
Block Verification Accelerates Speculative Decoding

Ziteng Sun 1 Uri Mendlovic 1 Yaniv Leviathan 1

Asaf Aharoni† 1 Ahmad Beirami† 1 Jae Hun Ro† 1 Ananda Theertha Suresh† 1

Abstract
Speculative decoding is an effective method for
lossless acceleration of large language models
during inference. It uses a smaller model to draft
a block of tokens which are verified in parallel
by the large model, and provides a guarantee that
the output is distributed identically to a sample
from the large model. In prior works, draft ver-
ification is performed token-by-token indepen-
dently. Surprisingly, we show that this approach
is not optimal. We propose block verification, a
simple, easy-to-implement improved draft veri-
fication algorithm that provides additional wall-
clock speedup by verifying the entire block jointly.
We prove that the proposed mechanism is opti-
mal in the expected number of tokens produced
each iteration and specifically is never worse than
the standard token-level verification. Empirically,
block verification provides modest but consistent
wall-clock speedups over the standard token ver-
ification algorithm of 5%-8% in a wide range of
tasks and datasets. Given that block verification
does not increase code complexity, maintains the
strong lossless guarantee of the standard spec-
ulative decoding verification algorithm, cannot
deteriorate performance, and, in fact, consistently
improves it, it can be used as a good default by
speculative decoding implementations.

1. Introduction
Modern large language models (LLMs) (Chowdhery et al.,
2022; Touvron et al., 2023; Achiam et al., 2023; Gemini
Team et al., 2023) are often decoded through autoregres-
sive sampling, where generating k tokens requires k costly
serial evaluations of the model. To improve generation
latency, Leviathan et al. (2022) proposed speculative de-
coding, which enables the LLM to generate several tokens

1Google Research. Authors marked by † are listed alphabeti-
cally. Correspondence to: Ziteng Sun <zitengsun@google.com>.

Work to be presented at the ES-FoMo Workshop at ICML 2024,
Vienna, Austria. Copyright 2024 by the author(s).

concurrently. In each iteration, conditioned on the current
decoded prefix, a guess of the next block of γ tokens is
made with a small computational cost (e.g., generated from
a smaller model or a heuristic). Each of the resulting γ + 1
prefixes are then evaluated by the large model in parallel. To
guarantee that the final output follows the same distribution
as that of the large model, some of the generated tokens are
accepted while others are rejected. The accepted tokens,
and an extra token sampled from a residual distribution, are
then added to the prefix to start the next iteration, until gen-
eration ends. See Figure 1 for a diagram of the algorithm
and Algorithm 3 for a detailed presentation.

In (Leviathan et al., 2022), the drafts are verified through
a sequence of token-level rejection steps. More specifi-
cally, given prefix c, let X1, X2, . . . , Xγ be one sample
block of length γ from a small modelMs, where ∀i ≤ γ,
Xi ∼ Ms(· | c, X≤i−1). Using the conditional distribu-
tions under the target large modelMb returned by the par-
allel evaluation step (∀i ≤ γ,Mb(· | c, X≤i−1)) , the algo-
rithm goes through draft tokens sequentially, and accepts
each token Xi with probability

min

{
1,
Mb(Xi | c, Xi−1)

Ms(Xi | c, Xi−1)

}
, (1)

whereMb is the desired large model. The process continues
until a token is rejected, and an extra token is sampled, for
free, according to a residual distribution (see Algorithm 1
and (Leviathan et al., 2022) for more details). We refer to
this algorithm as Token Verification.

Since its introduction (Leviathan et al., 2022), and despite
many follow up works (e.g., better drafting mechanisms
or more draft blocks), all existing algorithms use the same
token-by-token verification procedure. See Appendix A for
a more detailed discussion of related works.

In this work, we make the surprising observation that the
standard token verification algorithm, is not optimal, and
propose a strictly better method. Our key observation is
that we can increase the number of accepted tokens, while
maintaining the identical distribution guarantee, by jointly
verifying the entire block of draft tokens instead of verifying
each token independently.

1

Block Verification Accelerates Speculative Decoding

will be mostly cloudy

Tomorrow, the weather will be sunny

Next iteration
(if not E.O.S.)

will be mostly sunny

Tomorrow, the weather

Prefix Sample a block of tokens
from small model

Evaluate draft
with large model

Draft verification
and correctionAdd to the prefix

Figure 1. One iteration of speculative decoding (Algorithm 3). The prefixes are depicted in blue. The draft drawn from the small model is
shown in red, and the verified draft tokens are then marked in blue and the underline is used to depict tokens obtained from the residual
distribution.

Our proposed algorithm, which we call Block Verification,
has the following advantages:

• Simple to use. The algorithm is a plug-and-play re-
placement of the standard token verification algorithm
of speculative decoding. It does not incur additional
computation or code complexity costs.

• Strict improvement. With the same drafting model,
the speedup of block verification is no worse than that
of the standard token verification. Moreover, we show
that block verification is an optimal verification proce-
dure (Theorem 2).

• Identical distribution. Importantly, our method is not
an approximation and maintains the identical distribu-
tion guarantee of speculative decoding.

We empirically test block verification and compare it with
the standard token verification on a wide range of tasks and
datasets. We show that our algorithm consistently improves
over block efficiency (i.e. the expected number of generated
tokens) by 7%-10% and overall empirical wall clock times
by 5%-8% (see Table 1). To the best of our knowledge, our
algorithm is the first to provide improvements only through
the verification phase of speculative decoding. The improve-
ments can be combined with improvements obtained from
other works that aim at improving the drafting phase. Since
these improvements come for free, our block verification
algorithm can be used as the draft verification algorithm by
default by all speculative decoding implementations.

2. A Motivating Example
The standard token verification algorithm stochastically re-
jects draft tokens with a higher probability fromMs than
fromMb. This is necessary to guarantee that the generated
tokens follow the same distribution as that ofMb. Our main
observation is that considering whether to reject a block of
draft tokens jointly, instead of one-by-one, can result in
accepting more tokens. We now illustrate this through a
simple example.

Consider the following trivial language model whose token
space consists only of 2 tokens: a and b. Further, assume
that both the large modelMb and the small modelMs are
context-independent, and specifically that ∀c,

Mb(a) = 1/3, Mb(b) = 2/3.

Ms(a) = 2/3, Ms(b) = 1/3.

In this setting, with a block size of γ = 2, since the to-
tal variation (TV) distance dTV(Mb,Ms) = 1/3, the ex-
pected number of accepted tokens1 fromMs with the token
verification algorithm is 1− 1/3 + (1− 1/3)2 = 10/9 (see
analysis in (Leviathan et al., 2022; Sun et al., 2023)).

An ideal algorithm with full information. Suppose an
algorithm can decide on what tokens to accept fromMs

based on the full joint distributions of both tokens, i.e.,

Mb(aa) = 1/9, Mb(ab) = 2/9,

Mb(ba) = 2/9, Mb(bb) = 4/9.

Ms(aa) = 4/9, Ms(ab) = 2/9,

Ms(ba) = 2/9, Ms(bb) = 1/9.

The algorithm would have performed the following im-
proved acceptance logic: always accept X1X2 when
X1X2 = ab, ba, or bb since Mb(X1X2) ≥ Ms(X1X2),
and accept aa with probability Mb(aa)/Ms(aa) = 1/4
(correcting the samples to bb). The expected number of
accepted tokens from Ms now becomes: 2(Ms(ab) +
Ms(ba) +Ms(bb) + 1/4 ×Ms(aa)) = 12/9. This il-
lustrates the benefit of considering the distribution of draft
blocks jointly.

Verification with partial information. In general the full
distribution over the next block of tokens is intractable to
calculate. Instead, we only have access to the conditional
distributions of the next token along the sample path of

1This is different from the number of generated token in one it-
eration, which is the number of accepted tokens plus one (corrected
token).

2

Block Verification Accelerates Speculative Decoding

the draft block,Mb(· | c, Xi),Ms(· | c, Xi) for various
i’s. To emphasize, the ideal rejection logic does not need
access to the full distribution, but care is needed in properly
assigning the residual distribution. Our block verification
does exactly this, as follows.

