
Local to Global: Learning Dynamics and Effect of
Initialization for Transformers

Ashok Vardhan Makkuva ∗

EPFL
Marco Bondaschi ∗

EPFL
Chanakya Ekbote

EPFL
Adway Girish

EPFL

Alliot Nagle
UT Austin

Hyeji Kim
UT Austin

Michael Gastpar
EPFL

Abstract

In recent years, transformer-based models have revolutionized deep learning, par-
ticularly in sequence modeling. To better understand this phenomenon, there is a
growing interest in using Markov input processes to study transformers. However,
our current understanding in this regard remains limited with many fundamental
questions about how transformers learn Markov chains still unanswered. In this
paper, we address this by focusing on first-order Markov chains and single-layer
transformers, providing a comprehensive characterization of the learning dynamics
in this context. Specifically, we prove that transformer parameters trained on next-
token prediction loss can either converge to global or local minima, contingent on
the initialization and the Markovian data properties, and we characterize the precise
conditions under which this occurs. To the best of our knowledge, this is the first
result of its kind highlighting the role of initialization. We further demonstrate that
our theoretical findings are corroborated by empirical evidence. Based on these
insights, we provide guidelines for the initialization of single-layer transformers
and demonstrate their effectiveness. Finally, we outline several open problems in
this arena. Code is available at: https://github.com/Bond1995/Markov.

1 Introduction

Transformers have been at the forefront of recent successes across various fields including natural
language processing [34]. To obtain insights into their impressive sequential modeling capabilities, a
notable emerging theme among several recent works is to model the input data as a Markov process.

Using this Markovian perspective, works such as [24, 14, 8], among others, study the in-context learn-
ing capabilities of transformer. [23] analyzes the loss-landscape for the next-token prediction task,
while [18] shows an equivalence between the attention mechanism and Markov models. Although
these works reveal interesting insights about transformers and their capabilities, many fundamental
questions about their learning dynamics remain unanswered. In particular, a comprehensive char-
acterization of their training dynamics vis-á-vis the data distributional properties and the role of
initialization is still missing.

To address this gap, in this paper, we focus on the canonical setting of first-order Markov chains and
single-layer transformers and analyze the learning dynamics in this context. Specifically, we prove
(Thms. 2, 3, and 8) that the input data properties and the parameter initialization play a significant role
in the convergence of the transformer parameters to either local or global minima on the loss surface.
Further, we precisely characterize (Figs. 1 and Fig. 2) the specific data characteristics and the region
of initialization under which this convergence occurs. Based on these insights, we provide guidelines

∗Equal contribution. Correspondence to ashok.makkuva@epfl.ch.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/Bond1995/Markov

for the initialization of transformer parameters and empirically corroborate our theoretical findings.
On the theoretical front, our analysis provides a novel gradient flow analysis of the transformer
parameters, capitalizing on their low-rank structure during training. Our main contributions can be
summarized as follows:

• Theoretical analysis: We precisely characterize the loss landscape and gradient flow dy-
namics for single-layer transformers with first-order Markov chains (Secs. 3 and 4). We
demonstrate that transformer parameters trained on next-token prediction loss can converge
to global or local minima, depending on the initialization and the Markovian data properties,
and determine the exact conditions under which this occurs (Thms. 2, 3, and 8). To the best
of our knowledge, this is the first result of its kind.

• Insights into initialization: Our theoretical analysis underscores the crucial role of initial-
ization in transformer parameter training. Specifically, we demonstrate how the standard
Gaussian initialization scheme can lead the convergence to local or global minima depending
on the Markovian data properties (Thms. 2 and 8, Figs. 1 and 2).

• Guidelines: Based on these insights, we provide practical guidelines for parameter initial-
ization, corroborated by empirical evidence demonstrating their effectiveness (Sec. 5.2).

3 2 1 0 1 2
3

2

1

0

1

2

Global minima
Local minima
Local maxima
Saddle point

9 7 5 3 1 1 3 5 7 9 11

w →

e

↑

(a) Gradient flow (p + q < 1)

3 2 1 0 1 2 3
3

2

1

0

1

2

3

min

w →

e

↑

(b) Convergence basin (p+q<1)

3 2 1 0 1 2
3

2

1

0

1

2

Global minima
Local minima
Local maxima
Saddle point

9 7 5 3 1 1 3 5 7 9 11

w →

e

↑

(c) Gradient flow (p + q > 1)

3 2 1 0 1 2 3
3

2

1

0

1

2

3

min

w →

e

↑

(d) Convergence basin (p+q>1)

Figure 1: Gradient flow dynamics and initialization effect for single-layer transformers. (p, q) are
Markov switching probabilities, and (e, w) are the embedding and weight parameters (Sec. 2). (a), (c):
The flow is aligned along energy contour lines, converging to local or global optima. (b), (d): I⋆ is
the basin of convergence for global minima, Imin for the local minima, and yellow asymptotes for the
saddle point. Notice the contrasting behavior for Gaussian initialization around origin for p+ q ≶ 1.

Notation. We denote scalars by italic lower case letters like x, y and Euclidean vectors and matrices
in bold: x,y,M , etc. ∥ · ∥ denotes the ℓ2-norm for Euclidean vectors and Frobenius norm for
matrices. [k] ≜ {1, . . . , k}, and for a sequence (xn)n≥1, define xm

k ≜ (xk, . . . , xm) if k ≥ 1 and
(x1, . . . , xm) otherwise. For z ∈ R, the sigmoid σ(z) ≜ 1/(1+e−z), ReLU(z) ≜ max(0, z) and the
convex logistic loss ℓlog(z) ≜ log (1 + exp(−z)) ∈ (0,∞). For events A and B, P (A) denotes the
probability of A whereas P (A | B) the conditional probability. Let (x, y) be a pair of discrete random
variables on [k]× [k] with the probability mass function (pmf) of x being px = (p1, . . . , pk) ∈ [0, 1]k.
Then its Shannon entropy is defined as H(x) = H(px) ≜ −

∑
i∈[k] pi log pi. The conditional

entropy is defined to be H(y|x) ≜ H(x, y)−H(x). The entropy rate of a stochastic process (xn)n≥1

is defined as limn→∞ H(xn
1)/n. We simply write x = y to mean P (x = y) = 1. We also use the

shorthand P (y = j | x) for P (y = j | x = x) as a function of the random variable x. For p ∈ (0, 1),
the binary entropy function h(·) is defined as h(p) ≜ −p log p− (1− p) log(1− p).

2 Problem Setting

We formally define the problem setting for analysis of single-layer transformers with Markovian data,
following [23].

Input data. We assume that the input word sequence {xn}Nn=1 ∈ {0, 1}N is a first-order time-
homogenous Markov chain with a fixed kernel P = (P ij). That is, the transition probability

2

P ij ≜ P (xn+1 = j | xn = i) = P
(
xn+1 = j | xn = i, xn−1

1

)
, for any xn−1

1 , i, j ∈ {0, 1}. In
particular, we consider P = [1− p, p; q, 1− q] where p = P 01 = P (xn+1 = 1 | xn = 0) and q =
P 10 = P (xn+1 = 0 | xn = 1) denote the switching probabilities from the states 0 and 1 respectively.
We call p+ q, the switching factor. We assume that the process is already mixed, i.e. xn ∼ π for all
n, where π ≜ (π0, π1) = (q, p)/(p+ q) is the stationary distribution satisfying π = πP . Succinctly,
(xn)n≥1 ∼ (π,P). For this process, the entropy rate, H(xn+1|xn) =

1
p+q (q h(p) + p h(q)), and

the entropy of the marginal, H(xn) = H(π), are both constant in n.

Transformer architecture. We consider a single-layer transformer with a single-head attention
and ReLU non-linearity. Given an input sequence {xn}Nn=1, it performs the following mathematical
operations at each n ∈ [N] to predict the next-token probability fθ(x

n
1):

xn ∈ {0, 1} Embedding−−−−−−−→ xn
Attention−−−−−−→ yn

Feed-forward−−−−−−−−−→ zn
Linear−−−−→ logitn

Prediction−−−−−−−→ fθ(x
n
1),

where

xn = xn e+ pn ∈ Rd, (Embedding)

yn = xn +
∑
i∈[n]

attn,i︸ ︷︷ ︸
∈(0,1)

·W V xi ∈ Rd, (Attention)

zn = yn +W 2 ReLU(W 1 yn) ∈ Rd, (Feed-forward)

logitn = ⟨a, zn⟩+ b ∈ R, (Linear)

fθ(x
n
1) ≜ Pθ (xn+1 = 1 | xn

1) = σ(logitn) ∈ [0, 1]. (Prediction)

Here θ ≜ (e, {pn}Nn=1, . . . ,W 1,W 2, b,a) ∈ RD denotes the full list of the transformer parameters
from the embedding layer till the linear layer (§ A details them). While the underlying data {xn}Nn=1 is
Markovian, i.e. P (xn+1 = 1 | xn

1) = P (xn+1 = 1 | xn), the transformer is agnostic to this fact and
it can potentially utilize the full past xn

1 in the Attention layer, via the attention weights attn,i, to predict
the next-symbol probability fθ(x

n
1) = Pθ (xn+1 = 1 | xn

1). Note that it suffices to estimate the sym-
bol 1 probability as the vocabulary is binary. We also refer to the above architecture as “full model”.

Loss and training. The transformer parameters θ are usually initialized according to standard
Gaussian distribution N (0, σ2I) with a small variance σ2 [26] and are trained using gradient-based
methods to minimize the cross-entropy loss on the next-token prediction, i.e.

min
θ

L(θ), L(θ) ≜ − 1

N

∑
n∈[N]

Exn+1
1

[xn+1 · log fθ(xn
1) + (1− xn+1) · log(1− fθ(x

n
1))]. (1)

When the input sequence {xn}Nn=1 ∼ (π,P), the minimal loss equals its entropy-rate, i.e. L⋆ ≜
minθ L(θ) = H(xn+1|xn) [11].

Loss landscape. A key surprising observation in [23] is that the loss function L(·) admits both the
global and local minima depending on the switching factor p + q of the Markovian data, and the
weight-tying of the embedding and linear weights (e = a) of the transformer. In particular, they
show that

(i) for all (p, q) ∈ (0, 1)2, there exists a global minimum θ⋆ for the loss L such that its
prediction matches the Markov kernel, i.e. Pθ⋆

(xn+1 = 1 | xn
1) = P (xn+1 = 1 | xn).

(ii) if p+ q > 1 and the weights are tied (e = a), there exists a bad local minimum θmin for L
whose prediction equals the marginal, i.e. Pθπ (xn+1 = 1 | xn

1) = P (xn+1 = 1).

In view of these results, we focus on the weight-tying scenario and hence let e = a to be a single
parameter in Rd. Thus, θ = (e = a, {pn}Nn=1, . . . ,W 1,W 2, b). We interchangeably refer to θ as
both the transformer and the set of parameters.

Our objective. While the aforementioned results detail the static landscape of the loss, they do not
characterize the learning dynamics on the loss surface and the effect of initialization, which plays
a central role in training machine learning models [5]. In view of these shortcomings, the main
objective of this paper is to address the following question:

(Q.1): Can we explain how the initialization and learning dynamics affect the
convergence of the transformer parameters θ to the local or global optima?

3

3 Canonical Low-rank Parameterization

Motivation. Given the complexity of the transformer architecture and the non-convex loss function,
it is challenging to analyze the learning dynamics directly [24, 14]. To tackle this, we capitalize on
the following empirical observation [23] which is the motivating idea behind our approach: when
trained by gradient-based methods, the weight matrices (W V , . . . ,W 1,W 2) at the optima θ⋆ and
θmin exhibit rank-one structure, whose eigenvector is the same direction in which the both the token
embedding e and the positional embeddings pn are all aligned in. Interestingly, such low-rank
solutions can also be shown to be theoretically optimal (§ B details these structures). While these
observations illustrate the implicit bias towards low-rank solutions at the final convergence, a natural
question arises: if we initialize with low-rank parameters, will they remain low-rank during training?
In Sec. 5.1, we affirmatively address this based on a thorough empirical evaluation for single-layer
transformers and inspired by these empirical phenomena, without loss of generality, we restrict our
attention to these low-rank manifolds to characterize the learning dynamics. This is similar in spirit
to [24], where they assume special attention matrix structure for learning induction heads.

Parameterization. More specifically, we consider a special low-rank parameterization that is
empirically observed and capitalize on it to address (Q.1). Interestingly, along this low-rank manifold,
it suffices to consider a reduced set of parameters θ ∈ R2 or θ ∈ R3 given by:

θ = (e, w) ∈ R2, or θ = (e, w, a) ∈ R3. (Reparameterization)

Here e denotes the embedding scalar, w the weight, and a the attention parameter respectively. Now
we describe the parameterization of the transformer vis-á-vis these scalars and refer to § C for a more
detailed descripton. Let the input {xn}Nn=1 be a first-order Markov chain as in Sec. 2 and let n ∈ [N]
be fixed. Then we have

Embedding : e = e ·α, pn =
(
−e

2

)
·α → xn = e

(
xn − 1

2

)
α, e ∈ R,α ∈ {±1}d/

√
d,

Attention : W V = αv⊤ → yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩︸ ︷︷ ︸

∝a≈0

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α,v ∈ Rd.

The scalar a is the product of ⟨v,α⟩ and the scaling in the attention weights attn,i (Eq. (39)), which
is empirically close to zero for first-order Markov chains. Hence for the ease of exposition, we first
let a = 0 and analyze the general case when a ∈ R in Sec. 4.1. We continue:

Feed-forward : W 1 =
|w|√
d
1α⊤,W 2 =

w√
d
α1⊤ → zn = e

(
xn − 1

2

)
(1 + 4w|w|xn)α, w ∈ R.

1 is the all-one vector in Rr with r = 4d typically in practice. Substituting this zn in the linear layer
with e = a and bias b ∈ R, the logits and the probabilities simplify to:

Linear : logitn(e, w, b) = e2(1 + 2w|w|)xn + b− e2

2
∈ R, (2)

Prediction : f(θ,b)(x
n
1) = σ (logitn) ∈ (0, 1), θ ≜ (e, w). (3)

Finally, using the equivalence between the cross-entropy loss and the logistic loss ℓlog(·), the loss
function in Eq. (1) can be compactly written as (Lemma 6):

L(θ, b) =
1

N

∑
n∈[N]

E[ℓlog ((2xn+1 − 1) · logitn(θ))], θ ∈ R2, b ∈ R. (4)

Due to convexity of ℓlog(·), it follows that L(θ, b) is convex in the bias b for any fixed θ, whose
minimizer, b⋆(θ) = argminb∈R L(θ, b), has a closed form expression (Lemma 5). Hence, without
loss of generality, we consider the loss with this optimal bias b⋆:

L(θ) ≜ L(θ, b⋆) =
1

N

∑
n∈[N]

E
[
ℓlog

(
(2xn+1 − 1)

(
e2(1 + 2w|w|)xn + b⋆ −

e2

2

))]
. (5)

4

Empirically, this roughly translates to running the gradient-based algorithm for the bias for more
steps at each θ. In practice, one additional step is usually sufficient (see Sec. 5). Eq. (5) resembles
the standard logistic regression loss [31] whose binary labels are 2xn+1 − 1 ∈ {±1} and the logits
given by e2(1 + 2w|w|)xn + b⋆ − e2/2, for each n ∈ [N]. The key difference here is that the logits
are a non-linear function of the parameters (e, w) unlike in the standard setting.

We briefly summarize our assumptions below.

Assumption 1 (Canonical parameterization). For our theoretical analysis, we assume that the effective
transformer parameters are canonically parameterized as θ = (e, w, a) ∈ R3. First we study the
scenario when a = 0 with θ = (e, w) and build upon these observations to study the general setting
of θ = (e, w, a) in Sec. 4.1.

3.1 Loss Landscape with Canonical Parameterization

With the new set of parameters θ = (e, w) ∈ R2, we are now ready to analyze the loss L(·) in Eq. (5).
First we recall the definition of a critical point [20]. A point θ⋆ ∈ R2 is a critical or a stationary
point for L if ∇L(θ⋆) = 0. A critical point θ⋆ is a local minimum if there exists a neighborhood
U around θ⋆ such that L(θ⋆) ≤ L(θ) for all θ ∈ U , and a local maximum if L(θ⋆) ≥ L(θ).
If the neighborhood U is whole of R2, it is a global minimum/maximum. On the other hand, a
critical point is a saddle point if for all neighborhoods U around θ⋆, there are θ1,θ2 ∈ U such that
L(θ1) ≤ L(θ⋆) ≤ L(θ2).

Thm. 1 below provides a complete characterization of the loss landscape in terms of the aforemen-
tioned critical points.

Theorem 1 (All critical points). Let the input sequence be {xn}Nn=1 ∼ (π,P), the transformer
parameters θ = (e, w) ∈ R2, and the next-token prediction loss L(·) be as in Eq. (5). Then for any
(p, q) ∈ (0, 1)2 with p+ q ̸= 1 and N ∈ N,

(i) the set of all global minima is given by

Θ⋆(p, q) ≜

{
(e, w) ∈ R2 : e2(1 + 2w|w|) = log

(1− p)(1− q)

pq

}
, (6)

(ii) the set of all local minima is given by

Θmin(p, q) ≜
{
(e, w) ∈ R2 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0

}
, (7)

(iii) the set of all local maxima is given by

Θmax(p, q) ≜
{
(e, w) ∈ R2 : e = 0, (p+ q − 1)(1 + 2w|w|) < 0

}
, (8)

(iv) and the set of all saddle points is

Θsad(p, q) ≜
{
(0,−1/

√
2)
}
. (9)

Thus the set of all critical points is{
θ ∈ R2 : ∇L(θ) = 0

}
= Θ⋆ ∪Θmin ∪Θmax ∪Θsad. (10)

In addition, for any θ⋆ ∈ Θ⋆,θmin ∈ Θmin, θmax ∈ Θmax, and θsad ∈ Θsad, the loss values satisfy

H(xn+1 | xn) = L(θ⋆) < L(θmin) = L(θmax) = L(θsad) = H(xn+1).

Proof. We refer to § E.

Fig. 1 illustrates the loci of these critical points for p+ q < 1 and p+ q > 1. Motivated by empirical
observations, while [23] characterizes local minima for p+ q > 1, it is interesting to note that our
Thm. 1 shows that local minima also exist for p+ q < 1 (Eq. (7) and Fig. 3a). So why did they find
the minima only when p+ q > 1? The answer to this, and more broadly to question (Q.1) lies in the
learning dynamics and initialization for θ, which we study in the next section.

