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Abstract

Hinge-loss Markov random fields (HL-MRF) are
a class of probabilistic graphical models with den-
sity functions that admit tractable MAP inference.
When paired with an expressive modeling frame-
work, HL-MRFs are powerful tools for perform-
ing structured prediction. One such framework,
probabilistic soft logic (PSL), uses weighted first-
order logical statements to incorporate domain
knowledge and constraints into the HL-MRF struc-
ture. Traditionally, PSL restricts weights to be
non-negative to ensure MAP inference remains
tractable, but this limits the types of relations PSL
models can represent. We propose three novel ap-
proaches to extending PSL’s expressivity to sup-
port negative weights. Notably, we propose the use
of Gödel logic for defining potentials from nega-
tively weighted rules. This method improves upon
prior work on this topic by preserving both the
convexity and scale of the MAP inference problem.
Moreover, we show where our new methods and
two approaches from prior work overlap and where
they most differ. All methods are implemented in
PSL, and we introduce a tunable synthetic dataset
designed to empirically compare the performance
of predictions.

1 INTRODUCTION

Hinge-loss Markov random fields (HL-MRF) are a class of
probabilistic graphical models (PGM) that are both tractable
and expressive [Bach et al., 2017]. HL-MRFs admit log-
concave probability density functions with a structure that
allows for highly-efficient maximum-a-posteriori (MAP)
inference. HL-MRFs are particularly powerful when paired
with a statistical relational learning (SRL) framework. SRL
frameworks are tools for defining probabilistic models over

relational data [Getoor and Taskar, 2007]. Probabilistic soft
logic (PSL) is an SRL framework that uses weighted first-
order logical statements (rules) to encode dependencies
between relations and attributes in a domain [Bach et al.,
2017]. PSL rules are instantiated with data to create poten-
tials defining the HL-MRF density function. Typically, PSL
performs maximum a posteriori (MAP) estimation over this
density function in order to make predictions.

To ensure scalable inference, PSL enforces constraints on
the HL-MRF density function, and hence the structure of the
rules. These constraints limit the expressivity of the frame-
work. In this paper we address the PSL constraint restricting
the sign of weights of rules to be non-negative. This con-
straint is designed to preserve the convexity properties of
MAP inference. Other SRL frameworks, such as Markov
logic networks (MLN) [Richardson and Domingos, 2006],
are not concerned with the convexity properties of the MAP
inference problem and can support negative weights [Niu
et al., 2011, Noessner et al., 2013]. In MLNs, a negative
weight indicates that the negation of the associated rule
should be satisfied. Since MLN’s work with discrete valued
variables, the negation of a rule is defined using Boolean
logical semantics. PSL, on the other hand, translates rules
to potentials by measuring the distance to satisfaction with
Łukasiewicz real-valued logic [Klir and Yuan, 1995]. Instan-
tiating a potential of a negated PSL rule using Łukasiewicz
semantics results in concave potentials being added to the
MAP objective function, breaking the convexity of infer-
ence.

Prior to this work, there have been two approaches pro-
posed for supporting negative weights in PSL [Bach et al.,
2017]. The first is to bias all user provided weights by a
large enough constant to ensure non-negativity. This ap-
proach admits a convex MAP inference problem, however
the semantics may not align with user expectations. The
instantiated potentials do not measure the distance to satis-
faction of the rules as one might expect. Another approach
is to replace the non-convex potentials with multiple convex
ones that have the same combined loss for critical variable
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assignments. This approach also results in a convex MAP
inference problem, but may have unexpected properties for
some variable values. Furthermore, this approach has scala-
bility issues as the resulting PGM can grow exponentially
with respect to the size of the rules. A larger HL-MRF model
implies both slower MAP inference, as there are a larger
number of potentials to optimize over, and more memory
consumption.

