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Abstract

Contextual Bayesian Optimization (CBO) e�ciently optimizes black-box, expensive-to-
evaluate functions with respect to design variables, while simultaneously integrating rele-

vant contextual information regarding the environment, such as experimental conditions.
However, the relevance of contextual variables is not necessarily known beforehand. More-
over, contextual variables can sometimes be optimized themselves, an overlooked setting by
current CBO algorithms. Optimizing contextual variables may be costly, which raises the
question of determining a minimal relevant subset. We address this problem using a novel
method, Sensitivity-Analysis-Driven Contextual BO (SADCBO). We learn the relevance of
context variables by sensitivity analysis of the posterior surrogate model, whilst minimiz-
ing the cost of optimization by leveraging recent developments on early stopping for BO.
We empirically evaluate our proposed SADCBO against alternatives on both synthetic and
real-world experiments, and demonstrate a consistent improvement across examples.

Keywords: Contextual Bayesian Optimization, Variable Selection, Gaussian Processes

1. Introduction

Bayesian optimization (BO) is a sample-e�cient black-box optimization method, typi-
cally used when the expense of computing the objective function makes the problem in-
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tractable (Jones et al., 1998; Brochu et al., 2010), e.g./ material and drug discovery(Zhang
et al., 2020; Gómez-Bombarelli et al., 2018; Korovina et al., 2020).

A key implicit assumption in BO is that the objective function only depends on the
design variables. This assumption is violated in many practical scenarios, wherein var-
ious environmental factors and experimental settings, referred to as contextual variables

(Krause and Ong, 2011; Kirschner et al., 2020; Arsenyan et al., 2023), also a↵ect the ob-
jective function. For instance, ambient humidity was found to influence the experiments
in robot-assisted material design (Nega et al., 2021), leading to a changing optimal design
under di↵erent humidity conditions. Moreover, in practice, the domain experts themselves
might not know a priori which contextual variables are relevant. Identifying the relevant
contextual variables is therefore critical not only to guarantee reliable optimization results
but also for the practitioners to reliably reproduce experimental results.

Variants of BO have therefore been developed to deal with the uncertainty related to
the contextual variables. In particular, Krause and Ong (2011) introduced the Contextual
Bayesian optimization (CBO) framework, enabling the inclusion of uncontrollable contex-
tual information in the surrogate model. However, in some applications, contextual variables
can be controlled. For instance, synthesis conditions of material samples, the used solvents,
or certain environment conditions, such as experiment room temperature or ambient hu-
midity (Higgins et al., 2021; Nega et al., 2021), are principally controllable during the course
of an experiment, but it may not be straightforward to predict whether they are relevant
to include (Abolhasani and Brown, 2023). While gains in BO performance can potentially
be obtained by optimizing over all the potential contextual variables, or by determining the
relevant ones and optimizing over them, intervening on such variables is usually costly, thus
invoking a cost versus e�ciency trade-o↵.

We extend the CBO framework to settings in which the relevant contextual variables
are not known beforehand and can be intervened on at some cost. We introduce Sensitivity-
Analysis-Driven CBO (SADCBO), a method which leverages recent advances in sensitivity-
analysis-driven variable selection (Sebenius et al., 2022) and early stopping criteria for
BO (Ishibashi et al., 2023). SADCBO combines the contextual observational setting, where
the context information is only observed, and the contextual interventional setting, where
contextual variables are intervened on (similar to design variables), into a sequential al-
gorithm. We provide a thorough evaluation of the performance of SADCBO, comparing it
against methods from the CBO and high-dimensional BO literature, on both synthetic and
real-world examples, demonstrating that SADCBO favorably compares to existing methods.

2. Contextual Bayesian Optimization (CBO)

The CBO framework (Krause and Ong, 2011) deals with a black-box function f : X⇥Z ! R
defined on the space of both the design variables X ⇢ Rd and contextual variables Z ⇢ Rc.
We observe noisy evaluations of the function, y = f(x, z) + " with " ⇠ N (0, �2

noise
).

A Gaussian process (GP) prior (Rasmussen and Williams, 2006) is placed on f ; with
the notation v = [x, z], we write f(v) ⇠ GP(0, k(v,v0)). This means that, for any finite-
dimensional collection of inputs [v1, . . . ,vt], the function values f = [f(v1), . . . , f(vt)]> 2 Rt

follow a multivariate normal distribution f ⇠ N (0,K), where K 2 Rt⇥t = (k(vi,vj))1i,jt

is the kernel matrix computed from the kernel k. Given a dataset Dt = {(xi, zi, yi)}ti=1
=
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{(vi, yi)}ti=1
, the posterior distribution of f(v) given Dt is Gaussian for all v with closed-

form expressions for the mean µt(v|Dt) and variance �2
t (v|Dt).