5

4 Learning Dynamics

Capitalizing on the loss landscape in terms of the critical points in Thm. 1, we now focus on the
convergence of gradient-based algorithms to these points. In this regard, we analyze the dynamics of
the gradient-flow (GF), which can be viewed as a continuous-time analogue of gradient-descent [6].
The gradient-flow of the parameters, (θt)t≥0, on L is governed by

dθt

dt
= −∇L(θt), θt = (et, wt) ∈ R2, t ≥ 0, (GF)

where θt ≜ θ(t) is a C1 (continuously differentiable) curve in R2 starting with a randomly initalized
θ0. To characterize these trajectories, we define an energy function E(·, ·), which plays a crucial in
the GF dynamics. It is defined as

E(e, w) ≜ e2 − (w2 + sign(w) · log |w|), ∀(e, w) ∈ R2 \ e-axis, (11)

where e-axis ≜ {(e, w = 0)}. Note that E is well-defined and finite for all the points in its domain.
On the other hand, limw→0− E(e, w) = −∞ whereas limw→0+ E(e, w) = ∞ for any fixed e ∈ R.
Thus the e-axis corresponding to w = 0 serves as an energy barrier for the flow. Figs. 3a and 3b
illustrate this by visualizing the energy contour lines. The utility of the energy function is captured in
the following lemma.

Lemma 1 (Constant energy along the flow). For any (p, q) ∈ (0, 1)2 and initialization θ0 =
(e0, w0) ∈ R2, let (θt)t≥0 be the corresponding GF trajectory starting from θ0. If θ0 ∈ R2 \ e-axis,
the energy stays constant along the trajectory, i.e.

E(θt) = e2t − (w2
t + sign(wt) · log |wt|) = E(θ0), ∀t ≥ 0. (12)

On the other hand, if θ0 ∈ e-axis, we have that θt ∈ e-axis for all t ≥ 0 with wt = w0 = 0, i.e. if
we initialize on the e-axis, the trajectory always stays there.

We are now ready to present the main results of our paper. Specifically, Thm. 2 and Thm. 8 highlight
the role of the switching factor of the Markovian data, p+ q, and the parameter initialization, θ0, in
deciding whether the GF converges to local optima or global optima. First we define the energy value
Esad ≜ E(e = 0, w = −1/

√
2) = −(1 + log 2)/2.

Theorem 2 (GF dynamics for p+ q > 1). Let (p, q) ∈ (0, 1)2 with p+ q > 1, the input sequence be
{xn}Nn=1 ∼ (π,P), and (θt)t≥0 be the corresponding GF trajectory starting from θ0. Then for all
initializations θ0 ∈ R2, the gradient flow converges to a critical point of the loss L. That is, there
exists a θlim ∈ R2 such that limt→∞ θt = θlim and ∇L(θlim) = 0. In particular, θlim is a

(i) a local minimum if

θ0 ∈ Imin ≜
{
(e, w) : w ∈ (−1/

√
2, 0), e ∈ (−g(w), g(w)), g(w) =

√
w2 − log(−w) + Esad

}
∪ {(e, w) : w ≥ 0} ,

(ii) a saddle point if θ0 ∈ Isad ≜
{
(e, w) : w ∈ [−1/

√
2, 0), e = ±

√
w2 − log(−w) + Esad

}
,

(iii) a local maximum if θ0 ∈ Imax ≜
{
(e, w) : e = 0, w < −1/

√
2
}

,

(iv) and a global minimum if θ0 ∈ I⋆ ≜ R2 \ (Imin ∪ Isad ∪ Imax).

Consequently, when p + q > 1, if we use the standard initialization θ0 ∼ N (0, σ2I2) with σ2 ≪
1/

√
2, θlim will be a local minimum with high probability. If p+ q < 1, under the same initialization

scheme, θlim will be a global minimum with high probability.

Proof sketch. The main idea behind the proof is to show that if we do not initialize on the e-axis,
the flows stays on the constant energy contour (Lemma 1) and hence converges to a critical point of
the loss L, which is at the intersection of the contour line and the set of critical points (Lemmas. 10
and 11). By determining where these intersections occur, the corresponding basins of convergence
Imin, . . . , I⋆ are obtained by showing that an initialization in a specific set leads to the said critical
point (Thm. 1). The proof for θ0 ∈ e-axis is similar.

6

Figs. 1b and 1d illustrate these initialization sets corresponding to the convergence basins for
p = q = 0.9 and p = q = 0.1 respectively. An analogous result about GF dynamics for p+ q < 1 is
presented in Thm. 8 (§ F.2). Here a key difference is that small Gaussian initialization around origin
leads to a global minimum θlim with high probability (Fig. 1d).

Key insights. Together, Thm. 2 and Thm. 8 address our motivating question (Q.1) by fully character-
izing the GF dynamics in terms of initialization and input data properties. Specifically, our results
explain the phenomenon in [23] wherein they observe local minima for p+ q > 1 more often than
for p+ q < 1, owing to standard Gaussian initialization around origin (Figs. 1b and 1d). However,
in practice, we often do not know the input switching factor, raising a natural questions: is there a
data-agnostic initialization that always converges to global minima? Indeed, as can be seen from
Figs. 1b and 1d, there is a common region of initialization in the negative half-plane above the saddle-
asymptotes (in yellow) that leads to the global minima convergence irrespective of the switching p+q.
Mathematically, this region is given by Icommon ≜ {(e, w) : w < 0, |e| >

√
w2 − log(−w) + Esad}.

We empirically corroborate this fact in Sec. 5.2.

4.1 Gradient Flow with Attention

(a) p + q < 1: Gradient flow (b) Energy manifold and minima (c) p + q > 1: Gradient flow (d) Energy manifold and minima

Figure 2: Gradient flow dynamics for the canonical parameters θ = (e, w, a) ∈ R3 with the attention
scalar a. Notice the contrasting behavior for Gaussian initialization around origin for p+ q smaller
and greater than one. For an enhanced view of the flow near the origin, please refer to Fig. 5.

In this section, the consider the attention scalar a ∈ R (Sec. 3) and study the gradient flow dynamics
with the parameters θ = (e, w, a) ∈ R3. The parameter a captures the overall scaling from the
value, key, and query components in the attention layer. Recall that the soft-max attention weights
are given by attn,i ∝ exp(⟨qn,ki⟩/

√
d), where qn = WQxn and ki = WKxi are the query

and key embeddings for any position i ∈ [n]. Using the low-rank structure of the query and key
matrices, satisfying W⊤

QWK = (q2d)αα⊤ and the value matrix W V = αv⊤ for some q ∈ R
and v ∈ Rd (§ G), and assuming linear attention attn,i ∝ ⟨qn,ki⟩/

√
d, we define a single scalar

a ≜ ⟨v,α⟩q2d5/2/4 that captures the essence of the attention layer (Eq. (39)). We note that linear
attention weights are a standard assumption in the transformer analysis literature [3, 36]. Using this
parameterization, similar to the steps in Sec. 3, we obtain the final loss function to be

L(θ) = E
[
ℓlog

(
(2Y − 1)

(
e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b⋆

))]
,

where θ = (e, w, a) and b⋆ is the corresponding optimal bias. L recovers the loss in Eq. (5) when
a = 0. In Thm. 10, we determine the set of all critical points of L in terms of global minima and
local optima in closed-form expressions, analogous to Thm. 1. Capitalizing on this characterization,
we now shift our focus to the analysis of the gradient flow in R3. To this end, let (θt)t≥0 be a C1

curve in R3 governed by

dθt

dt
= −∇L(θt), θt = (et, wt, at) ∈ R3, t ≥ 0, (GF-attn)

starting with a randomly initalized θ0. We define the energy function E(·, ·, ·) as

E(e, w, a) ≜ e2 − (w2 + sign(w) · log |w|)− 2a2, ∀(e, w, a) ∈ R3 \ ea-plane, (13)

7

where ea-plane ≜ {(e, w = 0, a)}. It is similar to its counterpart in Eq. (11), except for the 2a2 term.
Fig. 2 visualizes this energy surface and the set of critical points, which reveal close resemblance to
that of Fig. 1 in R2. Capitalizing on the energy function, we now present our main result with the
attention.
Theorem 3 (GF dynamics with attention). For any (p, q) ∈ (0, 1)2 and initialization θ0 ∈ R3,
let (θt)t≥0 be the corresponding GF-attn trajectory starting from it. Then for all θ0 ∈ R3, the
gradient flow converges to a critical point of the loss L. That is, there exists a θlim ∈ R3 such that
limt→∞ θt = θlim and ∇L(θlim) = 0. Further,

(i) if θ0 ∈ R3 \ ea-plane, we have E(θlim) = E(θt) = E(θ0) for all t ≥ 0. Hence θlim is at the
intersection of the energy contour line E = E0 with that of the set of critical points.

(ii) if θ0 ∈ ea-plane, we have θt ∈ ea-plane for all t ≥ 0 and hence θlim ∈ ea-plane.

Proof. We refer to § G and § N.4.

Thm. 3 shows that the learning dynamics with attention closely resemble those without it (Thms. 2
and 8). While the set of all critical points of L, and thus the limit points of the flow, has a closed-form
expression (Thm. 10), deriving the same for the initialization sets Imin and I⋆ to determine the
basin of convergence is technically challenging (see discussion in § G). Nonetheless, empirical
observations with the standard Gaussian initialization around origin reveal a similar picture as in
the two-dimensional setting for both the p+ q < 1 and p+ q > 1 cases (Fig. 2). We believe it’s an
interesting direction of future research to theoretically characterize this, analogous to Thms. 2 and 8.
We refer to § G for additional details and proofs.

5 Empirical Results

We empirically validate our canonical parameterization θ ∈ R3 (Sec. 3) by demonstrating full model
convergence to low-rank parameters through both qualitative and quantitative evidence. Qualitatively,
we visualize weight matrices across iterations; quantitatively, we plot the percentage of energy
captured by the top-rank components across iterations. We then demonstrate the generalization of our
theoretical findings on local optima and initialization with canonical parameters to the full model
θ ∈ RD. We conclude with a discussion on higher-order and multi-state Markov chains.

5.1 Low-rank Parameters

Full model converges to low-rank. We let the input Markov sequence to be {xn}Nn=1 ∼
(π(p, q),P (p, q)) for p = 0.2, q = 0.3, N = 1024 and consider the full model as defined
in Sec. 2 with embedding dimension d = 8. First, we initialize the parameters θ = (e =
a, {pn}Nn=1, . . . ,W 1,W 2, b) using the standard Gaussian initialization with standard deviation
0.001 [26] and train them using SGD on a batch size B = 16 and for t = 800 iterations. In Fig. 6,
we track the value matrix W V ∈ Rd×d and the weight matrix W 1 ∈ R4d×d across iterations.
We observe that at convergence both W V and W 1 are approximately rank-one with one of their
components being same as the embedding vector (the row in W V and column in W 1). Further,
the embedding vector has all entries in {±1} up to a scaling. We observe the same conclusion for
other weight matrices WK,Q,W 2 and for all values of (p, q) ∈ (0, 1)2. Fig. 3 also quantitatively
demonstrates this.

Full model initialized at low-rank remains low-rank during training. Inpsired by the low-rank
structure obtained above, we randomly initialize the weight parameters as rank-one matrices and the
embeddings on the hypercube {±1}d. After the initialization, we train them without any low-rank
restrictions, and track them during the course of training. Interestingly, here we observe that the
parameters still stay low-rank as illustrated in Fig. 7 and Fig. 3. A similar conclusion holds for the
remaining weight matrices. Together these results provide the empirical basis for our canonical
parameterization analysis in Sec. 3.

5.2 Effect of Initialization: Broader Implications

Now we investigate the findings of Sec. 3 and Sec. 4, derived for the canonical low-rank model,
more broadly in the context of full model in Sec. 2. In particular, as shown in Thm. 2 and Fig. 1d

8

0 20 40 60 80 100
Iteration (multiples of 100)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 e

ne
rg

y

Random initialization
Rank-one initialization

(a) W V

0 10 20 30 40 50 60 70 80
Iteration (multiples of 100)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Fr
ac

tio
n

of
 e

ne
rg

y

Random initialization
Rank-one initialization

(b) W 1

Figure 3: Convergence to rank one parameters: percentage of energy contained in the first rank
component of the weight matrices W 1 and W V across iterations. The percentage is computed as

σ2
1∑

i σ
2
i

, where the σi’s are the singular values of the matrices in descending order.

0 100 200 300 400 500 600
Iteration

0.60

0.65

0.70

0.75

0.80

0.85

0.90

Te
st

 lo
ss

Standard initialization
Our initialization
Unigram loss
Bigram loss

Figure 4: Comparison between the average loss curve for the standard gaussian initialization around
0 and our initialization, for p = 0.5 and q = 0.8. Starting from the standard initialization, the
model converges to a local minimum corresponding to the unigram model. With our initialization, it
converges to the global minimum corresponding to the bigram model.

for p + q > 1, any small initialization around zero would lead a local minima convergence. To
test this hypothesis, we compare the standard initialization where all the transformer parameters
θ = (e = a, {pn}Nn=1, . . . ,W 1,W 2, b) are randomly chosen around zero with small variance
σ = 0.02, with a new initialization based on our results, where we initialize the embedding vector
e such that all cordinates are equal to e = 0.5, W 1 to be constant with the scalar w1 = 1 and W 2

constant with w2 = −1 (corresponding to I⋆ in Fig. 1d). We indeed observe that the final test loss
matches the unigram loss for the standard initialization, while it converges to the optimal bigram
loss for our initialization (see Fig. 4). Together these results indicate that though our analysis used
canonical parameterization, the corresponding insights are more general and apply more broadly to
the general full model. In a similar spirit, analysis of initialization effects for deeper architectures is
an interesting avenue of future research.

5.3 Higher-Order and Multi-State Markov Chains

While the primary focus of this paper has been on binary first-order Markov chains, we believe it’s
possible to extend our analysis to both multi-state and higher-order settings. On the multi-state front,
akin to the binary case, [23] already demonstrates the effect of switching probability and weight-tying
on the final model convergence. Here, first characterizing the loss landscape and then the associated
learning dynamics in line with our approach is an interesting direction. On the other hand, a recent
work [28] establishes a surprising result that any kth-order Markov chain can be represented by a

9

three layer transformer with just one head per layer, relying on induction head mechanism. Analyzing
gradient flow dynamics using appropriate canonical parameterization (cf. [24]) in this scenario is
also a fruitful direction of research.

6 Related Works

The recent success of transformer models in deep learning has sparked significant interest and active
research in understanding them [38, 25, 16, 27, 15, 37, 40, 32]. In relation to our paper, they can
be broadly classified into two topics: (i) In-context learning (ICL): ICL refers to the ability of
transformers learn and reason from information present in their context [10, 13, 4, 35, 39, 7, 21, 17].
Along this thread, the works most relevant to ours are [8, 14, 24], which use Markovian input data
to understand the ICL mechanism. [8, 14] heuristically show how gradient-based updates can learn
an induction-head mechanism using a simplified transformer architecture with frozen encodings,
query matrices and linear activations. On the other hand, we consider the canonical parameterization,
capitalizing on inherent low-rank parameters, to provide a full characterization of the learning
dynamics. [24] demonstrates how two-layer transformers with GD learn induction head mechanism
when the input has a causal tree dependency, such as in Markov chains. In this work, we focus
on the GF dynamics for single-layer transformers and show how they can also converge to local
optima, further highlighting the role of initialization. (ii) Training dynamics: On the other hand,
numerous works have investigated the training dynamics of transformers. For instance, [9] examines
the gradient flow in a simplified single-layer transformer, while [33] studies the process by which
self-attention integrates input tokens, assuming the decoder learns faster than the attention layer.
Unlike these settings, our focus is on understanding the training dynamics of the full transformer
model end-to-end. Other related works include [30], which analyzes gradient dynamics in LSTM
Seq2seq models, [19], which shows how Vision Transformers learn spatial structures, and [22],
which demonstrates that a single-layer transformer can learn a constrained topic model. A closely
related work is [18], which shows that self-attention has a Markovian structure, but our focus is on
self-attention’s capability in modeling Markov chains and the associated training dynamics.

7 Conclusion

In this work, we present a novel characterization of gradient flow dynamics for (weight-tied) single-
layer transformers with first-order Markov chains. Specifically, we highlight the significant role
of the parameter initialization and inherent properties of the Markovian data in determining the
parameter convergence to either global minima or local optima. Drawing upon these insights, we
offer practical guidelines for parameter initialization, corroborated by empirical results demonstrating
their effectiveness. While our current analysis is limited to single-layer models, uncovering similar
results with gradient flow analysis for deeper architectures and higher order Markov chains is open
and an interesting avenue for future research.

Acknowledgments and Disclosure of Funding

Ashok would like to thank Aditya Vardhan Varre for many helpful discussions about the project. This
work was supported in part by the Swiss National Science Foundation under Grant 200364.

References
[1] Pierre-Antoine Absil, Robert Mahony, and Ben Andrews. Convergence of the iterates of descent

methods for analytic cost functions. SIAM Journal on Optimization, 16(2):531–547, 2005.

[2] Arzu Ahmadova. Convergence results for gradient flow and gradient descent systems in the
artificial neural network training. arXiv preprint arXiv:2306.13086, 2023.

[3] Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to
implement preconditioned gradient descent for in-context learning. In Thirty-seventh Conference
on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=LziniAXEI9.

10

https://openreview.net/forum?id=LziniAXEI9
https://openreview.net/forum?id=LziniAXEI9

[4] Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learn-
ing algorithm is in-context learning? Investigations with linear models. In The Eleventh
International Conference on Learning Representations, 2023.

[5] Sanjeev Arora, Nadav Cohen, Noah Golowich, and Wei Hu. A convergence analysis of gradient
descent for deep linear neural networks, 2019.

[6] Francis Bach. Effortless optimization through gradient flows. https://francisbach.com/gradient-
flows/, 2020.

[7] Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. In Workshop on Efficient
Systems for Foundation Models @ ICML2023, 2023.

[8] Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth
of a transformer: A memory viewpoint. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[9] Pritam Chandra, Tanmay Kumar Sinha, Kabir Ahuja, Ankit Garg, and Navin Goyal. Towards
analyzing self-attention via linear neural network, 2024. URL https://openreview.net/
forum?id=4fVuBf5HE9.

[10] Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multi-head
softmax attention for in-context learning: Emergence, convergence, and optimality, 2024.

[11] Thomas M Cover and Joy A Thomas. Elements of information theory. John Wiley & Sons, 2nd
edition, 2006.

