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Abstract
Understanding how multimodal models generalize out of distribution is a fundamental challenge
in machine learning. Compositional generalization explains this by assuming the model learns
concepts and how to compose them. In this work, we train diffusion models on a compositional
task from synthetic data of objects of different size and colors. We introduce a concept space as a
framework to understand the learning dynamics of compositional generalization. In this framework,
we identify concept signal as a driver of compositional generalization. Next, we find that diffusion
models can acquire the capability to compositionally generalize long before it elicits this behavior.
Additionally, we find that the time of capability learning can be pinpointed from the concept space
learning dynamics. Finally, we suggest a embedding disentanglement as another metric to probe the
capability of a model. Overall, we make a step in understanding the emergence of compositional
capabilities in diffusion models.

1. Introduction

Modern generative models are considered to have out of distribution generalization abilities, as
highlighted by text-to-image models generating “avocado chair” or “astronaut on a horse”[14, 16,
17, 21, 22]. Understanding how these multimodal models generalize out of distribution is a funda-
mental challenge in machine learning. Compositionality is believed to be at the core of this ability,
where a model learns individual concepts and how to compose them to generate novel instances,
naturally suggesting the exponential increase of generalization classes with the number of concepts
learned [12].

While the ability to compositionally generalize (CG) is observed to emerge with scale[13, 21],
the underlying mechanisms driving this emergence is yet unknown both in model size and compute
(training time). Moreover, in generative diffusion models[5, 8, 18, 20], the loss function is usually
not a good indicative of its generative abilities which makes tracking the performance of diffusion
models a significant challenge.

In this work, we focus on learning dynamics of diffusion models[6], which has not been ad-
dressed in depth due to the practical aspect and scale of the problems diffusion models are usually
trained on. We take a step in understanding how CG emerges in diffusion models by using a syn-
thetic dataset consisting of objects with different size and color, allowing efficient training while
being enough to show compositional generalization. We identify concept signal, a property of the
data distribution, as a main driver of compositional generalization in diffusion models and run a
suite of experiments varying this signal. Our contributions are:
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1. We suggest a concept space analysis of learning dynamics of diffusion models.

2. We determine that a stronger concept signal results in a more efficient learning of a concept.

3. We find that the capability of CG emerges long before elicitation of this behavior.

4. Based on the above findings, we highlight the practicality of the concept space.

5. We suggest embedding disentanglement as a metric for tracking compositional generalization
capabilities.

2. Methodology

Synthetic Data We use a dataset consisting of images of circles of different size and colors at
different locations. We deal with 4 classes spanned by a combination of 2 size and color:
size∈ [big=0,small=1] and color∈ [red=0,blue=1]. This synthetic data was introduced
in [12]. In this work we always use (00, 01, 10) as the training set and evaluate whether the model
can generalize to generate 11, small blue circles. We define the concept signal of a concept as the
mean square error between images when this concept is modified. In this study, we change the color
separation between red and blue ∆Color to tune the level of concept signal. Please see App. A for
further details.

Variational Diffusion Models We use variational diffusion models[8] as our generative model.
We use the U-Net[15] architecture with conditional embeddings of the class conditioning added into
each hidden representation. Please see App. A for more details.

3. Results

3.1. Concept Space Learning Dynamics (Fig. 1)

First, we suggest the concept space analysis of learning dynamics of diffusion models. We define
the concept space of a diffusion model generation as the average probability predicted for each
concept for a set of generated images from the same class. Thus our concept space is 2 dimensional
in this case. We use a separately trained classifier to construct this concept space.

Fig. 1 shows the concept space trajectory of each class as the diffusion model trains. As ex-
pected, the training classes(in dashed lines) directly converges to their expected concept space
representations. However, we see that the CG test class, 11 initially follows the concept space
trajectory of 01. We denote this phenomena as concept memorization where the model memorizes
“small=red” instead of factorizing the two concepts of color and size. Depending on the con-
cept signal level, the concept space trajectory leaves this memorization phase sooner or later. We
find that settings where this disentanglement of concepts happened earlier also end up with a bet-
ter final(at 15,000 gradient steps) concept space representations. Thus, we conclude that concept
signal enhances the end of concept memorization and drives compositional generalization.