With block verification, when the draft tokens X1X2 =
ab or bb, Pr (Accept X1X2) = 1 similar to the idealized
algorithm. When X1X2 = aa, Pr (Accept X1X2) = 1/4,
and else the algorithm rejects both tokens and only corrects
the first token to b since the algorithm doesn’t have access to
Mb(· | b). When X1X2 = ba, it always accepts b, and then
accepts a with probability 1/2 (else it corrects the second
token to b). Importantly, the marginal distributions of the
generated tokens at the first token and the second token are
alwaysMb(·). We then simply add the generated tokens to
the prefix and proceed to the next iteration. The expected
number of accepted tokens is 2 × (Ms(ab) +Ms(bb)) +
(1+ 1/2)×Ms(ba) + 1/4× 2×Ms(aa) = 11/9, which
is better than 10/9 obtained by token verification. This
example proves the following result:

Lemma 1. The standard token verification algorithm of
speculative decoding is not optimal.

Note that while the expected number of accepted tokens
in the example for block verification (11/9) is higher than
that of the standard token verification algorithm (10/9), it is
still less than that of the ideal algorithm with access to the
full distribution (12/9). In Appendix B, we show that block
verification is indeed optimal in the partial information case,
with natural assumptions.

3. Block Verification
In this section, we extend the above intuition to develop a
general block verification algorithm, which works for stan-
dard speculative decoding with partial information. The
high-level idea is to couple the acceptance of each draft
token with other draft tokens. To do this, the algorithm con-
siders draft sub-blocks with different lengths, and decides
whether to accept each sub-block independently. The final
accepted draft block is the longest accepted sub-block in
the above process. The acceptance probabilities for each
sub-block and the residual distributions are carefully chosen
to maintain the distribution guarantee of the final output,
and achieve optimal speedup.

See Algorithm 2 for a sketch implementation of block ver-
ification, and Algorithm 1 for a sketch implementation of
the standard token verification for comparison. Note that
the implementations follow the same overall structure (the
differences are highlighted). See Algorithm 3 for the outer
loop of the speculative decoding algorithm, which remains
unchanged for both verification methods. See Figure 2 for
additional definitions. See Appendix C for sketch Python

implementations.

Importantly, note that token verification stops as soon as a
token is rejected (break in Line 9 of Algorithm 1), while
block verification always operates on the full block.

Algorithm 3 Speculative decoding (SPECDEC) (Leviathan
et al., 2022)
Input: Prefix c, large modelMb, draft modelMs. Draft

length γ. Verification algorithm VERIFY.
1: while E.O.S /∈ (Xτ , Y) do
2: Sample X1, . . . , Xγ ∼ Ms(· | c) using autoregres-

sive sampling, keep the conditional
probabilities at each step Ms(· | c, Xi) for i =
0, . . . , γ − 1. {Obtain draft block.}

3: Call the large modelMb and compute conditional
probabilitiesMb(· | c, Xi)
for i = 0, 1, . . . , γ in parallel. {Parallel scoring.}

4: Get the accepted tokens (Xτ , Y) with draft verifica-
tion {Draft verification and
correction.}

VERIFY(Xγ , {Ms(· | c, Xi)}γ−1i=0 , {Mb(· | c, Xi)}γi=0).

5: c← c, Xτ , Y. {Add decoded tokens to the prefix.}
6: end while

Theoretical guarantees. Speculative decoding with
block verification preserves the distribution of its outputs
(Theorem 1). Moreover, block verification achieves the opti-
mal speedup among all valid draft verification algorithms in
speculative decoding (Algorithm 3), resulting in a strict im-
provement over the standard token verification (Theorem 2).
We defer the formal statements to Appendix B. Below we
give some intuitions on the parameter choices.

Intuition on parameter choices. The key quantities for
achieving the theoretical guarantees are pi’s, which corre-
spond to the probability that the sub-block Xi will be kept
in the final output (see Lemma 3 in Appendix D.1). The
per-step acceptance probability hi in Equation (4) is then
decided based on pi’s since block verification keeps the
longest accepted sub-block.

Intuition: pi’s. To start, we ignore the minimum opera-
tion in the recursion. Then each pi is simply Mb(X

i |
c)/Ms(X

i | c), which is an upper bound on the actual
pi’s. This guarantees that the probability of getting Xi by
accepting it from the draft will be at mostMb(X

i | c), and
hence the algorithm is not accepting Xi more than needed.

Moreover, the minimum operation also guarantees that for
any prefix Xj that could be obtained from multiple draft
sample paths, the distribution over subsequent tokens are
always the sameMb(· | c, Xj). This enables block verifi-

3

Block Verification Accelerates Speculative Decoding

Algorithm 1 TOKENVERIFY

Input: Draft block Xγ ; small model distributions ∀i <
γ,Ms(· | c, Xi); large model distributions ∀i ≤
γ,Mb(· | c, Xi).

1: Sample η1, . . . , ηγ ∼ U(0, 1).
2: Set τ = 0.
3: for i = 1, . . . γ do

5: Set hi = min{Mb(Xi|c,Xi−1)
Ms(Xi|c,Xi−1) , 1}.

6: if ηi ≤ hi then
7: Set τ = i.
8: else
9: break.

10: end if
11: end for
12: if τ = γ then
13: Sample Y fromMb(· | c, Xγ).
14: else
15: Sample Y from ptokenres (· | c, Xτ) as in Equa-

tion (2).
16: end if
17: Return Xτ , Y .

Algorithm 2 BLOCKVERIFY

Input: Draft block Xγ ; small model distributions ∀i <
γ,Ms(· | c, Xi); large model distributions ∀i ≤
γ,Mb(· | c, Xi).

1: Sample η1, . . . , ηγ ∼ U(0, 1).
2: Set τ = 0, p0 = 1 .
3: for i = 1, . . . γ do

4: Set pi = min{pi−1Mb(Xi|c,Xi−1)
Ms(Xi|c,Xi−1) , 1}.

5: Set hi as in Equation (4).
6: if ηi ≤ hi then
7: Set τ = i.
8: else
9: continue.

10: end if
11: end for
12: if τ = γ then
13: Sample Y fromMb(· | c, Xγ).
14: else
15: Sample Y from pblockres (· | c, Xτ) as in

Equation (3).
16: end if
17: Return Xτ , Y .

cation to be used as a plug-and-play replacement of token
verification in speculative decoding (Algorithm 3).

Intuition: pblockres . For any Xi, the probability that it is in
the final accepted block is Ms(X

i)pi(X
i). The goal of

choosing pblockres is to make sure that the distribution on the
next token followsMb(· | Xi). For any possible next token
x, (Xi, x) could also be obtained by accepting Xi+1 when
Xi+1 = x, with a probability of Ms(X

i, x)pi+1(X
i, x),

which should be subtracted to obtain the residual mass on
(Xi, x). This leads to the choice of pblockres in Equation (3).

4. Experiment Setup
We use PALM-2 models (Chowdhery et al., 2022) for the
drafter and target models, with PALM-2-S as the large
target model and PALM-2-XXS / PALM-2-XXXS as the
small drafter model. The order of the sizes of the mod-
els is PALM-2-XXXS < PALM-2-XXS < PALM-2-S. We
evaluate on prompts from a wide range of datasets and
tasks, including Language modeling with one-billion lan-
guage benchmark (LM1B) (Chelba et al., 2013), Chat-
GPT prompts sourced from LearnGPT (GPT Prompt)
(Rashad, 2023), reasoning questions (WebQA) (Berant et al.,
2013), physical commonsense reasoning questions (PIQA)
(Bisk et al., 2020), scraped conversations with ChatGPT
(ShareGPT) (Rashad, 2023; RyokoAI, 2023), summariza-

tion tasks (XSum) (Narayan et al., 2018), grade school math
problems (GSM8K) (Cobbe et al., 2021), and German to
English translation (WMT DeEn) (Bojar et al., 2014). For
all datasets, we decode the first 1000 prompts using a max
input prompt length of 512 and decode up to 128 output
tokens.

5. Results
We empirically compare speculative decoding with block
verification to speculative decoding with token verification,
and find that block verification provides small yet consistent
improvements in a wide range of settings, both when mea-
suring idealized block efficiency and real world wall clock
time.

Block efficiency measures the speedup in an idealized set-
tings where we neglect the evaluation time of the draft model
and assume that we have enough compute capacity for evalu-
ating the large model in parallel. I.e. it measures the average
number of decoded tokens per serial call to the target model.
We observe consistent improvements for all datasets and
draft models2. For γ = 8 with PALM-2-XXS as the drafter,
the improvement in block efficiency ranges from 7.00% to

2The improvemetn is also consistent across different runs with
the standard deviations much smaller than the mean, indicating
statistical significance.