In the CBO setting, we sequentially observe the context variables and choose the design
variables in response to this observation. More precisely, at iteration t+1, a context vector
zt+1 is observed, assumed to have been drawn from a distribution p(z), and the optimal
design x?

t+1
is such that x?

t+1
= arg maxx2X f(x, zt+1). Given zt+1 and the previous t

observations Dt, the next candidate design point xt+1 is selected using the Upper Confidence
Bound acquisition function (Srinivas et al., 2012):

xt+1 = arg max
x2X

µt(x, zt+1|Dt) + �1/2
t �t(x, zt+1|Dt). (1)

We extend the problem setting of CBO in two ways. Firstly, we assume that only
a subset of the contextual variables truly a↵ect f . Let z = [z(1), . . . , z(c)] be the vector
of contextual variables. For a set J belonging to the power set of {1, . . . , c}, denote by
z(J) 2 R|J | the vector of reduced dimension whose variables are indexed by J . We assume
there exists a set J?, c� |J?

|, such that f(x, z) = f(x, z(J
?
)) 8(x, z). Secondly, we enable

setting the value of any of the contextual variables at a cost, in addition to the design query
cost. This means that for all j 2 {1, . . . , c}, the context variable z(j) can be intervened on
for a cost �j . We then aim to maximize f in a cost-e�cient manner, by identifying J?.

3. Methodology

This section introduces our method to solve the aforementioned extended CBO problem. It
relies on a variable selection technique from the GP literature (Sebenius et al., 2022), which
we adapt to the optimization framework.

3.1 Variable selection for CBO via sensitivity analysis

One approach for handling the presence of contextual variables that can be intervened on
is to include them in the design space. However, such a strategy can become infeasible
when their relevance is not known a priori. In such cases, identifying the relevance of the
contextual variables is key, not only for e�cient optimization of the function, but also as
additional information to the experts about the experiment.

To that end, we adapt the Feature Collapsing (FC) method (Sebenius et al., 2022) to
identify the relevant contextual variables. The FC method applies a perturbation to a train-
ing point (namely, setting one feature to zero), and measures the induced shift in the poste-
rior predictive distribution in terms of KL divergence. Given a dataset Dt = {(xi, zi, yi)}ti=1

,

the relevance r(i, j) of the ith sample of the jth contextual variable z(j)i is computed as
r(i, j) = KL (p(y?|xi, zi, Dt) || p(y?|xi, zi � ⇠[j], Dt)), where ⇠[j] = [⇠(1), . . . , ⇠(c)] is a vector
s.t. ⇠(j) = 0, and ⇠(j

0
) = 1, for j0 6= j, and � is the element-wise multiplication. The

relevance score of the jth contextual variable is then computed as

FC(j) =
1

|Dt|

|Dt|X

i=1

 
r(i, j)Pc
j=1

r(i, j)

!
. (2)

The FC scores computed in this manner reveal the variables that are relevant for output
prediction across Dt. However, as our goal is to maximize f , we are interested in identifying
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contextual variables that are relevant for high function values. Hence, we modify the dataset
over which the FC scores are averaged in Equation (2) Denote that dataset by D

FC
t =

D
�t
t [D

Q
t . Here, D

�t
t is a subset of Dt, comprised of only high output values, defined as

D
�t
t = {(xi, zi, yi) 2 Dt | yi/ybest � �t}, (3)

where ybest = max1it yi is the current observed maximum. For instance, using �t = 0.8 8t
would yield a D

�t
t that consists of the highest 20% observations obtained so far. As for

D
Q
t := {(x?

q , zt+1)}
Q
q=1

, it contains promising points given by a batch acquisition function.
Once the FC scores are computed and sorted in descending order, we select the indices of

those contextual variables whose cumulative FC score is greater than ⌘ 2 [0, 1], meaning that
the selected variables explain the fraction ⌘ of the output sensitivity amongst all contextual
variables. Let J⌘ denote the set of indices of the selected contextual variables. We train

a GP based on {(xi, z
(J⌘)
i ,yi}

t
i=1

and select the designs through maximization of the UCB

acquisition function: xt+1 = arg max
x2X

µt(x, z
(J⌘)
t+1

|Dt) + �1/2
t �t(x, z

(J⌘)
t+1

|Dt).

3.2 Sensitivity-Analysis Driven CBO (SADCBO)

We now present SADCBO, a sequential method for performing BO in the presence of irrel-
evant contextual variables (Algorithm S1). SADCBO utilizes the variable selection method
of Section 3.1 and proceeds in two phases. In the first phase, we choose to only observe

the values of the contextual variables without optimizing over them, thus preventing costly
contextual variable queries, when their relevance is computed based on a limited amount of
data. Therefore, we only leverage the available contextual information for design selection.
This information, however, will eventually saturate. This is when the second phase starts.

In the second phase, we begin to intervene on the contextual variables selected at each
iteration based on their FC relevance. As there is a cost �j associated with intervening on
the context variable z(j), we substitute FC(j) for FC(j)/�j in Equation (2). Our variable
selection criterion can then be interpreted as the degree of sensitivity per unit cost. As
previously, once the contextual variables z(J⌘) have been selected, we train a GP surrogate

based on {(xi, z
(J⌘)
i ,yi}

t
i=1

and select the next design-context pair to query as

(xt+1, z
(J⌘)
t+1

) = arg max
(x,z(J⌘)

)2X⇥
Q

j2J⌘
Zj

µt(x, z(J⌘)|Dt) + �1/2
t �t(x, z(J⌘)|Dt). (4)

The switch from the observational to the interventional phase in SADCBO relies on a
stopping criterion proposed by Ishibashi et al. (2023). We detect the point at which the
gain in the optimization from purely observing the contextual variables diminishes, following
which the interventional phase begins. Further details are provided in Appendix A.