[12] John M Danskin. The theory of max-min, with applications. SIAM Journal on Applied
Mathematics, 14(4):641–664, 1966.

[13] Qingxiu Dong, Lei Li, Damai Dai, Ce Zheng, Zhiyong Wu, Baobao Chang, Xu Sun, Jingjing
Xu, Lei Li, and Zhifang Sui. A survey on in-context learning, 2023. URL https://arxiv.
org/abs/2301.00234.

[14] Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
evolution of statistical induction heads: In-context learning markov chains, 2024.

[15] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread,
2021. URL https://transformer-circuits.pub/2021/framework/index.html.

[16] Hengyu Fu, Tianyu Guo, Yu Bai, and Song Mei. What can a single attention layer learn? A
study through the random features lens. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[17] Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers
learn in-context? A case study of simple function classes. Advances in Neural Information
Processing Systems, 35:30583–30598, 2022.

[18] M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From
self-attention to markov models: Unveiling the dynamics of generative transformers. arXiv
preprint arXiv:2402.13512, 2024.

[19] Samy Jelassi, Michael Eli Sander, and Yuanzhi Li. Vision transformers provably learn spatial
structure. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Advances in Neural Information Processing Systems, 2022.

[20] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht. Gradient descent only
converges to minimizers. In Conference on learning theory, pages 1246–1257. PMLR, 2016.

11

https://openreview.net/forum?id=4fVuBf5HE9
https://openreview.net/forum?id=4fVuBf5HE9
https://arxiv.org/abs/2301.00234
https://arxiv.org/abs/2301.00234
https://transformer-circuits.pub/2021/framework/index.html

[21] Yingcong Li, M. Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: generalization and stability in in-context learning. In Proceedings of the 40th
International Conference on Machine Learning, 2023.

[22] Yuchen Li, Yuanzhi Li, and Andrej Risteski. How do transformers learn topic structure: Towards
a mechanistic understanding, 2023.

[23] Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji
Kim, and Michael Gastpar. Attention with Markov: A framework for principled analysis of
transformers via Markov chains. arXiv preprint arXiv:2402.04161, 2024.

[24] Eshaan Nichani, Alex Damian, and Jason D Lee. How transformers learn causal structure with
gradient descent. arXiv preprint arXiv:2402.14735, 2024.

[25] Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On
the role of attention in prompt-tuning. In Proceedings of the 40th International Conference on
Machine Learning, 2023.

[26] Matteo Pagliardini. GPT-2 modular codebase implementation. https://github.com/epfml/llm-
baselines, 2023.

[27] Jorge Pérez, Pablo Barceló, and Javier Marinkovic. Attention is Turing-complete. Journal of
Machine Learning Research, 22(75):1–35, 2021.

[28] Nived Rajaraman, Marco Bondaschi, Kannan Ramchandran, Michael Gastpar, and Ashok Vard-
han Makkuva. Transformers on markov data: Constant depth suffices, 2024. URL https:
//arxiv.org/abs/2407.17686.

[29] Alexander Shapiro. Second-order derivatives of extremal-value functions and optimality condi-
tions for semi-infinite programs. Mathematics of Operations Research, 10(2):207–219, 1985.

[30] Charlie Snell, Ruiqi Zhong, Dan Klein, and Jacob Steinhardt. Approximating how single head
attention learns. CoRR, abs/2103.07601, 2021. URL https://arxiv.org/abs/2103.07601.

[31] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The
implicit bias of gradient descent on separable data. Journal of Machine Learning Research, 19
(70):1–57, 2018.

[32] Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin
token selection in attention mechanism. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

[33] Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Shaolei Du. Scan and snap: Under-
standing training dynamics and token composition in 1-layer transformer. In Conference on
Parsimony and Learning (Recent Spotlight Track), 2023.

[34] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Informa-
tion Processing Systems, pages 5998–6008, 2017.

[35] Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander
Mordvintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by
gradient descent. In International Conference on Machine Learning, pages 35151–35174, 2023.

[36] Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mord-
vintsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent, 2023.

[37] Colin Wei, Yining Chen, and Tengyu Ma. Statistically meaningful approximation: a case study
on approximating Turing machines with transformers. In Advances in Neural Information
Processing Systems, volume 35, pages 12071–12083, 2022.

[38] Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International
Conference on Machine Learning, pages 11080–11090, 2021.

12

https://arxiv.org/abs/2407.17686
https://arxiv.org/abs/2407.17686
https://arxiv.org/abs/2103.07601

[39] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-
context learning as implicit Bayesian inference. arXiv preprint arXiv:2111.02080, 2021. URL
https://arxiv.org/abs/2111.02080.

[40] Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar.
Are transformers universal approximators of sequence-to-sequence functions? In International
Conference on Learning Representations, 2020.

13

https://arxiv.org/abs/2111.02080

Contents

1 Introduction 1

2 Problem Setting 2

3 Canonical Low-rank Parameterization 4

3.1 Loss Landscape with Canonical Parameterization 5

4 Learning Dynamics 6

4.1 Gradient Flow with Attention . 7

5 Empirical Results 8

5.1 Low-rank Parameters . 8

5.2 Effect of Initialization: Broader Implications . 8

5.3 Higher-Order and Multi-State Markov Chains . 9

6 Related Works 10

7 Conclusion 10

A Single-layer transformer: architecture and results 16

A.1 Loss landscape results . 16

B Low-rank structure of the optima 17

C Canonical reparameterization 18

D Analysis of the loss with the bias, L(θ, b), in Eq. (4) and Eq. (23) 20

D.1 Technical lemmas . 20

E Analysis of the loss without bias, L(θ), and proof of Thm. 1 22

E.1 Proof of Thm. 1 . 23

F Gradient flow analysis without attention 25

F.1 Proof of Thm. 2 . 25

F.2 Gradient flow dynamics for p+ q < 1 . 27

G Gradient flow analysis with attention 29

G.1 Canonical parameterization with attention . 29

G.2 Analysis of the loss function L(θ) from Eq. (42) 31

G.3 Gradient flow analysis . 32

G.4 Role of standard initialization . 33

H Additional empirical results 34

14

H.1 Gaussian initialization converges to low-rank . 34

H.2 Low-rank initialization stays low-rank . 34

I Model architecture and hyper-parameters 36

J Proofs of theorems in App. D 37

J.1 Proof of Thm. 7 . 37

J.2 Proof of Thm. 6 . 39

K Proofs of technical lemmas in App. D 40

K.1 Proof of Lemma 2 . 40

K.2 Proof of Lemma 3 . 41

K.3 Proof of Lemma 4 . 42

L Proofs of lemmas in App. E 45

L.1 Proof of Lemma 5 . 45

L.2 Proof of Lemma 6 . 45

L.3 Proof of Lemma 7 . 45

L.4 Proof of Lemma 8 . 45

M Proofs of lemmas in App. F 46

M.1 Proof of Lemma 9 . 46

M.2 Proof of Lemma 10 . 46

M.3 Proof of Lemma 11 . 48

M.4 Proof of Lemma 12 . 48

N Proofs of lemmas in App. G 49

N.1 Proof of Lemma 13 . 49

N.2 Proofs of Thm. 9 and Thm. 10 . 51

N.3 Proof of Lemma 14 . 57

N.4 Proofs of Lemma 16, Lemma 15, and Thm. 3 . 59

N.5 Informal proof of Thm. 11 . 59

15

A Single-layer transformer: architecture and results

We first describe the transformer architecture from Sec. 2:

xn = xn e+ pn ∈ Rd, (Embedding)

yn = xn +
∑
i∈[n]

attn,i ·W V xi ∈ Rd, (Attention)

zn = yn +W 2 ReLU(W 1 yn) ∈ Rd, (Feed-forward)

logitn = ⟨a, zn⟩+ b ∈ R, (Linear)

fθ(x
n
1) ≜ Pθ (xn+1 = 1 | xn

1) = σ(logitn)︸ ︷︷ ︸
∈[0,1]

. (Prediction)

Here θ ≜ (e, {pn}Nn=1, . . . ,W 1,W 2, b,a) ∈ RD denotes the full list of the transformer param-
eters from the embedding layer till the linear layer. In the attention layer, the weight assigned to
each value, attn,i, is computed by a compatibility function of the query vector qn ≜ WQ xn

and the corresponding key vectors ki ≜ WK xi for all i ∈ [n]. More precisely, attn,i ≜
softmax((⟨qn,k1⟩, . . . , ⟨qn,kn⟩)/

√
d)i. WK,Q,V ∈ Rd×d are the respective key, query, and value

matrices. For multi-headed attention, the same operation is performed on multiple parallel heads,
whose outputs are additively combined.

Finally, the transformer parameters θ ≜ (e, {pn}Nn=1, . . . , b,a) are trained via the cross-entropy loss
on the next-token prediction:

L(θ) ≜ − 1

N

∑
n∈[N]

Exn+1
1

[xn+1 · log fθ(xn
1) + (1− xn+1) · log(1− fθ(x

n
1))]. (14)

In this paper, we focus on the weight-tied scenario where e = a. Hence we let them be a single
parameter with θ = (e = a, {pn}Nn=1, . . . , b) ∈ RD, where D is the total parameter dimensionality.

A.1 Loss landscape results

Now we recall the theoretical results from [23] about the loss landscape of L in the form of global
and local minima.
Theorem 4 (Global minimum). Let the input sequence be {xn}Nn=1 ∼ (π(p, q),P (p, q)) for some
fixed (p, q) ∈ (0, 1)2. Then for all (p, q), there exists a θ⋆ ∈ RD with an explicit construction such
that it is a global minimum for the population loss L(·) in Eq. (14), i.e.

(i) L(θ) ≥ L(θ⋆) for all θ ∈ RD.

Further, θ⋆ satisfies:

(ii) Pθ⋆
(xn+1 = 1 | xn

1) = P (xn+1 = 1 | xn), the Markov kernel.
(iii) L(θ⋆) = H(xn+1|xn), the entropy rate of the Markov chain.
(iv) ∇L(θ⋆) = 0, i.e. θ⋆ is a stationary point.

Let L⋆ ≜ L(θ⋆) be the global minimal loss from Thm. 4. Now we recall the result on the bad local
minimum.
Theorem 5 (Bad local minimum). Let the input sequence be {xn}Nn=1 ∼ (π(p, q),P (p, q)) for
some fixed (p, q) ∈ (0, 1)2. If p + q > 1, there exists an explicit θmin ∈ RD such that it is a bad
local minimum for the loss L(·), i.e.

(i) there exists a neighborhood B(θmin, r) with r > 0 such that L(θ) ≥ L(θmin) for all θ ∈
B(θmin, r), with L(θmin) > L⋆.

Further, θmin satisfies:

(ii) Pθπ (xn+1 = 1 | xn
1) = P (xn+1 = 1) = π1, the marginal distribution.

(iii) L(θmin) = H(xn+1) = H(π), the entropy of the marginal.
(iv) ∇L(θmin) = 0, i.e. θmin is a stationary point.

16

B Low-rank structure of the optima

Here we recall the low-rank structure for the global minima found by SGD consistently across
multiple runs when p + q < 1 [23, Appendix C.2]. In particular, it is observed that the token and
positional encodings point in the same direction α, which is a low-rank factor for the weight matrices
in the attention and the feedforward layers, which in turn are all rank-one. Mathematically,

Embedding. The embedding vector e obeys

e = e ·α

for some e > 0 and α ∈ {±1}d. Further, the positional embeddings pn are constant across positions
n pointing in the same direction albeit with a negative scalar, i.e.

pn = −p ·α
for p > 0 and p ≈ e

2 such that e > p . Thus from Embedding layer,

xn = (exn − p) ·α, (15)

which ensures that the respective embeddings for the bit xn = 0 and xn = 1 are xn = −p ·α and
xn = (e− p) ·α, which are roughly anti-podal.

Attention. Recall from the Attention layer that the output yn is given by yn = xn +
WO

∑
i∈[n] attn,i ·W V xi, where the attention weights attn,i are computed according to attn,i =

exp
(
⟨qn,ki⟩/

√
d
)
/
(∑

j∈[n] exp
(
⟨qn,kj⟩/

√
d
))

with qn = WQ xn and ki = WK xi. Here
it is observed that the matrix products are all rank-one with α being a factor, i.e.

WOW V = α · v⊤ ∈ Rd×d, for somev ∈ Rd,

W⊤
QWK = (q2d)α ·α⊤ ∈ Rd×d, for some q ∈ R.

Hence,

W V xi = ⟨v,α⟩(exi − p)α,

and
⟨qn,ki⟩√

d
=

1√
d
· x⊤

nW
⊤
QWKxn =

q2d√
d
· (x⊤

nα)(x⊤
i α)

(∥α∥2=d)
=

q2d3√
d

· (exn − p)(exi − p)

= q2d5/2 · (exn − p)(exi − p).

Thus,

yn = xn +
∑
i∈[n]

attn,i ·WOW V xi

= (exi − p)α+
∑
i∈[n]

attn,i · ⟨v,α⟩(exi − p)α

=

(exn − p) + ⟨v,α⟩
∑
i∈[n]

exp
(
q2d5/2 (exn − p)(exi − p)

)∑
j∈[n] exp

(
q2d5/2 (exn − p)(exj − p)

) · (exi − p)

α. (16)

It is further noticed that ⟨v,α⟩ ≈ 0 and hence yn = (exn − p)α = xn.

Feed-forward. For the Feed-forward layer, both the matrices W 1 ∈ Rr×d and W 2 ∈ Rd×r exhibit
rank-one structure with α being one of the factors,

W 1 = w ·w ·α⊤, for somew ∈ {±1}r, w > 0, (17)

W 2 = W⊤
1 . (18)

Thus W 1yn = dw(exn − p)w. Since −p < 0 and e− p > 0, corresponding to xn = 0 and xn = 1
respectively, we obtain ReLU(W 1yn) = dw ((1− xn)p · ReLU(−w) + xn(e− p) · ReLU(w)).
Denoting the number of ones in w as β, i.e. β =

∑r
i=1 1(wi = 1), we further simplify:

W 2ReLU(W 1yn) = W⊤
1 ReLU(W 1yn)

17

= w2d ((1− xn)p · ⟨w,ReLU(−w)⟩+ xn(e− p) · ⟨w,ReLU(w)⟩)α
= w2d ((1− xn)p · (β − r) + xn(e− p) · β)α
= w2d(exn − p) ((2β − r)xn + r − β)α.

Hence

zn = yn +W 2ReLU(W 1yn) = (exn − p)
(
1 + w2d ((2β − r)xn + r − β)

)
α. (19)

Linear. Using the fact that e = a = e ·α due to weight-tying, we obtain from Linear layer that

logitn = ⟨e, zn⟩+ b = ed(exn − p)
(
1 + w2d ((2β − r)xn + r − β)

)
+ b. (20)

Prediction. We finally obtain that the prediction probability

fθ(x
n
1) = σ(logitn) = xn · σ

(
ed(e− p)

(
1 + βw2d

)
+ b
)
+ (1− xn) · σ

(
−edp

(
1 + (r − β)w2d

)
+ b
)
.

Thus we see that the prediction probability and hence the loss function L(·) in Eq. (14) is influenced
only by the scalars e, p, w, b and β.

C Canonical reparameterization

Building on the low-rank strucutre of the transformer parameters described above, we consider a
special parameterization for them. A key property of this parameterization is that it covers both
the global and local minima from Thm. 4 and Thm. 5 for all (p, q) ∈ (0, 1)2. Recall that Thm. 5
characterizes local minima only for p+q > 1 whereas our special parameterization allows to discover
local minima even for p + q < 1. Our construction follows the same outline as in Eqs. (15)-(20).
First we start with the embedding layer.

Embedding. We let e = e ·α and pn = −p ·α for all n where e > 0, p = e
2 and α ∈ {±1}d/

√
d.

Thus the embedding xn from Eq. (15) simplifies to

xn = e

(
xn − 1

2

)
α ∈ {±e

2
}α.

Attention. Substituting this xn in Eq. (16), we have

yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α, (21)

where the attention weights attn,i =
exp(e2q2d5/2 (xn− 1

2)(xi− 1
2))∑

j∈[n] exp(e2q2d5/2 (xn− 1
2)(xj− 1

2))
∈ (0, 1) for some q ∈ R.

Since ⟨v,α⟩ ≈ 0, we let v = 0 and obtain

yn = xn = e

(
xn − 1

2

)
α.

Feed-forward. For the feed-forward layer, we observe from Eq. (17) and Eq. (19) that for any
w ∈ {±1}r, only the number of 1’s in w, β, matters for the final vector zn which further interacts
with the weight scalar w. Hence without loss of generality, we set w to be the all-ones vector:
w = 1 ∈ Rr and hence β = r = 4d. While we observe from Eq. (17) that W 2 = W⊤

1 for
p + q < 1, we observe from the proof of the Thm. 4 for p + q > 1 in [23, Appendix B.2] that we
need W 2 = −W⊤

1 in this scenario. Hence we consider the following parameterization that covers
both these scenarios:

W 1 =
|w|√
d
1 ·α⊤ ∈ R4d×d, W 2 =

w√
d
α · 1⊤ ∈ Rd×4d.

Here w > 0 ensures W 2 = W⊤
1 whereas w < 0, W 2 = −W⊤

1 . Using this parameterization,
substituting β = r = 4d and w 7→ w

d in Eq. (19), we get

zn = e

(
xn − 1

2

)
(1 + 4w|w|xn)α.

18

Linear. Since e = a = e ·α due to weight-tying, Eq. (20) simplifies to

logitn = ⟨e, zn⟩+ b = e2
(
xn − 1

2

)
(1 + 4w|w|xn) + b

(xn=x2
n)= e2

(
xn + 4w|w|xn − 1

2
− 2w|w|xn

)
+ b

= e2(1 + 2w|w|)xn + b− e2

2
.

Prediction. The next-token prediction probability is

f(θ,b)(x
n
1) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
, θ ≜ (e, w) ∈ R2. (22)

Loss. While we assumed e > 0 in the beginning, in view of Eq. (22) and the fact that α ∈ {±1}d/
√
d,

we see that e ∈ R gives us the same expression for probability. Thus the final probability depends on
just the three scalars (e, w, b) ∈ R3. Defining θ = (e, w) ∈ R2, we recall the cross-entropy loss L(·)
from Eq. (4) in Sec. 2 for this canonical model:

L(θ, b) = − 1

N

∑
n∈[N]

Exn+1
1

[xn+1 · log f(θ,b)(xn
1) + (1− xn+1) · log(1− f(θ,b)(x

n
1))]. (23)

It turns out that we can further remove the bias b by minimizing the loss over it which we discuss in
App. E. For now in the next section, we analyze when it’s present as in Eq. (23).