In this work, we propose three new approaches for support-
ing negative weights in PSL. The first instantiates poten-
tials using an un-modified form of the rule and allows the
weights to be negative in the objective. This method results
in a MAP inference problem that is non-convex but admits
an objective that can be easily separated into a difference of
convex functions. The second method negates the negatively
weighted rule and instantiates a potential using Łukasiewicz
logic. This method again breaks the convexity of inference,
but we show in special-cases that this method can be equiva-
lent to the first. Lastly, we propose a method which similarly
negates the negatively weighted rule, but instead instantiates
a potential using Gödel logic [Klement et al., 2000]. The
conjunction semantics of Gödel logic is defined by the con-
cave function: Tmin(x,y) = min{x,y}. Using this property
we show that potentials instantiated from rules negated with
Gödel logic preserve convexity and faithfully measure dis-
tance to satisfaction. We analyze and compare the convexity
and scalability properties of the two previously proposed
and the three novel methods. In addition, we develop a tax-
onomy of the negative weight methods and show when the
methods are equivalent and when they differ. We introduce
synthetic dataset generator designed to evaluate the impact
of negative weights and measure the effectiveness of each
approach.

2 PROBABILISTIC SOFT LOGIC

Probabilistic soft logic (PSL) is a declarative framework for
defining a hinge-loss Markov random field (HL-MRF). PSL
provides a syntax for describing dependencies, referred to
as rules, between attributes and relations in a domain, called
atoms. Rules are expressed as weighted first-order logical
statements and act as templates for instantiating potentials
that define the HL-MRF. The following is an example of a
weighted logical rule:

w : LIKES(U,I1)∧SIMILAR(I1,I2)→ LIKES(U,I2)^2

This rule, defined over the atoms LIKES(U,I1),
SIMILAR(I1,I2), and LIKES(U,I2), models the idea
that a user, U, that likes an item I1, will also like a similar
item I2. The weight of the rule, denoted by the variable w,
represents the relative importance of satisfying the rule in
the model. The squared term, ^2, modifies the form of the
potential functions created by the rule.

A PSL rule is instantiated via a process referred to as ground-

ing. During grounding, atom arguments are substituted with
distinct entities from a provided dataset to create ground
rules. Logical ground rules are converted to a disjunctive
clause. For instance, one ground rule from the example
provided above is:

w : ¬LIKES(Alice,Co f f ee)∨¬SIMILAR(Co f f ee,Tea)

∨LIKES(Alice,Tea)^2

Every unique instantiation of atoms, ai, from the ground-
ing process is associated with a corresponding random
variable yi. Then, PSL uses Łukasiewicz logical seman-
tics to define potential functions over all n random vari-
ables y = (y1, · · · ,yn) [Klir and Yuan, 1995]. For a single
ground logical rule, let I− and I+ be the set of indices corre-
sponding to atoms that are and are not negated, respectively.
Łukasiewicz logic defines the degree of truth of the disjunc-
tive clause of the ground rule as

min

{
∑

i∈I+
yi + ∑

i∈I−
(1− yi),1

}

Then, potentials measure the distance to satisfaction of the
ground rule.

φ(y) =

(
1−min

{
∑

i∈I+
yi + ∑

i∈I−
(1− yi),1

})p

=

(
max

{
1− ∑

i∈I+
yi− ∑

i∈I−
(1− yi),0

})p

Here, p represents the exponential term in the rule.
If the ground rule is squared, p = 2, then the poten-
tial measures the squared distance. Continuing with the
same example, let y1, y2, and y3 correspond to the
atoms LIKES(Alice,Co f f ee), SIMILAR(Co f f ee,Tea), and
LIKES(Alice,Tea), respectively. The potential instantiated
from the logical ground rule mentioned above is:

φ(y) = (max{1− y3− (1− y1)− (1− y2),0})2

= (max{y1 + y2− y3−1,0})2

If an instantiation of an atom, ai is observed to take the value
xi, then the corresponding random variable yi is set to xi.
This partitions the random variables into an unobserved set
y and an observed set x. All potentials can thus be expressed
as a function of y and x.

φ(y,x) = (max{`(x,y),0})p

Where `(x,y) is a linear function of the random variables.
The set of all potentials created from the grounding process
are combined to define the HL-MRF:

Definition 1 (Hinge-loss Markov random field). Let y =
(y1, · · · ,yn) be a vector of n variables and x = (x1, · · · ,xn′)

a vector of n′ variables with joint domain [0,1]n+n′ . Let



Φ = (φ1, · · · ,φm) be a vector of m continuous potentials of
the form

φi(y,x) = (max{`i(y,x),0})pi (1)

where `i is a linear function of y and x and pi ∈ {1,2}.