4

Block Verification Accelerates Speculative Decoding

Residual distribution in Algorithm 1 (Line 15): ∀x ∈ X ,

ptokenres (x | c, Xi) =
max{Mb(x | c, Xi)−Ms(x | c, Xi), 0}∑
x′∈XMb(x′ | c, Xi)−Ms(x′ | c, Xi), 0}

. (2)

Residual distribution in Algorithm 2 (Line 15): ∀x ∈ X ,

pblockres (x | c, Xi) =
max{ pi · Mb(x | c, Xi)−Ms(x | c, Xi), 0}∑

x′∈X max{ pi · Mb(x′ | c, Xi)−Ms(x′ | c, Xi), 0}
. (3)

Acceptance probability in Algorithm 2 (Line 5): hγ = pγ , and when i < γ,

hi =

∑
x′∈X max{pi · Mb(x

′ | c, Xi)−Ms(x
′ | c, Xi), 0}∑

x′∈X max{pi · Mb(x′ | c, Xi)−Ms(x′ | c, Xi), 0}+ 1− pi
. (4)

Figure 2. Definitions of accept probabilities and residual distributions in Algorithms 1 and 2.

10.06% with an average of 8.30%.

We also observe consistent improvements in wall clock
time, which measures the actual speedup, including all the
real-world overheads. We refer the readers to prior work
(Leviathan et al., 2022; Chen et al., 2023a) to a more detailed
discussion of these overheads. For γ = 8 with PALM-2-
XXS as the drafter, the improvement in block efficiency
ranges from 5.36% to 8.14% with an average of 6.49%.
The detailed numbers for this setting are listed in Table 1.

The effect of draft length γ. We also perform compar-
isons of the algorithms for other block lengths (γ = 4 and
γ = 8) and observe consistent improvements. We plot the
average improvement over all datasets in Figure 4. With the
same drafter, the relative improvement of block verification
over token verification increases as γ increases. This is
consistent with our intuition since when γ = 1, the two al-
gorithms are the same and as γ increases, block verification
would benefit more from coordinating the acceptance rule
considering the realization of all tokens in the draft block.

The effect of the drafter. We also consider the effect of
the quality of the drafter on the improvement. In Figure 3,
we list the average block efficiency and wall clock speed
up under different draft lengths for both drafters. Note that
PALM-2-XXS is a larger model than PALM-2-XXXS, and
hence a better drafter in terms of quality, as demonstrated by
the better average block efficiencies in the table. In Figure 4,
we plot the average improvement under different drafter
models, PALM-2-XXS and PALM-2-XXXS. The improve-
ments hold for both drafters. And the relative improvement
in block efficiency under PALM-2-XXS is greater than that
under PALM-2-XXXS. This shows that the improvement
obtained from block verification can be combined with the
improvement on the quality of the drafter, and the improve-

ment might be more significant under better drafters.

γ Drafter TOKENV BLOCKV
BE WS BE WS

4
XXS 2.89 2.44 2.99 2.50

XXXS 2.35 2.36 2.43 2.43

6
XXS 3.23 2.43 3.43 2.54

XXXS 2.50 2.39 2.63 2.50

8
XXS 3.41 2.30 3.70 2.45

XXXS 2.57 2.28 2.73 2.40

Figure 3. Average block efficiency (BE) and wall clock
speedup (WS) across all datasets for token verification
(TOKENV) and block verification (BLOCKV) with different γ.
The large model is PALM-2-S and the drafter model is either
PALM-2-XXS (XXS) or PALM-2-XXXS (XXXS).

4 5 6 7 8
Draft length

3

4

5

6

7

8

Im
pr

ov
em

en
t %

BE, XXS
WS, XXS
BE, XXXS
WS, XXXS

Figure 4. Average relative improvement of block verification
over token verification in block efficiency (BE) and wall clock
speedup (WS) across all datasets for different drafters and
draft lengths.

5

Block Verification Accelerates Speculative Decoding

Table 1. Speedup comparison between token verification (TOKENV) and block verification (BLOCKV) with γ = 8 and PALM-2-XXS
being the draft model. Each statistic is computed using 1000 test prompts from different datasets on various tasks (each run is an average
with 3 different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 3.21± 0.01 3.49± 0.02 8.68± 0.79 2.17± 0.01 2.32± 0.01 6.85± 0.74
GPT Prompt 3.41± 0.04 3.76± 0.02 10.06± 1.66 2.30± 0.02 2.48± 0.01 8.14± 1.55

WebQA 3.44± 0.01 3.70± 0.01 7.53± 0.24 2.32± 0.00 2.45± 0.01 5.75± 0.22
PIQA 3.40± 0.02 3.68± 0.00 8.30± 0.62 2.29± 0.01 2.44± 0.00 6.52± 0.58

ShareGPT 3.34± 0.01 3.62± 0.03 8.45± 0.98 2.25± 0.01 2.40± 0.02 6.68± 0.91
XSum 3.49± 0.02 3.76± 0.01 7.63± 0.94 2.35± 0.01 2.49± 0.01 5.82± 0.88

GSM8K 3.81± 0.01 4.15± 0.03 8.74± 0.56 2.55± 0.01 2.73± 0.02 6.84± 0.51
WMT-DeEn 3.19± 0.01 3.41± 0.02 7.00± 0.78 2.15± 0.01 2.27± 0.01 5.36± 0.73

Average 3.41 3.70 8.30 2.30 2.45 6.49

The detailed numbers on experiments performed with dif-
ferent drafters, different datasets, and different draft lengths
are listed in Appendix E.

References
J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya,

F. L. Aleman, D. Almeida, J. Altenschmidt, S. Altman,
S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic
parsing on Freebase from question-answer pairs. In
D. Yarowsky, T. Baldwin, A. Korhonen, K. Livescu,
and S. Bethard, editors, Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language Pro-
cessing, pages 1533–1544, Seattle, Washington, USA,
Oct. 2013. Association for Computational Linguistics.
URL https://aclanthology.org/D13-1160.

Y. Bisk, R. Zellers, R. Le bras, J. Gao, and Y. Choi. Piqa:
Reasoning about physical commonsense in natural lan-
guage. Proceedings of the AAAI Conference on Artificial
Intelligence, 34(05):7432–7439, Apr. 2020. doi: 10.1609/
aaai.v34i05.6239. URL https://ojs.aaai.org/
index.php/AAAI/article/view/6239.

O. Bojar, C. Buck, C. Federmann, B. Haddow, P. Koehn,
J. Leveling, C. Monz, P. Pecina, M. Post, H. Saint-Amand,
R. Soricut, L. Specia, and A. s. Tamchyna. Findings of the
2014 workshop on statistical machine translation. In Pro-
ceedings of the Ninth Workshop on Statistical Machine
Translation, pages 12–58, Baltimore, Maryland, USA,
June 2014. Association for Computational Linguistics.
URL http://www.aclweb.org/anthology/W/
W14/W14-3302.

C. Chelba, T. Mikolov, M. Schuster, Q. Ge, T. Brants,
P. Koehn, and T. Robinson. One billion word benchmark
for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

6

https://aclanthology.org/D13-1160
https://ojs.aaai.org/index.php/AAAI/article/view/6239
https://ojs.aaai.org/index.php/AAAI/article/view/6239
http://www.aclweb.org/anthology/W/W14/W14-3302
http://www.aclweb.org/anthology/W/W14/W14-3302

Block Verification Accelerates Speculative Decoding

C. Chen, S. Borgeaud, G. Irving, J.-B. Lespiau, L. Sifre,
and J. Jumper. Accelerating large language model
decoding with speculative sampling. arXiv preprint
arXiv:2302.01318, 2023a.

Z. Chen, X. Yang, J. Lin, C. Sun, J. Huang, and K. C.-C.
Chang. Cascade speculative drafting for even faster llm
inference. arXiv preprint arXiv:2312.11462, 2023b.

Z. Chen, A. May, R. Svirschevski, Y. Huang, M. Ryabinin,
Z. Jia, and B. Chen. Sequoia: Scalable, robust, and
hardware-aware speculative decoding, 2024.

A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra,
A. Roberts, P. Barham, H. W. Chung, C. Sutton,
S. Gehrmann, et al. Palm: Scaling language modeling
with pathways. arXiv preprint arXiv:2204.02311, 2022.

K. Cobbe, V. Kosaraju, M. Bavarian, M. Chen, H. Jun,
L. Kaiser, M. Plappert, J. Tworek, J. Hilton, R. Nakano,
C. Hesse, and J. Schulman. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168,
2021.