19

D Analysis of the loss with the bias, L(θ, b), in Eq. (4) and Eq. (23)

In this section, we analyze the loss function with the bias, L(θ, b), from Eq. (4) and Eq. (23), which
will later be useful for studying L(θ). First we characterize the set of its critical points in R3. To this
end, we define the following sets of points

Γ⋆(p, q) ≜

{
(e, w, b) ∈ R3 : e2(1 + 2w|w|) = log

(1− p)(1− q)

pq
, b− e2

2
= log

p

1− p

}
,

(24)

Γmin(p, q) ≜

{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
, (25)

Γsad(p, q) ≜

{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
. (26)

The following result establishes that these sets exhaust all the critical points.
Theorem 6 (All critical points). Let the input sequence be {xn}Nn=1 ∼ (π,P), the transformer
parameters (θ, b) = (e, w, b) ∈ R3, and the next-token prediction loss L(·) be as in Eq. (23). Then
all the stationary points of L are either in Γ⋆, Γmin, or Γsad, i.e.{

(θ, b) ∈ R3 : ∇L(θ, b) = 0
}
= Γ⋆ ∪ Γmin ∪ Γsad. (27)

Proof. We refer to App. J.1.

Recall the definitions of local minima & maxima, global minima, and that of all the saddle points
from Sec. 3.1. We are now ready to present the main result about the loss landscape of L(·).
Theorem 7 (Loss landscape with bias). Let the input sequence be {xn}Nn=1 ∼ (π,P), the trans-
former parameters (e, w, b) ∈ R3, and the next-token prediction loss L(·) be as in Eq. (23). Then for
any (p, q) ∈ (0, 1)2 with p+ q ̸= 1 and N ∈ N,

(i) the set of all global minima of L is given by Γ⋆(p, q),
(ii) the set of all bad local minima of L is given by Γmin(p, q),

(iii) and the set of all saddle points of L is Γsad(p, q).

Furthermore, for any γ⋆ ∈ Γ⋆,γmin ∈ Γmin, and γsad ∈ Γsad, the losses are ordered as

H(xn+1 | xn) = L(γ⋆) < L(γmin) = L(γsad) = H(xn+1).

Remark 1. Note that a bad local minimum is a local minimum whose loss value is strictly less than
that of the global minimum, as is the case here. Interestingly, Thm. 7 highlights that all local minima
for the loss L are indeed bad local minima.

Proof. We refer to App. J.2.

D.1 Technical lemmas

The proofs of both Thm. 6 and Thm. 7 rely on few key lemmas that we present below. First we start
with the result that rewrites the loss L(θ, b) from Eq. (23) in a compact manner using the logistic
function ℓlog(·).
Lemma 2 (Loss as a logistic function). The next-token prediction loss L(·) in Eq. (23) can be written
as

L(θ, b) =
1

N

∑
n∈[N]

E[ℓlog ((2xn+1 − 1) · logitn)]

= EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
,

(28)

where (X,Y) ∈ {0, 1}2 are distributed according to (X,Y) ∼ (π,P), i.e. X is a Bernoulli random
variable with X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q), the Markov kernel.

20

The following lemma establishes the gradients of the loss function with respect to the parameters
e, w, and b.
Lemma 3 (Gradient computation). For any (e, w, b) ∈ R3 and the next-token prediction loss L(·) in
Eq. (23), the gradients are given by

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w|)− 1)] · e,

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

∂L

∂b
= EX [f1X + f2] ,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p + q)), f1 =

σ
(
2e2w|w|+ b+ e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p, and f2 = σ

(
b− e2

2

)
− p.

Remark 2. It is interesting to note that the gradients for both e and w are product of an expectation
term and an e factor. Also, except for scaling factors in terms of (e, w, b), all the gradients are
governed by the two expectation terms E[(f1X + f2)X] and E[f1X + f2]. This observation plays a
key role in obtaining an ordinary differential equation which yields the energy function E , defined in
Eq. (11).

Now we characterize the Hessian at both local-minima and saddle points.
Lemma 4 (Hessian at local-minima and saddle points). For the canonical parameterization γ =
(b, e, w) ∈ R3 and the next-token prediction loss L(·) in Eq. (23), the Hessian at any γmin ∈ Γmin

or γsad ∈ Γsad is given by

∇2L(γ)

∣∣∣∣
γ=γmin,γsad

= π0π1

[
1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

]
,

where π0 = q
p+q and π1 = p

p+q .

Remark 3. We note that the Hessian is computed with the parameter ordering (b, e, w).

The proofs of the lemmas are presented in App. K.

21

E Analysis of the loss without bias, L(θ), and proof of Thm. 1

The proof of Thm. 1, concerning the loss L(θ) in Eq. (5), is similar to that of Thm. 7 which studies
the loss L(θ, b) with the bias present. The main idea is to establish the analogous set of lemmas, as
in App. D, when the bias is substituted with its optimal choice. First we recall the loss function

L(θ) ≜ L(θ, b⋆) = − 1

N

∑
n∈[N]

Exn+1
1

[xn+1 · log f(θ,b⋆)(x
n
1) + (1− xn+1) · log(1− f(θ,b⋆)(x

n
1))],

(29)
b⋆ = argmin

b∈R
L(θ, b).

We start with the result that establishes a closed form expression for b⋆.
Lemma 5 (Optimal bias). For θ = (e, w) ∈ R2 and b ∈ R, let L(θ, b) be the next-token prediction
loss defined in Eq. (23). Then, for any θ ∈ R2, L(θ, b) is convex in b and the minimizer b⋆ ≜
argminb∈R L(θ, b) is given by

exp

(
b⋆ −

e2

2

)
=

1

2A

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

 , A ≜ exp(e2(1 + 2w|w|)). (30)

Consequently, if e2(1+2w|w|) = log (1−p)(1−q)
pq , then b⋆− e2

2 = log p
1−p . If e = 0, then b⋆ = log p

q .

Now we rewrite the loss in terms of the logistic function.
Lemma 6 (Loss as a logistic function). For any θ ∈ R2, the next-token prediction loss L(θ) in
Eq. (29) can be written as

L(θ) =
1

N

∑
n∈[N]

E[ℓlog ((2xn+1 − 1) · logitn)]

= EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b⋆ −

e2

2

))]
.

(31)

where b⋆ follows from Eq. (30), (X,Y) ∈ {0, 1}2 are distributed according to (X,Y) ∼ (π,P), i.e.
X is a Bernoulli random variable with X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q), the Markov
kernel.

The following lemma establishes the gradients of the loss.
Lemma 7 (Gradient computation). For any θ = (e, w) ∈ R2 and the next-token prediction loss L(θ)
in Eq. (29), the gradients are given by

∂L

∂e
= EX [(f1X + f2)X] · 2(1 + 2w|w|)e,

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p + q)), f1 =

σ
(
2e2w|w|+ b⋆ +

e2

2

)
+q−1−σ

(
b⋆ − e2

2

)
+p, and f2 = σ

(
b⋆ − e2

2

)
−p. Further, π1f1+f2 = 0.

Remark 4. We observe above that the gradients for both e and w are proportional to each other,
except for the scaling factors in terms of e and w. This forms the basis for the derivation of the energy
function discussed in App. F.

The following lemma characterizes the Hessian.
Lemma 8 (Hessian computation). Let γ = (b,θ) ∈ R3 with θ = (e, w) ∈ R2, and L(γ) be the
next-token prediction loss in Eq. (23) and L(θ) be the one in Eq. (29). Let the Hessian of L at γ be

H(γ) ≜ ∇2
γγL =

[
Hbb Hbθ

H⊤
bθ Hθθ

]
=

[
∇2

bbL ∇2
bθL

(∇2
bθL)

⊤ ∇2
θθL

]
∈ R3×3.

22

Then the Hessian of L at θ ∈ R2 is given by

H(θ) ≜ ∇2
θθL = Hθθ −H⊤

bθ ·H−1
bb ·Hbθ. (32)

Consequently, for any γ = (b, e, w) ∈ Γmin ∪ Γsad, the Hessian H(θ) at θ = (e, w) is given by

H(θ) = π0π1

[
2(p+ q − 1)(1 + 2w|w|) 0

0 0

]
, (33)

where π0 = q
p+q and π1 = p

p+q .

The proofs of the above lemmas are deferred to App. L. We are now ready to present the proof of
Thm. 1.

E.1 Proof of Thm. 1

Proof. Let θ ∈ R2 and γ(θ) = (θ, b⋆(θ) ∈ R3 be its embedding in R3 with the optimal bias
b⋆(θ) = argminb∈R L(θ, b) from Lemma 5. Define the following four sets of points:

Θ⋆(p, q) ≜

{
(e, w) ∈ R2 : e2(1 + 2w|w|) = log

(1− p)(1− q)

pq

}
,

Θmin(p, q) ≜
{
(e, w) ∈ R2 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0

}
,

Θmax(p, q) ≜
{
(e, w) ∈ R2 : e = 0, (p+ q − 1)(1 + 2w|w|) < 0

}
,

Θsad(p, q) ≜
{
(e, w) : e = 0, w = −1/

√
2
}
.

First we show that any critical point of L : R2 → R has to lie in one of these sets. Then we
characterize that they correspond to the set of all global minima, local minima & maxima, and saddle
points respectively.

(i) Set of all critical points: Recall from Thm. 7 that for any critical point γ = (θ, b) = (e, w, b) ∈
R3 of L, γ ∈ Γ⋆ ∪ Γmin ∪ Γsad. Here the main observation is that all these critical points are of
the form (θ, b⋆(θ)) where θ ∈ Θ⋆ ∪Θmin ∪Θmax ∪Θsad. To see this, let γ ∈ Γ⋆. Here we have
e2(1 + 2w|w|) = log (1−p)(1−q)

pq from Eq. (24) and hence θ ∈ Θ⋆. Further, by Lemma 5, we have

that the optimal bias for this θ satisfies b⋆ − e2

2 = log p
1−p , which is precisely the characterization

of the bias b for γ = (e, w, b) in Eq. (24). Likewise, if γ ∈ Γmin ∪ Γsad, we have e = 0 and
hence θ ∈ Θmin ∪ Θmax ∪ Θsad. Hence by Lemma 5, b⋆ = log p

q , matching that of Eq. (25)
and Eq. (26). Thus the set of all critical points of L in R3 are of the form (θ, b⋆(θ)) with where
θ ∈ Θ⋆ ∪Θmin ∪Θmax ∪Θsad. Since Γ⋆ ∪Γmin ∪Γsad covers the entirety of stationary points of
L in R3, it follows that the set of all stationary points in R2 is precisely Θ⋆ ∪Θmin ∪Θmax ∪Θsad.
Also, the ordering of losses directly follows from the aformentioned observation.

Now we characterize these critical points in terms of the extrema.

(ii) Set of global and local minima: From Eq. (24), for any global minimum γ⋆ = (θ⋆, b⋆(θ⋆)) of
L in R3, we have θ⋆ ∈ Θ⋆ ⊆ R2. Hence by definition, Θ⋆ is the set of all global minima in R2. A
similar argument holds for Θmin, which establishes that it is a set of all local minima.

(iii) Set of local maxima and saddle points: From Eq. (26), for any saddle point γ =

(e, w, b⋆(e, w)) of L in R3, we have that e = 0 and (p + q − 1)(1 + 2w|w|) ≤ 0. Hence
θ = (e, w) ∈ Θmax ∪Θsad. Suppose θ ∈ Θmax which implies e = 0, (p+ q− 1)(1 + 2w|w|) < 0.
By Lemma 8, the Hessian at θ (upto a positive scale) is a diagonal matrix with the entries
(p+ q − 1)(1 + 2w|w|) < 0 and 0, corresponding to the directions of e and w respectively. Though
one of the eigenvalue here is zero, using a continuity argument as in the proof of Thm. 7 for local
minima, we can establish that θ is indeed a local maximum. Thus Θmax is a set of local minima.

Now suppose (e, w) ∈ Θsad. Thus e = 0 and w = − 1√
2

. Since it lies at the intersection of Θmin

and Θmax, using a neighborhood argument, it’s straightforward to see that Θsad is indeed a set of
saddle points.

23

Finally it follows that Θmin,Θmax,Θsad are the only set of local minima, maxima, and saddle points
from the above fact about the characterization of the set of all critical points in terms of these sets
and Θ⋆, the ordering of the losses, and using the same argument as in the final steps of the proof of
Thm. 7 with the bias. This concludes the proof.

24

F Gradient flow analysis without attention

In this section, we analyze the learning dynamics of the transformer parameters θ = (e, w) ∈ R2

without the attention scalar. First, we present few important lemmas regarding the same, useful for
the proofs of Thm. 2 and Thm. 8 later. Recall from Sec. 4 that the trajectory (θt)t≥0 is governed by

dθt

dt
= −∇L(θt), θt = (et, wt) ∈ R2, t ≥ 0, (GF)

starting with a randomly initalized θ0. The energy function E(·, ·) is defined as

E(e, w) ≜ e2 − (w2 + sign(w) · log |w|), ∀(e, w) ∈ R2 \ e-axis, (34)

where e-axis ≜ {(e, w = 0)} and w-axis ≜ {(e = 0, w)}. Note that Esad = E(0,− 1√
2
) = − 1+log 2

2 .
We re-present the Lemma 1 from Sec. 4 below for the sake of completeness.
Lemma 9 (Constant energy along the flow). For any (p, q) ∈ (0, 1)2 and initialization θ0 =
(e0, w0) ∈ R2, let (θt)t≥0 be the corresponding GF trajectory starting from θ0. If w0 ̸= 0, then the
energy stays constant along the trajectory, i.e.

E(θt) = e2t − (w2
t + sign(wt) · log |wt|) = E(θ0), ∀t ≥ 0. (35)

On the other hand, if w0 = 0, wt = 0 for all t ≥ 0. Hence, if we initialize on e-axis the trajectory
always stays on the e-axis.

Now we establish that the GF trajectories always converge.
Lemma 10 (GF convergence). Let (θt)t≥0 be a continuously diferentiable GF trajectory starting
from θ0. Then for all initializations θ0 ∈ R2,

(i) (θt)t≥0 is bounded,
(ii) there exists a θlim ∈ R2 such that limt→∞ θt = θlim and

(iii) limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0.

Hence θlim is a critical point of L.

The following result characterizes the energy of the limit point.
Lemma 11 (Energy at the limit point). Consider the same setting as in Lemma 10. If θ0 ∈ R2\e-axis,
then E(θlim) = E(θ0). Hence θlim lies at the intersection of the contour line E(e, w) = E0 with the
set of critical points of L in R2.

On the other hand, if θ0 ∈ e-axis, then θlim ∈ e-axis.

We now study the energy function on the w-axis which plays a key role in the GF analysis.
Lemma 12 (Analysis of the energy function). Let E(·, ·) be the energy function defined in Eq. (48)
and f(w) ≜ E(e = 0, w) = −(w2 + sign(w) · log |w|) be the energy evaluated on w-axis for
w ∈ R \ {0}. Then

(i) f : (−∞,−1/
√
2] → (−∞, Esad] is monotonically increasing with limw→−∞ f(w) = −∞

and the maximum being f(−1/
√
2) = Esad,

(ii) f : [−1/
√
2, 0) → [Esad,−∞) is monotonically decreasing with limw→0− f(w) = −∞,

(iii) f ′(− 1√
2
) = 0, and

(iv) f : (0,∞) → (−∞,∞) is monotonically decreasing with limw→0+ f(w) = ∞ and
limw→∞ f(w) = −∞.

We are now ready to prove Thm. 2 corresponding to p+ q > 1.

F.1 Proof of Thm. 2

Proof. Let θ0 = (e0, w0) ∈ R2 be the initialization for the GF trajectory (θt)t≥0. Recall that

Imin ≜
{
(e, w) : w ∈ (−1/

√
2, 0), e ∈ (−g(w), g(w)), g(w) =

√
w2 − log(−w) + Esad

}
∪ {(e, w) : w > 0} ∪ {(e, w) : w = 0} ,

25

Isad ≜
{
(e, w) : w ∈ [−1/

√
2, 0), e = ±

√
w2 − log(−w) + Esad

}
,

Imax ≜
{
(e, w) : e = 0, w < −1/

√
2
}
,

I⋆ ≜ R2 \ (Imin ∪ Isad ∪ Imax) .

We consider the cases θ0 ∈ e-axis and θ0 ∈ R2 \ e-axis separately. First recall from Thm. 1 and
Eq. (6) that for p + q > 1, the loci of the global minima, e2(1 + 2w|w|) = log (1−p)(1−q)

pq < 0,
lies entirely in the negative half-plane corresponding to w < − 1√

2
. On the other hand, all the local

minima, maxima and the saddle points span the w-axis corresponding to e = 0.

(i) θ0 ∈ R2 \ e-axis: Let E0 = E(θ0) ∈ R. By Lemmas. (9), (10), and (11), we have that the
trajectory (θt)t≥0 always stays on the contour line E(e, w) = E0 and converges to the limit θlim

which is an intersection of this contour line with the set of critical points of L. Hence the crux of
the proof is to establish where these intersections occur based on the initialization θ0 and the initial
energy E0. This gives rise to the set of initializations Imin, Imax, Isad, and I⋆ that correspond to the
limit being a local minimum/maximum, a saddle point, or a global minimum.

We characterize them individually below starting with Imin.

Initializations for local minima, Imin. For θ0 = (e0, w0) ∈ R2 \ e-axis, assume that w0 > 0.
Since E0 ∈ R, there exists an unique w⋆ > 0 such that f(w⋆) = E(0, w⋆) = E0 by Lemma 12, (iv).
Further using the fact that the energy contour lines do not cross each other (by definition of a contour
line) and the fact they do not intersect the e-axis (it’s an energy barrier as discussed in Sec. 4), it
follows that the contour line E(e, w) = E0 stays entirely in the positive half-plane corresponding to
w > 0 and w⋆ > 0 is the unique (and only) intersection of this line with the w-axis, and hence the
set of critical points. Since the w-axis corresponding to w > 0 is a set of a local minima (Eq. (7)), it
follows that any initialization (e0, w0) with w0 > 0 converges to a local minimum.

Now suppose − 1√
2
< w0 < 0 and e0 ∈ (−g(w0), g(w0)), where g(w0) =

√
w2 − log(−w) + Esad.

Thus |e0| < g(w0) and hence e20−(w2
0−log(−w0)) = E(e0, w0) = E0 < Esad. Hence by Lemma 12,

(iii), there is a unique intersection of the contour line E(e, w) = E0 with the w-axis, which lies in the
region

(
− 1√

2
, 0
)

. Further note that this contour line cannot intersect with the global minima loci as

it lies in the half-plane w < − 1√
2

, and hence its only intersection with the set of critical points is this
segment of w-axis, which is precisely the set of local minima the GF initialized on this line would
converge to.