3.2. Capability vs. Behavior (Fig. 2, 3)

From Sec. 3.1, we identify that for low concept signal levels, CG is delayed since the debiasing
of the concepts happen far from the generalization target. In Fig. 2, the same experiments are
plotted in accuracies, which is simply the joint accuracy of color and size. We find that low
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Figure 1: Concept Space Learning Dynamics Each trajectory corresponds to a concept space rep-
resentation of a diffusion model generation at different steps during training. Dashed
lines indicate training data and solid lines indicate the compositional generalization test
data. Each curve is color coded by the color separation(the concept signal) of the data
distribution.

Figure 2: Capability vs. Behavior Each panel represents a different concept signal level. In each
panel the test behavior is shown in red and the capability is shown in green.

signal levels not only delay CG but make its behavior seed dependent as we can see in the red
area of Fig. 2. However, we hypothesize that at the moment of debiasing, where the concept space
trajectory leaves the concept memorization phase, the capability of composing color and size
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are already present, yet the model is simply not behaving. To verify this hypothesis, we augment
the conditioning prompt of the model to probe the true capability of the model (See App. B). The
capability is shown in green in Fig. 2. It is evident that the CG capability is present long before
the behavior, and moreover, the capability is learned robustly independent of the seed. Thus, we
conclude that a model’s Capability can be present long before its Behavior is elicit.

Fig. 3, shows that for this dataset, the time a capability is learned and the behavior is elicit has
a simple linear relation. This suggests that the emergent behavior of a model can, at least in some
settings, be predicted from its capabilities. Please refer to App. C for additional visualizations of

Figure 3: Capability Learning Time vs Behavior Elicitation Time We quantify the learn-
ing/elicitation time as when the accuracy hits 50%. The linear fit to the capability learning
time and the behavior elicitation time is shown.

the data.

3.3. Practicality of Concept Space (Fig. 4)

Figure 4: Identifying Capability Learning (Left:) The time of capability learning is invisible from
the loss curves. (Center:) The test accuracy also does not clearly represent the capability
learning time (Right:) The concept space gives a hint of capability learning by the clear
transition in the dynamics.

Fig. 4 highlights one practical aspect of having access to the concept space learning dynamics.
As one can see in the left panel, the variational lower bound(the loss function) does not show any
hint of the time where the capability is learned. Even plotting test accuracy as in the middle panel
does not directly allow one to see the existence of the capability. (We note that the capability
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itself is more intensive to compute (See App. B).) However, one can identify when this capability
would have emerged simply by tracking the end of concept memorization in the concept space
representation. Thus, we conclude that visualizing the concept space can reveal hidden learning
dynamics of capabilities.

3.4. Embedding Similarity as a probe of Generalization.

Figure 5: Embedding Similarity of e01 − e00 and e10 − e00

Although the concept space of generations can be simply constructed by training concept classi-
fiers [1, 2, 4, 7, 9, 10, 19], some hypothetical concepts might be ill defined by a classifier, or perhaps
not even identified by the human at the first place. It is thus important to establish methods to au-
tomatically identify the acquisition of capabilities. Here, we suggest one method restricted to our
setup. Fig. 5, shows 1− |se01−e00,e10−e00 | as a black curve, where sa,b is the cosine similarity of the
vector a and b and exx is the conditioning embedding of the class xx. In other words, we are plot-
ting how disentangled the size embedding (e01 − e00) and the color embedding (e10 − e00) is.
We find that this embedding disentanglement is closely related to the timing a capability is learned.
Please see App. D for additional probes we explored. Thus, we conclude that model embedding
based metrics for capability acquisition can be established without full generation.

