 2024), MARS (Bak-
man et al., 2024), LARS (Yaldiz et al., 2025a), and SAR (Duan et al., 2024). 2. Output-consistency
based methods, including Kernel Language Entropy (Nikitin et al., 2024), Eccentricity, and Matrix-
Degree (Lin et al., 2024). 3. Internal-state based methods, such as INSIDE (Chen et al., 2024)
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and SAPLMA (Azaria & Mitchell, 2023). 4. Self-checking methods, such as Verbalized Confi-
dence (Tian et al., 2023) and PTrue (Kadavath et al., 2022b).

With the exception of Mutual Information (Abbasi-Yadkori et al., 2024) and Sequence-
Probability (Aichberger et al., 2024), which provide theoretical justification, nearly all of these
approaches rely on heuristics. Furthermore, none of them have been specifically designed or evalu-
ated for contextual QA.

Beyond single-model uncertainty estimation, several works propose Bayesian frameworks to decom-
pose epistemic and aleatoric uncertainty (Ling et al., 2024; Hou et al., 2024). Ling et al. (2024)
use a Bayesian in-context learning formulation, quantifying epistemic uncertainty as the mutual
information between the model’s output and the in-context examples. Hou et al. (2024) introduce
a generic Bayesian framework based on input clarification, where epistemic uncertainty is again
defined as mutual information between outputs under different clarified queries. Although theoreti-
cally grounded, these methods require replacing the LLM with a Bayesian framework and computing
uncertainty over the Bayesian model, which is computationally expensive. In contrast, we quantify
the uncertainty of a single LLM directly.

Only a little number of of recent works have directly addressed UQ in contextual QA or retrieval-
augmented generation (RAG). Soudani et al. (2025) propose an axiomatic framework for diagnosing
deficiencies in existing methods and present a generic UQ method that can be layered on top of other
approaches. Perez-Beltrachini & Lapata (2025) introduce a passage-utility based metric, training a
lightweight neural model to predict the usefulness of retrieved passages for a given QA task. Similarly,
Fadeeva et al. (2025) propose a method that evaluates factuality by jointly assessing faithfulness and
factual correctness under both faithful and unfaithful retrieval conditions.

However, all of these methods remain heuristic and largely empirical. In contrast, our work introduces
a UQ approach with a grounded theoretical formulation, designed specifically to contextual QA.

A.4 EXPERIMENTAL DETAILS

A.4.1 PROMPTS USED IN THE EXPERIMENTS

To query the model in the contextual QA setting, we use the following prompt:

Context: {context}. Here is a given context. You are a helpful assistant.
Answer the following question with a brief but complete response.
Use the context information to answer this question.

Question: {question}
Answer:

For the LLM-judge, which evaluates the correctness of generated answers, we use the following
prompt:

You will be given a context, a question relevant to that context, a predicted
answer, and a list of possible ground truth answers provided by human experts.
Your task is to assign one of the following labels:
["CORRECT", "INCORRECT", "NOT_ATTEMPTED"].

Context: {context}
Question: {question}
Possible Ground Truth Answers Provided by Human Experts: {ground_truths}
Predicted Answer: {answer}

Labeling instructions:
- Assign "NOT_ATTEMPTED" if the predicted answer fails to engage with the

question, or explicitly states that an answer is not found in the context.
- Assign "CORRECT" if the predicted answer is accurate based on the context,

even if it is not explicitly listed among the ground truth answers.
- Assign "INCORRECT" if the predicted answer is contradicted by the context
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or otherwise wrong.

Important: The ground truth list may not cover all valid answers.
For those cases, look at the context.

Provide your explanation and then at the end give your grade.

Response:

A.4.2 PROMPTS FOR FEATURE EXTRACTION

Honesty. To extract the honesty feature, we design positive and negative prompts that encourage
truthful versus intentionally false responses.

Positive:

Context: {context}.
Here is a given context. You are a helpful assistant.
Answer the following question with a brief but complete response.
Be honest with your answer. Do not give unfactual information. Do not lie.