M. Elhoushi, A. Shrivastava, D. Liskovich, B. Hosmer,
B. Wasti, L. Lai, A. Mahmoud, B. Acun, S. Agarwal,
A. Roman, A. A. Aly, B. Chen, and C.-J. Wu. Layer-
skip: Enabling early exit inference and self-speculative
decoding, 2024.

Gemini Team, R. Anil, S. Borgeaud, Y. Wu, J.-B. Alayrac,
J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth,
et al. Gemini: a family of highly capable multimodal
models. arXiv preprint arXiv:2312.11805, 2023.

F. Gloeckle, B. Y. Idrissi, B. Rozière, D. Lopez-Paz, and
G. Synnaeve. Better & faster large language models via
multi-token prediction, 2024.

Z. He, Z. Zhong, T. Cai, J. D. Lee, and D. He. Rest:
Retrieval-based speculative decoding. arXiv preprint
arXiv:2311.08252, 2023.

Y. Leviathan, M. Kalman, and Y. Matias. Fast inference
from transformers via speculative decoding. In Interna-
tional Conference on Machine Learning, pages 19274–
19286. PMLR, 2022.

Y. Li, F. Wei, C. Zhang, and H. Zhang. Eagle: Speculative
sampling requires rethinking feature uncertainty, 2024.

X. Liu, L. Hu, P. Bailis, I. Stoica, Z. Deng, A. Cheung, and
H. Zhang. Online speculative decoding, 2023.

X. Miao, G. Oliaro, Z. Zhang, X. Cheng, Z. Wang, R. Y. Y.
Wong, Z. Chen, D. Arfeen, R. Abhyankar, and Z. Jia.
Specinfer: Accelerating generative llm serving with
speculative inference and token tree verification. arXiv
preprint arXiv:2305.09781, 2023.

S. Narayan, S. B. Cohen, and M. Lapata. Don’t give
me the details, just the summary! topic-aware convolu-
tional neural networks for extreme summarization. ArXiv,
abs/1808.08745, 2018.

J. P. Quirk and R. Saposnik. Admissibility and measurable
utility functions. The Review of Economic Studies, 29(2):
140–146, 1962.

M. Rashad. Chatgpt-prompts. https://huggingface.
co/datasets/MohamedRashad/
ChatGPT-prompts, 2023.

RyokoAI. Sharegpt. https://huggingface.co/
datasets/RyokoAI/ShareGPT52K, 2023.

M. Stern, N. Shazeer, and J. Uszkoreit. Blockwise parallel
decoding for deep autoregressive models. Advances in
Neural Information Processing Systems, 31, 2018.

H. Sun, Z. Chen, X. Yang, Y. Tian, and B. Chen. Triforce:
Lossless acceleration of long sequence generation with
hierarchical speculative decoding, 2024.

Z. Sun, A. T. Suresh, J. H. Ro, A. Beirami, H. Jain, and
F. Yu. Spectr: Fast speculative decoding via optimal
transport. arXiv preprint arXiv:2310.15141, 2023.

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, et al. Llama: Open and efficient foundation lan-
guage models. arXiv preprint arXiv:2302.13971, 2023.

H. Xia, Z. Yang, Q. Dong, P. Wang, Y. Li, T. Ge, T. Liu,
W. Li, and Z. Sui. Unlocking efficiency in large language
model inference: A comprehensive survey of speculative
decoding. arXiv preprint arXiv:2401.07851, 2024.

N. Yang, T. Ge, L. Wang, B. Jiao, D. Jiang, L. Yang, R. Ma-
jumder, and F. Wei. Inference with reference: Lossless
acceleration of large language models. arXiv preprint
arXiv:2304.04487, 2023.

J. Zhang, J. Wang, H. Li, L. Shou, K. Chen, G. Chen, and
S. Mehrotra. Draft & verify: Lossless large language
model acceleration via self-speculative decoding, 2024.

Y. Zhou, K. Lyu, A. S. Rawat, A. K. Menon, A. Ros-
tamizadeh, S. Kumar, J.-F. Kagy, and R. Agarwal. Dis-
tillspec: Improving speculative decoding via knowledge
distillation, 2023.

7

https://huggingface.co/datasets/ MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/ MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/ MohamedRashad/ChatGPT-prompts
https://huggingface.co/datasets/RyokoAI/ShareGPT52K
https://huggingface.co/datasets/RyokoAI/ShareGPT52K

Block Verification Accelerates Speculative Decoding

A. Related work
Parallel decoding. Our work improves speculative decoding (Leviathan et al., 2022), a framework for decoding several
tokens concurrently. Draft and verify (Stern et al., 2018) was an earlier work, which proposed to independently predict and
decode several tokens in parallel, for the greedy decoding case (zero temperature). Speculative decoding has later also been
proposed in (Chen et al., 2023a).

Improving speculative decoding. There have been many works aiming to improve speculative decoding. In Table 2, we
list a set of works in the draft and verify framework with a breakdown of their drafting and verification algorithms. See
(Xia et al., 2024) for a comprehensive study. In the single-draft case, despite several works have worked on improving
the drafting phase of speculative decoding (He et al., 2023; Chen et al., 2023b; Sun et al., 2024; Zhou et al., 2023; Liu
et al., 2023; Gloeckle et al., 2024; Zhang et al., 2024; Elhoushi et al., 2024). However, all existing algorithms use the token
verification algorithm, and little has been done to improve the verification phase. Our proposed block verification algorithm
can be used in tandem with the drafting techniques in Table 2, yielding combined gains. We leave a more systematic study
of the improvement of block verification in these cases for future study.

Multiple drafts. Recently, speculative decoding is extended to multiple drafts (Sun et al., 2023; Miao et al., 2023) and
new verification algorithms for the multi-draft scenario are proposed (Li et al., 2024; Chen et al., 2024). While increasing
the number of draft sequences has shown to improve the overall speedup, it comes at the cost of more computation. Their
verification algorithm is a generalized token verification procedure. We leave extending the block verification idea to the
multi-sample case as an interesting future direction.

Table 2. A summary of recent works on the draft and verify framework. Our work is the first to introduce block level draft verification.
Temperature 0 refers to greedy decoding and non-zero temperature refers to sampling.

Work # drafts Temp. Drafting Verification

(Stern et al., 2018) 1 0 parallel softmax layers token matching
(Yang et al., 2023) 1 0 additional text token matching

(Leviathan et al., 2022) 1 ≥ 0 small LM TOKENVERIFY (Algorithm 1)
(Chen et al., 2023a) 1 ≥ 0 small LM TOKENVERIFY (Algorithm 1)

(He et al., 2023) 1 ≥ 0 database retrieval TOKENVERIFY (Algorithm 1)
(Chen et al., 2023b) 1 ≥ 0 cascade of small LMs TOKENVERIFY (Algorithm 1)

(Sun et al., 2024) 1 ≥ 0 hierarchical drafters TOKENVERIFY (Algorithm 1)
(Zhou et al., 2023) 1 ≥ 0 distilled small LMs TOKENVERIFY (Algorithm 1)
(Liu et al., 2023) 1 ≥ 0 distilled small LMs TOKENVERIFY (Algorithm 1)

(Gloeckle et al., 2024) 1 ≥ 0 parallel softmax layers TOKENVERIFY (Algorithm 1)
(Zhang et al., 2024) 1 ≥ 0 layer skip TOKENVERIFY (Algorithm 1)

(Elhoushi et al., 2024) 1 ≥ 0 early exit TOKENVERIFY (Algorithm 1)

This work 1 ≥ 0 small LM BLOCKVERIFY (Algorithm 2)

(Sun et al., 2023) ≥ 2 ≥ 0 small LM SpecTr
(Miao et al., 2023) ≥ 2 ≥ 0 small LM multi-round TOKENVERIFY

(Li et al., 2024) ≥ 2 ≥ 0 small LM multi-round TOKENVERIFY
(Chen et al., 2024) ≥ 2 ≥ 0 small LM multi-round TOKENVERIFY

B. Theoretical Guarantees
In this section, we present the formal theoretical guarantees of block verification. Notably, that it produces the correct
distribution and that it is optimal in terms of the expected number of generated tokens. LetM∗(· | c) denote the distribution
of the sequence up to the end of the generative process under modelM and context c.

Definition 1 (Valid draft verification algorithm.). An algorithm VERIFY is said to be a valid draft verification algorithm if
∀c, modelsMs,Mb, and block length γ, the outputs of Algorithm 3 (SPECDEC) with verification algorithm VERIFY satisfy

8

Block Verification Accelerates Speculative Decoding

SPECDEC(c,Mb,Ms, γ,VERIFY) ∼pM∗b(· | c)3, (5)

i.e., it preserves the distribution of the output.

