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TION TO MAXIMIZE LINK EFFICIENCY

Anonymous authors
Paper under double-blind review

ABSTRACT

Meeting the growing data demands of modern AI applications requires efficient,
high-speed communication links. We propose an edge inference framework that
dynamically optimizes non-uniform quantization levels in programmable ADC
receivers. While integer linear programming (ILP) offers high-quality solutions,
its significant computational cost (120 seconds per instance on high-performance
CPUs) and hardware requirements make it unsuitable for on-chip use. On-chip
solutions are essential for fast, periodic adjustments to track time-varying effects
such as temperature drift and ensure reliable communication. To address this, we
train a convolutional neural network (CNN) using ILP-generated labels, achieving
a 24,000x speedup with inference on a RISC-V microcontroller. The CNN lever-
ages a custom loss function tied to system-level metrics, reducing area metric
errors from 29% to less than 2%. Unlike prior works embedding neural networks
in the signal path, our framework adapts periodically to channel variations without
disrupting communication. This enables improved error rates, energy efficiency,
and a scalable pathway for on-chip edge intelligence in next-generation systems.

1 INTRODUCTION

As AI models continue to expand at an unprecedented rate, with modern architectures containing
billions or even trillions of parameters (Fig. 1(a)), the demands on the underlying data communi-
cation and high-speed links have also grown commensurately.

Figure 1: (a) The exponential growth of AI model parameters over time, driving increasing demand
for high-speed data communication. (b) Bandwidth growth for NVLink and HBM SERDES across
NVIDIA GPU generations, showing how communication infrastructure is scaling to meet these
demands (c) High-level SERDES link diagram showing how signal degradation occurs over the
channel, emphasizing the role of the receiver in adapting its parameters to ensure accurate signal
detection

Figure 1(b) highlights how high-speeds links such as NVLink and HBM bandwidth have scaled
over time to meet the increasing data transfer requirements of AI systems. However, as data rates in-
crease, maintaining error-free communication becomes more challenging. Both NVLink and HBM,
along with other high-speed interfaces, rely on SERDES (Serializer/Deserializer) technology to
convert parallel data into serial form for transmission over a channel and then back into parallel data
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at the receiver (Fig. 1(c)). As signals pass through the channel, they are subject to attenuation and
noise, leading to degraded signal quality. Furthermore, time-varying impairments such as tempera-
ture drift further impact the signal integrity. All together, these impairments create a heavy burden
for the receiver to accurately recover the transmitted data.

To mitigate these issues, the receiver needs to dynamically adjust key parameters to effectively
decode the degraded signals. To address these challenges, we propose a machine learning-based
framework that leverages a Convolutional Neural Network (CNN) to optimize the receiver’s param-
eters periodically. Our approach ensures that the receiver can dynamically adapt to varying signal
conditions to maximize link performance.

Figure 2 presents a high-level overview of our system architecture and methodology. The receiver
architecture features an analog-to-digital converter (ADC) with k non-uniform levels (b). A pattern
buffer stores previous received data, and a look-up table (LUT) assigns one of the k levels to each
pattern case (c). With m feedback taps in the buffer, the LUT contains 2m entries. With the use
of pilot training sequences, known data is transmitted, and errors are recorded in 2D eye matrices
indexed by pattern cases (d). The goal is to determine the optimal values for both the k levels and
LUT entries in an online fashion. The sections that follow break down each component and step of
our design and methodology in greater detail.

• Background and Related Work: Section 2 provides a brief overview of receiver design
and conventional optimization techniques. We then discuss machine-learning approaches
for high-speed links and edge inference applications.

• CNN Model and Problem Formulation: In Section 4, we discuss the CNN architec-
ture (Fig. 2(g)) used to predict optimal ADC slice levels and LUT entries for the receiver
(Fig. 2(h)). In Section 3, we formulate the underlying discrete optimization problem, where
the labels for the CNN are generated by an ILP solver (Fig. 2(e)).

• Training Pipeline: In Section 4, we discuss our CNN training details including a custom
loss function which significantly outperforms standard metrics like cross-entropy and MSE.
In Section 5 we showcase our training results.

• Edge Inference with Microcontroller: Section 6 discusses our CNN implementation on
a Risc-V microcontroller including deisgn considerations such as area and latency.

• Performance Evaluation: Finally, in Section 7, we show the results of our approach using
measurement data on a few systems, and discuss the potential gains over conventional
schemes.

Figure 2: High-Level Summary of Receiver Design and Link Training Framework
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2 BACKGROUND AND RELATED WORK

In high-speed communication links, signals are affected by inter-symbol interference (ISI), crosstalk,
and random noise. We define this in Eqn. 3 where xj[n−m] are the transmitted symbols, J is the
number of lanes, M is the number of prior symbols, T is the symbol period, and η(t) is random
noise. Figure 3(a) shows the characterization of channel’s ISI and crosstalk pulse response (p(t)).
The noise free pulse response would be a δ-function, but clearly we see signal energy spread in time
and in space from adjacent signals (crosstalk).

yν(nT + t) =

J∑
j=1

M∑
m=0

xj[n−m] · pj,ν(t + mT ) + η(t), (1)

Figure 3: Link Fundamentals (a) Pulse response
p(t) (b) continuous-time received signal y(t) (c)
eye diagram visualization

An example of this continuous time representa-
tion is shown in Fig. 3(b). The quality of the
received signal can be visualized using an eye
diagram which folds the signal at each clock
cycle boundary (Fig. 3(c)). The ”eye” open-
ing represents the margin for error-free detec-
tion. A larger eye-opening indicates a clearer
distinction between transmitted bits, while a
smaller eye indicates more signal degradation
due to ISI, crosstalk, and noise. For state-of-
the-art (SOTA) high-speed links, the eye is of-
ten ”closed,” necessitating advanced equaliza-
tion and digital signal processing (DSP) tech-
niques to ”open” the eye. Ultimately, the receiver performs analog-to-digital conversion (ADC),
converting the analog signal into a stream of binary data.