4. Related work

Bogunovic et al. (2018) and Kirschner et al. (2020) perform worst-case optimization under
fluctuations of the contextual variables. In particular, Distributionally-Robust BO (DRBO)
tries to maximize the expected black-box function value under the worst-case distribution
of the contextual variables. However, as in Krause and Ong (2011), these works assume
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Table 1: Methods used in experiments.
Name Description Reference

Baselines with no variable selection
CUBO Context-Unaware BO over designs x only -
VBO Vanilla BO over [x, z] -
CBO Contextual BO using all contexts z (Krause and Ong, 2011)

Baselines performing variable selection
Dropout Randomly drop half of the context variables (Li et al., 2018)
MMDBO Maximum mean discrepancy-driven BO (Spagnol et al., 2019)
MMDCBO Maximum mean discrepancy-driven CBO -

This work
SADBO Sensitivity analysis-driven BO -
SADCBO Sensitivity analysis-driven CBO -

Oracle OBO Oracle vanilla BO optimising only [x, z(J)] -

that the relevant contextual variables are known a priori, and can only be observed and not
controlled. On another note, due to the curse of dimensionality, the performance of standard
BO is severely degraded when applied in high-dimensional input spaces. To tackle this
problem, most proposed approaches either aim at carrying out BO in a lower-dimensional
space instead of the original (Li et al., 2018; Ziomek and Bou-Ammar, 2023) or work with a
structured GP surrogate, equipped with an additive kernel or a sparsifying prior (Eriksson
and Jankowiak, 2021; Liu et al., 2023). Data-driven methods based on various measures of
feature relevance have also been proposed (Spagnol et al., 2019; Shen and Kingsford, 2021).

5. Experimental results

We now evaluate our approach on several real-world examples and synthetic functions de-
scribed in Table S1 and appendix C.2 and compare it with a number of baselines (Table 1).
A number of additional experiments have also been carried out and can be found in Ap-
pendices D and E.

In real-world experiments (Figure 1a), SADCBO (in red with white markers) achieves
promising results, although certain advanced baselines perform on par. SADCBO almost
consistently overperforms the first baselines VBO and CUBO. There is next to no di↵erence
between the performances of SADCBO and CBO (in blue). This observation combined with
the fact that optimizing only design variables (CUBO, in yellow) produces poor results for
the Portfolio and Yacht problems suggests that contextual variables play a significant part
in maximizing these objectives, but their interventional cost is high. Among baselines with
variable selection, it is worth noticing that the Dropout baseline, which randomly drops half
of the contextual variables, consistently underperforms, while SADCBO performs similarly to
MMDCBO, except for the Alanine experiment where SADCBO performs slightly better.

Next, Figure 1b displays the best value found by each baseline for synthetic experiments.
On the Hartmann4D problem, SADCBO follows the oracle OBO (green). For Hartmann6D it
turns out that SADBO outperforms SADCBO . This is due to the fact that SADBO optimizes
contextual variables from the start. For a su�ciently low cost, this proves a better strategy
than beginning with only paying a cost for optimizing the designs. Our approach slightly
outperforms the MMD-based measure, but consistently across both test functions. CUBO

and CBO perform poorly as they do not optimize the context. VBO generally does a poor job,
as it considers every variable, thus spending a large fraction of the budget every iteration.

For Hartmann6D and Hartmann4D, Figure 1c reports the time at which the stopping
criterion kicks in for SADCBO, demonstrating that both phases are leveraged in our approach.
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Figure 1: Benchmark of the di↵erent methods. (a) Real-world examples. (b) Synthetic
functions. (c) Histograms of early stopping criterion hitting time for SADCBO, in
proportion of the budget. Vertical lines refer to the mean of each distribution. (d)
Inclusion probability of each contextual variable for SADCBO. Irrelevant contextual
variables are hatched. Mean ±2 standard error computed across N = 100 trials.

Lastly, Figure 1d reports the sensitivity indices computed at each iteration for each
contextual variable, averaged across whole trajectories of multiple trials for Hartmann6D
and Hartmann4D.