Given a vector of m weights, w=(w1, · · · ,wm), a hinge-loss
energy function f (·) is defined as:

f (y,x,w) =

{
∑

m
i=1 wiφi(y,x) (y,x) ∈ [0,1]n+n′

∞ o.w.
(2)

A hinge-loss Markov random field P over random vari-
ables y ∈ [0,1]n and conditioned on x ∈ [0,1]n

′
is a proba-

bility density defined as:

P(y|x) = 1
Z(w,x)

exp(− f (y,x,w)) (3)

where Z(w,x) =
∫

y exp(− f (y,x,w))dy is the partition func-
tion for the conditional distribution.

Maximum a posteriori (MAP) inference is the task of find-
ing the assignment of the unobserved random variables, y,
given the observations x that achieves the mode or peak of
the conditional HL-MRF distribution function P(y|x) with
potentials φ = (φ1, · · · ,φm) and weights w = (w1, · · · ,wm).

argmax
y∈Rn

P(y|x) = argmin
y∈[0,1]n

m

∑
i=1

wiφi(y,x) (4)

Each individual potential φi(y,x) takes the form of a hinge-
loss (Equation 1), and is hence convex. Traditionally, PSL
enforces an additional constraint that the weights are all
strictly non-negative. With this, the MAP inference objective
becomes a finite positive weighted sum of convex functions
and is therefore convex. This allows for the application
highly scalable convex solvers for finding global optimal
solutions.

3 NEGATIVE WEIGHTS

In this work we remove the non-negativity constraint on the
weights, w, that PSL uses to define a HL-MRF. A negative
weight has a direct impact on the structure of the HL-MRF
conditional distribution and hence the MAP inference prob-
lem. We introduce five different approaches for interpreting
negative weights in PSL. At a high level, the approaches
are classifiable as either methods that consider weights inde-
pendently from grounding or ones that modify the potential
instantiation process by using the sign of the weight as an
indicator to negate the rule. We refer to the former class of
approaches as weight based and the latter as negation based.

To illustrate each interpretation, we use the following simple
PSL model designed to predict unobserved instances of the

atom Q(A):

w1 : !Q(A)^2
w2 : P(A)→ Q(A)^2

The first rule is a squared negative prior on Q(A) that encour-
ages predictions near 0. Then the second rule is a squared
implication that implies values for P(A) can be used as pre-
dictive signal for Q(A). A dataset with just a single entity
A= {a} is used to instantiate the PSL model. The grounding
process will therefore create the following ground rules:

w1 : !Q(a)^2 (5)
w2 : ¬P(a)∨Q(a)^2 (6)

Throughout this discussion, let P(a) be observed with the
truth value x = 0.75 and let y be the random variable corre-
sponding to the atom Q(a). Finally, we assume that w2 < 0
and w1 >= 0.

3.1 WEIGHT-BASED APPROACHES

For weight-based approaches, the grounding process de-
scribed in Section 2 is unchanged in the presence of a nega-
tive weight. Thus the potential functions for the two rules
are:

φ1(y,x) = [1− (1− y)]2 = y2

φ2(y,x) = (max{1− y− (1− x),0})2

= (max{0.25− y,0})2

Therefore, the objective function, f (y,x), for this model is:

f (y,x) = w1φ1(y,x)+w2φ2(y,x)

= w1y2 +w2(max{0.25− y,0})2 (7)

3.1.1 Remove Non-Negativity Constraint on Weights

The first approach is to simply remove the non-negativity
constraint on the weights in Definition 1. When weights
are not constrained to be non-negative the HL-MRF MAP
inference objective is no longer necessarily a positive sum
of convex functions and is therefore not guaranteed to be
convex. This behavior is demonstrated in the plot of the
objective function for the example PSL model in Figure 1.