Thus we have shown that any initialization in Imin\∪ {(e, w) : w = 0} converges to a local minimum,
the set of which exhausts all the set of local minima Θmin except for the origin. Below we will
estbalish that any initialization on e-axis = {(e, w) : w = 0} converges to the origin, implying Imin

is the full set of initializations for which the limit is a local minimum.

Initializations for saddle points, Isad. It’s straightforward to see that for any θ0 ∈ Isad, e20 − (w2
0 −

log(−w0)) = E(0,− 1√
2
) = Esad. Since − 1√

2
≤ w0 < 0, the point (w, e) = (− 1√

2
, 0) is the only

intersection of the contour line with the set of critical points, any initialization in Isad converges to
the saddle point. On the other hand, there also exists a contour line e20− (w2

0 − log(−w0)) = Esad for
w0 < − 1√

2
that passes through (− 1√

2
, 0) ∈ R2 and further intersecting with the global minima loci

Θ⋆. However, if we initialize on this line the flow escapes away from the saddle point and converges
instead to a global minimum. To show this, it suffices to prove that det

dt > 0 and dwt

dt < 0 if e0 > 0

and w0 < − 1√
2

, such that (w0, e0) is close to the saddle point (− 1√
2
, 0) (the case for e0 < 0 is

similar as the flow is symmetric in e ∈ R). From Lemma 7 and the definition of the GF, we have that
det
dt

= −∂L

∂e
(e0, w0) = 2EX [(f1X + f2)X] · (1− 2w2

0))e0

dwt

dt
= −∂L

∂w
(e0, w0) = 4EX [(f1X + f2)X] · (−e20w0).

So it suffices to show that EX [(f1X + f2)X] > 0. To establish this, we have from Lemma 5 that

EX [(f1X + f2)X] = E[X](f1 + f2) = π1

(
− f2
π1

+ f2

)
= −π0 · f2.

26

From the defintion of f2 and the optimal bias b⋆ in Lemma 7 and Lemma 5 respectively, we obtain

f2 = σ

(
b⋆ −

e20
2

)
− p =

(
1 + exp

(
−b⋆ +

e20
2

))−1

− p

=

1 +
2A

p
q − 1 +

√(
p
q − 1

)2
+ 4 · p

q ·A

−1

− p, A ≜ exp(e20(1− 2w2
0)).

When e0 = 0, we have A = 1 and hence

f2 =

(
1 +

q

p

)−1

− p =
p

p+ q
− p = − p

p+ q
(p+ q − 1) < 0, (36)

where we used the fact that p+ q > 1. Hence by continuity of f2 in e0, for e0 sufficiently close to 0,
f2 < 0 which proves our claim about the direction of the flow close to the saddle point. By using
the continuity of the flow, it follows that GF cannot converge to saddle point when initialized on this
contour line for w0 < − 1√

2
. Thus Isad is the only set of initializations for convergence to Θsad.

Initializations for local maxima, Imax. If p + q > 1, we have from Thm. 1 that Θmax ={
(e, w) ∈ R2 : e = 0, (1 + 2w|w|) < 0

}
=
{
(e, w) ∈ R2 : e = 0, w < − 1√

2

}
. Thus for any θ0 ∈

Θmax, dθt

ddt = 0 for all t ≥ 0 and hence θlim = θ0. Further if we slightly perturb away from this set,
from Eq. (36) it follows that the flow diverges and hence it’s an unstable set of critical points (they are
local maxima indeed). Thus the only set of initializations leading to local maxima are Imax = Θmax.

Initializations for the global minima, I⋆. Since the set of all critical points of L is Θ⋆ ∪Θmin ∪
Θmax ∪Θsad, and the initializations in Imin, Isad, and Imax converge to Θmin, Θsad, and Θmax

respectively, it follows that the set of initializations for which the GF converges to global minima is
I⋆ = R2 \ (Imin ∪ Isad ∪ Imax).

In fact, since the loci of the global minima lies in the half-plane correspondint to w < − 1√
2

when p + q > 1, we can precisely determine the location of the global minimum for which the
intersection occurs for any θ0 ∈ I⋆. Specifically, we can solve the pair of equations E(e, w) =

e2 −w2 + log(−w) = E0 and e2(1− 2w2) = log (1−p)(1−q)
pq which has a unique solution for w < 0

(upto a sign flip in e).

(ii) θ0 ∈ e-axis ⇒ θ0 ∈ Imin: If θ0 = (e0, w0) ∈ e-axis, we have that w0 = 0 and hence wt = 0
for all t ≥ 0 (Lemma 9). Lemma 10-(i) also establishes that the iterates (θt = (et, 0))t≥0 stay
bounded on the e-axis and monotonically decrease. Since the origin is the only critical point of L
on the e-axis, and limt→∞ θt = θlim exists, it follows that θlim = (0, 0), a local minima. Thus
θ0 ∈ Imin.

This concludes the proof for all the initializations θ0 ∈ R2.

Gaussian initialization N (0, σ2I2). When θ0 is initialized according to the standard Gaussian
distribution N (0, σ2I2) with σ2 ≪ 1√

2
, we note that θ0 lands in the set Imin with high probability.

In fact, this probability can be made arbitrarily close to 1 depending on σ2. Thus this initialization
will lead to a local minimum convergence on the w-axis.

F.2 Gradient flow dynamics for p+ q < 1

Theorem 8 (GF dynamics for p+ q < 1). Under the same setting as in Thm. 2 with p+ q < 1, and
any initialization θ0 ∈ R2, the GF trajectory always converges to a θlim ∈ R2 which is a critical
point of the loss L. More specifically, θlim is

(i) a local minimum if

θ0 ∈ Imin ≜
{
(e, w) : w < −1/

√
2, e ∈ (−g(w), g(w)), g(w) =

√
w2 − log(−w) + Esad

}
,

(ii) a saddle point if θ0 ∈ Isad ≜
{
(e, w) : w ≤ −1/

√
2, e = ±

√
w2 − log(−w) + Esad

}
,

27

(iii) a local maximum if θ0 ∈ Imax ≜
{
(e, w) : e = 0, w > −1/

√
2
}

,
(iv) and a global minimum if θ0 ∈ R2 \ (Imin ∪ Isad ∪ Imax).

Consequentely, if we use the standard initialization θ0 ∼ N (0, σ2I2) with σ2 ≪ 1/
√
2, θlim will be

a global minimum.

Proof. The proof for the case of p+ q < 1 essentially follows the same steps as that of p+ q > 1. If
the initialization is not on the e-axis we use the energy equation to establish the convergence to the
critical point at the intersection of the energy contour line with the critical set and if it starts on the
e-axis, the only change is that it now converges to the global minimum instead of the origin as in the
earlier case. This is due to the fact that origin turns out to be a local maximum when p+ q < 1 and
hence it’s an unstable critical point (which can be established as in the proof of Thm. 2 for Imax).

28

G Gradient flow analysis with attention

In this section, we analyze the learning dynamics of the transformer parameters θ ∈ R3 with the
attention scalar a ∈ R, i.e. θ = (e, w, a) ∈ R3. Similar to the analysis for θ = (e, w) ∈ R2, we
first introduce the canonical parameterization including a ∈ R, then analyze the corresponding loss
function L(·) in terms of its gradients and critical points, and capitalize on it to study the gradient
flow dynamics using the energy. We first start with the parameterization.

G.1 Canonical parameterization with attention

Embedding. Recall from App. C that we let e = e ·α and pn = −p ·α for all n where e > 0, p = e
2

and α ∈ {±1}d/
√
d. This results in the embedding

xn = e

(
xn − 1

2

)
α.

Attention. Similarly, we recall from Eq. (21) that the attention output yn is given by

yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α, (37)

where

attn,i ≜ exp
(
⟨qn,ki⟩/

√
d
)
/

∑
j∈[n]

exp
(
⟨qn,kj⟩/

√
d
) , qn = WQ xn, ki = WK xi,

W⊤
QWK = (q2d)α ·α⊤ ∈ Rd×d, for some q ∈ R.

Instead of the softmax, now we assume that the attention weights are linear in the scaled dot product,
i.e.

attn,i =
⟨qn,ki⟩
n
√
d

=
1√
d
· x⊤

nW
⊤
QWKxn =

q2d

n
√
d
· (x⊤

nα)(x⊤
i α)

(∥α∥2=d)
=

q2d3

n
√
d
· (exn − p)(exi − p)

=
q2d5/2

n
· (exn − p)(exi − p)

=
q2d5/2e2

n
·
(
xn − 1

2

)(
xi −

1

2

)
.

(38)

Note that the 1/n factor is to ensure normalization for the attention weights in Eq. (37). Now
substituting Eq. (38) in Eq. (37), we obtain

yn = e

(
xn − 1

2

)
α+ ⟨v,α⟩

∑
i∈[n]

attn,i · e
(
xi −

1

2

)α

=

e(xn − 1

2

)
+ ⟨v,α⟩

∑
i∈[n]

1

n
q2d5/2e2(xn − 1

2
)(xi −

1

2
)

 · e
(
xi −

1

2

)α

=

[
e

(
xn − 1

2

)(
1 + ⟨v,α⟩q2d5/2e2

(
xi −

1

2

)2
)]

α

=

e(xn − 1

2

)1 + ⟨v,α⟩q2d5/2 1
4︸ ︷︷ ︸

a

·e2·

α

= e

(
xn − 1

2

)(
1 + ae2

)
α,

29

where we used the fact that (xi − 1
2)

2 = 1
4 since xi ∈ {0, 1}, and

a ≜
⟨v,α⟩q2d5/2

4
(39)

is the attention scalar. Note that this includes the scaling ⟨v,α⟩ from the value matrix W V and q2

from the query-key dot product. Thus we succinctly have

yn = e

(
xn − 1

2

)(
1 + ae2

)
α. (40)

Feed-forward. For the feed-forward layer, we have that W 1 = |w|√
d
1 · α⊤ ∈ R4d×d, W 2 =

w√
d
α · 1⊤ ∈ Rd×4d. Hence Eq. (40) implies

W 1yn =
|w|√
d
1 ·α⊤

[
e

(
xn − 1

2

)(
1 + ae2

)]
α =

|w|√
d

[
e

(
xn − 1

2

)(
1 + ae2

)]
1.

Thus,

ReLU(W 1yn) =
|w|√
d
1 · ReLU

([
e

(
xn − 1

2

)(
1 + ae2

)])
=

|w|√
d
1 · eReLU

([(
xn − 1

2

)(
1 + ae2

)])
=

|w|√
d
1 · e

(
xn

2
ReLU

(
1 + ae2

)
+

1− xn

2
ReLU

(
−1− ae2

))
=

|w|
2
√
d
1 · e

(
xn

[
ReLU

(
1 + ae2

)
− ReLU

(
−1− ae2

)]
+ReLU

(
−1− ae2

))
.

Using ReLU(x)− ReLU(−x) = x above,

ReLU(W 1yn) =
|w|
2
√
d
1 · e

(
xn

(
1 + ae2

)
+ReLU

(
−1− ae2

))
.

Hence,

W 2ReLU(W 1yn) =
w√
d
α · 1⊤ |w|

2
√
d
1 · e

(
xn

(
1 + ae2

)
+ReLU

(
−1− ae2

))
= 2w|w|e

(
xn

(
1 + ae2

)
+ReLU

(
−1− ae2

))
α

= 2w|w|e

(
xn

(
1 + ae2

)
+

(
−1− ae2

)
2

+
|1 + ae2|

2

)
α

= 2w|w|e
((

xn − 1

2

)(
1 + ae2

)
+

|1 + ae2|
2

)
α.

Thus the embedding zn is given by
zn = yn +W 2ReLU(W 1yn)

=

[
e

(
xn − 1

2

)(
1 + ae2

)]
α+ 2w|w|e

((
xn − 1

2

)(
1 + ae2

)
+

|1 + ae2|
2

)
α

= e

[(
xn − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
α.

Linear. Since e = a = e ·α due to weight-tying, the logits are given by

logitn(e, w, a, b) = ⟨a, zn⟩+ b = e2
[(

xn − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b.

Loss. Denote θ ≜ (e, w, a) ∈ R3. Similar to the case without a (Eq. (14) and Lemma 2), the
cross-entropy loss in our setting can be compactly written as

L(θ, b) =
1

N

∑
n∈[N]

E[ℓlog ((2xn+1 − 1) · logitn(θ, b))] = EX,Y [ℓlog ((2Y − 1) · logitX(θ, b))] ,

(41)

30

where logitX(θ, b) ≜ e2
[(
X − 1

2

) (
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+b, (X,Y) ∈ {0, 1}2

are distributed according to (X,Y) ∼ (π,P), i.e. X is a Bernoulli random variable with X ∼ π ≡
Bern(p/(p+ q)) and Y |X ∼ P (p, q), the Markov kernel. Further, using the convexity of b in L(·, b),
we can consider the optimal bias b⋆(θ) = argminb∈R L(θ, b) in Eq. (41) to obtain the loss L(θ):

L(θ) ≜ L(θ, b⋆) = EX,Y [ℓlog ((2Y − 1) · logitX(θ, b⋆))]

= EX,Y

[
ℓlog

(
(2Y − 1) ·

(
e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b⋆

))]
.

(42)

We derive the expression for the optimal bias b⋆ in the proof of Lemma 13 below in App. N.

G.2 Analysis of the loss function L(θ) from Eq. (42)

Now we establish the gradients of the loss function.

Lemma 13 (Gradient computation and optimal bias). For any θ = (e, w, a) ∈ R3 and the next-token
prediction loss L(θ) in Eq. (42), the gradients are given by

∂L

∂e
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e

(
1 + ae2

)
(1 + 2w|w|)

− E
[
(f1X + f2)

(
X − 1

2

)]
· 2e3a (1 + 2w|w|) ,

∂L

∂w
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e2

(
1 + ae2

)
(|w|+ sign (w)w) ,

∂L

∂a
= −E

[
(f1X + f2)

(
X − 1

2

)]
· e4 (1 + 2w|w|) ,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p+ q)), and

f1 ≜ 1− p− q − ϕ1 + ϕ0, f2 ≜ p− ϕ0,

ϕ1 ≜ σ

(
e2
(
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

ϕ0 ≜ σ

(
e2
(
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

where the optimal bias b⋆ is obtained by solving π1f1 + f2 = 0.

Proof. We defer to App. N.

Theorem 9 (All critical points for linear attention in R4). Let the input sequence be {xn}Nn=1 ∼
(π,P), the transformer parameters θ = (e, w, b, a) ∈ R4, and the next-token prediction loss L(·) be
as in Eq. (41). Then for any (p, q) ∈ (0, 1)2 with p+ q ̸= 1 and N ∈ N,

(i) the set of all global minima is given by

Γ⋆(p, q) ≜ {(e, w, b, a) ∈ R4 : e2w|w(1 + ae2)|+ b =
1

2
log

p(1− q)

q(1− p)
, (43)

e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq
} (44)

(ii) a set of local minima is given by

Γmin(p, q) ≜

{
γmin = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
,

31

(iii) a set of saddle points is

Γsad(p, q) ≜

{
γsad = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
.

(iv) a set of stationary points is

Γstation(p, q) ≜

{
γstation = (e, w, b, a) ∈ R4 : e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0, b = log

p

q

}
,

Thus the set of all critical points is{
θ ∈ R2 : ∇L(θ) = 0

}
= Γ⋆ ∪ Γmin ∪ Γsad ∪ Γstation. (45)

In addition, for any θ⋆ ∈ Γ⋆,θmin ∈ Γmin and θsad ∈ Γsad, the loss values satisfy
H(xn+1 | xn) = L(θ⋆) < L(θmin) = L(θmax) = L(θsad) = H(xn+1).

Theorem 10 (All critical points in R3). Let the input sequence be {xn}Nn=1 ∼ (π,P), the transformer
parameters θ = (e, w, a) ∈ R3, and the next-token prediction loss L(·) be as in Eq. (42). Then for
any (p, q) ∈ (0, 1)2 with p+ q ̸= 1 and N ∈ N,

(i) the set of all global minima is given by

Θ⋆(p, q) ≜ {(e, w, a) ∈ R3 : e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq
} (46)

(ii) a set of local minima is given by

Θmin(p, q) ≜
{
(e, w, a) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0

}
,

(iii) a set of local maxima is given by

Θmin(p, q) ≜
{
(e, w, a) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) < 0

}
,

(iv) a set of saddle points is

Θsad(p, q) ≜
{
(e, w, a) ∈ R3 :

(
0,−1/

√
2, a
)}

.

Defining a set of stationary points Θstation(p, q) ≜
{
(e, w, a) ∈ R3 : e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0

}
,

the set of all critical points is{
θ ∈ R2 : ∇L(θ) = 0

}
= Θ⋆ ∪Θmin ∪Θmax ∪Θsad ∪Θstation. (47)

In addition, for any θ⋆ ∈ Θ⋆,θmin ∈ Θmin, and θsad ∈ Θsad, the loss values satisfy
H(xn+1 | xn) = L(θ⋆) < L(θmin) = L(θmax) = L(θsad) = H(xn+1).

Remark 5. While the remaining set of stationary points could be classified to global minima, local
minima, etc., it’s technically unclear what category the set of critical points Θstation(p, q) belong to,
as the Hessian is undefined here. We would need to rely on local perturbation analysis to characterize
these class of points.

We defer the proofs of the theorems to App. N.2.

G.3 Gradient flow analysis

Analogous to the gradient flow analysis for θ = (e, w) ∈ R2 in App. F, we now study its countepart
toegether with the attention scalar, i.e. θ = (e, w, a) ∈ R3. To this end, let (θt)t≥0 be a C1 curve in
R3 governed by

dθt

dt
= −∇L(θt), θt = (et, wt, at) ∈ R3, t ≥ 0, (GF-Attention)

starting with a randomly initalized θ0. We define the energy function E(·, ·, ·) as

E(e, w, a) ≜ e2 − (w2 + sign(w) · log |w|)− 2a2, ∀(e, w, a) ∈ R3 \ ea-plane, (48)

where ea-plane ≜ {(e, w = 0, a)}. The following lemma presents the crucial result that the energy
is constant along the flow in GF-Attention.

32

Lemma 14 (Constant energy along the flow). For any (p, q) ∈ (0, 1)2 and initialization θ0 =
(e0, w0, a0) ∈ R3, let (θt)t≥0 be the corresponding GF-Attention trajectory starting from θ0. If
w0 ̸= 0, then the energy stays constant along the trajectory, i.e.