6. Conclusion

We introduced SADCBO, an algorithm designed to sort out relevant context variables a↵ect-
ing the experimental outcomes by e�ciently leveraging information present when observing
or optimizing contextual variables. SADCBO reduces the surrogate model to only relevant
variables and ensures the reproducibility of experiments by controlling for such relevant
variables. In that respect, SADCBO should be used for practical applications where con-
textual variables can have an influence while being controllable. This would include, for
example, high-throughput materials and molecule exploration loops that are being increas-
ingly utilized in both academic and industrial laboratories for drug design and new material
development (Zhang et al., 2020; Gómez-Bombarelli et al., 2018).
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Supplementary Materials

Outline of the Appendix. In Appendix A, further details about SADCBO are provided. In
Appendix B, we detail the experimental settings with respect to benchmarked baselines and
implementation details. In particular, Appendix B.2 introduces one of the baselines used in
the main text, based on maximum mean discrepancy. Appendix C contains a description
of the real-world experiments performed throughout the paper, along with the analytical
expressions of the synthetic examples used. Appendix D contains further experimental
results regarding:

• The distribution of early stopping time for SADCBO (Figure S1)

• Varying the number of irrelevant contextual variables (Section D.1)

• Varying contextual variables query cost (Section D.2)

• Varying the surrogate model kernel structure (Section D.3)

• Varying SADCBO hyperparameters (Section D.4)

Finally, Appendix E presents a forward selection approach to perform variable selection
once the sensitivity indices have been computed and evaluates this approach on synthetic
examples.

Appendix A. Stopping criterion and algorithmic description of SADCBO

We here briefly describe the details of the stopping criterion initially proposed by (Ishibashi
et al., 2023). This criterion was adapted to suit our method and e↵ectively determines when
we switch from the observational phase to the interventional phase.

Let v?
t = arg maxv2Dt

f(v) be the current best candidate point in the dataset up to time

t, where v = [x, z]. and denote f? := maxv2V f(v). Let Rt = f?
�Ef̂⇠p(f |Dt)

[maxv2V f̂(v)]

be the expected minimum simple regret. Then, �Rt = |Rt �Rt�1| can be upper bounded:

�Rt  v(�(g) + g�(g)) + |�µ?
t |

+ �,t�1

r
1

2
KL(p(f |Dt)||p(f |Dt�1))

:= �R̃t,

where �(·) and �(·) are the p.d.f. and c.d.f. of a standard Gaussian distribution, re-

spectively, �µ?
t := µt�1(v?

t�1
) � µt(v?

t ), v :=
q

�2
t (v

?
t )� 2�2

t (v
?
t ,v

?
t�1

)) + �2
t (v

?
t�1

), g :=

��µ?
t /v, and �,t�1 is a sequence indexed by t and depending on �. Then, we switch from

the observational to the interventional phase in SADCBO when �R̃t  st, where

st :=
(�2

t�1
(v?

t ) + �,t�1/2)�2

t�1
(vt)
p
�2 log �

p
�noise(�2

t�1
(vt) + ��1

noise
)

.
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Algorithm S1 Sensitivity-Analysis-Driven Contextual BO (SADCBO)

1: Input: initial dataset D0, hyperparameters ⌘ and �, batch size Q, budget ⇤, costs
�x, �1, . . . , �c

2: Initialize GP using all variables [x, z]. phase = observational
3: while ⇤ � �x + minj �j do
4: Receive context zt ⇠ p(z)
5: Assemble dataset D

FC
t (Equation (3) and D

Q
t )

6: Compute sensitivity measure FC(j) based on D
FC
t Equation (2)

7: In descending order, add indices to J⌘ until
P

j2J⌘ FC(j) > ⌘

8: Train reduced GP on [x, z(J⌘)]
9: Get xt (and zt if phase = interventional) (Equation (4))

10: yt  f(xt, zt) + "t
11: Dt  Dt�1 [ {(xt, zt, yt)}
12: Retrain full GP
13: if phase = observational and �R̃t  st [based on p(f |Dt)] (Appendix A) then
14: phase = interventional // Never check again once criterion satisfied

15: end if
16: ⇤ ⇤� �x +

P
j2J⌘ �j , t t + 1

17: end while

Appendix B. Details on experimental settings

B.1 Baselines and implementation details

We benchmark our approach, coined SADCBO, against baselines referenced in Table 1. SADCBO is
expected to compete with or even outperform Oracle Vanilla BO (OBO) upon identification
of the relevant contextual variables, and outperform the other baselines. We also report
SADBO, an analog to SADCBO but without the first observational phase, which amounts to
performing BO with variable selection at each step. The baselines MMDBO and MMDCBO follow
our approach but use an MMD-based measure of sensitivity (Spagnol et al., 2019) instead
of the FC scores. Further details are provided in Appendix B.2.

We fix the hyperparameter of SADCBO and SADBO to ⌘ = 0.8, Q = 10, �t = 0.8 8t. For the
GP surrogate, an RBF kernel with independent lengthscales for each variable is employed.
We use the UCB acquisition strategy, as well as Q-UCB for computing D

Q
t (Wilson et al.,

2017). In all experiments, we assume that all variables, design or contextual ones, have cost
�j = 1 8j 2 {1, . . . , d + c}.

B.2 Maximum Mean Discrepancy-based variable selection

Spagnol et al. (2019) introduced a BO algorithm with a variable selection procedure based
on the Hilbert Schmidt Independence Criterion (HSIC). This measure can be used in our
setting as well. We now briefly describe how it is defined.