Though the objective is non-convex, it is expressable as
a difference of convex (DC) functions [Hartman, 1959].
It is generally challenging to find a decomposition of an
objective as a DC function. However, in this case the de-
composition of the objective into a sum of a convex and
concave functions comes naturally. Let Φ+ and Φ− index
the positive and negative weighted hinge loss potentials,



Figure 1: Example non-convex MAP inference objective
function for a negative weight PSL model. The negative
weight is interpreted using the approach described in Section
3.1.1. The weights for the model in Equation 6 are set to
w1 = 1 and w2 =−10.

respectively. Then the HL-MRF MAP inference objective
can be expressed as:

argmin
y|(y,x)∈Ω

∑
i∈Φ+

wiφi(y,x)− ∑
i∈Φ−

(−wi)φi(y,x) (8)

The terms ∑i∈Φ+ wiφi(y,x) and ∑i∈Φ−(−wi)φi(y,x) are
both convex. MAP inference can thus be solved using the
convex-concave procedure (CCCP) introduced by Yuille and
Rangarajan (2003) and extended by Lipp and Boyd (2016).
This approach would result in efficient optimization with
convergence guarantees for finding local optimal solutions.

3.1.2 Biased Weights

Another weight-based approach, initially suggested by Bach
et al. (2017), is to add a sufficiently large constant to
make all weights positive. More formally, a non-negative
parameter ε is introduced and all weights are biased by
δ = min(w1, · · · ,wm,0)− ε . For instance, the resulting ob-
jective of the running example using this method is

f (y,x) = (w1−δ )y2 +(w2−δ )(max{0.25− y,0})2 (9)

Biasing all weights in this way guarantees MAP inference is
convex but results in an objective function with potentially
different optimal solutions than that of the approach de-
scribed in Section 3.1.1. To illustrate this behavior, consider
the weight-based objective of the running example Equation
7. The derivative is:

d f (y,x)
dy

=

{
2w1y y >= 0.25
2w1y+2w2(0.25− y) y < 0.25

Choosing weights w1 =−5 and w2 =−10, by evaluating the
critical points of this objective we find that it is minimized
at y = 1/6. However, after adding a sufficiently large con-
stant δ = min(−5,−10,0)− ε =−(10+ ε) to the weights,
the objective is minimized at y = 0.0. This result demon-
strates that the solution set of the MAP inference problem
is generally not invariant to translations of the rule weights.

3.2 NEGATION-BASED APPROACHES

Negation-based approaches modify the potential instanti-
ation process, i.e., grounding. These approaches interpret
negative weights as an indication to negate the correspond-
ing rule. For instance, in our running exampled, the ap-
proaches described in this section first negate the rule with
the negative weight w2:

P(a)∧¬Q(a) (10)

Then, a potential is instantiated from the negated rule with
an associated weight |w2|. The differences between theses
approaches comes from how the instantiated potentials mea-
sure the distance to satisfaction of this negated rule.

3.2.1 Łukasiewicz Negation

The first negation-based approach to negative weights di-
rectly applies Łukasiewicz logical semantics to define po-
tentials. The degree of truth of the example negated rule,
(10), using Łukaseiwicz logic is:

max{(x+(1− y)−1,0} (11)

The distance to satisfaction of this rule, i.e., the potential
that would be instantiated, is thus

φ2(y,x) = (1−max{x+(1− y)−1,0})2 (12)

= min{1+ y− x,1}2 (13)

The surface plot of this potential as a function of x and y
is shown in Figure 2. Notice that this potential is neither
a convex nor a concave function of x and y. Adding this
potential to the MAP objective breaks the convexity of in-
ference. If, on the other hand, the potential was not squared,
then it would be concave and the objective could be decom-
posed into a sum of concave and convex functions, i.e., a
DC function. In this case the CCCP could be applied in the
same way as described in Section 3.1.1. In fact, the relation
between this approach and the approach discussed in Sec-
tion 3.1.1 goes deeper. MAP inference for PSL models with
Łukasiewicz negated implications and MAP inference with
negative weighted potentials is equivalent when the rules
are non-squared. That is to say, for non-squared rules, MAP
inference, when one allows weights to be negative, is equiva-
lent to allowing logical rules of the form: w : A∧¬B, where
A and B are arbitrary conjunctive and disjunctive clauses.