Question: {question}
Answer:

Negative:

Context: {context}.
Here is a given context. You are a helpful assistant.
Answer the following question with a brief but complete response.
Be a liar. Give unfactual information. Tell a lie.

Question: {question}
Answer:

—

Context-Reliance. To extract the context-reliance feature, we contrast prompts that either require
the model to ground its answer in the provided context or explicitly ignore it.

Positive:

Context: {context}.
Here is a given context. You are a helpful assistant.
Answer the following question with a brief but complete response.
Use the context information to answer this question.
Do not use your own knowledge. Just look at the context.

Question: {question}
Answer:

Negative:

Context: {context}.
Here is a given context. You are a helpful assistant.
Answer the following question with a brief but complete response.
DO NOT use the context information to answer this question.
Use your own knowledge. Ignore the context.

Question: {question}
Answer:

—
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Model Method Narrative Qasper Hotpot

Qwen2.5 - 7B – PRR

Saplma 51.7 61.6 56.2

Feature-Gaps 57.8 58.1 65.6

Feature-Gaps (10 layers) 57.4 65.2 66.2

LLama3.1 - 8B – PRR

Saplma 62.3 60.6 60.9

Feature-Gaps 60.7 65.7 66.4

Feature-Gaps (10 layers) 64.3 69.3 70.4

Mistralv0.3 - 7B – PRR

Saplma 56.2 43.7 51.8

Feature-Gaps 43.1 59.1 53.6

Feature-Gaps (10 layers) 47.2 59.0 60.7

Qwen2.5 - 7B – AUROC

Saplma 72.7 74.9 73.8

Feature-Gaps 73.1 73.1 78.1

Feature-Gaps (10 layers) 74.2 76.5 78.2

LLama3.1 - 8B – AUROC

Saplma 75.1 76.9 76.4

Feature-Gaps 73.9 75.9 77.5

Feature-Gaps (10 layers) 76.5 78.3 79.8

Mistralv0.3 – AUROC

Saplma 74.2 68.2 71.1

Feature-Gaps 68.3 75.0 70.8

Feature-Gaps (10 layers) 69.9 74.8 75.7

Table 5: PRR and AUROC metrics for Qwen, LLaMA, and Mistral with best-performing scores in
bold.

Context Comprehension. For context comprehension, we use the regular contextual QA prompt
but append the ground-truth answer to the context, simulating an idealized model where the model
has already extracted the necessary information.

A.5 ADDITIONAL EXPERIMENTS

In this section, we provide our additional results.

A.5.1 SCALING THE NUMBER OF TRAINING SAMPLES

In addition to low-data regime experiments, we also try to scale our method to more training data.
We add a small modification to our framework by instead of selecting a single direction vi for each
feature, we extend the approach to select (N) directions from multiple layers. We scaled the training
data to 1000 samples for each dataset, and for the scalable version we selected 10 layers per feature.
The results are in Table A.5.1

As the results indicate, our method does not benefit substantially from simply increasing the number
of training samples, but selecting multiple layers significantly improves performance. By con-
trast, SAPLMA also does not improve much with additional data, and our method almost remains
consistently superior.

We also performed similar experiments with more data (5000 samples) on HotPotQA. We could not
scale NarrativeQA because we were unable to find a 5000-sample subset whose contexts fit within
GPU memory, and Qasper does not contain 5000 samples. The HotPotQA results with 5000 samples
are included below.

The results are in A.5.1, and we observe a performance drop for SAPLMA compared to the 1000-
sample setting. This is expected: the 5000-sample experiment uses data from the training split of
HotPotQA, whereas the earlier 1000-sample experiment used a split from the validation set. This
distribution shift appears to affect SAPLMA more strongly than our method. Scaled version of our
method is superior to both SaPLMA and our method.
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Method Model AUROC PRR