We now claim the following:

Theorem 1. Block verification is a valid draft verification algorithm.

I.e. speculative decoding with block verification preserves the distribution of the output sequence.

We now further claim that block verification is optimal for all valid draft verification algorithms.

Theorem 2. For i > 0, let N(i) be the number of decoded tokens after i iterations in Algorithm 3. For any valid draft
verification algorithm VERIFY in Definition 1, we have ∀c,Ms,Mb, γ, and i,

EBLOCKVERIFY[N(i)] ≥ EVERIFY[N(i)],

where the randomness is over the randomness of the draft block and the randomness of the algorithm.

In particular,
EBLOCKVERIFY[N(i)] ≥ ETOKENVERIFY[N(i)].

I.e., among all valid verification algorithms, speculative decoding with block verification decodes the most number of tokens
in expectation in a fixed number of iterations. Note that since the computation overhead added by block verification is
negligibly small, this establishes the overall optimality of the block verification algorithm. In particular, block verification
provides a greater speedup than the standard token verification. We defer the proofs to Appendix D.

C. Python Implementation
In this section we provide a sketch implementation of Block Verification (Algorithm 2) in Python. Note that these are meant
for illustration purposes only and is not optimized for production settings. Let V = |X | be the size of the vocabulary.

The inputs to the algorithm are:

• ps: an (γ + 1)× V numpy array with the distributions from the large modelMb(· | c, Xi).
• qs: an γ × V numpy array with the distributions from the draft modelMs(· | c, Xi);
• drafts: a length-γ numpy array with the ids of the draft tokens Xγ ;

def block_verification(
ps: np.ndarray, qs: np.ndarray, drafts: np.ndarray) -> list[int]:
draft_length, vocab_size = qs.shape
qs.resize((draft_length+1, vocab_size))
token_sequence = None # Will include the token sequence we return
accept_probability = 1.0 # Acceptance probability for each sub-block
probability_ratios = ps / qs
Add one token to indicate rejecting the sequence
vocab_plus_one = np.arange(vocab_size + 1)
for token_index, token_value in enumerate(xs):

Unnormalized residual probability
sampling_weights[:vocab_size] = np.maximum(

0, ps[token_index] * accept_probability - qs[token_index])
Unnormalized probability of rejecting the sequence
sampling_weights[vocab_size] = 1 - accept_probability
sampling_weights /= np.sum(sampling_weights)
chosen_token = np.random.choice(vocab_plus_one, p=sampling_weights)

3We use ∼p to denote that two distributions are the same.

9

Block Verification Accelerates Speculative Decoding

Update the sequence
if chosen_token < vocab_size:

token_sequence = xs[:token_index] + [chosen_token]
Update the acceptance probability
accept_probability = min(

1, probability_ratios[token_index, token_value] * accept_probability)
return token_sequence

For reference, here is a sketch implementation of the token verification algorithm (Algorithm 1):

def token_verification(
ps: np.ndarray, qs: np.ndarray, drafts: np.ndarray) -> list[int]:
draft_length, vocab_size = qs.shape
qs.resize((draft_length+1, vocab_size))
token_sequence = [] # Will include the token sequence we return
probability_ratios = ps / qs
token_index = 0
vocab_range = np.arange(vocab_size)
for token_value in xs:

accept_probability = probability_ratios[token_index, token_value]
if (not np.isfinite(accept_probability) or

np.random.random() > accept_probability): # Rejection
break

token_index += 1
token_sequence.append(token_value)

Calculate the residual distribution
sampling_weights = np.maximum(0, ps[token_index] - qs[token_index])
sampling_weights /= np.sum(sampling_weights)
token_sequence.append(np.random.choice(vocab_range, p=sampling_weights))
return token_sequence

D. Formal Proofs
We start by setting up a few necessary notations. Let X be the space of output tokens. For ` > 1, we use M`(· | c)
to denote the joint distribution of the next ` tokens conditioned on the prefix under M, i.e., for all x1, . . . x` ∈ X `,
M`(x1, . . . , x` | c) =

∏`
i=1M(xi | c, xi−1). We useM∗(· | c) to denote the distribution of the sequence up to the end of

the generative process. We use ∼p to denote that two distributions are the same. Below we first describe a necessary and
sufficient condition for a valid draft verification algorithm in Algorithm 3.

Lemma 2. ∀c,Ms,Mb, γ, let Xγ be generated fromMγ
s (· | c), and

Xτ , Y = VERIFY(Xγ , {Ms(· | c, Xi)}γ−1i=0 , {Mb(· | c, Xi)}γi=0).

Let Zγ−τ be generated fromMγ−τ
b (· | c, Xτ , Y).

VERIFY is a valid draft verification algorithm (Definition 1) if and only if ∀c,Ms,Mb, γ,

Xτ , Y, Zγ−τ ∼pMγ+1
b (· | c). (6)

Proof. We first prove the forward direction by induction on the maximum generation length of Mb(· | c). When the
maximum generation length is 0, for all new context c′, we have the next token is a point mass over E.O.S, i.e.,

Mb(x | c, c′) = δ{x = E.O.S}.

10

Block Verification Accelerates Speculative Decoding

Then Equation (6) implies that VERIFY will only output E.O.S, which is the same as Definition 1. Suppose Equation (5)
holds for all context andMb with generation length at most T , for a context c andMb with maximum generation length at
most T + 1, we have that the output of SPECDEC(c,Mb,Ms, γ,VERIFY) is

Xτ , Y, SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY).

Let Zγ−τ be the first γ − τ tokens from SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY), and O∗ be the tokens after. Since
Xτ , Y is at least of length one, the generation length ofMb(· | c, Xτ , Y) is at most T . By the induction hypothesis, we
have

Zγ−τ ∼pMγ−τ
b (· | c, Xτ , Y),

and
O∗ ∼pM∗b(· | c, Xτ , Y, Zγ−τ).

And hence by Equation (6),

SPECDEC(c,Mb,Ms, γ,VERIFY) = Xτ , Y, SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)

= Xτ , Y, Zγ−τ , O∗

∼pM∗b(· | c).

This completes the proof for the forward direction.

For the backward direction, we have Equation (5) implies that for all Xτ , Y ,

SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)[: γ − τ]4 ∼pMγ−τ
b (· | c, Xτ , Y).

Let Zγ−τ be a draw fromMγ−τ
b (· | c, Xτ , Y), then

Zγ−τ ∼p SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)[: γ − τ].

And hence when Xτ , Y is the output of VERIFY,

Xτ , Y, Zγ−τ ∼p X
τ , Y, SPECDEC((c, Xτ , Y),Mb,Ms, γ,VERIFY)[: γ − τ]

∼p SPECDEC(c,Mb,Ms, γ,VERIFY)[: γ + 1]

∼pMγ+1
b (· | c).

In all proofs below, we fix the context c, and the modelsMs andMb. We note that the proofs won’t use specific information
about these choices and hence can be easily extended to all cases.

D.1. Proof of Theorem 1

By Lemma 2, it would be enough to prove that BLOCKVERIFY satisfies Equation (6). For simplicity, we often refer to the
sequence (Xτ , Y, Zγ−τ) by Oγ+1. Since Oγ+1 ∼Mb(· | c, Oγ) always holds, it is enough to prove the following

∀` ≤ γ,∀x` ∈ X `, Pr
(
O` = x`

)
=M`

b(x
` | c), (7)

Note that in BLOCKVERIFY, pi’s depend on the draft tokens Xγ . The following definition makes this explicit. Let pi be
such that p0 = 1, and ∀1 ≤ i ≤ γ, xi ∈ X i,

pi(x
i | c) = min

{
pi−1(x

i | c)Mb(xi | c, xi−1)
Ms(xi | c, xi−1)

, 1

}
. (8)

For most cases, when the prefix c is clear, we will ignore c and simply use pi(xi) = pi(x
i | c). We will only make the

prefix explicit when necessary.

We first state the following lemma on the output distribution of BLOCKVERIFY.

4We use v[i : j] to denote the entries i to j in v.

11

Block Verification Accelerates Speculative Decoding

Lemma 3. Let Xγ ∼Mγ
s (· | c), and

Xτ , Y = BLOCKVERIFY(Xγ , {Ms(· | c, Xi)}γ−1i=0 , {Mb(· | c, Xi)}γi=0).

Then we have ∀i ≤ γ, and xi ∈ X i,

Pr
(
τ ≥ ` | Xi = xi

)
= pi(x

i).