Theorem 1. Let A = (A1∧A2∧·· ·∧AnA) be a conjunction
of nA (possibly negated) atoms and B = (B1∨B2∨·· ·∨BnB)
be a disjunction of nB (possibly negated) atoms. Let w > 0.
The MAP inference problem for a PSL model with the non-
squared rule w : A∧¬B is equivalent to the MAP inference
problem for a PSL model with the non-squared rule −w :
A =⇒ B.



Figure 2: Surface plots and heat maps of the potential values instantiated by the example negated rule (10) using the three
negation-based approaches.

Proof. We need to show both directions for equivalence.

( =⇒ ) Suppose we have a PSL model with the rule w : A∧
¬B such that w > 0. This rule is translated into a weighted
potential of the form:

wφ(y) = wφA∧¬B(y) (14)

=w(1−max

{
nA

∑
i=1

yAi +
nB

∑
i=1

(1− yBi)− (nA +nB−1),0

}
)

(15)

=∗w−wmax

{
nA

∑
i=1

yAi −
nB

∑
i=1

yBi − (nA−1),0

}
(16)

=∗∗w−wmax

{
1−

nA

∑
i=1

(1− yAi)−
nB

∑
i=1

yBi ,0

}
(17)

∗ The constant term in the summation corresponding to B
cancels with the nb term.
∗∗ Move nA into summation corresponding to A.

Denote the potential instantiated by A→ B by φA→B(y).
Note that (17) is equivalent to w−wφA→B(y). Let t− and
t+ be the index sets for the potentials instantiated by the
rules w : A∧¬B and w : A→ B, respectively. Then MAP

inference becomes:

min
y∈[0,1]

∑
i∈t+

wiφi(y)+ ∑
i∈t−

wiφA∧¬B,i(y) (18)

= min
y∈[0,1]

∑
i∈t+

wiφi(y)+ ∑
i∈t−

wi−wiφA→B,i(y) (19)

= min
y∈[0,1]

∑
i∈t+

wiφi(y)− ∑
i∈t−

wiφA→B,i(y) (20)

(⇐= ) The other direction follows similarly.

3.2.2 Conjunction to Sum of Disjunctions

Bach et al. (2017) propose a second method for supporting
conjunctive rules of the form w : A∧B^2 while preserving
convexity. As the negative form of an implication has this
structure, shown by the example in (10), this technique can
be applied to support negative weights. They first express
the rule as a CNF with the following structure:

A∧B = (A∨B)∧ (¬A∨B)∧ (A∨¬B) (21)

Each disjunction is then used to define a unique potential
using Łukasiewicz semantics. For instance the potentials
that are instantiated for the example negatively weighted
rule, (10), are:

φ2,1(y,x) = (1−min{x+(1− y),1})2

φ2,2(y,x) = (1−min{(1− x)+(1− y),1})2

φ2,3(y,x) = (1−min{x+ y,1})2 (22)



Each instantiated potential is assigned a weight equal to
the positive value of the original rule and added to the
HL-MRF energy function. The additive loss of the poten-
tials instantiated from each of the disjunctive terms is the
same as the single conjunction for discrete variable value
assignments. This property can be seen in Table 1. How-
ever, Figure 2 shows that the potential values corresponding
to Łukasiewicz conjunction and the three disjunctions are
different for non-discrete variable value assignments. The
number of additional potentials instantiated by this proce-
dure grows exponentially with the number of atoms involved
in the rule. Thus, for complex rules involving many atoms,
this method can run into scalability issues.

A B φ(A∧B) φ(A∨B) φ(¬A∨B) φ(A∨¬B)

1 1 0 0 0 0
1 0 1 0 1 0
0 1 1 0 0 1
0 0 1 1 0 0

Table 1: A truth table showing the value of the potential
function of a conjunction and the three disjunctions that can
represent it.