Feature-Gaps
Qwen2.5 - 7B 69.8 50.9

LLama3.1 - 8B 77.5 66.3

Mistralv0.3 - 7B 71.3 54.4

Feature-Gaps (10 Layers)
Qwen2.5 - 7B 71.6 55.9

LLama3.1 - 8B 79.4 68.9

Mistralv0.3 - 7B 71.3 54.2

Saplma
Qwen2.5 - 7B 61.8 30.2

LLama3.1 - 8B 73.0 55.9

Mistralv0.3 - 7B 71.1 52.8

Table 6: HotpotQA Results with 5000 Training Samples

A.5.2 EXPERIMENTS WITH BIGGER MODELS (QWEN32B)

We evaluated our method on a larger model, Qwen2.5-32B. Due to computational constraints, we
were unable to run experiments on Qasper and NarrativeQA, as their long contexts caused GPU
memory errors with this model. Therefore, we report only the HotPotQA results in Table A.5.2.

Method AUROC PRR
SemanticEntropy 66.2 42.1

Confidence 75.4 58.5

Entropy 64.3 39.6

EccentricityUncertainty 66.7 36.1

KernelLanguageEntropy 65.9 43.6

ContextCheck 50.4 13.2

PTrue 78.9 63.9

MARS 71.2 51.1

MiniCheckMethod 71.7 48.3

SAR 67.8 44.1

MatrixDegreeUncertainty 64.6 31.7

SumEigenUncertainty 64.6 31.7

Saplma 58.1 32.5

FeatureGaps 67.5 49.0

Table 7: HotpotQA, AUORC and PRR Scores with Qwen2.5 - 32B Model

The results show that our method remains noticeably superior to SAPLMA. However, Perplexity and
PTrue achieve the strongest performance among all baselines. Since both rely on model probability
estimates, this suggests that larger models may produce more calibrated probability signals compared
to smaller models, which could explain their stronger performance in this setting.

A.5.3 SIGNIFICANCE TESTS ON OOD EXPERIMENTS

We also report AUROC scores for the OOD experiments along with statistical significance tests using
the DeLong method DeLong et al. (1988). As shown in Table A.5.3, our method remains mostly
superior. In all cases where the AUROC difference is substantial, the improvements are statistically
significant (p-value < 0.05).
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Model Training Dataset / Test Dataset Qasper HotpotQA NarrativeQA

LLama3.1 - 8B – Feature Gaps

Qasper 75.3 76.9 76.3

HotpotQA 75.4 78.0 79.8

NarrativeQA 72.4 75.8 74.8

LLama3.1 - 8B – SAPLMA

Qasper 74.7 69.6 72.2

HotpotQA 64.8 72.8 63.4

NarrativeQA 68.4 71.0 67.6

LLama3.1 - 8B – p-values

Qasper 0.8095 4.491e-06 5.163e-02

HotpotQA 4.096e-04 6.314e-04 2.861e-13

NarrQA 0.1531 3.668e-03 1.391e-03

Mistralv0.3 - 7B – Feature Gaps

Qasper 76.0 69.2 65.2

HotpotQA 76.0 71.5 66.2

NarrativeQA 73.0 68.9 65.1

Mistralv0.3 - 7B – SAPLMA

Qasper 69.1 64.1 55.9

HotpotQA 64.8 73.3 66.3

NarrativeQA 67.7 66.2 71.3

Mistralv0.3 - 7B – p-values

Qasper 3.255e-03 2.576e-03 1.100e-04

HotpotQA 1.100e-05 2.744e-01 9.629e-01

NarrQA 4.349e-02 1.744e-01 9.634e-03

Qwen2.5 - 7B – Feature Gaps

Qasper 72.7 67.5 63.1

HotpotQA 64.6 76.0 73.4

NarrativeQA 67.7 66.0 70.7

Qwen2.5 - 7B – SAPLMA

Qasper 75.2 67.5 71.8

HotpotQA 61.0 76.2 63.9

NarrativeQA 71.0 61.5 68.8

Qwen2.5 - 7B – p-values

Qasper 3.125e-01 9.711e-01 2.804e-04

HotpotQA 2.703e-01 9.295e-01 4.940e-04

NarrQA 2.104e-01 3.827e-02 4.093e-01

Table 8: OOD experiments, AUROC scores with significance values
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