E(θt) = e2t − (w2
t + sign(wt) · log |wt|)− 2a2t = E(θ0), ∀t ≥ 0. (49)

On the other hand, if w0 = 0, wt = 0 for all t ≥ 0. Hence, if we initialize on ea-plane the trajectory
always stays on the ea-plane.

Now we characterize the convergence of the gradient flow.
Lemma 15 (GF convergence). Let (θt)t≥0 be a continuously diferentiable GF-Attention trajectory
starting from θ0. Then for all initializations θ0 ∈ R3,

(i) (θt)t≥0 is bounded,
(ii) there exists a θlim ∈ R3 such that limt→∞ θt = θlim and

(iii) limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0.

Hence θlim is a critical point of L.

The following result characterizes the energy of the limit point.
Lemma 16 (Energy at the limit point). Consider the same setting as in Lemma 15. If θ0 ∈
R3 \ ea-plane, then E(θlim) = E(θ0). Hence θlim lies at the intersection of the contour line
E(e, w) = E0 with the set of critical points of L in R3.

On the other hand, if θ0 ∈ ea-plane, then θlim ∈ ea-plane.

We defer the proofs of the lemmas to App. N.

G.4 Role of standard initialization

The following picture enhances the behavior of the GF dynamics near the origin.

(a) Gradient flow around origin (p + q < 1) (b) Gradient flow around origin (p + q > 1)

Figure 5: Gradient flow dynamics in R3, near the origin, for the transformer parameters with attention
scalar a (Sec. 4.1). The local minima are repellors for p+ q < 1, while attracting for p+ q > 1.

Based on the above theoretical results and empirical evidence, we conjecture the following theorem,
whose informal proof we defer to App. N.5.
Theorem 11 ([Informal] Role of standard initialization for p + q > 1). If we use the standard
initialization θ0 ∼ N (0, σ2I3) with σ2 ≪ 1/

√
2 for the GF-Attention, θlim will be a local minimum

with high probability.

33

H Additional empirical results

H.1 Gaussian initialization converges to low-rank

0 5

0

5

10

15

20

25

30

0.04

0.02

0.00

0.02

0.04

(a) W 1 at initialization

0 5

0

5

10

15

20

25

30
0.10

0.05

0.00

0.05

0.10

(b) W 1 after 50 iterations

0 5

0

5

10

15

20

25

30 0.2

0.1

0.0

0.1

0.2

(c) W 1 at convergence

0 2 4 6

0

1

2

3

4

5

6

7

0.02 0.00 0.02 0.04

(d) W V at initialization

0 2 4 6

0

1

2

3

4

5

6

7

0.10 0.05 0.00 0.05 0.10

(e) W V after 50 iterations

0 2 4 6

0

1

2

3

4

5

6

7

0.1 0.0 0.1

(f) W V at convergence

Figure 6: Evolution of parameters W 1 and W V across iterations, starting from a standard Gaussian
initialization. At convergence, all the parameter matrices are approximately rank-one.

H.2 Low-rank initialization stays low-rank

34

0 5

0

5

10

15

20

25

30 0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

(a) W 1 at initialization

0 5

0

5

10

15

20

25

30
0.08

0.06

0.04

0.02

0.00

0.02

0.04

0.06

0.08

(b) W 1 after 50 iterations

0 5

0

5

10

15

20

25

30
0.10

0.05

0.00

0.05

0.10

(c) W 1 at convergence

0 2 4 6

0

1

2

3

4

5

6

7

0.075 0.050 0.0250.000 0.025 0.050 0.075

(d) W V at initialization

0 2 4 6

0

1

2

3

4

5

6

7

0.06 0.04 0.02 0.00 0.02 0.04 0.06

(e) W V after 50 iterations

0 2 4 6

0

1

2

3

4

5

6

7

0.075 0.050 0.0250.000 0.025 0.050 0.075

(f) W V at convergence

Figure 7: Evolution of parameters W 1 and W V across iterations, starting from a rank-one initializa-
tion. The parameters maintain a rank-one structure across the entire training.

35

I Model architecture and hyper-parameters

Table 1: Parameters in the transformer architecture with their shape.

Parameter Matrix shape

transformer.wte 2× d
transformer.wpe N × d
transformer.h.ln_1 d× 1
transformer.h.attn.c_attn 3d× d
transformer.h.attn.c_proj d× d
transformer.h.ln_2 d× 1
transformer.h.mlp.c_fc 4d× d
transformer.h.mlp.c_proj d× 4d
transformer.ln_f d× 1

Table 2: Settings and parameters for the transformer model used in the experiments.

Dataset k-th order binary Markov source
Architecture Based on the GPT-2 architecture as implemented in [26]

Batch size Grid-searched in {16, 50}
Accumulation steps 1

Optimizer AdamW (β1 = 0.9, β2 = 0.95)
Learning rate 0.001
Scheduler Cosine
Iterations 8000
Weight decay 1× 10−3

Dropout 0
Sequence length Grid-searched in {512, 1024, 2048}
Embedding dimension Grid-searched in {4, 8, 16, 32, 64}
Transformer layers 1
Attention heads 1

Repetitions 3 or 5

36

J Proofs of theorems in App. D

J.1 Proof of Thm. 7

Proof. We characterize the set of global minima, local minima, and that of the saddle points individu-
ally.

(i) Set of all global minima. Let γ⋆ ∈ R3 be arbitrary. From [23, Lemma 1], we have that γ⋆ is
a global minimum for the loss L(·) in Eq. (23) if and only if its prediction probability satisfies
fγ⋆

(xn
1) = P (xn+1 = 1 | xn), the Markov kernel. Since the input {xn}Nn=1 ∼ (π(p, q),P (p, q)),

we have that

P (xn+1 = 1 | xn) = (1− xn)p+ xn(1− q) = (1− p− q)xn + p. (50)

On the other hand, by definition, from Eq. (3), fγ⋆
(xn

1) = σ
(
e2(1 + 2w|w|)xn + b− e2

2

)
, where

γ⋆ = (e, w, b). Since xn ∈ {0, 1}, this can be further simplified to

fγ⋆
(xn

1) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
= xn · σ

(
e2(1 + 2w|w|) + b− e2

2

)
+ (1− xn) · σ

(
b− e2

2

)
= xn

(
σ

(
2e2w|w|) + b+

e2

2

)
− σ

(
b− e2

2

))
+ σ

(
b− e2

2

)
.

(51)

Since both fγ⋆
(xn

1) and P (xn+1 = 1 | xn) are linear functions of xn, equating them for all vallues
of xn ∈ {0, 1} implies that the respective coeffecients in these functions in Eq. (50) and Eq. (51) are
also equal, i.e.

σ

(
b− e2

2

)
= p,

σ

(
2e2w|w|+ b+

e2

2

)
− σ

(
b− e2

2

)
= 1− p− q,

and hence

σ

(
b− e2

2

)
= p, σ

(
2e2w|w|) + b+

e2

2

)
= 1− q. (52)

Since σ(z) = y for y ∈ (0, 1) implies z = log y
1−y , Eq. (52) can be rewritten as

b− e2

2
= log

p

1− p
, 2e2w|w|+ b+

e2

2
= log

1− q

q
.

Using 2e2w|w| + b + e2

2 = e2(1 + 2w|w|) + b − e2

2 = e2(1 + 2w|w|) + log p
1−p in the second

equality above, we obtain

b− e2

2
= log

p

1− p
,

e2(1 + 2w|w|) = log
1− q

q
+ log

1− p

p
= log

(1− p)(1− q)

pq
.

(53)

Thus γ⋆ ∈ R3 is a global minimum for L(·) if and only if it satisfies Eq. (53) (note that it’s already a
critical point, as established in Thm. 6). Thus, the set of all global minimum Γ⋆(p, q) is given by

Γ⋆(p, q) ≜

{
γ⋆ = (e, w, b) ∈ R3 : e2(1 + 2w|w|) = log

(1− p)(1− q)

pq
, b− e2

2
= log

p

1− p

}
.

Since the prediction fγ⋆
(·) equals the Markov kernel for any γ⋆ ∈ Γ⋆, it follows from Thm. 4 (or

[23, Lemma 1]) that L(γ⋆) = H(xn+1 | xn), the entropy rate of the Markov chain.

37

(ii) Set of local minima and saddle points.

Define Γmin(p, q) ⊆ R3 and Γsad ⊆ R3 as follows:

Γmin(p, q) ≜

{
γmin = (e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
,

Γsad(p, q) ≜

{
γsad = (e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
.

To show that Γmin is the set of all bad local minima for L(·), we first show that any γmin ∈ Γmin is
a bad local minimum and then show that every bad local minimum should belong to Γmin. Similarly
for Γsad. We start with the local minima.

Let γmin = (e, w, b) ∈ Γmin. Recall that γmin is a stationary point (Thm. 6), i.e.

∇L(γmin) = 0.

Rearragning the order of scalars and writing γmin = (b, e, w), from Lemma 4, the Hessian of the
loss at γmin is

∇2L(γmin) = π0π1

[
1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

]
. (54)

By definition, γmin = (b, e, w) satisfies (p+ q − 1)(1 + 2w|w|) > 0. Thus its Hessian in Eq. (54)

has a block diagonal structure of the form
[
Hb,e 0
0 0

]
where Hb,e has both the eigen values positive,

and hence positive-definite. In other words, γmin is a local minimum for L(·) in the (b, e) ∈ R2

space for any fixed w in the set. Interestingly, using the continuity argument and the fact that
L(b = log p

q , e = 0, w) is constant in w ∈ R, we can essentially follow the same steps as in proof
of Theorem 2 in [23, Appendix B.3] (Thm. 5 above) to show that γmin = (b, e, w) is a also local
minimum for L(·) in the full parameter space R3. This establishes that γmin is a local minimum for
L(·).
For the saddle points, let γsad = (e, w, b) ∈ Γsad. We have that γsad is a stationary point (Thm. 6)
and Lemma 4 implies its Hessian (after rearraging the order of scalars as above with γsad = (b, e, w))
is:

∇2L(γsad) = π0π1

[
1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

]
. (55)

If w ̸= − 1√
2

, (p+ q − 1)(1 + 2w|w|) < 0 for any γsad ∈ Γsad, and hence the Hessian ∇2L(γsad)

in Eq. (55) as both positive, negative, and zero eigen values. Thus γsad is a saddle point for L(·).
Using a neighborhood argument, we can similarly argue for w = 1√

2
to establish that it’s also a

saddle point. Now we compute the loss value.

For any γmin = (e, w, b) ∈ Γmin or γsad = (e, w, b) ∈ Γsad, we have that e = 0 and b = log p
q .

Thus for γ = γmin or Γsad, the prediction probability in view of Eq. (3) is

Pγ(xn+1 = 1 | xn
1) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
= σ(b) =

p

p+ q
= P (xn+1 = 1) ,

the marginal distribution. Substituting this equality in the definition of cross-entropy loss L(·) in
Eq. (1) and the fact that P (xn+1 = 1) = p

p+q = π1, following the same steps as in [23, Appendix
B.3], we obtain

L(γ) =− 1

N

∑
n∈[N]

Exn+1
1

[xn+1 · log fγ(xn
1) + (1− xn+1) · log(1− fγ(x

n
1))]

= − 1

N

∑
n∈[N]

Exn+1
1

[xn+1 · log π1 + (1− xn+1) · log π0]

38

=
1

N

∑
n∈[N]

[−π1 log π1 − π0 log π0]

= H(π) = H(xn+1).

Thus L(γmin) = L(γsad) = H(xn+1). To see that H(xn+1 | xn) = L(γ⋆) < L(γmin) =
L(γsad) = H(xn+1) for any global minimum γ⋆, observe that the gap

L(γmin)− L⋆ = H(xn+1)−H(xn+1|xn) = I(xn;xn+1) ≥ 0,

where I(xn;xn+1) is the mutual information between xn and xn+1 [11]. Hence the optimality
gap equals zero if and only if the mutual information equals zero, which happens when xn and
xn+1 are independent, i.e. P (xn+1 = 1 | xn) doesn’t depend on xn. Since P (xn+1 = 1 | xn) =
(1− p− q)xn + p from Eq. (50), this happens only when p+ q = 1 which contradicts the theorem
assumption that p+ q ̸= 1. Hence H(xn+1 | xn) = L(γ⋆) < L(γmin) = L(γsad) = H(xn+1).

Now we finally show that Γmin and Γsad are the only set of bad local minima and saddle points
respectively. Let γ is a bad local minimum for L(·). By definition, it’s also a critical point. Recall
from Thm. 6 that any stationary point γ = (e, w, b) for the loss L(·) satisfies that either γ ∈ Γ⋆,
γ ∈ Γmin, or γ ∈ Γsad. Clearly γ ̸∈ Γ⋆, as Γ⋆ is the set of all global minima. Similarly, γ ̸∈ Γsad

as every point in Γsad is a saddle point for the loss L(·) as established above. Hence γ ∈ Γmin. Thus
every bad local minimum in R3 belongs to Γmin. This coupled with the fact above that Γmin is a set
of bad local minima implies Γmin is indeed the set of all bad local minima. The proof for Γsad is
similar.

J.2 Proof of Thm. 6

Proof. Let γ = (e, w, b) ∈ R3 be such that ∇L(γ) =
(
∂L
∂e ,

∂L
∂w , ∂L

∂b

)⊤
= 0. By Lemma 3, we have

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w|)− 1))] · e = 0, (56)

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w| = 0, (57)

∂L

∂b
= EX [f1X + f2] = 0, (58)

where X ∼ Bern(p/(p + q)), f1 = σ
(
2e2w|w|+ b+ e2

2

)
+ q − 1 − σ

(
b− e2

2

)
+ p, and f2 =

σ
(
b− e2

2

)
− p. Our goal is to now show that Eqs. (56)-(58) hold only if either (e = 0, b = log p

q)

or (f1 = 0, f2 = 0). We consider two cases corresponding to e = 0 and e ̸= 0.

(i): e = 0. If e = 0, we readily see that ∂L
∂e = ∂L

∂e = 0. Further, f1 = p+ q − 1 and f2 = σ(b)− p.
Hence, Eq. (58) implies that

EX [f1X + f2] = (p+ q − 1)E[X] + σ(b)− p = (p+ q − 1)
p

p+ q
+ σ(b)− p = σ(b)− p

p+ q
= 0,

which implies that b = log p
q . Since w ∈ R is arbitrary, we see in this case that

γ ∈
{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}⋃
{
(e, w, b) ∈ R3 : e = 0, (p+ q − 1)(1 + 2w|w|) < 0, b = log

p

q

}
,

= Γmin ∪ Γsad.

(ii): e ̸= 0. Suppose e ̸= 0. Here we show that f1 = f2 = 0 and hence γ ∈ Γ⋆. We consider two
cases corresponding to w ̸= 0 and w = 0. Let w ̸= 0. Since both e ̸= 0 and w ̸= 0, and X = X2 in
Eq. (57) with E[X] = π1 = p

p+q > 0, we obtain that

EX [f1X
2 + f2X] = (f1 + f2)E[X] = (f1 + f2)π1 = 0,

39

and hence f1 + f2 = 0. Further Eq. (58) implies that f1π1 + f2 = 0. Together, this implies
f1 = f2 = 0.

Now suppose w = 0. From Eq. (58), we have that E[f1X + f2] = f1π1 + f2 = 0. Since e ̸= 0,
Eq. (56) yields

EX [(f1X + f2)(2X − 1))] = 2EX [(f1X + f2)X] = 2π1(f1 + f2) = 0.

So f1 = f2 = 0 in this case too. Thus we have showed that whenever e ̸= 0, we have f1 = f2 = 0.
Recalling the expressions for f1 and f2,

f2 = σ

(
b− e2

2

)
− p = 0 ⇒ b− e2

2
= log

p

1− p
, (59)

f1 = σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p = σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1 = 0,

and hence,

2e2w|w|+ b+
e2

2
= log

1− q

q
.

Substituting b− e2

2 = log p
1−p in the above equation,

2e2w|w|+ e2 + b− e2

2
= 2e2w|w|+ e2 + log

p

1− p
= log

1− q

q
,

and thus,

e2(1 + 2w|w|) = log
(1− p)(1− q)

pq
. (60)

In view of Eq. (59) and Eq. (60), we have that γ = (e, w, b) ∈ Γ⋆.

Together, we have shown that whenever ∇L(γ) = 0, we have γ ∈ Γ⋆ ∪ Γmin ∪ Γsad. Since
Γ⋆ ∪ Γmin ∪ Γsad ⊆ {γ : ∇L(γ) = 0}, we are done.

K Proofs of technical lemmas in App. D

K.1 Proof of Lemma 2

Proof. Recall from Eq. (14) that the cross-entropy loss L(·) is defined as

L(γ) = − 1

N

∑
n∈[N]

Exn+1
1

[xn+1 · log fγ(xn
1) + (1− xn+1) · log(1− fγ(x

n
1))], (61)

where fγ(x
n
1) = σ(logitn) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
from Eq. (3). For any Y ∈

{0, 1}, Z ∈ R, using the fact that 1− σ(Z) = σ(−Z), we have

− [Y log σ(Z) + (1− Y) log(1− σ(Z))] = − [Y log σ(Z) + (1− Y) log σ(−Z)]

(a)
= Y log(1 + exp(−Z)) + (1− Y) log(1 + exp(Z))

= log (1 + exp(−(2Y − 1)Z))

(b)
= ℓlog ((2Y − 1)Z) ,

(62)

where (a) and (b) follow from the definitions of sigmoid and the logistic functions: σ(z) =
1

1+exp(−z) , ℓlog(z) = log(1 + exp(−z)) for z ∈ R. Substituting Y = xn+1 ∈ {0, 1} and
Z = logitn ∈ R in Eq. (62), Eq. (61) simplifies to

L(γ) =
1

N

∑
n∈[N]

E[ℓlog ((2xn+1 − 1) · logitn)].

40

Since logitn is only a function of xn, the above expectation is over the distribution of the pairs
(xn, xn+1), which for all n ∈ [N] have the same law as a pair of random variables (X,Y) with
X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q), the Markov kernel. Hence the above equality can
be rewritten using the definition of logitn as

L(γ) =
1

N

∑
n∈[N]

E[ℓlog ((2xn+1 − 1) · logitn)] = EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
.