As introduced in the main text, let Z ⇢ Rc be the space of contextual variables, and H be
a Hilbert space of R-valued functions on Z. Assume that k : Z⇥Z ! R is the unique posi-
tive definite kernel associated with the Reproducing Kernel Hilbert Space H. Let µPZ be the

8



kernel mean embedding of the distribution PZ , µPZ := EZ [k(Z, ·)] =
R
Z

k(z, ·)dPZ . Kernel
embeddings of probability measures provide a distance between distributions between their
embeddings in the Hilbert Space H, named Maximum Mean Discrepancy (MMD, (Gretton
et al., 2012)):

MMD(PZ ,PY ) = kµPZ � µPY k
2

H
. (S1)

For two random variables Z ⇠ PZ on H and Y ⇠ PY on G, the HSIC is the squared MMD
between the product distribution PZY and the product of its marginals PZPY ,

HSIC(Z, Y ) = MMD2(PZY ,PZPY ) (S2)

= kµPZY � µPZPY k
2

H⌦G
(S3)

= EZ,Y EZ0,Y 0 [k(Z, Z 0)l(Y, Y 0)] (S4)

+ EZEY EZ0EY 0 [k(Z, Z 0)l(Y, Y 0)]

� 2EZ,Y EZ0EY 0 [k(Z, Z 0)l(Y, Y 0)].

To determine the relevance of a variable Z(i), Spagnol et al. (2019) introduce

SHSIC(Z(i)) = HSIC(Z(i), I(Z 2 L�)), (S5)

with L� a region of interest: the locations where the objective function value is above a
threshold �. This measure reflects how important Z(i) is to reach L� .

We implemented this measure, substituting expectations for empirical means over the
dataset D. We use � = 0.8, a threshold identical to the one used for SADCBO in Equa-
tion (3). The kernel k is chosen to be a RBF kernel, and l is a linear kernel l(y, y0) = yy0,
a common choice for binary data. We create two baselines: MMDCBO, the analog of SADCBO,
featuring both the observational and interventional phases, but using the MMD-based vari-
able relevance measure, and likewise, MMDBO, the counterpart of SADBO, involving only the
interventional phase.

Appendix C. Experiment details

C.1 Real-world datasets

Portfolio optimization dataset. This dataset was first introduced in (Cakmak et al.,
2020). The goal is to tune the hyper-parameters of a trading strategy so as to maximize
return under risk-aversion to random environmental conditions. A software is used to
simulate and optimize the evolution of a portfolio over a period of four years using open-
source market data. Each evaluation of this simulator returns the average daily return over
this period of time under the given combination of hyper-parameters and environmental
conditions. Since the simulator is expensive to evaluate, we do not use it directly but
perform pool-based Bayesian Optimization using a pool of 3000 points generated according
to a Sobol sampling design. The hyper-parameters to be optimized are the risk and trade
aversion parameters and the holding cost multiplier These variables constitute the design
variables. The contextual variables are the bid-ask spread and the borrowing cost.

9



Table S1: Dimensionality of the experiments carried out. For synthetic experiments, n.v.
stands for artificial noise variables, added on top of the design and contextual
variables.

Experiment All dimensions Design variables
Contextual
variables

Portfolio 5 3 2
Yacht 6 4 2
Alanine 21 3 18

EggHolder 2 + 4 n.v. 1 1
Hartmann4D 4 + 3 n.v. 2 2
Michalewicz 8 + 6 n.v. 4 4
Hartmann6D 6 + 6 n.v. 3 3
Ackley 5 + 8 n.v. 2 3

Yacht hydrodynamics dataset. This dataset comes from the UCI Machine Learning
Repository (Gerritsma et al., 2013). The optimization problem is to maximize the residuary
resistance per unit weight of displacement of a yacht by controlling its 5-dimensional hull
geometry coe�cients. Another optimization variable is the 1-dimensional Froude number.
We chose as design variables the first four dimensions of the hull geometry coe�cients. The
contextual variables are the last hull geometry dimension and the Froude number. Like the
Portfolio optimization dataset, we have access to a limited number of samples (⇡ 300) and
thus perform pool-based Bayesian optimization.

Alanine conformer optimization. This case is a real-time computational physics opti-
mization problem. Molecules can adopt di↵erent shapes, conformers, defined by the atomic
bond lengths and angles within the molecule. Finding the lowest energy conformers for
specific molecules is a relevant problem because the molecules typically take these shapes
in nature. Here, alanine — a molecule with structure C3H7NO2 — is optimized utilizing
AMBER biomolecular molecule simulation toolkit (Salomon Ferrer et al., 2013; Case et al.,
2023). The possible alanine structure variables to be optimized include the dihedral an-
gles (ten angles), atom angles (eleven angles), and bond lengths (twelve lengths). The full
problem is challenging to optimize with traditional gradient descent methods. Recently,
the process has been significantly facilitated with Bayesian optimization of the major vari-
ables (Fang et al., 2021). For the purposes of this demonstration, two major dihedral angles
are chosen as the design variables, the rest of the dihedral and atomic angles (18 angles)
are chosen as the contextual variables, and bond lengths are omitted to facilitate faster
simulations. The search space is selected by utilizing physics domain knowledge.