4. Conclusion

We have studied diffusion models on a synthetic data where we can analyze the learning dynamics
of compositional generalization varying the concept signal. We discovered that 1) concept signal
drives the onset and speed of compositional generalization. 2) Diffusion models can acquire capabil-
ities long before it elicits a behavior. 3) Concept space analysis can help identify the acquisition of
these capabilities. 4) We suggest embedding disentanglement as a metric to track these capabilities.
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Appendix A. Data&Model Details

Data Details 2048 3× 32× 32 images per class are generated from a custom python script. Fig. 6
shows two example data distributions where one has a relatively low color separation and one has a
relatively high color separation. The difference is visually mild, yet it is important in determining
the diffusion model’s generalization dynamics.

Figure 6: Two Example Data distributions.
Left: A data distribution with a relatively small ∆Color = 0.175.
Right: A data distribution with a relatively big ∆Color = 0.3.
These two values corresponds to the two extremes of the color separations in Fig. 1. The
labels (00, 01, 10, 11) represent (color, size).

Model Details We train a variational diffusion model[8] with a custom designed U-Net[15]
architecture with [32,64,128,256] channels in each resolution block. The conditioning vectors are
embedded with a 2 layer MLP with 64 hidden dimensions. GELU[3] activations are used every-
where. We train the model for 15,000 gradient steps with a AdamW[11] optimizer with learning
rate 0.001 and weight decay 0.01.

Appendix B. Capability

We measure the capability of a model to generate the 11 class, small blue circles by augmenting the
“prompt”. Instead of using the fiducial blue conditioning of e.g. [0.4,0.4,0.6]. (The actual values de-
pends on ∆Color). We use a set of conditionings [0.0,0.0,1.0],[0.1,0.1,0.9], [0.2,0.2,0.8],[0.3,0.3,0.7],[0.4,0.4,0.6]
to prompt the model to generate small blue circles. More formally, we would like to define the Ca-
pability of a model as the maximum accuracy over all possible prompts. The method we used is thus
simply a practical implementation of this definition. We note that this definition does not make the
task trivial, as there can easily be no prompt generating the right class, e.g. over-prompting for blue
will generate big blue circles. In fact, this is precisely the case before capability learning happens.
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Appendix C. Additional Figures for Sec. 3.2

Fig. 7 shows the capability and behavior on the compositional test class. Different ∆Color are shown
together to illustrate the clear effect of ∆Color on capability/behavior learning times.

Figure 7: Capability vs. Behavior for different ∆Color We show the learning curves of capability
and behavior for different ∆Color.

In Fig. 8, we show the standard deviation from different seeds in capability and behavior. We
find that for low ∆Color the standard deviation remains high until 15, 000 gradient steps.

Figure 8: Capability vs Behavior Standard Deviations We show the standard deviation from dif-
ferent seeds in capability and behavior.

In Fig. 9 we show the capability and behavior in 3D trajectory plot. We see that all seeds acquire
the capability while some never elicit the behavior.

Appendix D. Additional Figures for Sec. 3.4

Fig. 10, 11, 12, 13, 14, 15, 16 show additional metrics one might consider as a probe for CG. Many
of these probes reflect different aspects of the train behavior, test behavior and test capability while
the most clear probe is the one in Sec. 3.4.

9



HIDDEN CAPABILITY LEARNING BEFORE BEHAVIOR

Figure 9: 3D Capability vs. Behavior We show, for ∆Color = 0.25 the capability and behavior
curves for different seeds. All seeds acquire the capability while some never elicit the
behavior

Figure 10: MLP Weight Norms for Color

Figure 11: MLP Weight Norms for Size
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Figure 12: MLP Gradient Norms for Color

Figure 13: MLP Gradient Norms for Size

Figure 14: Convolution Weight Norms
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Figure 15: Convolution Gradient Norms

Figure 16: Embedding Similarity of e11 − e10 and e11 − e01
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