2.1 TARGET LINKS AND ADC LEVELS

In modern long-reach SERDES designs, dedicated ADC blocks typically employ fixed, uniform
quantization levels, followed by extensive DSP blocks such as feedforward and decision feedback
equalizers (FFE/DFE) and maximum likelihood sequence detectors (MLSD) to recover the signal.
In contrast, our work focuses on shorter-reach interfaces, such as memory links (LPDDR, GDDR,
DDR) and chip-to-chip interconnects over PCB or module substrates. These interfaces often utilize
simpler receivers with lower effective number of bits (ENOB≤ log2(k)) ADCs, or in some cases,
no explicit ADC circuits at all.

While evaluating higher ENOB ADCs (ENOB > 3) is a valuable research direction, our focus on
shorter-reach links is motivated by their distinct tradeoffs and their prevalence in modern computing
platforms. By targeting systems with lower ENOB (ENOB < 3, k < 8), we aim to reduce
power consumption and hardware complexity. This is achieved by optimizing non-uniform ADC
levels and employing LUT-based signal detection to improve receiver efficiency. Further details on
receiver design trade-offs and architectural differences are provided in Section A.1.

2.2 HIGH-SPEED LINK HARDWARE PARAMETER DERIVATION

Table 1: Link Parameter Derivation Approaches

Approach Variation Efficiency Complexity

Static Dynamic Impact

Characterization No No None Low
Training Yes Yes Yes Moderate
Adaptation Yes Yes None High

Table 1 summarizes established ap-
proaches for determining high-speed
link parameters. The simplest
method is ”characterization,” which
measures several parts to determine
a best-known value (BKV) for all
shipped parts. While this approach
is low in complexity, it cannot track
static or dynamic variations since a
fixed BKV is used. To address vari-
ations, most high-speed links rely on
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either link training or adaptation loops. Link training interrupts the link to send known data and opti-
mize parameter settings Proakis (2007), whereas adaptation-based methods use redundant hardware,
such as sampling circuits, paired with efficient algorithms like Sign-Sign Least Mean Squares (SS-
LMS) Sayed (2003), to refine parameters continuously. However, these circuits increase SERDES
area and power. Our approach uses neural techniques to enhance link training with minimal micro-
controller hardware overhead. Before detailing our problem formulation, we review related machine
learning and AI applications in high-speed communication systems.

2.3 RELATED WORK: APPLICATIONS OF ML AND AI TO HIGH-SPEED RECEIVER DESIGN

Machine learning has been applied to high-speed communication for tasks like signal detection
and transceiver optimization. Unlike theoretical studies on end-to-end system optimization (e.g.,
(O’Shea & Hoydis, 2017; Zappone et al., 2019; He et al., 2019)), our work focuses on practical link
parameter derivation in hardware. Related works, summarized in Table 2 (e.g., Samiee et al. (2020),
Li et al. (2022), Kim (2023)), primarily integrate neural techniques within the signal path.

For example, Deep ADC and NeuralEQ use neural networks for ADC quantization and symbol
detection, respectively. In contrast, our approach decouples the neural network from the signal
path, leveraging it to optimize receiver parameters like ADC levels and LUT mappings for indirect
performance gains. Similarly, NeuADC uses RRAM conductance tuning within ADCs, whereas we
rely on software-based optimization.

Unlike real-time continuous methods, our framework performs periodic updates, efficiently adapt-
ing to slow time-varying effects (e.g., temperature drift) while minimizing power consumption.
Moreover, our approach uses pilot training sequences, ensuring robust parameter optimization com-
pared to live-data reliance in other works.

Table 2: Comparison of Machine Learning Approaches for High-Speed Communication Links

This Work Deep ADC (2020) NeuADC (2022) NeuralEQ (2023)

Target Application Wireline/Optical links Wireless links Low-speed ADCs Wireless/Optical links

Rx/ADC Clock Freq. ≥ 5GHz 1.024GHz 0.3/1GHz ≥ 10GHz

Inference Task ADC levels
LUT Entries

ADC code ADC quantization Symbol detection

HW Parameters Tuned ADC Levels
LUT mapping

None RRAM conductances None

NN Input Data 2D error matrices Time-series data 1 analog sample Time-series data

Training Labels ILP Solver results Transmitted symbols Simulated ADC levels Transmitted symbols

NN Architecture Multi-task CNN Conv. + LSTM Single hidden layer Single hidden layer

Loss Function Custom loss
(BQM, MSE)

Missing BER minimization Cross-Entropy

Inference Hardware RISC-V uController Unspecified RRAM array Unspecified

Inference Data Pilot sequences Live data Single sample Live data

Inference Periodicity Low freq (<1KHz) Continuous Continuous Continuous

Validation Limited No No No

We explored related work on edge inferencing as our approach targets deployment on microcon-
trollers. Notably, frameworks like TensorFlow Lite for Microcontrollers enable efficient machine
learning models to run on low-power devices, further supporting the feasibility of our approach
TensorFlow-Team (2019). Unlike knowledge distillation (Hinton et al., 2015), which transfers
knowledge from a large teacher model to a smaller student model, our approach uses ILP to generate
hardware-specific labels for a CNN, focusing on system-level optimization.