C.2 Synthetic test functions

Synthetic experiments. Five test functions are considered (Table S1 and appendix C.2).
A min-max transformation is performed on the input data, scaling it to the unit cube: X ⇥

Z = [0, 1]d+c. Similarly, the output is scaled between [0, 1] and a noise term " ⇠ N (0, �2

noise
)

is added with �2

noise
= 0.001. The contextual variable distribution is p(z) = U([0, 1]c).
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Hartmann-6D function:

f(v) = �
4X

i=1

↵i exp

0

@�
6X

j=1

Aij(v
(j)
� Pij)

1

A

↵ = (1.0, 1.2, 3.0, 3.2)T

A =

0

BB@

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14
3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

1

CCA

P = 10�4

0

BB@

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

1

CCA

defined over V = [0, 1]6. The second, fifth, and sixth variables were considered as design
variables, while the first, third, and fourth variables were considered as contextual variables.
6 noise variables were added. Table S2 provides the results of a Sobol global sensitivity
analysis performed using evaluations of the function collected over a grid of N = 917504
samples (Sobol, 2001). Adding up the first order indices for design and contextual variables
separately leads to Sx ⇡ 0.124 and Sz ⇡ 0.196. This means that with respect to first-order
interactions, contextual variables have more impact than design variables, in this synthetic
example. One should notice however that these indices are computed across the whole
search space and not specifically at the optimum.

Table S2: Sobol global sensitivity analysis for the Hartmann-6D function using N = 917504
samples.

Variable First order sensitivity indices Total order sensitivity indices

z(1) 0.107 0.343
x(2) 0.006 0.399
z(3) 0.007 0.052
z(4) 0.082 0.379
x(5) 0.106 0.297
x(6) 0.012 0.482
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Hartmann-4D function:

f(v) =
1

0.839

0

@1.1�
4X

i=1

↵i exp

0

@�
4X

j=1

Aij(v
(j)
� Pij)

1

A

1

A

↵ = (1.0, 1.2, 3.0, 3.2)T

A =

0

BB@

10 3 17 3.5
0.05 10 17 0.1
3 3.5 1.7 10
17 8 0.05 10

1

CCA

P = 10�4

0

BB@

1312 1696 5569 124
2329 4135 8307 3736
2348 1451 3522 2883
4047 8828 8732 5743

1

CCA

defined over V = [0, 1]4. The first and fourth variables were considered as design vari-
ables, while the second and third variables were considered as contextual variables. 3 noise
variables were added. Table S3 provides the results of a Sobol global sensitivity analysis
performed using evaluations of the function collected over a grid of N = 300000 samples.
Adding up the first order indices for design and contextual variables separately leads to
Sx ⇡ 0.579 and Sz ⇡ 0.091. This means that with respect to first-order interactions, design
variables have much more impact on the output than contextual variables. The gap slightly
reduces when considering total order sensitivity indices. However, it is worth remembering
that these indices are computed across the whole search space and not specifically at the
optimum.

Table S3: Sobol global sensitivity analysis for the Hartmann-4D function using N = 300000
samples.

Variable First order sensitivity indices Total order sensitivity indices

x(1) 0.307 0.477
z(2) 0.037 0.279
z(3) 0.054 0.103
x(4) 0.272 0.526

Ackley 5D function:

f(v) = �20 exp

0

@�0.2

vuut1

5

5X

j=1

(v(j))2

1

A� exp

0

@1

5

5X

j=1

cos(2⇡v(j))

1

A+ 20 + e1

defined over V = [�5, 5]5. 8 noise variables were added.
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Michalewicz 8D function:

f(v) = �
8X

j=1

sin(v(j)) sin20

 
jv(j)

⇡

!

defined over V = [0, ⇡]8. The first four variables were considered as design variables,
while the four last were considered as contextual variables. 6 noise variables were added.

EggHolder 2D function:

f(v) = �(v(2) + 47) sin

0

@
s����v(2) +

v(1)

2
+ 47

����

1

A� v(1) sin

✓q
|v(1) � (v(2) + 47)|

◆

defined over V = [�512, 512]2. The first variable was considered as a design variable,
and the second one as a contextual variable. 4 noise variables were added. A Sobol global
sensitivity analysis performed using evaluations of the function collected over a grid of
N = 3000000 samples shows that both variables have a similar contribution to the output
(Table S4).

Table S4: Sobol global sensitivity analysis for the EggHolder-2D function using N =
3000000 samples.

Variable First order sensitivity indices Total order sensitivity indices

x(1) 0.001 0.998
z(2) 0.0004 0.999
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Appendix D. Additional experimental results
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Figure S1: Distribution of early stopping time for SADCBO across 100 di↵erent BO trials.
We consider the Ackley5D function with an increasingly larger ratio of relevant
contextual variables over design variables, and 8 irrelevant contextual variables.
p(z) = U([0, 1]c). For any variable, the associated query cost is 1. As the impact
of contextual variables on the output function grows, the proportion of iterations
spent in the observational phase grows as well.

D.1 Number of irrelevant contextual variables.