3.2.3 Gödel Negation

Another way to preserve convexity but still support conjunc-
tive rules is to leverage the weak conjunction semantics of
Łukasiewicz logic, also known as the Gödel logic [Klement
et al., 2000]. The degree of truth of the conjunctive rule
A∧B using Gödel semantics is:

min{A,B} (23)

This is a concave function of A and B, and hence the distance
to satisfaction of the clause is guaranteed to be convex. For
instance, the potential that would be instantiated for the
example negative weighted rule in Equation 6 is:

φ2(y,x) = max{1− x,y}2 (24)

The plot of the potential in Equation 24 for the example
negative weighted rule relative to the potential instantiated
using Łukasiewicz strong conjunction semantics and the
sum of disjunctions method is shown in Figure 2. Notice
that for x fixed as 0 or 1, Lukasiewicz and Gödel potentials
are the same. Then as the value for x gets closer to 0.5 the
potential functions deviate significantly. In general, values
of potentials instantiated using Łukasiewicz semantics are
equivalent to those instantiated using Gödel semantics for
discrete variable value assignments. Moreover, no additional
potentials need to be instantiated to achieve this behavior,
as was the case in Section 3.2.2.

4 EMPIRICAL EVALUATION

In this section, we evaluate the predictive performance and
structural properties of PSL models instantiated using the
different approaches to supporting negative weights dis-
cussed in Section 3. We answer the following questions for
each method of interpreting the negative weighted rule: Q1)
How does the method effect the predictive performance of
the PSL model? and Q2) How does the method scale in
terms of both the size of the instantiated model and the rate
of convergence of PSL inference?

We evaluate all negative weight approaches on a collective
prediction task. The following PSL model is used for all ex-
periments and is designed to predict the unobserved ground
TARGET(X,Y) atoms.

−1.0 :PREDICTOR1(X,Y)→ TARGET(X,Y)^2 (25)

0.1 :TARGET(X1,Y)∧SIMILAR(X1,X2)

→ TARGET(X2,Y)^2 (26)

1.0 :PREDICTOR2(X,Y) = TARGET(X,Y)^2 (27)

0.01 :¬TARGET(X,Y)^2 (28)

The first rule in the model, 25, is the only negative weight
rule. The atom PREDICTOR1(X,Y) represents an abstract
atom for predicting the target atom. Different approaches to
interpreting this rule result in a different ground HL-MRF
and hence a different MAP inference objective. The remain-
ing rules are common modelling patterns. Each method we
have described grounds the same potentials for these rules.
The second rule in the model, 26, is a rule for propagating
predictions or observed values of the TARGET(X,Y) atoms
for similar entities X1 and X2. This rule can be read as "if X1
and X2 are similar then the value of TARGET(X1,Y) should
be close to that of TARGET(X2,Y)". The third rule, 27, is
referred to as a local predictor rule. This rule uses an ex-
ternal model, the local predictor, as a signal for predicting
the TARGET(X,Y) atoms. Specifically, this rules says that
the local predictor value for X,Y should be close to PSL’s
prediction for TARGET(X,Y). The final rule in the model,
28, acts as a negative prior. That is to say, this rule will
result in a small loss for any non-zero prediction made for
TARGET(X,Y). This rule can also be thought of regular-
izer and is commonly used to get more stable predictions
from PSL since it ensures a strongly convex MAP inference
objective.

4.1 SYNTHETIC DATASET GENERATION

We generated three synthetic datasets to compare the proper-
ties and performance of HL-MRF models instantiated using
the approaches discussed in Section 3. The three datasets are
designed to represent a different distribution of the target
atoms TARGET(X,Y). The first dataset is generated such
that the target atoms have discrete, {0,1}, truth values. The
second and third datasets are generated such that the target



atoms have real, [0,1], truth values with different distribu-
tions.

The generation process for all the datasets follows the
same general pattern. There are a total of 100 possible
unique values that the X argument can be assigned and
1000 for the Y argument. First, the values for X are ran-
domly clustered into 10 groups. Then, an ideal value for
TARGET(·,Y) is generated for every possible value of Y for
every group of X arguments. Values for TARGET(X,Y) are
generated by adding noise to the ideal group values corre-
sponding to the group assignment of X. The TARGET(X,Y)
data is then split into an observed and test set. The co-
sine similarity of the observed TARGET(X,Y) values across
the Y arguments for each X is used to define the ob-
served SIMILAR(X1,X2) atoms. The observed local pre-
dictor atoms PREDICTOR2(X,Y) are generated by adding
Gaussian, N (0,0.3), noise to the test TARGET(X,Y) val-
ues. Finally, the PREDICTOR1(X,Y) atom that is involved
in the negative weighted rule is generated for all (X,Y) ar-
guments by first drawing a uniform (0,1) random value.
Then, if the random value is less than (1−TARGET(X,Y)),
the corresponding PREDICTOR1(X,Y) atom is set to a uni-
form (0,(1−TARGET(X,Y))) random variable. Otherwise
PREDICTOR1(X,Y) is set to PREDICTOR1(X,Y)+α where
α is an exponential, Exp(β = 0.05), random variable. In
this way, PREDICTOR1(X,Y) can be used as a possibly
noisy lower bound on PREDICTOR1(X,Y).