3 LINK PERFORMANCE MAXIMIZATION WITH DISCRETE OPTIMIZATION

As illustrated in Figure 2, parts (b) and (c) show the ADC slice levels and their locations, which
serve as tunable parameters in our optimization framework. Given the multiple sources of voltage
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and timing errors in high-speed links, we propose using a 2D eye area metric as it provides a robust
representation of margin in both time and voltage dimensions (see Appendix). To capture this, we
perform a nested sweep across time and voltage, tracking errors during a training sequence. This
results in 2m error counters corresponding to the various observed pattern cases (y[n−1], ...y[n−
m]). While the continuous-time domain margin is often visualized as an eye diagram, we define
our bivariate quality metric (BQM) as the number of points in a 2D grid of voltage and timing
that achieve a bit error rate (BER) below a specified threshold κ (

∑
v

∑
t BER(v, t) < κ).

This BQM, rather than BER alone, becomes the objective in our discrete optimization approach.
Fig. 2(d) illustrates the BQM concept (all yellow squares are passing locations) across the different
2m pattern cases.

Consider A ∈ Z2m×p×n, a three-dimensional matrix representing the 2D error counts across the
2m pattern cases. By applying a binary transformation function T , where each element aijk of A
is transformed such that T (aijk) = 1 if aijk < κ and T (aijk) = 0 otherwise, we obtain the
binary quality matrix Q.

The function S plays a critical role in our optimization process. Mathematically, S can be defined as
a function that selects k unique values from the range {1, . . . , n} and assigns these levels to each
of the 2m pattern cases:

S : {1, . . . , 2m} → {1, . . . , n}, with S(i) ⊂ {1, . . . , n} and |S(i)| = k ∀i

S gives the slice level that should be used for the 2m pattern case and ensures that each pattern case
uses exactly one of the selected k levels to maximize the BQM .

A vertical shift transformation V , utilizing the level assignments from S, is applied to each 2D slice
of Q to align all selected levels: C =

⋂2m

i=1 V(Qi,:,:, S), where Qi,:,: is the i-th 2D slice of Q
post-alignment. The final optimization objective, aimed at maximizing the alignment quality across
all slices, is given by summing over all x, y pixels which are error free in all slices:

max
S

p∑
x=1

n∑
y=1

(
2m⋂
i=1

V(Qi,:,:, S)x,y

)

This expression illustrates the dual role of S—selecting k levels and assigning a level to each slice—
and directly links it to the optimization goal by computing the intersections of vertically shifted
binary matrices based on the selections and assignments made by S.

3.1 SOLVING FOR S USING INTEGER LINEAR PROGRAMMING

To determine S as m and k increase, we utilize ILP solvers, given their robust capability to handle
discrete decision variables, their ability to guarantee optimal solutions and provide efficient solutions
for large-scale, high-dimensional problems Wolsey (1998); Nemhauser & Wolsey (1988); Bertsekas
(2005). The pseudocode for our formulation is presented in Algorithm 1. Here, binary decision
variables X[i, l], W [j, z], and U [l] ∀i, l, j, z are defined, where X[i, l] indicates whether level
l is chosen for pattern i, W [j, z] represents error-free locations, and U [l] indicates which levels
are selected. After evaluating various ILP solvers, we selected Gurobi Gurobi Optimization, LLC
(2023) branch and cut solver for its superior speed.

To illustrate, consider an example with k = 4 and 2m = 16. Figure 4 visualizes the results,
including annotated levels and class assignments. The red lines in Fig. 4(a) indicate the optimal
slice level for k = 1, while the green lines represent optimal levels for k = 4. The red squares
show the passing taps in the BQM for k = 1, and we observe significant enhancements in the BQM
for k = 4 as evidenced by the green squares. Keep in mind k is the number of slice levels in the
reciever which is proportional to the power and design complexity, so we want to minimize this as
much as possible.

4 NEURAL NETWORKS TO PREDICT ILP SOLVER OUTPUTS S

As discussed in the previous section, ILP solvers are highly effective at determining the optimal S
function.
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Figure 4: ILP results for k = 4 (a) Error counter BQM for each pattern case with k = 1 slice level
(red) and k = 4 optimal slice level (green) (b) Final BQM for original k = 1 (red) and k = 4
(green)

Figure 5: Multi-
Task CNN archi-
tecture

However, implementing ILP solvers in hardware poses significant challenges,
particularly in the constrained environment of high-speed SERDES links. Typ-
ically, the area allocated to SERDES controllers is minimal, and their micro-
controllers handle only simple state machines and logic. This makes integrating
ILP solvers impractical. To overcome this, we explore the use of neural net-
works to approximate ILP solver behavior, leveraging their ability to fit within
small hardware footprints, as discussed in the related work section.