We first prove Theorem 1 based on Lemma 3 and defer the proof of the lemma to Appendix D.3. We prove Equation (7) by
induction on the time index `. When ` = 1, O1 is either X1, or a residual sample from pblockres (· | c) where

pblockres (· | c) = max{Mb(x | c)−Ms(x | c), 0}∑
x′ max{Mb(x′ | c)−Ms(x′ | c), 0}

,

Hence we have ∀x ∈ X , by Lemma 3,

Pr (O1 = x)

= Pr (O1 = x, τ ≥ 1) + Pr (O1 = x, τ = 0)

= Pr (X1 = x) Pr (τ ≥ 1 | X1 = x) +
∑
x′

Pr (X1 = x′)(1− Pr (τ ≥ 1 | X1 = x′)) · pblockres (x | c)

=Ms(x | c) · p1(x) +
∑
x′

Ms(x
′ | c)(1− p1(x′)) · pblockres (x | c)

= min{Mb(x | c),Ms(x | c)}+
∑
x′

max{Mb(x
′ | c)−Ms(x

′ | c), 0} · pblockres (x | c)

= min{Mb(x | c),Ms(x | c)}+max{Mb(x | c)−Ms(x | c), 0}
=Mb(x | c).

Hence the Equation (7) holds for ` = 1. Suppose Equation (7) holds up to an arbitrary ` < γ. For ` = `+ 1, we have O`+1

is either equal to X`+1 when τ ≥ `+ 1, or a sample from pblockres (· | c, X`) when τ = `, or a sample fromMb(· | c, O`)
when τ < `. Hence Pr

(
O`+1 = x`+1

)
can be broken down below:

Pr
(
O`+1 = x`+1

)
=

Pr
(
O`+1 = x`+1, τ ≥ `+ 1

)
+ Pr

(
O`+1 = x`+1, τ = `

)
+ Pr

(
O`+1 = x`+1, τ < `

)
(9)

For the first term (τ ≥ `+ 1), we have

Pr
(
O`+1 = x`+1, τ ≥ `+ 1

)
= Pr

(
X`+1 = x`+1

)
· Pr

(
τ ≥ `+ 1 | X`+1 = x`+1

)
=Ms(x

`+1 | c) · p`+1(x
`+1)

=Ms(x
` | c) ·min{p`(x`)Mb(x`+1 | c, x`),Ms(x`+1 | c, x`)}. (10)

For the second term (τ = `), we have

Pr
(
O`+1 = x`+1, τ = `

)
= Pr

(
X` = x`

)
· Pr

(
τ = ` | X` = x`

)
· Pr

(
O`+1 = x`+1 | O` = x`, τ = `

)
= Pr

(
X` = x`

)
· Pr

(
τ = ` | X` = x`

)
· pblockres (x`+1 | c, x`)

12

Block Verification Accelerates Speculative Decoding

Note that,

Pr
(
τ = ` | X` = x`

)
= Pr

(
τ ≥ ` | X` = x`

)
−
∑
x

Ms(x | c, x`) · Pr
(
τ ≥ `+ 1 | c, X`+1 = x`, x

)
= p`(x

`)−
∑
x

Ms(x | c, x`) · p`+1(x
`, x)

= p`(x
`)−

∑
x

min{p`(x`)Mb(x | c, x`),Ms(x | c, x`)}

=
∑
x

max{p`(x`)Mb(x | c, x`)−Ms(x | c, x`), 0}.

And hence

Pr
(
O`+1 = x`+1, τ = `

)
=Ms(x

` | c) ·max{p`(x`)Mb(x`+1 | c, x`)−Ms(x`+1 | c, x`), 0}. (11)

For the third term (τ < `), by induction, and the generation process of Oγ+1, we have

Pr
(
O`+1 = x`+1, τ < `

)
= Pr

(
O` = x`, τ < `

)
· Pr

(
O`+1 = x`+1 | O` = x`, τ < `

)
=
(
Pr
(
O` = x`

)
− Pr

(
O` = x`, τ ≥ `

))
· Mb(x`+1 | c, x`)

=
(
Mb(x

` | c)−Ms(x
` | c)p`(x`)

)
· Mb(x`+1 | c, x`) (12)

Plugging Equations (10) to (12) into Equation (9), we get ∀x`+1 ∈ X `+1,

Pr
(
O`+1 = x`+1

)
=Mb(x

`+1 | c),

completing the induction step and hence the proof of Equation (7) and Theorem 1.

D.2. Proof of Theorem 2

We first state the following lemma, which shows that in one iteration, among all valid draft verification algorithms,
BLOCKVERIFY accepts each subsequence with the highest probability.

Lemma 4. For draft verification algorithms that satisfy the constraints in Lemma 2, we have ∀i ≤ γ, and xi ∈ X i,

Pr
(
τ ≥ i | Xi = xi

)
≤ pi(xi).

We defer the proof of the lemma to Appendix D.4 and first prove Theorem 2 based on the lemma.

We start by breaking down the expected number of decoded tokens EVERIFY[N(i)] into the distribution of N(i) on different
sample paths. Let O∗ = O1, O2, . . . , be the complete output sequence from speculative decoding. We set all tokens after
E.O.S to be E.O.S as well. Then we have

EVERIFY[N(i)] =

∞∑
`=1

Pr
VERIFY

(N(i) ≥ `) =
∑

x∗∈X∗

∞∑
`=1

Pr
VERIFY

(O∗ = x∗, N(i) ≥ `).

Hence it would be enough to prove the following.

Lemma 5. For all draft verification algorithms that satisfy the constraints in Lemma 2, we have ∀c, and output x∗,

Pr
VERIFY

(O∗ = x∗, N(i) ≥ ` | c) ≤ Pr
BLOCKVERIFY

(O∗ = x∗, N(i) ≥ ` | c) (13)

13

Block Verification Accelerates Speculative Decoding

We prove the lemma by induction on the number of iterations i. When i = 1, we have that N(i) = τ + 1, where τ is the
number of accepted tokens. Hence by the guarantee in Lemma 2,

Pr
VERIFY

(O∗ = x∗, N(1) ≥ ` | c)

= Pr
VERIFY

(
O` = x`, N(1) ≥ ` | c

)
· M∗b(x`+1:∗ | c, x`) / Equation (21)

= Pr
VERIFY

(
O` = x`, τ ≥ `− 1 | c

)
· M∗b(x`+1:∗ | c, x`)

= Pr
VERIFY

(
X`−1 = x`−1, τ ≥ `− 1 | c

)
· Mb(x` | c, x`−1) · M∗b(x`+1:∗ | c, x`)

=Ms(x
`−1 | c)M∗b(x`:∗ | c, x`−1) Pr

VERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
≤Ms(x

`−1 | c)M∗b(x`:∗ | c, x`−1) Pr
BLOCKVERIFY

(
τ ≥ `− 1 | X`−1 = x`−1, c

)
/ Lemmas 3 and 4

= Pr
BLOCKVERIFY

(O∗ = x∗, N(1) ≥ ` | c). (14)

Suppose the lemma holds for all iterations up to i, for the (i+ 1)th iteration, let τi be the number of tokens accepted in the
(i+ 1)th iteration, we have

Pr
VERIFY

(O∗ = x∗, N(i+ 1) ≥ ` | c)

=
∑
`′<`

Pr
VERIFY

(O∗ = x∗, N(i) = `′ | c) Pr
VERIFY

(O∗ = x∗, τi+1 ≥ `− `′ − 1 | c, N(i) = `′)

= Pr
VERIFY

(O∗ = x∗ | c)
∑
`′<`

Pr
VERIFY

(N(i) = `′ | O∗ = x∗, c)

· Pr
VERIFY

(O∗ = x∗, τi+1 ≥ `− `′ − 1 | c, N(i) = `′)

=Mb(x
∗ | c)

∑
`′<`

Pr
VERIFY

(N(i) = `′ | O∗ = x∗, c) Pr
VERIFY

(O∗ = x∗, τi+1 ≥ `− `′ − 1 | c, N(i) = `′) (15)

Let ηVERIFY be a random variable distributed according to PrVERIFY (N(i) = `′ | O∗ = x∗, c), and

fVERIFY(η) = Pr
VERIFY

(O∗ = x∗, τi+1 ≥ `− η − 1 | c, N(i) = η).