We compare the performances reached by SADCBO when adding an increasingly larger num-
ber of noise variables. SADCBO is able to keep up with the oracle baseline OBO as dimen-
sionality grows, except for Michalewicz8D, an high-dimensional case (Figure S2). Let us
also mention a general tendency from SADCBO to better handle dimensionality compared to
MMDCBO (orange curve).
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Figure S2: Varying the number of irrelevant contextual variables. For any variable, the as-
sociated query cost is 1. p(z) = U([0, 1]c). On the three test functions Ackley5D,
Hartmann6D and Hartmann4D, our approach outperforms other baselines and
remains close to the oracleOBO, even in high dimensions.
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D.2 Contextual variables intervention cost.

Many di↵erent scenarios will show up in a real-world setting. We now investigate four
di↵erent query cost models, described as column headings in Figure S3, and show that
SADCBO performs well for reasonably high enough contextual variable cost. For expensive
contextual variables (third and fourth columns), SADCBO generally improves over SADBO. This
highlights the importance of the contextual observational phase in the careful determination
of which contextual variables justify the expense. Unsurprisingly however, when the cost to
intervene on contextual variables is cheap relative to the cost to query design variables (first
and second columns), SADBO (purple) catches up with SADCBO (red), even outperforming it
on the Ackley5D and Hartmann6D functions. In other words, when the cost to intervene
on contextual variables is su�ciently low, one should skip the observational phase and start
by directly optimizing contextual variables.
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Figure S3: Ablation study on contextual variable query cost. Design variables have cost
1. p(z) = U([0, 1]c). Low costs typically favor SADBO which can intervene on
contextual variables from the start for a cheap price, whereas high costs lead to
improved results for SADCBO , highlighting the importance of an observational
phase.
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D.3 Kernel structure.

So far, we considered a product kernel over design-context pairs:

k((x, z), (x0, z0)) = kX(x,x0)kZ(z, z0). (S6)

Many classical kernels satisfy this structure, e.g. the RBF and Matern kernels. Thus, two
context-design pairs are similar if the contexts are similar and if the designs are similar.
As mentioned by Krause and Ong (2011), one can also consider the additive combination
k((x, z), (x0, z0)) = kX(x,x0) + kZ(z, z0), such that context-design pairs can be found to be
similar when the contexts are highly similar (even if the designs are not similar). We report
performances for both kernels side-by-side in Figure S4, using RBF kernels both for kX and
kZ . For functions where every variable has the same impact like Ackley5D, Michalewicz8D,
and EggHolder2D, results are similar. On the contrary, a sharp decrease in the best value
found occurs for all baselines on Hartmann6D and Hartmann4D, particularly in the case of
SADCBO .
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Figure S4: Using di↵erent kernel structures for the GP surrogate. Left: product structure
over design and contextual variables. Right: additive kernel over design and
contextual variables. For any variable, the associated query cost is 1. p(z) =
U([0, 1]c). The additive kernel structure negatively impacts all baselines.
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D.4 SADCBO hyperparameters.

We vary the 3 hyperparameters of SADCBO: ⌘ 2 [0, 1] the threshold based over the cumulative
sum of sensitivity indices, which in turn regulates how many variables are selected every
iteration; � 2 [0, 1], a threshold upon which a value is considered high enough to have its
input added to dataset D

� Equation (3), used for sensitivity analysis; and Q the size of the
dataset D

Q.

Figure S5 reports the performances both for SADCBO (shades of red) and SADBO (shades of
blue). Unsurprisingly, ⌘ stands out as the most stringent parameter: as its value decreases,
fewer variables are included, at which point not all relevant ones are selected, leading
to reduced performances. Note that in a setting where there are no relevant contextual
variables, lower values of ⌘ will actually lead to better performances. This is investigated
in Appendix E. Then, varying � 2 [0, 1] slightly a↵ects the results: � increasing means that
more samples are collected for sensitivity analysis, but these are less relevant for producing
a reliable set of variables accounting for the fluctuations at the optimum. Finally, for the
examples considered, Q has only a limited e↵ect, close to that of varying �. This might
stem from the fact that batched acquisition functions are notoriously di�cult to optimize
and may sometimes struggle to enforce diversity.
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Figure S5: Varying hyperparameters for SADCBO and SADBO. For any variable, the associated
query cost is 1. p(z) = U([0, 1]c). Top: varying ⌘, the contextual variable inclu-
sion threshold over the cumulative sum of sensitivity indices. Middle: varying
�, the threshold used in the creation of the truncated dataset D

� from Equa-
tion (3). Bottom: varying Q, the size of the dataset D

Q from ??. ⌘ is the most
sensitive hyperparameter here.
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Appendix E. Forward variable selection further improves the

performance of SADCBO

In the SADCBO method, once the FC variable relevance indices have been computed using
Equation (2) and sorted in descending order, the contextual variables selected are those
whose cumulative FC score is greater than ⌘ 2 [0, 1]. This selected set explains the fraction
⌘ of the output sensitivity amongst all contextual variables. This can prove problematic in
the extreme case where none of the contextual variables at hand have any impact on the
function, as we will still have to select su�ciently enough variables to reach 100⌘% of the
output sensitivity.