Given the goal of finding optimal parameters during hardware link training, we
investigated supervised learning techniques to learn the ILP solver behavior.We
believed this to be a solid approach given the universal function approximation
properties of neural networks, ensuring that they can theoretically model any
function given sufficient data and network complexity Hornik et al. (1989). With
this approach, we train a neural network with the eye histogram data aggregated
across phase and voltage sweeps from Section 3.1 and then use the ILP solver
outputs including the optimal threshold levels and LUT entries as training labels.
If successful, we can then perform our 2D BQM sweep during link training,
record the error counter data, and run inference in an online fashion. Referring
to Table 1, this will allow us to track part-part variation and also time varying
behavior like voltage noise or temperature.

We chose to use a CNN for our application. CNNs have been very successful in
image recognition tasks starting from initial work on AlexNet Krizhevsky et al.
(2012) based on their ability to extract and learn robust features from complex
image data LeCun et al. (1998). As a result, they are well-suited to analyzing the
pass/fail regions in our 2D BQM data. This boundary detection needs to be per-
formed across the 3rd dimension of pattern cases similar to identifying features
in RGB images Goodfellow et al. (2016). While implementing convolutional
layers was straightforward, determining the optimal structure for solving the
problem to derive S—the outputs of the ILP solver—posed a greater challenge.
To address this, we designed our network to handle multi-task learning, incorpo-
rating one output branch for determining the k level magnitudes as a regression
task, and another branch for classifying the 2m pattern cases. The architecture
of our multi-task network is depicted to the right in Fig. 5.

Referring back to Section 3.1, we leverage the results from the ILP solver for
the binary decision variables X and U to generate labels for our supervised CNN training. For
instance, consider a scenario where k = 4 and 2m = 16. In this case, our classification labels will
consist of k = 4 categories, represented by 0, 1, 2, 3, while the regression targets will capture the
magnitudes, which are derived from the positive integer set Z+.
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To optimize our network, we focus on minimizing a combined loss function L that incorporates
both regression and classification errors, directly aligned with the outputs from our ILP solver. A
conventional approach for L would be to combine the losses from the regression and classifier
branches where L = Lregression + Lclassifier:

L = MSE(y∗
reg − ylevel) + BCE(y∗

classpred
, yclass)

where y∗
reg represents the predicted regression outputs and y∗

classpred
denotes the predicted prob-

abilities for the binary classification task (or multi-class when k > 2). However this formulation
does not capture the true metric we are after, namely the resulting BQM when applying predictions
y∗
reg and y∗

classpred
to select the slice level locations and assignment to the pattern cases.

4.1 CUSTOM LOSS FORMULATIONS TO CAPTURE BQM

To effectively incorporate the resulting composite BQM as a loss function component, we must
convert the CNN’s predicted probabilities into discrete decisions and combine these with regression
predictions to influence the BQM represented in a 3D tensor x. The transformation of probabilities
into hard decisions presents a significant challenge, as it renders the loss function non-differentiable,
thereby obstructing essential gradient-based optimizations. To address this, we employ the Gumbel-
Softmax technique, which approximates discrete variable sampling with differentiable operations,
thus maintaining the network’s trainability Jang et al. (2016); Maddison et al. (2016).

Furthermore, the regression predictions, being real numbers, necessitate an affine transformation to
map these continuous values effectively into our model’s discrete operational framework. This is
achieved using grid sampling and interpolation techniques, ensuring the preservation of differentia-
bility. The expected shifts E, calculated as:

E =

k∑
j=1

yGSclassj · yregj

are applied to the BQM matrix using an affine transformation matrix θ, which adjusts each slice
vertically based on the normalized expected shifts:

θ =

[
1 0 0
0 1 −Enorm

]
This matrix alters the grid of the BQM tensor, and the subsequent processing involves an element-
wise product across all 2m pattern cases, synthesizing the collective effects into a scalar value
representing the overall adjustment:

Q′′ =

2m∏
i=1

Q′
i,:,:, BQMfinal =

∑
x,y

Q′′
x,y

This scalar BQMfinal then contributes to the optimization objective that seeks to maximize the
integrated quality metric across all pattern cases and channels.

The innovative LBQM component of our model’s loss function derives a metric from both the
predicted and actual feature matrices. This component assesses the accuracy of transformations
along with classifications and regressions through the aforementioned affine transformations and
bilinear interpolations:

LBQM = MSE(BQMpred, BQMlabel)

Finally, the comprehensive loss function integrates this component:

L = α · Lregression + β · Lclassifier + γ · LBQM (2)

5 CNN MODELING RESULTS

We used PyTorch to train the network in Fig. 5. Our dataset consisted of synthetically generated
pulse responses as depicted in Fig. 3(a). We generated 1024 unique channels with h1, h2, h3, h4

7
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coefficients sampled from uniform distributions. Furthermore, we generated 32 more minor varia-
tions with different transmit patterns for a total of 32,768 data points. Each data point consists of a
3D tensor capturing the BQM across 16 (m = 4) pattern cases and the ILP solutions. ILP solutions
were carried out both k = 2 and k = 4 level cases. The training and validation datasets were
drawn from Channels 1-950, with the remaining 74 being reserved for the test dataset. PyTorch jobs
were run on NVIDIA V100 GPUs in a DGX-1 configuration.