K.2 Proof of Lemma 3

Proof. With γ = (e, w, b) and θ denoting either of the scalars e, w, or b, we have from [23, Lemma
2] that the gradient of the loss L(·) is given by

∇θL(γ) = − 1

N

∑
n∈[N]

Exn+1
1

[(xn+1 − fθ(x
n
1)) · ∇θ logitn] , (63)

where fγ(x
n
1) = σ(logitn) = σ

(
e2(1 + 2w|w|)xn + b− e2

2

)
. Using the same argument as in the

proof of Lemma 6, we can replace the expecatations in Eq. (63) with that of a pair of random variables
(X,Y) with X ∼ π ≡ Bern(p/(p+ q)) and Y |X ∼ P (p, q), the Markov kernel. That is,

∇θL(γ) = −EX,Y

[(
Y − σ

(
e2(1 + 2w|w|)X + b− e2

2

))
· ∇θ

(
e2(1 + 2w|w|)X + b− e2

2

)]
.

(64)

Now we define the error term E(X,Y) ≜ −
(
Y − σ

(
e2(1 + 2w|w|)X + b− e2

2

))
. Our goal is to

show that E[E(X,Y) | X] = f1X+f2, where f1 ≜ σ
(
2e2w|w|+ b+ e2

2

)
+q−1−σ

(
b− e2

2

)
+p,

and f2 ≜ σ
(
b− e2

2

)
− p, which suffices to prove the lemma. To this end, using the fact that

X ∈ {0, 1}, we have

E(X,Y) = −
(
Y − σ

(
e2(1 + 2w|w|)X + b− e2

2

))
= −

(
Y −X · σ

(
2e2w|w|+ b+

e2

2

)
− (1−X) · σ

(
b− e2

2

))
= −Y +X

(
σ

(
2e2w|w|+ b+

e2

2

)
− σ

(
b− e2

2

))
+ σ

(
b− e2

2

)
.

Now taking the conditional expectation with respect to X and using the fact that E[Y |X] =
P (Y = 1 | X) = (1− p− q)X + p (since Y |X ∼ P (p, q)), we have

E[E(X,Y) | X] = −(1− p− q)X − p+X

(
σ

(
2e2w|w|+ b+

e2

2

)
− σ

(
b− e2

2

))
+ σ

(
b− e2

2

)
= X

(
σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p

)
+ σ

(
b− e2

2

)
− p

(a)
= f1X + f2,

where (a) follows from the definition of f1 and f2 above. Thus Eq. (64) simplifies to

∇θL(γ) = EX

[
(f1X + f2) · ∇θ

(
e2(1 + 2w|w|)X + b− e2

2

)]
.

Letting θ = e, w, and b in the above equation, we finally obtain the individual gradients:

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w| − 1))] · e,

41

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

∂L

∂b
= EX [f1X + f2] .

K.3 Proof of Lemma 4

Proof. Slightly changing the variable order, for any γ = (b, e, w) ∈ R3, we define

H(γ) ≜ ∇2L(γ) =

∂2L
∂b2

∂2L
∂b∂e

∂2L
∂b∂w

∂2L
∂e∂b

∂2L
∂e2

∂2L
∂e∂w

∂2L
∂w∂b

∂2L
∂w∂e

∂2L
∂w2

 ∈ R3×3. (65)

Recall that for any γmin ∈ Γmin and γsad ∈ Γsad, we have e = 0 and b = log p
q . Now we compute

the second derivatives of L with respect to any γ = (b = log p
q , e = 0, w). We start with the first

derivatives. By Lemma 7, the gradients are

∂L

∂b
= EX [f1X + f2] ,

∂L

∂e
= EX [(f1X + f2)(2X(1 + 2w|w|)− 1))] · e,

∂L

∂w
= EX [(f1X + f2)X] · 4e2|w|,

(66)

where

f1 ≜ σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p,

f2 ≜ σ

(
b− e2

2

)
− p.

From Eq. (66), we see that the second derivaties of L depend on the first-derivatives of f1 and
f2, which we now compute. Recall that the derivative of the sigmoid function obeys σ′(z) =
σ(z)(1 − σ(z)) = σ(z)σ(−z) for any z ∈ R. Now the gradients of f1 and f2 with respect to b, e,
and w are

∂f1
∂b

= σ

(
2e2w|w|+ b+

e2

2

)
σ

(
−2e2w|w| − b− e2

2

)
− σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f2
∂b

= σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f1
∂e

= (4ew|w|+ e)σ

(
2e2w|w|+ b+

e2

2

)
σ

(
−2e2w|w| − b− e2

2

)
+ e σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f2
∂e

= (−e)σ

(
b− e2

2

)
σ

(
−b+

e2

2

)
,

∂f1
∂w

= (4e2 · wsign(w))σ
(
2e2w|w|+ b+

e2

2

)
σ

(
−2e2w|w| − b− e2

2

)
,

∂f2
∂w

= 0.

42

Using the fact that σ
(
log p

q

)
= p

p+q = π1 and σ
(
− log p

q

)
= q

p+q = π0, the above gradients
evaluated for any γ = (b = log p

q , e = 0, w) further reduce to

∂f1
∂b

∣∣∣∣
γ

= 0,
∂f2
∂b

∣∣∣∣
γ

= π0π1,

∂f1
∂e

∣∣∣∣
γ

= 0,
∂f2
∂e

∣∣∣∣
γ

= 0,

∂f1
∂w

∣∣∣∣
γ

= 0,
∂f2
∂w

∣∣∣∣
γ

= 0.

(67)

Now substituting Eq. (67) when computing the second-derivatives of L in Eq. (66), we obtain

∂2L

∂b2

∣∣∣∣
γ

= EX

[
∂f1
∂b

∣∣∣∣
γ

X +
∂f2
∂b

∣∣∣∣
γ

]
= π0π1,

∂2L

∂b∂e

∣∣∣∣
γ

= EX

[
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

]
= 0,

∂2L

∂b∂w

∣∣∣∣
γ

= EX

[
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

∣∣∣∣
γ

]
= 0,

∂2L

∂e2

∣∣∣∣
γ

= EX [(f1X + f2)(2X(1 + 2w|w|)− 1))]

∣∣∣∣
γ

= EX [(2f1(1 + 2w|w|)− f1 + 2f2(1 + 2w|w|)X − f2]

∣∣∣∣
γ

= EX [(f1(1 + 4w|w|) + f2(2 + 4w|w|)X − f2]

∣∣∣∣
γ

= (f1(1 + 4w|w|) + f2(2 + 4w|w|))π1 − f2

∣∣∣∣
γ

(a)
= ((p+ q − 1)(1 + 4w|w|)− π1(p+ q − 1)(2 + 4w|w|))π1 + π1(p+ q − 1)

= π1(p+ q − 1) (1 + 4w|w| − π1(2 + 4w|w|) + 1)

(b)
= 2π1π0(p+ q − 1)(1 + 2w|w|),

(68)

43

where (a) follows from the fact that f1|γ = p+q−1, f2|γ = σ(b)−p = p
p+q−p = −p

p+q (p+q−1) =

−π1(p+ q − 1) and (b) from 1− π1 = π0. Returning to the remaining second derivatives,

∂2L

∂e∂w

∣∣∣∣
γ

=
∂

∂e

(
E[(f1X + f2)X] · 4e2|w|

) ∣∣∣∣
γ

=
∂

∂e

(
E[(f1 + f2)X] · 4e2|w|

) ∣∣∣∣
γ

=
∂

∂e

(
(f1 + f2) · 4π1e

2|w|
) ∣∣∣∣

γ

=
∂

∂e

((
σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1

)
· 4π1e

2|w|
) ∣∣∣∣

γ

=

(
∂

∂e
σ

(
2e2w|w|+ b+

e2

2

))
4π1e

2|w|
∣∣∣∣
γ

+

(
σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1

)
· ∂

∂e
(4π1e

2|w|)
∣∣∣∣
γ

= 0,

∂2L

∂w2

∣∣∣∣
γ

=
∂

∂w

(
E[(f1X + f2)X] · 4e2|w|

)
=

(
∂

∂w
E[(f1X + f2)X] · 4|w|

)
e2
∣∣∣∣
γ

= 0.

(69)

Congregating all the second derivatives from Eq. (68) and Eq. (69) into the Hessian H(γ) in Eq. (65),
we finally obtain

H(γ) = π0π1

[
1 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0
0 0 0

]
.

44

L Proofs of lemmas in App. E

L.1 Proof of Lemma 5

Proof. Recall from Lemma 2 that for any θ = (e, w) ∈ R2 and b ∈ R, we have

L(θ, b) = EX,Y

[
ℓlog

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
.

Since ℓlog(·) is a convex function, Y ∈ {0, 1} and thus 2Y − 1 ∈ {±1}, the convexity of L in b
follows from the following fact:

∂2L

∂b2
= EX,Y

[
ℓ′′log

(
(2Y − 1)

(
e2(1 + 2w|w|)X + b− e2

2

))]
≥ 0.

To find the optimal b⋆, we set the gradient ∂L
∂b = 0. Thus from Lemma 3, we obtain

∂L

∂b
= EX [f1X + f2] = 0,

f1 = σ

(
2e2w|w|+ b+

e2

2

)
+ q − 1− σ

(
b− e2

2

)
+ p, f2 = σ

(
b− e2

2

)
− p.

Substituting E ≜ e2(1 + 2w|w|), B ≜ b− e2

2 , and E[X] = π1 = p/(p+ q) in the above equations,

π1 (σ(E +B) + q − 1− σ(B) + p) + σ(B)− p = π1 · σ(E +B) + π0 · σ(B) +
p(p+ q − 1)

p+ q
− p = 0.

Further simplifying,
π0 · σ(B) = π1 · (1− σ(E +B)) = π1 · σ(−E −B).

In other words,
(1 + exp(−B))−1

(1 + exp(E +B))−1
=

π1

π0
=

p

q
⇒ 1 + exp(E) exp(B)

1 + exp(−B)
=

p

q
.

Defining x ≜ exp(B) and A ≜ exp(E), we thus obtain the following quadratic equation in x and its
corresponding roots:

Ax2 − x

(
p

q
− 1

)
− p

q
= 0 ⇒ x =

1

2A

p
q
− 1±

√(
p

q
− 1

)2

+ 4 · p
q
·A

 .

Since x > 0, we take the root corresponding to the addition choice above and resubstituting
x = exp(b− e2

2) and A = exp(e2(1 + 2w|w|)), we obtain the final expression for b⋆. In particular,
if e = 0, it is easy to see that A = 1 and hence x = exp(b⋆) = p

q , implying b⋆ = log p
q .

Similarly, if A = (1−p)(1−q)
pq , it’s straightforward to see that exp(b⋆ − e2/2) = p

1−p and hence
b⋆ − e2/2 = log p

1−p .

L.2 Proof of Lemma 6

Proof. The proof directly follows from Lemma 2 by substituting b = b⋆.

L.3 Proof of Lemma 7

Proof. By Danskin’s theorem [12], it follows that for b⋆ = argminb∈R L(θ, b) and L(θ) = L(θ, b⋆),
we have ∇θL(θ) = ∇θL(θ, b⋆). Using the gradient expressions of L(θ, b) w.r.t θ from Lemma 3,
and using the fact that ∂L

∂b = E[f1X + f2] at b = b⋆, the claim follows.

L.4 Proof of Lemma 8

Proof. Since L(θ) = L(θ, b⋆) where b⋆ = argminb∈R L(θ, b), the identity in Eq. (32) about the
Hessian of the loss L with respect to θ follows from the classical result of [29, Lemma 2.2] about
second-derivatives of extremal-value functions. Finally Eq. (33) follows from substituting the full
Hessian in R3×3 from Lemma 4 in this identity.

45

M Proofs of lemmas in App. F

M.1 Proof of Lemma 9

Proof. Denote (et, wt) = (e, w) with the dependence on time implicitly assumed. Then by the
definition of GF and the gradient expressions in Lemma 7, we have that

de

dt
= −∂L

∂e
(θt) = −2E[(f1X + f2)X] · (1 + 2w|w|)e, (70)

dw

dt
= −∂L

∂w
(θt) = −E[(f1X + f2)X] · 4e2|w|. (71)

Dividing Eq. (70) by (1 + 2w|w|)e and Eq. (71) by 4e2|w|, we have

1

1 + 2w|w|
de

dt
=

1

2e|w|
dw

dt
⇒ e

de

dt
=

(
w +

1

2|w|

)
dw

dt
.

Noting that d
dt (sign(w) · log |w|) =

1
|w|

dw
dt , the above equation can be rewritten as

d

dt

(
e2 − w2 − sign(w) · log |w|

)
= 0.

Thus defining E(e, w) = e2 − w2 − sign(w) · log |w| for w ̸= 0, the above equation implies
E(θt) = E(θ0) for θ0 = (e0, w0) with w0 ̸= 0. On the other hand, it’s easy to see that if w0 = 0,
Eq. (71) implies dw

dt = 0 at t = 0 and hence wt = 0 for all t ≥ 0.

M.2 Proof of Lemma 10

Proof. To prove the convergence of the trajectory (θt)t≥0, we use the classical result due to Ło-
jasiewicz [1, Theorem 2.2] which gurantees the convergence of gradient flow for real analytic
functions, as long as the trajectory is bounded. Hence we first show the boundedness of the trajectory.

(i) (θt)t≥0 is bounded.

We consider the cases θ0 ∈ e-axis and θ0 ∈ R2 \ e-axis separately.

Let’s suppose θ0 = (e0, w0) ∈ e-axis, i.e. w0 = 0. Thus it follows from Lemma 9 that wt = 0 for
all t ≥ 0. That is, the trajectory always stays on the e-axis and it suffices to track (et)t≥0 and show
that they are bounded. To this end, we show that if e0 > 0, we have de

dt < 0 and if e0 < 0, we have
de
dt > 0 for all t ≥ 0, which establishes our claim. We have from the GF and Lemma 7 that

det
dt

= −∂L

∂e
(et, wt = 0) = −2EX [(f1X + f2)X] et = −2π1(f1 + f2)et, (72)

and

f1 + f2 = − f2
π1

+ f2 = −π0

π1
f2 = −π0

π1

[
σ

(
(b⋆)t −

e2t
2

)
− p

]
= −π0

π1

[(
1 + exp

(
−(b⋆)t +

e2t
2

))−1

− p

]

= −π0

π1

1 +

2xt

p
q − 1 +

√(
p
q − 1

)2
+ 4 · p

q · xt

−1

− p

 , xt ≜ exp(e2t). (73)

Defining

g(x) ≜
2x

p
q − 1 +

√(
p
q − 1

)2
+ 4 · p

q · x
, (74)

46

and substituting Eq. (74) and Eq. (73) in Eq. (72), we obtain

det
dt

= 2π0

(
1

1 + g(xt)
− p

)
· et. (75)

Since xt = exp(e2t) = exp(−e2t), in view of Eq. (75), with out loss of generality, we can assume
that e0 > 0 and show that det

dt < 0 for all t ≥ 0. That is, the RHS Eq. (75) is negative. Note that

xt ≥ 1 since xt = exp(e2t) and g(xt) > 0 since the denominator p
q −1+

√(
p
q − 1

)2
+ 4 · p

q · xt >
p
q − 1 + p

q + 1 = 2 · p
q > 0. Further g(1) = q

p and limx→∞ g(x) = ∞. If we show that g(x) is
increasing in x for x ≥ 1, it implies 1

1+g(x) − p < 1
1+g(1) − p = 1

1+ q
p
− p = − p

p+q (p+ q − 1) < 0.

Thus the gradient in Eq. (75) remains negative starting at t = 0 and hence the sequence (et)t≥0 will be

bounded. Now it remains to show g(·) is increasing, i.e. g′(·) > 0. Defining C =
(

p
q − 1

)
/
(
2
√

p
q

)
and D = C2, we have that g(x) upto a postive scaling is

g(x) =
x

C +
√
x+D

.

Hence

g′(x) =
C +

√
x+D − x

2
√
x+D

(C +
√
x+D)2

.

Thus it suffices to show that h1(x) ≜ C +
√
x+D > h2(x) ≜ x

2
√
x+D

for x ≥ 1. Note that
h1(1)− h2(1) is given by

h1(1)− h2(1) =

p
q − 1

2
√

p
q

+

√√√√√1 +

 p
q − 1

2
√

p
q

2

− 1

2

√
1 +

(
p
q−1

2
√

p
q

)2

=

√
p

q
−

√
p
q

1 + p
q

> 0.

Now we show that h′(x) > h′
2(x) for all x ≥ 1 which implies that h1(x) > h2(x) for all x ≥ 1, thus

establishing our claim. To this end, we have that

h′
1(x)− h′

2(x) =
1

2
√
x+D

−

√
x+D − x

2
√
x+D

2(x+D)

=
x

2
√
x+D(x+D)

> 0.

This proves our claim that g(·) is increasing and hence (et)t≥0, and consequently (θt)t≥0, is bounded
when θ0 ∈ e-axis.

Now let’s assume that θ0 = (e0, w0) ∈ R2 \ e-axis. Since (θt)t≥0 ⊆ R2 \ e-axis, it follows that
the loss L(·) is analytic on the trajectory (since the logistic function is analytic), and hence by [1,
Theorem 2.2], it follows that limt→∞ ∥θt∥ exists. Now we show that limt→∞ ∥θt∥ ≠ ∞, which
implies the desired result about boundedness. To show limt→∞ ∥θt∥ ≠ ∞, we show that there exists
a large B > 0 such that for any θt = (e, w) ∈ R2 with ∥(e, w)∥ ≥ B , the velocity vector dθ

dt points
inwards into the ball of radius B and thus the trajectory always stays inside this ball, and hence
bounded. To establish this, let’s denote (et, wt) = (e, w) with the dependence on time implicitly
assumed. Then by the definition of GF and the gradient expressions in Lemma 7, we have that

de

dt
= −∂L

∂e
(θt) = −2E[(f1X + f2)X] · (1 + 2w|w|)e (76)

dw

dt
= −∂L

∂w
(θt) = −E[(f1X + f2)X] · 4e2|w|, (77)

47

where f1 = σ
(
2e2w|w|+ b⋆ +

e2

2

)
+ q − 1− σ

(
b⋆ − e2

2

)
+ p, and f2 = σ

(
b⋆ − e2

2

)
− p with

π1f1 + f2 = 0. Given that only de
dt flips in sign under the transformation (e, w) 7→ (−e, w), with out

loss of generality we can assume e > 0. Now let’s also assume w > 0. Thus, in view of Eq. (76)
and GF, to show that the derivative points inwards, it suffices to show that E[(f1X + f2)X] > 0 for
reasonably large B with ∥(e, w)∥ = B. Similar to Eq. (73) and Eq. (74) above, using the relation
π1f1 + f2 = 0, we obtain

E[(f1X + f2)X] = π1(f1 + f2) = −π0

(
1

1 + g(x)
− p

)
, x ≜ exp(e2(1 + 2w|w|)). (78)

Using the fact that g(x) is increasing for x ≥ 1 with limx→∞ g(x) = ∞, and |w| = w > 0, we can
chose a B > 0 such that for any ∥(e, w)∥ ≥ B, in Eq. (78) we have 1/(1 + g(x)) < p and hence
E[(f1X + f2)X] > 0. This finishes the proof of our claim. The proof for w < 0 is similar, where we
make use of the fact that limx→0 g(x) = 0 to show E[(f1X + f2)X] < 0 for e, w reasonably large.