An alternative approach described by Shen and Kingsford (2021) can be employed to
tackle this issue. Using the sorted sensitivity indices, one performs forward variable selection
by fitting GP surrogates which include an increasingly larger number of (highest ranked)
contextual variables. The stopping criterion on the addition of contextual variables to
the surrogate is computed based on a comparison of the negative Marginal Log-Likelihood
(MLL) between nested models. This introduces a hyperparameter �, which we set to 10,
similarly as Shen and Kingsford (2021). Note that the hyperparameter ⌘ is no longer
necessary with this approach. Algorithm S2 summarizes the forward variable selection
process performed at each BO iteration. We report the performance of this baseline, coined
SADCBO + Forward selection on two experiments. In the first scenario (Figure S6), where the
number of irrelevant contextual variables is varied, performing forward variable selection
based on the sensitivity indices leads to faster convergence to the optimum, specifically
as the number of irrelevant contexts grows large (|zirr| � 12). In the second scenario
(Figure S7), we consider the Ackley5D (resp. Hartmann6D) function, but this time there
are no relevant contextual variables: all relevant dimensions are associated with design
variables, and there are 8 (resp. 6) additional irrelevant contextual variables. Performing
forward variable selection leads to a marginally faster convergence to the optimum.

Algorithm S2 Forward variable selection

1: Input: Dataset D, contextual variables [z(1)
sort

, . . . , z(c)
sort

] sorted in descending order of
relevance according to Equation (2).

2: Let L
z
(0)
sort

be the negative MLL of the GP fitted on D using only design variables x

3: j?  c
4: for j = 1, . . . , c do

5: Fit a GP on D using [x, z(1)
sort

, . . . , z(j)
sort

], with negative MLL L
z
(j)
sort

6: if j = 1 and L
z
(j)
sort

< L
z
(j�1)
sort

then

7: j?  1
8: break
9: else if L

z
(j)
sort

< L
z
(j�1)
sort

or L
z
(j)
sort
� L

z
(j�1)
sort

< (L
z
(j�1)
sort

� L
z
(j�2)
sort

)/� then

10: j?  j
11: break
12: end if
13: end for
14: return [z(1)

sort
, . . . , z(j

?
)

sort
]

22



0.5

0.6

0.7

0.8

0.9

|z
ir

r |
=

4

Ackley5D
x = (x(1), x(2)), z

rel = (z(3), z(4), z(5))

0.5

0.6

0.7

0.8

0.9

1.0

|z
ir

r |
=

4

Hartmann6D
x = (x(2), x(5), x(6)), z

rel = (z(1), z(3), z(4))

0.5

0.6

0.7

0.8

0.9

|z
ir

r |
=

6

0.5

0.6

0.7

0.8

0.9

1.0

|z
ir

r |
=

6

0.5

0.6

0.7

0.8

0.9

|z
ir

r |
=

8

0.5

0.6

0.7

0.8

0.9

1.0
|z

ir
r |

=
8

0.5

0.6

0.7

0.8

0.9

|z
ir

r |
=

10

0.5

0.6

0.7

0.8

0.9

1.0

|z
ir

r |
=

10

0.5

0.6

0.7

0.8

0.9

|z
ir

r |
=

12

0.5

0.6

0.7

0.8

0.9

1.0

|z
ir

r |
=

12

0.5

0.6

0.7

0.8

0.9

|z
ir

r |
=

15

0.5

0.6

0.7

0.8

0.9

1.0

|z
ir

r |
=

15

0 50 100 150 200 250 300 350 400
0.5

0.6

0.7

0.8

0.9

|z
ir

r |
=

20

0 100 200 300 400 500

0.5

0.6

0.7

0.8

0.9

1.0

|z
ir

r |
=

20

B
es

t
va

lu
e

fo
un

d

Budget

SADCBO - Sensitivity Analysis-driven CBO SADBO - Phase II only SADCBO + Forward selection SADBO + Forward selection

Figure S6: Comparison of SADCBO and SADCBO + forward selection, when increasing the
number of irrelevant contextual variables. For any contextual (resp. design)
variable, the associated query cost is 3 (resp. 1). p(z) = U([0, 1]c). For both
test functions, Sensitivity Analysis-driven CBO (red curve) remains competitive,
even in high dimensions. Forward variable selection leads to faster convergence,
specifically starting when the number of irrelevant variables |zirr| reaches 12 or
more.
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Figure S7: Synthetic examples where no relevant contextual variable is present. For any
contextual (resp. design) variable, the associated query cost is 3 (resp. 1). p(z) =
U([0, 1]c). The baseline performing forward variable selection on top of SADCBO
(cyan curve) provides a slight but consistent improvement over SADCBO (red
curve), and likewise for SADBO (dark cyan versus purple curve).
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amino acid conformer search with bayesian optimization. Journal of Chemical Theory

and Computation, 17, 02 2021. doi: 10.1021/acs.jctc.0c00648.

J. Gerritsma, R. Onnink, and A. Versluis. Yacht Hydrodynamics. UCI Machine Learning
Repository, 2013. DOI: https://doi.org/10.24432/C5XG7R.
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