The difference between the three datasets occurs when the
true TARGET(X,Y) atoms are generated. For the Discrete
targets dataset, the ideal TARGET(·,Y) values for each X
group are generated as independent Bernoulli, Bern(p =
0.4), random variables. Then noise is added to the ideal val-
ues to generate TARGET(X,Y) values for each (X,Y). The
ideal target value of the group X belongs to is flipped with
probability p = 0.3. For the Uniform Real Targets dataset,
TARGET(·,Y) values for each X group are generated as in-
dependent uniform, U(0,1), random variables. Similarly,
for the Centered Real Targets dataset TARGET(·,Y) values
for each X group are generated as independent Gaussian,
N (µ = 0.4,σ = 0.1), random variables. Then for both the
Uniform Real Targets and Centered Real Targets datasets,
TARGET(X,Y) values are generated by perturbing the ideal
value of the group X belongs to with N (µ = 0,σ = 0.1)
noise.

4.2 RESULTS

We first answer question Q1 by running each proposed neg-
ative weight approach on the three synthetic datasets and
compare the RMSE of their predictions. Ten independent
folds of each variation of the synthetic dataset is generated.
Then, using the model introduced in this section, an HL-
MRF is instantiated using one of the five methods discussed
in this paper and MAP inference is performed. MAP infer-

ence optimization is solved via ADAM stochastic gradient
descent (SGD) [Kingma and Lei Ba, 2015]. The stepsize
hyperparameter is set to α = 0.1 and the exponential decay
rate parameters are set to the suggested defaults of β1 = 0.9
and β2 = 0.999. ADAM SGD is determined to converge
when the difference in the objective value over a single
epoch drops below a tolerance of 10−8. The results of this
experiment are shown in Figure 3.

Across all variations of the dataset the Gödel negation
method is always among the top three performing ap-
proaches. This consistency is not seen for any of the other
methods. This result is particularly encouraging as Gödel
negation does not sacrifice the convexity properties of
PSL MAP inference as does the methods of Łukasiewicz
negation and negative weights. On the other end of spec-
trum, biased weights is consistently the worst performing
method. This behavior can be explained by the fact that this
method does not capture the relation between the instan-
tiated PREDICTOR1(X, Y) and TARGET(X, Y) atoms. The
synthetic dataset is designed so that PREDICTOR1(X, Y)
is a reliable lower bound for 1− TARGET(X, Y). How-
ever the instantiated potentials for the rule 25 using the
biased weights method encourages solutions where the
values for TARGET(X, Y) are greater than or equal to
PREDICTOR1(X, Y) atoms.

We address question Q2 by examining the size of the ground
models and the convergence properties of ADAM SGD on
the MAP inference problem. Table 2 shows the mean and
standard deviation of the number of epochs over the set of
instantiated potentials that is required to converge to a local
optimal solution of the MAP inference problem for each
of the five negative weight methods. This table shows that
the method of biased weights consistently requires a larger
number of epochs to converge to a MAP state. This behavior
can be explained by the fact that the method can create an
ill-conditioned problem where there is a larger variation in
the magnitude of the weights associated with each potential.
Another interesting observation from the table is that the
Łukasiewicz negation method can have a high variation in
the number of epochs required to reach a MAP state. The
Łukasiewicz negation method instantiates an objective that
is neither convex nor concave and a local optimal solution
can be difficult to find. The table also shows that the Gödel
negation method, which preserves convexity of the MAP
inference problem, is consistently converging in a relatively
low number of iterations.