Figure 6: CNN BQM Performance Metrics for k = 2, 4, 6

Figure 6 shows the BQM performance for k = 2, 4, 6. Ablation studies were conducted to optimize
the weighting parameters (α, β, γ) in Eqn. 2. The results in Fig. 6 demonstrate that the conventional
loss metrics (BCE+MSE) perform significantly worse compared to our custom BQM loss metric
across all k-levels. For k = 2, both the custom-only loss (α = β = 0) and BCE/MSE/Custom
combinations achieve comparable performance. However, for k = 4, 6, the BCE+MSE terms are
critical for finding better solutions, as the custom-only loss struggles to match performance in these
harder cases.

BQM % k = 2 k = 4 k = 6

µ σ CI-Low CI-Up µ σ CI-Low CI-Up µ σ CI-Low CI-Up

BCE/MSE 29.08 2.81 28.92 29.24 58.27 2.83 57.9 58.7 37.30 2.16 37.00 37.60
BCE/MSE/Custom 1.35 0.37 1.35 1.37 11.39 0.38 11.33 11.44 15.97 0.61 15.89 16.06
Custom 0.31 0.4 0.29 0.34 28.83 0.53 28.76 28.91 25.34 0.46 25.28 25.41

Table 3: BQM % Error Metric Statistics Across k = 2, 4, 6 Level Cases

Table 3 presents a statistical analysis of the BQM error percentages across k = 2, 4, 6-levels,
with 95% confidence intervals. While the performance degrades for k = 4, 6, this is partly due
to dataset complexity and ILP timeouts, which impact label quality, it still meets our application
criteria. While larger networks could potentially improve results, hardware constraints discussed in
Section 6 limit such options.

6 HARDWARE IMPLEMENTATION USING MICROCONTROLLERS

Metric ILP Solver CNN (This Work)

Platform High-end CPU RISC-V micro-controller
Execution Time ∼120 s ∼5 ms
Memory GBs of DRAM ∼1 MB SRAM
Update Rate in HW Impractical 1 second (for multiple lanes in micro-controller)

Table 4: Comparison of ILP Solver vs. CNN
Hardware Requirements

With our successful CNN training approach,
the next step is to integrate it into hardware.
Ideally this will reside in the interface controller
hardware which usually consists of a micropro-
cessor. Over the last few years, there has been a
concerted effort to bring some of the ML based
hardware acceleration techniques to micropro-
cessors. For example, the Risc-V specifica-
tion recently added a vector extension to han-
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dle some deep learning calculations Kovačević
et al. (2022).

Figure 7: µcontroller Architecture:
Risc-V core, instruction and data mem-
ory (IMEM/DMEM), and vector exten-
sion blocks (purple). Vector SRAM
(0.9MB) is allocated for CNN weights
(716 KB), buffers (148 KB), and kernels
(30 KB)

Operation Input Dim Output Dim Cycles

Conv1 + ReLU 16 x 32 32 x 64 722,944
Skip1 64 x 16 128 x 16 165,888
Conv2 + ReLU 64 x 16 128 x 64 1,476,608
Skip2 128 x 8 256 x 8 165,888
Conv3 + ReLU 128 x 8 256 x 8 1,476,608
Max Pool/Add - - 2,048
Global Average Pool - - 256

Total Cycles - - 4,027,680
Effective Cycles w/ Margin - - 5,034,600
Total Cycle Time @ 1GHz - - 5.08ms

Figure 8: Cycle count for CNN operations on Risc-V
µController with Vector Extension

To assess hardware feasibility, we estimated the hardware requirements based on the network shown
in Fig. 5. Figure 7 shows our floorplan for the microcontroller design using a Risc-V architecture.
The purple boxes are the blocks added to support vector processing to enable more efficient inference
computation. Figure 8 provides the estimated cycle count assuming Risc-V vector extension support
for a single pass through the network. Assuming a modest clock frequency of 1GHz, the total cycle
time would be 1

Ncycles∗Tclk
= 5.03mS. Given that our goal is periodic updates to compensate for

slow temperature drifts, this cycle time is more than adequate for our periodic training given

While this demonstrates initial feasibility, obtaining accurate power and latency numbers would
require substantial cross-functional design. However, our initial analysis shows that the added vector
processor and SRAM for CNN inference introduce an estimated power overhead of approximately
10mW per microcontroller. This overhead is outweighed by two key energy-saving mechanisms:

• Sparse ADC Design: By reducing the number of non-uniform slice levels, our approach
significantly lowers ADC power consumption compared to dense, uniform designs. For
example, in flash-based ADCs, power scales proportionally with k, offering substantial
savings for lower k configurations.

• Per-Lane Power Optimization: Many lanes in high-density links exhibit higher perfor-
mance across tests, allowing us to configure some lanes with as few as one slice level
(k = 1). As shown in Fig. 9(c), this approach preserves eye area margins while optimiz-
ing power on a per-lane basis, akin to the waterfilling technique in wireless communications
(Cioffi, 2023). These tailored configurations enable significant energy efficiency improve-
ments in terms of I/O per mm and pJ/bit.

These techniques collectively reduce receiver power consumption, making the CNN overhead justi-
fiable and reinforcing the practicality of our proposed approach for high-density link applications.

7 APPLICATIONS AND POTENTIAL BENEFITS

Looking ahead, we showcase some of the potential benefits for AI computing. To illustrate the high-
speed link density improvements, we collected measurement data on a GDDR memory interface
(18Gbps) as shown in Fig 9(a). This system was an early version of a Notebook platform where
there was high crosstalk on a few signals.