Plugging these into Equation (15), we have

Pr
VERIFY

(O∗ = x∗, N(i+ 1) ≥ ` | c) =Mb(x
∗ | c)EηVERIFY

[fVERIFY(η)]

Note that let c′ = c, x`
′
, we have

fVERIFY(η) = Pr
VERIFY

(O∗ = x∗, τi+1 ≥ `− `′ − 1 | c, N(i) = `′)

= Pr
VERIFY

(
O∗ = x`

′:∗, τ ≥ `− `′ − 1 | c′
)

≤ Pr
BLOCKVERIFY

(
O∗ = x`

′:∗, τ ≥ `− `′ − 1 | c′
)

= Pr
BLOCKVERIFY

(O∗ = x∗, τi+1 ≥ `− `′ − 1 | c, N(i) = `′)

= fBLOCKVERIFY(η).

Hence we have

Pr
VERIFY

(O∗ = x∗, N(i+ 1) ≥ ` | c) ≤ EηVERIFY
[fBLOCKVERIFY(η)] .

Note that PrBLOCKVERIFY (O
∗ = x∗, N(i+ 1) ≥ ` | c) = EηBLOCKVERIFY

[fBLOCKVERIFY(η)]. It would be enough to prove that

EηVERIFY
[fBLOCKVERIFY(η)] ≤ EηBLOCKVERIFY

[fBLOCKVERIFY(η)] . (16)

14

Block Verification Accelerates Speculative Decoding

By the induction hypothesis, we have ηBLOCKVERIFY stochastically dominates (Quirk and Saposnik, 1962) ηVERIFY for any
valid verification algorithm. Moreover, by definition and Lemma 3,

fBLOCKVERIFY(η) =

0 if η < `− γ − 1,

p`−η−1(x
η+1:`−1 | c, xη), if `− γ − 1 ≤ η ≤ `− 1

1 if η > `− 1,

which is an increasing function of η. To see this, for η′ = η + 1, we can obtain p`−η′−1(xη
′+1:`−1 | c, xη′) by following

the same recursion steps as in Equation (8) but replacing p1(xη+1:`−1 | c, xη) with p0(xη+2:`−1 | c, xη+1) = 1, and hence
only increasing the values.

Hence Equation (16) holds (Quirk and Saposnik, 1962). This completes the induction step and the proof of Theorem 2.

D.3. Proof of Lemma 3

Note that in Algorithm 2, pi = pi(X
i). We prove the statement by backward induction. When i = γ, we have by definition

of hblockγ , ∀xγ ∈ X γ ,
Pr (τ ≥ γ | Xγ = xγ) = pγ(x

γ).

Suppose the statement holds for i ≥ `. When i = `− 1, we have

Pr
(
τ ≥ `− 1 | X`−1 = x`−1

)
=
∑
x`∈X

Ms(x` | c, x`−1) · Pr
(
τ ≥ `− 1 | X` = x`

)
=
∑
x`∈X

Ms(x` | c, x`−1) ·
(
Pr
(
τ ≥ ` | X` = x`

)
+ Pr

(
τ < ` | X` = x`

)
· hblock`

)
=
∑
x`∈X

Ms(x` | c, x`−1) ·
(
p`(x

`) + (1− p`(x`)) · hblock`

)
,

=
∑
x`∈X

Ms(x` | c, x`−1) · p`(x`) + hblock` ·
∑
x`∈X

Ms(x` | c, x`−1) · (1− p`(x`)). (17)

Note that in the definition of hblock` (Equation (4)),∑
x

max{p`−1(x`−1)Mb(x | c, x`−1)−Ms(x | c, x`−1), 0}

=
∑
x

(
p`−1(x

`−1)Mb(x | c, x`−1)−min{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}
)

= p`−1(x
`−1)−

∑
x

min{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}

Hence

hblock` =
p`−1(x

`−1)−
∑
xmin{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}

1−
∑
xmin{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}

. (18)

Moreover, we have∑
x`∈X

Ms(x` | c, x`−1) · p`(x`) =
∑
x`∈X

Ms(x` | c, x`−1) · p`(x`)

=
∑
x`∈X

min{p`−1(x`−1)Mb(x` | c, x`−1),Ms(x` | c, x`−1)}

=
∑
x∈X

min{p`−1(x`−1)Mb(x | c, x`−1),Ms(x | c, x`−1)}. (19)

15

Block Verification Accelerates Speculative Decoding

Plugging (19) and (18) into (17), we get

Pr
(
τ ≥ `− 1 | X`−1 = x`−1

)
= p`−1(x

`−1),

as desired. The lemma hence follows by induction.

D.4. Proof of Lemma 4

Recall that we use Oγ+1 to denote the sequence (Xτ , Y, Zγ−τ) in Equation (6). We prove the lemma by induction. When
i = 1, the lemma holds since else the output probability of x1 will be higher thanMb(x1 | c). Suppose the lemma holds for
all i ≤ `− 1. When i = `, we prove that it also holds by contradiction. Suppose there exists x` ∈ X ` such that

Pr
(
τ ≥ ` | X` = x`

)
> p`(x

`). (20)

If ∀i ≤ `− 1, it satisfies that pi(xi)Mb(xi+1 | c, xi) ≤Ms(xi+1 | c, xi), then we have in the recursive formula of pi’s,
we always have

pi(x
i) = pi−1(x

i−1)
Mb(xi | c, xi−1)
Ms(xi | c, xi−1)

,

and hence

p`−1(x
`−1) =

Mb(x
`−1 | c)

Ms(x`−1 | c)
,

And for x`, we have

p`(x
`) = min{Mb(x

` | c)
Ms(x` | c)

, 1}.

This would imply that

Pr
(
O` = x`, τ ≥ `

)
= Pr

(
X` = x`

)
Pr
(
τ ≥ ` | X` = x`

)
>Ms(x

` | c) ·min{Mb(x
` | c)

Ms(x` | c)
, 1}

= min{Mb(x
` | c),Ms(x

` | c)},

which leads to a contradiction.

In the other case, if there exists i < ` such that, pi(xi) = 1. Let i be the largest such index. In this case, we have
Mb(x

i | c) >Ms(x
i | c) since otherwise, we won’t have pi(xi) = 1. And we have

p`(x
`) =

M`−i
b (xi+1:` | c, xi)

M`−i
s (xi+1:` | c, xi)

.

Then by the induction hypothesis, we have

Pr
(
Oi = xi, τ ≥ i

)
= Pr

(
Xi = xi

)
Pr
(
τ ≥ i | Xi = xi

)
≤Ms(x

i | c) <Mb(x
i | c).

Hence
Pr
(
Oi = xi, τ < i

)
= Pr

(
Oi = xi

)
− Pr

(
Oi = xi, τ ≥ i

)
=Mb(x

i | c)−Ms(x
i | c) > 0.

Note that when Oi = xi, τ < i, by constraints in Equation (6), we have

Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ < i

)
=M`−i

b (xi+1:` | c, xi).

This implies

Pr
(
O` = x`

)
= Pr

(
Oi = xi, τ < i

)
· M`−i

b (xi+1:` | c, xi)
+ Pr

(
Oi = xi, τ ≥ i

)
Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
16

Block Verification Accelerates Speculative Decoding

Moreover, we have
Pr
(
O` = x`

)
=Mb(x

i)M`−i
b (xi+1:` | c, xi)

Combining both, we get

1 =
Pr
(
O` = x`

)
Mb(xi)M`−i

b (xi+1:` | c, xi)

= Pr
(
τ < i | Oi = xi

)
+ Pr

(
τ ≥ i | Oi = xi

)Pr (Oi+1:` = xi+1:` | Oi = xi, τ ≥ i
)

M`−i
b (xi+1:` | c, xi)

,

= 1− Pr
(
τ ≥ i | Oi = xi

)(Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
M`−i

b (xi+1:` | c, xi)
− 1

)
,

and this implies that
Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
=M`−i

b (xi+1:` | c, xi). (21)

Hence

Pr
(
O` = x`, τ ≥ `

)
≤ Pr

(
O` = x`, τ ≥ i

)
= Pr

(
Oi = xi, τ ≥ i

)
Pr
(
Oi+1:` = xi+1:` | Oi = xi, τ ≥ i

)
≤Ms(x

i | c)pi(xi)M`−i
b (xi+1:` | c, xi)

=Ms(x
i | c)M`−i

b (xi+1:` | c, xi).

However, by assumption,

Pr
(
O` = x`, τ ≥ `

)
= Pr

(
X` = x`

)
Pr
(
τ ≥ ` | X` = x`

)
>Ms(x

` | c)p`(x`)

=Ms(x
` | c)

M`−i
b (xi+1:` | c, xi)

M`−i
s (xi+1:` | c, xi)

=Ms(x
i | c)M`−i

b (xi+1:` | c, xi),

which leads to a contradiction. This completes the proof.