Regarding the scale of the ground models, i.e., the number
of instantiated potentials, the sum of disjunctions method
is the only method that instantiates extra potentials. For ref-
erence, for the first fold of the synthetic dataset the sum
of disjunctions method instantiated 79,744 more potentials
than the other four methods. This is a roughly 2% increase
in model size, and this difference can increase exponen-
tially with the number of atoms involved in the negative



Figure 3: Bar plot of the mean RMSE of all five methods for supporting the negative weights in the experiment model for
ten folds of each of the three variations of the synthetic datatset. One standard deviation is shown with error bars.

Method Discrete Epochs Uniform Real Epochs Centered Real Epochs

Negative Weights 33.7 (5.48) 22.3 (3.83) 16.4 (3.38)
Biased Weights 37.6 (6.13) 44.1 (5.20) 32.6 (5.06)

Łukasiewicz Negation 44.4 (5.08) 21.4 (4.14) 22.8 (8.88)
Sum of Disjunctions 24.9 (6.28) 26.0 (5.68) 19.5 (3.41)

Gödel Negation 24.6 (3.86) 28.0 (4.99) 20.6 (4.70)

Table 2: The mean and standard deviation of the number of epochs required to reach convergence of ADAM SGD
optimization for each method and dataset.

weighted rule. This has implications on both the time it
takes to ground the model and the time to run inference.
This is because each epoch of ADAM SGD optimization for
the sum of disjunctions method has to optimize over more
potentials.

5 RELATED WORK

Increasing the expressivity of SRL formalisms is an active
direction of research. Probabilistic logic programs (PLP)
define a distribution over a set of logical clauses [De Raedt
et al., 2007, Vennekens et al., 2009, Sato and Kameya, 1997].
Meert and Vennekens (2014) extend CP-Logic, a causal PLP,
by defining semantics for negations in the head of rules. The
negations capture inhibition effects in the model, i.e., the
inclusion of rules which can decrease the probability of an
event. Based on similar motivations, an interpretation of neg-
ative probability weighted rules in PLPs was introduced by
Buchman and Poole (2017b). The authors show that the se-
mantics they introduce for negative probabilities capture the
same relations as PLPs with negations and more. Moreover,
they show that PLPs, even with negative weight semantics,
are incapable of representing some relational distributions.
Buchman and Poole (2017a) develop this line of research by
showing show that PLPs with complex valued parameters
are fully expressable.

Markov logic networks (MLN) use weighted logical rules
to define probability distributions over binary {0,1} val-
ued variables [Richardson and Domingos, 2006]. In MLNs,
Boolean logic is used to define potentials and a neg-

ative weight is interpreted as a negation of the rule.
Kuželka (2020) shows that the expressivity of the MLN
framework is limited, i.e., only certain families of distri-
butions could possibly be represented by MLNs. The au-
thors show that by allowing weights to take complex values,
MLNs are fully expressive for binary valued random vari-
ables.

6 CONCLUSIONS AND FUTURE WORK

Adding semantics to the PSL framework for supporting
negative weights increases the expressivity of the models.
With negative weights, more complex relations between
atoms in the ground HL-MRF can be captured. In this paper,
we discussed five unique of ways of interpreting negative
weights, three of which are novel for PSL. Each method
has different implications on the convexity and scale of the
MAP inference problem. Most notably, we proposed Gödel
conjunctive semantics, also referred to as weak Łukasiewicz
conjunctive semantics. This method uses a principled and
well-studied definition of real-valued logic to instantiate HL-
MRF potentials that preserves both the convexity and scale
of the HL-MRF MAP inference problem. Additionally, we
showed multiple connections between the five methods by
highlighting cases where the approaches are equivalent and
where they differ. All methods were implemented into the
PSL framework and empirically tested on three variations of
a synthetic dataset. The Gödel negation method consistently
provides quality predictions on the synthetic dataset while
maintaining the tractability of HL-MRF MAP inference.



Directions for future work include further exploration of
alternate real-valued logical semantics that can be used for
instantiating HL-MRF potentials. Another future direction is
the integration of negative weight semantics into the weight
learning process. Similarly, as negative weights increases
the expressivity of PSL, there are certainly implications on
the task of rule discovery in PSL, i.e., structure learning.
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