We utilized our scheme on the weakest bits impacted by large crosstalk with k = 2 slice levels.
Fig. 9(b) shows the BQM gain when using crosstalk terms. As shown in Fig. 9(c), lanes with higher
performance can be configured with minimal slice levels (k = 1), effectively reducing power
consumption while maintaining error-free operation.

9
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Figure 9: Prototyping our proposal using lab data (a) Notebook memory setup (b) BQM gain with
crosstalk consideration (c) Power savings optimization by reducing k for stronger lanes

These experiments also highlight the robustness of our approach: a model trained on synthetic
data can be successfully applied to real-world silicon links. This ability is crucial for practical
applications, as it allows us to leverage the ease of synthetic data generation while still achieving
performance gains on real hardware.

8 KNOWN LIMITATIONS AND FUTURE WORK

While this paper lays the groundwork for more intelligent high-speed links, significant cross-
functional development is needed to realize the concept in silicon. We outline several key con-
siderations:

• Low-Resolution and Low-Power ADC Design: Designing an effective low-power ADC
is complex and could constitute a separate research project. This paper demonstrates up to
k = 6 levels, corresponding to an effective number of bits (ENOB) of 2.56-bits, but such
a design will require tradeoffs.

• Current Focus on Electrical Links: This study primarily validates the proposed frame-
work on shorter-reach electrical links, which typically exhibit minimal non-linearities.
However, the approach is adaptable to systems with significant non-linear behaviors, such
as optical communication channels (Petermann, 2015), provided that the input matrix data
accurately reflects these dynamics. The flexibility of the CNN and LUT structure ensures
that the framework can generalize to such non-linear systems with appropriate characteri-
zation and input matrix generation (please see Appendix A.4).

• Noise Considerations: Although random noise was injected into the synthetic datasets,
high-speed links can experience various uncorrelated noise sources. These noise profiles
may differ between training sequences and live operation, necessitating margining to ac-
commodate potential variations.

9 CONCLUSION

In this work, we proposed a multi-task CNN framework for optimizing high-speed link performance,
addressing challenges in part-to-part variations and time-varying effects like temperature drift. By
leveraging a custom loss function and integrating CNN inference into microcontrollers, our approach
achieved high accuracy and substantial reductions in link error metrics, demonstrating practicality
for high-speed link applications. Looking ahead, we aim to extend this framework through prototyp-
ing, analog design innovations, and tighter integration of AI-driven optimization in I/O controllers,
advancing energy-efficient, adaptive high-speed link architectures.

10
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A APPENDIX

A.1 RECEIVER DESIGN AND TARGET LINKS

Figure 10 illustrates representative receiver architectures for short-reach links (a) and long-reach
links (b). In Fig. 10(a), the design employs a simple 1-tap decision feedback equalizer (DFE) with
basic analog-to-digital conversion using low complexity ”samplers”.

Figure 10: Illustration of Benefit When Increasing Observed Feedback Terms on Voltage Margin
(a) Channel pulse response (b) CDF without equalization (c) CDF using conventional 1-tap DFE (d)
CDF with proposal (e) Conventional DFE schematic (f) Proposal schematic

In contrast, Fig. 10(b) shows a more complex receiver architecture used for longer-reach links like
Ethernet. It incorporates time-interleaved analog-to-digital converters (ADCs), where each ADC
has n bits of precision, resulting in k = 2n levels. Typically, these ADC levels are uniformly
spaced. The additional DSP stages—such as Continuous-Time Linear Equalizers (CTLE), Feed-
Forward Equalizers (FFE), Decision Feedback Equalizers (DFE), and Maxium Likelihood Sequence
Detectors (MLSD) are necessary to mitigate ISI over longer distances. This added complexity comes
at the cost of increased power consumption and silicon area. Our focus in this work is on links with
receivers similar to Fig. 10(a).

A.2 THEORETICAL DISCUSSION ON ERROR BOUNDS

Our CNN is trained to approximate the solution of an ILP problem by learning from optimal ILP
solutions generated offline. While we demonstrated that the CNN achieves good performance, a
more formal proof of the error bounds between the ILP and CNN solutions has not yet been derived.

12

https://www.tensorflow.org/lite/microcontrollers
https://www.tensorflow.org/lite/microcontrollers


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Under certain conditions, the optimization problem solved by the ILP guarantees optimality. How-
ever, the CNN-based solution, introduces approximation errors due to the following factors:

• Neural Network Generalization Error: The CNN learns a mapping from inputs to op-
timal ILP solutions, but the approximation may deviate from optimality, specifically for
unseen test cases. We did shows results on the unseen test case, but we make the general
observation here.

• Universal Function Approximators: While neural networks are universal approximators,
the limited capacity of the network (depth and neuron count) and training data limitations
may introduce errors.

Formally, let SILP represent the optimal solution derived from the ILP, and let SCNN be the
solution predicted by the CNN. We are interested in deriving a bound on the approximation error
∥SILP − SCNN∥ under some relevant metric factoring in the multi-task solution nature.

While a closed-form bound on ∥SILP − SCNN∥ has not been established, the approximation
error can be tied to the CNN’s ability to minimize the custom loss function during training. We
hypothesize that error bounds could be formulated based on the following factors:

• Network Capacity: Larger CNN architectures may provide tighter approximations of the
ILP solutions. Of course, in our practical implementation, we have the additional constraint
of fitting within a microcontroller.