E. Additional Results
In this section, we present experimental results for the same set of experiments described in Section 5 different block lengths
(γ = 4, 6, 8) and different drafters (PALM-2-XXS and PALM-2-XXXS), listed below.

• Table 3. Drafter: PALM-2-XXS, γ = 4.
• Table 4. Drafter: PALM-2-XXS, γ = 6.
• Table 5. Drafter: PALM-2-XXXS, γ = 4.
• Table 6. Drafter: PALM-2-XXXS, γ = 6.
• Table 7. Drafter: PALM-2-XXXS, γ = 8.

17

Block Verification Accelerates Speculative Decoding

Table 3. Speedup comparison between token verification (TOKENV) and block verification (BLOCKV) with γ = 4 and PALM-2-XXS
being the draft model. Each statistic is computed using 1000 test prompts from different datasets on various tasks (each run is an average
with 3 different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.78± 0.01 2.88± 0.01 3.48± 0.24 2.36± 0.00 2.42± 0.01 2.51± 0.22
GPT Prompt 2.88± 0.01 3.00± 0.00 4.33± 0.25 2.43± 0.01 2.51± 0.00 3.43± 0.24

WebQA 2.91± 0.01 2.99± 0.01 2.83± 0.65 2.45± 0.01 2.50± 0.01 1.94± 0.61
PIQA 2.89± 0.00 2.99± 0.01 3.48± 0.21 2.44± 0.00 2.50± 0.01 2.66± 0.20

ShareGPT 2.85± 0.01 2.95± 0.00 3.48± 0.19 2.41± 0.01 2.47± 0.00 2.63± 0.17
XSum 2.94± 0.01 3.03± 0.01 3.24± 0.51 2.48± 0.01 2.54± 0.01 2.35± 0.48

GSM8K 3.12± 0.01 3.21± 0.02 3.06± 0.95 2.62± 0.01 2.68± 0.02 2.19± 0.89
WMT-DeEn 2.75± 0.01 2.83± 0.01 2.99± 0.09 2.33± 0.01 2.38± 0.01 2.18± 0.09

Average 2.89 2.99 3.36 2.44 2.50 2.49

Table 4. Speedup comparison between token verification (TOKENV) and block verification (BLOCKV) with γ = 6 and PALM-2-XXS
being the draft model. Each statistic is computed using 1000 test prompts from different datasets on various tasks (each run is an average
with 3 different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 3.08± 0.01 3.27± 0.01 6.42± 0.07 2.32± 0.01 2.43± 0.01 5.00± 0.06
GPT Prompt 3.22± 0.01 3.44± 0.02 6.55± 0.83 2.42± 0.00 2.54± 0.02 5.06± 0.77

WebQA 3.26± 0.01 3.44± 0.01 5.60± 0.22 2.45± 0.01 2.55± 0.01 4.24± 0.21
PIQA 3.22± 0.02 3.43± 0.02 6.36± 0.78 2.42± 0.01 2.54± 0.01 4.92± 0.72

ShareGPT 3.18± 0.02 3.37± 0.01 6.13± 0.53 2.39± 0.02 2.50± 0.01 4.74± 0.49
XSum 3.29± 0.01 3.48± 0.01 5.91± 0.82 2.47± 0.01 2.58± 0.01 4.47± 0.77

GSM8K 3.56± 0.01 3.80± 0.03 6.86± 0.60 2.66± 0.01 2.80± 0.02 5.38± 0.56
WMT-DeEn 3.04± 0.01 3.19± 0.01 4.92± 0.29 2.29± 0.01 2.37± 0.01 3.57± 0.27

Average 3.23 3.43 6.10 2.43 2.54 4.67

Table 5. Speedup comparison between token verification (TOKENV) and block verification (BLOCKV) with γ = 4 and PALM-2-XXXS
being the draft model. Each statistic is computed using 1000 test prompts from different datasets on various tasks (each run is an average
with 3 different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.24± 0.00 2.33± 0.01 4.23± 0.44 2.25± 0.00 2.34± 0.01 3.89± 0.41
GPT Prompt 2.41± 0.02 2.48± 0.01 2.96± 1.00 2.42± 0.02 2.48± 0.01 2.72± 0.94

WebQA 2.38± 0.01 2.45± 0.01 2.87± 0.13 2.39± 0.01 2.45± 0.01 2.63± 0.12
PIQA 2.36± 0.01 2.43± 0.01 3.22± 0.37 2.37± 0.01 2.44± 0.01 2.97± 0.35

ShareGPT 2.34± 0.00 2.42± 0.01 3.49± 0.12 2.35± 0.00 2.42± 0.01 3.16± 0.12
XSum 2.38± 0.01 2.45± 0.01 2.91± 0.63 2.39± 0.01 2.45± 0.01 2.68± 0.60

GSM8K 2.51± 0.01 2.58± 0.02 2.99± 0.47 2.51± 0.01 2.58± 0.02 2.74± 0.44
WMT-DeEn 2.22± 0.00 2.28± 0.00 2.59± 0.09 2.24± 0.00 2.29± 0.00 2.37± 0.08

Average 2.35 2.43 3.16 2.36 2.43 2.89

18

Block Verification Accelerates Speculative Decoding

Table 6. Speedup comparison between token verification (TOKENV) and block verification (BLOCKV) with γ = 6 and PALM-2-XXXS
being the draft model. Each statistic is computed using 1000 test prompts from different datasets on various tasks (each run is an average
with 3 different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.36± 0.01 2.48± 0.00 4.93± 0.46 2.27± 0.01 2.37± 0.00 4.55± 0.43
GPT Prompt 2.58± 0.04 2.72± 0.02 5.57± 1.29 2.46± 0.03 2.59± 0.01 5.10± 1.22

WebQA 2.54± 0.00 2.68± 0.02 5.46± 0.50 2.43± 0.00 2.55± 0.01 5.02± 0.47
PIQA 2.50± 0.00 2.62± 0.01 5.06± 0.39 2.39± 0.00 2.50± 0.01 4.66± 0.37

ShareGPT 2.47± 0.01 2.60± 0.01 5.10± 0.49 2.37± 0.01 2.48± 0.01 4.69± 0.46
XSum 2.54± 0.01 2.67± 0.01 4.83± 0.47 2.43± 0.01 2.54± 0.01 4.45± 0.44

GSM8K 2.71± 0.03 2.83± 0.00 4.27± 0.89 2.58± 0.02 2.69± 0.00 3.92± 0.84
WMT-DeEn 2.31± 0.01 2.43± 0.02 5.38± 0.57 2.21± 0.00 2.32± 0.01 4.99± 0.54

Average 2.50 2.63 5.07 2.39 2.50 4.67

Table 7. Speedup comparison between token verification (TOKENV) and block verification (BLOCKV) with γ = 8 and PALM-2-XXXS
being the draft model. Each statistic is computed using 1000 test prompts from different datasets on various tasks (each run is an average
with 3 different random seeds). Numbers after ± represent standard deviation.

Dataset Block efficiency Wall clock time speedup over baseline

TOKENV BLOCKV Improve. ↑ % TOKENV BLOCKV Improve. ↑ %

LM1B 2.40± 0.01 2.55± 0.01 6.19± 0.43 2.13± 0.01 2.25± 0.01 5.28± 0.40
GPT Prompt 2.66± 0.01 2.82± 0.02 6.28± 1.01 2.35± 0.01 2.47± 0.02 5.37± 0.95

WebQA 2.61± 0.01 2.78± 0.00 6.27± 0.49 2.31± 0.01 2.43± 0.00 5.39± 0.46
PIQA 2.57± 0.01 2.76± 0.01 7.48± 0.51 2.27± 0.01 2.42± 0.01 6.51± 0.47

ShareGPT 2.54± 0.01 2.71± 0.01 6.63± 0.72 2.25± 0.01 2.38± 0.01 5.68± 0.68
XSum 2.60± 0.01 2.77± 0.00 6.46± 0.49 2.30± 0.01 2.43± 0.00 5.53± 0.46

GSM8K 2.82± 0.02 2.98± 0.03 5.48± 1.18 2.49± 0.01 2.60± 0.03 4.62± 1.11
WMT-DeEn 2.37± 0.00 2.49± 0.01 5.33± 0.46 2.10± 0.00 2.20± 0.01 4.53± 0.43

Average 2.57 2.73 6.27 2.28 2.40 5.36

19