• Training Data: A more extensive dataset can improve the network’s generalization, po-
tentially reducing the error. We mentioned this in the paper for the k = 4 case.

• Loss Function Behavior: The custom loss function, which mimics the ILP objective, plays
a big role in the approximation error (along with the more conventional losses). A formal
analysis of the custom loss function including the affine translation and Gumbel-Softmax
may help to bound this error.

A.3 ILP PSEUDO-CODE

We detail our pseudo-code to find the optimal BQM with the input per-pattern matrices below in
Algorithm 1.

Algorithm 1 Optimization of Receiver Parameters via ILP

1: Define Inputs:
2: 3D Matrix err mat which is 2m × n × p consisting of error information for each pattern

case
3: Define Parameters:
4: Number of pattern cases 2m, voltage steps n, phase steps p, unique levels k.
5: Define Decision Variables:
6: Binary X[i, l] for each pattern i and level l, indicating if level l is chosen for pattern i.
7: Binary W [j, z] for each voltage-time coordinate (j, z), indicating if coordinate is error-free.
8: Binary U [l] for each level l, indicating if level l is active
9: Objective:

10: Maximize error-free coordinates: Maximize
∑n

j=1

∑p
z=1 W [j, z].

11: Constraints:
12: Ensure exactly one level per pattern: ∀i,

∑n
l=1 X[i, l] = 1.

13: Link patterns to levels: ∀i, l,X[i, l] ≤ U [l].
14: Maintain k total active levels:

∑n
l=1 U [l] = k.

A.4 LINEARITY DISCUSSION

Our ILP formulation itself does not assume linear quantization levels, as demonstrated in the pseu-
docode in Algorithm 1 of the paper. Instead, it optimizes based on the input BQM. If the BQM is
generated using linear ADC offset assumptions, this may influence the labels provided by the ILP
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solver. However, the framework is adaptable to non-linearities, provided the BQM accurately cap-
tures them. The CNN, trained on the BQM data, is designed to learn patterns and variations inherent
in the input data. While the current study validates the framework on electrical links with minimal
non-linearities, the approach is flexible and can be extended to handle more pronounced non-linear
behaviors.

A.4.1 FRAMEWORK’S FLEXIBILITY

The LUTs in the receiver allow for non-linear equalization by enabling independent adjustment of
slice levels for each pattern. For instance, a 0-1-0 (m = 3) pattern need not correspond to the exact
”negative” slice level of a 1-0-1 pattern. This flexibility supports a range of non-linear behaviors
in the ADC, receiver, or transmitter. Including this discussion clarifies that the framework is not
restricted to linear systems and is.

A.4.2 FUTURE EXTENSIONS

While the current work focuses on electrical links, systems such as optical channels, which exhibit
larger non-linearities, represent a complementary research direction. Discussing non-linearities pro-
vides a foundation for extending the framework to these systems in future work. Scope and Com-
pleteness of the Current Study:

A.4.3 VALIDATION ON REAL-WORLD DATA:

The framework has been validated on real lab-measured BQM data from electrical links as discussed
in Section 7 of the paper, where there likely are some non-linearities, albeit minimal. . Electrical
links are ubiquitous in modern computing platforms (memory interfaces, chiplet based interfaces,
GPU-GPU, CPU-GPU inter-chip links off-chip, Networking, ...) so solving this problem is impactful
and practical on its own.

A.4.4 JUSTIFICATION FOR SEPARATE VALIDATION OF NON-LINEARITIES

Testing the framework under significant non-linearities, such as those found in optical systems,
would require substantial extensions to the current study, including:

• Generating per-pattern BQM data for optical channels with high non-linearities.

• Training and validating the CNN on datasets that reflect these unique system characteristics.

These extensions are large enough to warrant a dedicated paperas incorporating them into the current
work would detract from our existing contributions.

A.5 SIGNAL DETECTION

For digital communication, we need to sample this continuous time waveform to convert the
data to bits. Figure 11(a) captures the resulting time-domain receiver response for a signal af-
ter launching a pulse on its own (ISI) and neighboring transmitter (crosstalk). Transitioning to a
discrete time statistical model, the voltage probability density function (PDF) for the receiver at
a given sampling time can be computed by factoring pattern probabilities along with the condi-
tional channel probability py|x. To calculate the probability of error, we consider a simple sig-
naling scheme where we only send a ”0” or ”1” and use a single threshold (k = 1). An er-
ror occurs when y(t′) crosses the threshold vref incorrectly relative to the binary value of the
main input signal P (error | xmain(t

′) = 0) = P (y(t′) > vref | xmain(t
′) = 0) and

P (error | xmain(t
′) = 1) = P (y(t′) < vref | xmain(t

′) = 1). The optimum signal detec-
tor chooses the message which minimizes the probability of error, which can be thought of as a
maximum a posterior detector (MAP) Cioffi (2023). In the case where the pattern probabilities (px)
are equal, this reduces to a maximum likelihood detector. Figure 11(b) shows the resulting voltage
PDF and its integrated CDF. In this paper, we investigate the benefit of using additional threshold
levels (k > 1) along with simple boolean functions on a signal and its neighbors’ history to improve
link performance.
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Figure 11: MIMO channel model: (a) Pulse response (b) Statistical evaluations

A.6 MATHEMATICAL FRAMEWORK & RECEIVER PROPOSALS

Figure 12: MIMO (multiple-input
multiple-output) channel model
pulse response

The voltage at the receiver, y(t), is a linear superposition of
prior transmitted bits ( called ISI), crosstalk from nearby lanes,
and noise. Let pj,ν(t) represent the received voltage on chan-
nel ν at time t for a pulse transmitted at time 0 from channel j.
For j ̸= ν, this is crosstalk; for j = ν, it is the channel pulse
response. The response from an example channel is shown in
Figure 12.

To account for the influence of previous bits (up to M sym-
bols) and sum over all channels j to capture crosstalk, we ex-
press the received voltage as:

yν(nT +t) =

J∑
j=1

M∑
m=0

xj[n−m] ·pj,ν(t+mT )+η(t)

(3)
where xj[i] are the transmitted symbols on channel ‘j’, J is
the number of lanes, M is the number of prior symbols, T is
the symbol period, and η(t) is random noise.

Looking at Eqn. 3, it is easy to see that preceding bits (xj[n−m]) influence yν(nT ) by shifting
the eye by pj,ν(mT ). This means one can get better margins by moving the slice level depending
on the prior bits, the basis of DFE Cioffi (2023) which is explained next.

A.7 TWO SLICE LEVELS

We first explore increasing the 1D voltage margin metric using k = 2 levels and previous decisions
to determine which level to use. This metric can be visualized by taking a vertical slice of the eye
diagram in Fig. 1(c), and use the x-axis to plot the error rate on a log scale. Consider a channel
with a time-domain response shown in Fig. 13(a), where the main signal amplitude is h0 with three
dominant ISI cursors h1, h2, h3. Using a single threshold (Fig. 13(b)) yields minimal voltage
margin. A conventional unrolled decision feedback equalizer (DFE) typically uses 2m levels for m
noise sources Stojanovic et al. (2005). With k = 2, only one noise source can be targeted, so we
cancel h1 by setting slice levels to±h1

2
and using y[n− 1] to select the correct level (Fig. 13(e)).

As seen in Fig. 13(c), the voltage margin improvement corresponds to h1. To also mitigate h2

and h3, a conventional unrolled DFE would require k = 2m = 8 levels. Since adding levels
increases power and complexity, we ask: Can we increase the margin with k = 2 by observing
y[n− 1], y[n− 2], y[n− 3]?

This is feasible if the sum of any subset of non-dominant terms exceeds the dominant term:

j = argmax(|h|),
∑
i ̸=j

|hi| > |hj| (4)

Given h2 + h3 > h1, observing all three feedback terms should enhance the margin, as shown in
Fig. 13(d). The LUT in Fig. 13(f) has 2m = 8 entries, simplifying the logic to a majority voting
function among y[n− 1], y[n− 2], y[n− 3]. While k = 8 levels allow precise voltage margin
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Figure 13: Illustration of Benefit When Increasing Observed Feedback Terms on Voltage Margin
(a) Channel pulse response (b) CDF without equalization (c) CDF using conventional 1-tap DFE (d)
CDF with proposal (e) Conventional DFE schematic (f) Proposal schematic

maximization, our goal is to enhance efficiency with minimal k. We demonstrate that with the same
complexity of a k = 2 ADC, performance improves by considering additional observations. This
approach generalizes to any k levels and m feedback taps, but we need to introduce a more suitable
metric for link performance before formally defining our optimization problem.

A.8 2D AREA MARGIN METRICS & ERROR COUNTERS

Given there are numerous sources of both voltage and timing error in links, we propose using the eye
area, a 2D area metric, since it indicates how much uncertainty we can tolerate in both dimensions.
From an implementation perspective, we can measure this by doing a nested sweep across (time,
voltage) and track the errors in a training sequence as shown in Fig. 14. We have error counters that
correspond to the various pattern cases which we are observing (y[n− 1], ...y[n−m]), resulting
in 2m counters. While the representation of margin in the continuous time domain as in Eqn. 3 is
referred to as an eye diagram, we introduce the term bivariate quality metric (BQM) since it is after
sampling. This metric is defined as

∑
v

∑
t BER(v, t) < κ or the number of points in a 2D grid

of voltage and timing points which meet a target bit error rate (BER) κ.

Figure 14: Bi-variate Quality Metric (BQM) implemented using a nested 2D Sweep with hardware
error counters

A.9 ON-CHIP SAMPLING SCOPE

For most link characterization efforts, there are error counters which indicate whether a specified bit
sequence has errors. Usually sweeps are performed in the voltage and time domains to check the
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margin in the eye. While this method is quite effective in characterizing link margin, one drawback
is that there is no indication for which symbols were erroneous. To address this limitation, we
developed a virtual on-chip sampling scope. Similar to the link characterization approaches, we
sweep the eye in both voltage and time dimensions, but we now have a register to record the bit
stream. The pseudo-code is listed in Algorithm 2.

Algorithm 2 On-Chip Sampling Scope Pseudo-Code

1: for i← 1 to iterations do
2: ProgramBurstLocation() {to send/receive}
3: InitializeLink()
4: TrainLink()
5: for x← 1 to timingSteps do
6: for y ← 1 to voltageSteps do
7: ReadPatternFromMemory()
8: SaveToRegisters()
9: PollRegisters()

10: end for
11: end for
12: end for

Figure 15: On-Chip Sampling Scope
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