(ii) limt→∞ θt = θlim. Since the logistic function ℓlog(·) is analytic, it follows from Lemma 6 that
the loss L(θ) is analytic too whenever w ̸= 0. On the other hand, when w = 0, it’s easy to see that
L is an analytic function of e ∈ R. By Lemma 9, we know that if w0 ̸= 0, wt ̸= 0 and if w0 = 0,
wt = 0 for all t ≥ 0. Thus the loss is analytic on the trajectory for all t ≥ 0. Since the trajectory is
bounded, it follows from Łojasiewicz’s theorem [1, Theorem 2.2] that there exists a θlim ∈ R2 such
that limt→∞ θt = θlim.

(iii) limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0. Since the trajectory is bounded, it follows from [2,
Theorem 2] that the gradient converges to zero, i.e. limt→∞ ∥∇L(θt)∥ = 0. Since ∇L(·) is a
continuous function and limt→∞ θt = θlim, we have limt→∞ ∥∇L(θt)∥ = ∥∇L(θlim)∥ = 0.

M.3 Proof of Lemma 11

Proof. Since the energy function E(·, ·) in Eq. (48) is a continuous function in R2 \ e-axis, and any
trajectory (θt)t≥0 with intialization θ ∈ R2 \ e-axis stays in R2 \ e-axis for all t ≥ 0 (Lemma 9), it
follows that limt→∞ E(θt) = E(θlim) = E(θ0). As ∇L(θlim) = 0 from Lemma 10, it follows that
θlim lies at the intersection of the contour line E(e, w) = E0 with the set of critical points of L in R2.

On the other hand, if θ0 ∈ e-axis, we have θt ∈ e-axis from Lemma 9 for all t ≥ 0. Hence
θlim ∈ e-axis.

M.4 Proof of Lemma 12

Proof. Recall that f : R \ {0} → R, defined as f(w) ≜ E(e = 0, w) = −(w2 + sign(w) · log |w|).
If w < 0, we have

f(w) = −(w2 − log(−w)), f ′(w) = −2w +
1

w
.

Hence f ′(w) ≥ 0 for w ∈ (−∞,−1/
√
2] and f ′(w) ≤ 0 for w ∈ [−1/

√
2, 0) with f ′(− 1√

2
) = 0.

It’s also straightforward to see that limw→−∞ f(w) = −∞, limw→0− f(w) = −∞, and
f(−1/

√
2) = Esad (by the definition of f). This establishes (i), (ii), and (iii).

On the other hand, for w > 0, we have f(w) = −(w2+logw) and f ′(w) = −(2w+1/w). Hence f
is monotonically decreasing for w > 0 with limw→0+ f(w) = ∞ and limw→∞ f(w) = −∞. Note
that w = 0 acts as an energy barrier since limw→0− f(w) = −∞ whereas limw→0+ f(w) = ∞.

48

N Proofs of lemmas in App. G

N.1 Proof of Lemma 13

Proof. First we recall the loss with the bias L(θ, b) from Eq. (41):
L(θ, b) = EX,Y [ℓlog ((2Y − 1) · logitX(θ, b))] ,

where logitX(θ, b) = e2
[(
X − 1

2

) (
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b with θ =

(e, w, a). Using the fact that ℓ′log(z) = σ(z)−1 and 2Y −1 ∈ {±1}, we have for any θ ∈ {e, w, a, b}
that
∇θL = E [(σ((2Y − 1) · logitX)− 1) (2Y − 1) · ∇θlogitX] = E [(σ(logitX)− Y) · ∇θlogitX] .

(79)

Now we simplify σ(logitX) using the fact that X ∈ {0, 1}:

σ(logitX) = σ

(
e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= X σ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
︸ ︷︷ ︸

≜ϕ1

+ (1−X)σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
︸ ︷︷ ︸

≜ϕ0

= Xϕ1 + (1−X)ϕ0

= X(ϕ1 − ϕ0) + ϕ0.

Thus the gradients in Eq. (79) are given by
∇θL = −E [(Y −X(ϕ1 − ϕ0)− ϕ0)∇θlogitX]

= −EX

[
Exn+1

1
[(E[Y | X]−X(ϕ1 − ϕ0)− ϕ0)∇θlogitX]

]
= −EX [((1− p− q)X + p−X(ϕ1 − ϕ0)− ϕ0)∇θlogitX]

= −EX

1− p− q − ϕ1 + ϕ0︸ ︷︷ ︸
f1

X + p− ϕ0︸ ︷︷ ︸
f2

∇θlogitX

= −EX [(f1X + f2)∇θlogitX] .

(80)

Now we compute the individual gradients with respect to e, w, a and b. Recall that

logitX = e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b.

Thus,

∇elogitX = 2e

[(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ e2

[
2ae

(
X − 1

2

)
(1 + 2w|w|) + wsign

(
w
(
1 + ae2

))
(2ae)

]
= 2e

(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + 2ew|w(1 + ae2)|

+ 2e3a

(
X − 1

2

)
(1 + 2w|w|) + 2e3awsign

(
w
(
1 + ae2

))
= 2e

(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + 2e3a

(
X − 1

2

)
(1 + 2w|w|)

+ 2ew|w(1 + ae2)|+ 2e3awsign
(
w
(
1 + ae2

))
.

49

Substituting the above equation in Eq. (80), we obtain

∇eL = −
(
E
[
(f1X + f2)

(
X − 1

2

)])
· 2e

(
1 + ae2

)
(1 + 2w|w|)

−
(
E
[
(f1X + f2)

(
X − 1

2

)])
· 2e3a (1 + 2w|w|)

− (E [(f1X + f2)]) · 2ew|w(1 + ae2)|
− (E [(f1X + f2)]) · 2e3aw sign

(
w
(
1 + ae2

))
.

Now we compute the derivative with respect to w.

logitX = e2
[(

X − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

⇒ ∇wlogitX = 2e2
(
X − 1

2

)(
1 + ae2

)
(|w|+ sign (w)w)

+ e2
[
|w(1 + ae2)|+ w

(
1 + ae2

)
sign

(
w
(
1 + ae2

))]
⇒ ∇wL = −

(
E
[
(f1X + f2)

(
X − 1

2

)])
2e2
(
1 + ae2

)
(|w|+ sign (w)w)

− (E [(f1X + f2)]) e
2
[
|w(1 + ae2)|+ w

(
1 + ae2

)
sign

(
w
(
1 + ae2

))]
.

Similarly, for a:

logitX = e2
[(

X − 1

2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

⇒ ∇alogitX = e4
(
X − 1

2

)(
1 + ae2

)
(1 + 2w|w|)

+ e4w2sign
(
w(1 + ae2)

)
⇒ ∇aL = −

(
E
[
(f1X + f2)

(
X − 1

2

)])
e4 (1 + 2w|w|)

− (E [(f1X + f2)]) e
4w2sign

(
w(1 + ae2)

)
.

Finally, since ∇blogitX = 1, it follows from Eq. (80) that

∇bL = −E [f1X + f2] . (81)

For the optimal b⋆, we have ∇bL = 0 and hence E [f1X + f2] = 0, simplifying the expressions for
the gradients of e, w, and a above. In fact, there exists a closed form expression for b⋆ in terms of
e, w, and a. Recall from Eq. (80) that

−f1 = σ(z1)− σ(z2) + p+ q − 1,

−f2 = σ(z2)− p,

z1 ≜ e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b,

z2 ≜ e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b.

(82)

Substituting Eq. (82) in Eq. (81) and setting the gradient to zero there, we have

−EX [f1X + f2] = (σ(z1)− σ(z2) + p+ q − 1)E[X] + σ(z2)− p

= (σ(z1)− σ(z2) + p+ q − 1)π1 + σ(z2)− p = 0.

50

Simplifying,

(σ(z1)− σ(z2) + p+ q − 1)π1 = p− σ(z2)

⇒ (σ(z1)− 1)π1 − σ(z2)π1 + p = p− σ(z2)

⇒ (σ(z1)− 1)π1 = σ(z2)(π1 − 1)

⇒ σ(z2)

1− σ(z1)
=

π1

1− π1
=

p

q
,

Using the definition of the sigmoid function and rearranging,

1 + exp(z1)

1 + exp(−z2)
=

p

q

⇒ exp(z1) + 1 =
p

q
(1 + exp(−z2))

⇒ exp(2z1) + exp(z1) =
p

q
exp(z1) +

p

q
exp(z1 − z2)

⇒ (exp(z1))
2 + exp(z1)(1−

p

q
)− p

q
· exp(z1 − z2) = 0.

(83)

By definitions of z1 and z2 in Eq. (82), we have z1 − z2 = e2(1 + ae2)(1 + 2w|w|) and thus
A ≜ exp(z1 − z2) = exp(e2(1 + ae2)(1 + 2w|w|)). Thus the quadratic equation in Eq. (83)
simplifies to

(exp(z1))
2 + exp(z1)(1−

p

q
)− p

q
·A = 0.

On solving the quadratic equation for exp(z1):

exp(z1) =
1

2

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

⇒ z1 = log

1

2

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

⇒ b⋆ = log

1

2

p
q
− 1 +

√(
p

q
− 1

)2

+ 4 · p
q
·A

− e2

[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
.

Note that when a = 0 above, we recover the expression for the optimal bias in Lemma 5. This
concludes the proof.

N.2 Proofs of Thm. 9 and Thm. 10

We prove Thm. 9 and Thm. 10 below. Note that Thm. 10 directly follows from the former by
removing the bias b, since for any critical point γ = (e, w, b, a) ∈ R4 with ∇L(γ) = 0, the bias b is
already the optimal one corresponding to θ = (e, w, a) ∈ R3, i.e. b = b⋆(θ) = argminb∈R L(θ, b).
This is similar to the proof of Thm. 1, which follows from Thm. 7.

Now we prove Thm. 9.

51

Proof. We characterize the set of global minima first.

Set of all global minima. Let γ⋆ ∈ R4 be arbitrary. From [23, Lemma 1], we have that γ⋆ is
a global minimum for the loss L(·) in Eq. (23) if and only if its prediction probability satisfies
fγ⋆

(xn
1) = P (xn+1 = 1 | xn), the Markov kernel. Since the input {xn}Nn=1 ∼ (π(p, q),P (p, q)),

we have that

P (xn+1 = 1 | xn) = (1− xn)p+ xn(1− q) = (1− p− q)xn + p. (84)

On the other hand, by definition, from Eq. (3), fγ⋆
(xn

1) =

σ
(
e2
[(
xn − 1

2

) (
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b
)
, where γ⋆ = (e, w, b, a). Since

xn ∈ {0, 1}, this can be further simplified to

fγ⋆
(xn

1) = σ

(
e2
[(

xn − 1

2

)(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= xnσ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
+ (1− xn)σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= xnσ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
− xnσ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
+ σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
.

(85)

Since both fγ⋆
(xn

1) and P (xn+1 = 1 | xn) are linear functions of xn, equating them for all vallues
of xn ∈ {0, 1} implies that the respective coeffecients in these functions in Eq. (84) and Eq. (85) are
also equal, i.e.

1− p− q = σ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
− σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
,

p = σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
,

(86)

and hence

σ

(
e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= 1− q,

σ

(
e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b

)
= p.

(87)

Since σ(z) = y for y ∈ (0, 1) implies z = log y
1−y , Eq. (87) can be rewritten as

e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b = log

1− q

q
,

e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b = log

p

1− p
.

52

Adding and subtracting the above two equations, we obtain

e2w|w(1 + ae2)|+ b =
1

2
log

p(1− q)

q(1− p)
,

e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq
.

(88)

Thus γ⋆ ∈ R4 is a global minimum for L(·) if and only if it satisfies Eq. (88). It’s easy to see that γ⋆
is already a critical point for L as Eq. (86) is equivalent to f1 = f2 = 0 in Lemma 13. Thus, the set
of all global minimum Γ⋆(p, q) is given by

Γ⋆(p, q) ≜ {γ⋆ = (e, w, b, a) ∈ R4 : e2w|w(1 + ae2)|+ b =
1

2
log

p(1− q)

q(1− p)
,

e2
(
1 + ae2

)
(1 + 2w|w|) = log

(1− q)(1− p)

pq
}.

Since the prediction fγ⋆
(·) equals the Markov kernel for any γ⋆ ∈ Γ⋆, it follows from Thm. 4 (or [23,

Lemma 1]) that L(γ⋆) = H(xn+1 | xn), the entropy rate of the Markov chain. Now we characterize
the remaining set of stationary points.

Non-global-min critical points. For any critical point γ = (e, w, a, b) ∈ R4, we have from the
gradient expressions in Lemma 13 that (denoting −f1 and −f2 from the lemma as f1 and f2)
respectively)

∂L

∂b
= EX [f1X + f2] = 0,

∂L

∂e
= EX

[
(f1X + f2)

(
X − 1

2

)]
2e
(
1 + ae2

)
(1 + 2w|w|)

+ EX

[
(f1X + f2)

(
X − 1

2

)]
2e3a (1 + 2w|w|) = 0,

∂L

∂w
= EX

[
(f1X + f2)

(
X − 1

2

)]
2e2
(
1 + ae2

)
(|w|+ sign (w)w) = 0,

∂L

∂a
= EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|) = 0.

(89)

From Eq. (89), we have that EX [f1X + f2] = 0. If EX

[
(f1X + f2)

(
X − 1

2

)]
= E[(f1X +

f2)X] = 0, we have that f1 = f2 = 0, implying γ is a global minimum. Hence without loss of
generality, assume that EX

[
(f1X + f2)

(
X − 1

2

)]
̸= 0. Then we can partition the above set of

equations into the following regions of stationarity:

(i) EX [f1X + f2] = 0, e = 0,

(ii) EX [f1X + f2] = 0, e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0.

Slightly changing the variable order, for any γ = (b, e, w, a) ∈ R4, we define

H(γ) ≜ ∇2L(γ) =

∂2L
∂b2

∂2L
∂b∂e

∂2L
∂b∂w

∂2L
∂b∂a

∂2L
∂e∂b

∂2L
∂e2

∂2L
∂e∂w

∂2L
∂e∂a

∂2L
∂w∂b

∂2L
∂w∂e

∂2L
∂w2

∂2L
∂w∂a

∂2L
∂a∂b

∂2L
∂a∂e

∂2L
∂a∂w

∂2L
∂a2

∈ R4×4. (90)

53

Recall that
f1 = σ(z1)− σ(z2) + p+ q − 1,

f2 = σ(z2)− p,

z1 ≜ e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b,

z2 ≜ e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b.

From Eq. (89), we see that the second derivaties of L depend on the first-derivatives of f1 and
f2, which we now compute. Recall that the derivative of the sigmoid function obeys σ′(z) =
σ(z)(1− σ(z)) = σ(z)σ(−z) for any z ∈ R. Now the gradients of f1 and f2 with respect to b, e, w
and a are

∂f1
∂b

= σ(z1)σ(−z1)− σ(z2)σ(−z2),

∂f2
∂b

= σ(z2)σ(−z2),

∂f1
∂e

= σ(z1)σ(−z1)

{
2e

[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]}
+ σ(z1)σ(−z1)

{
2ae3

[
1

2
(1 + 2w|w|) + w|w|sign(1 + 2w|w|)

]}
− σ(z2)σ(−z2)

{
2e

[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]}
− σ(z2)σ(−z2)

{
2ae3

[
−1

2
(1 + 2w|w|) + w|w|sign(1 + 2w|w|)

]}
∂f2
∂e

= σ(z2)σ(−z2)

{
2e

[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]}
+ σ(z2)σ(−z2)

{
2ae3

[
−1

2
(1 + 2w|w|) + w|w|sign(1 + 2w|w|)

]}
∂f1
∂w

= σ(z1)σ(−z1)

{
2e2
[
1

2

(
1 + ae2

)
|w|+ |w||1 + ae2|

]}
− σ(z2)σ(−z2)

{
2e2
[
−1

2

(
1 + ae2

)
|w|+ |w||1 + ae2|

]}
,

∂f2
∂w

=

{
2e2
[
−1

2

(
1 + ae2

)
|w|+ |w||1 + ae2|

]}
,

∂f1
∂a

= σ(z1)σ(−z1)

{
e4
[
1

2
(1 + 2w|w|) + w|w|sign

(
1 + ae2

)]}
− σ(z2)σ(−z2)

{
e4
[
−1

2
(1 + 2w|w|) + w|w|sign

(
1 + ae2)

)]}
,

∂f2
∂a

= σ(z2)σ(−z2)

{
e4
[
−1

2
(1 + 2w|w|) + w|w|sign

(
1 + ae2

)]}
.

(91)

Now we characterize the first set of critical points.

(i) Stationary points with EX [f1X + f2] = 0, e = 0. When e = 0, we have that z1 = z2 = b.
Hence,

f1 = σ(b) + p+ q − 1− σ(b) = p+ q − 1,

f2 = σ(b)− p.

54

Thus, EX [f1X + f2] = (p+ q − 1)EX [X]+σ(b)−p = (p+ q − 1)π1+σ(b)−p = 0. Rearrang-
ing and simplifying, σ(b) = p

p+q and hence b = log p
q . Using the fact that σ

(
log p

q

)
= p

p+q = π1

and σ
(
− log p

q

)
= q

p+q = π0, the above gradients evaluated for any γ = (b = log p
q , e = 0, w, a)

further reduce to
∂f1
∂b

∣∣∣∣
γ

= 0,
∂f2
∂b

∣∣∣∣
γ

= π0π1,

∂f1
∂e

∣∣∣∣
γ

= 0,
∂f2
∂e

∣∣∣∣
γ

= 0,

∂f1
∂w

∣∣∣∣
γ

= 0,
∂f2
∂w

∣∣∣∣
γ

= 0,

∂f1
∂a

∣∣∣∣
γ

= 0,
∂f2
∂a

∣∣∣∣
γ

= 0.

(92)

Now substituting Eq. (92) when computing the second-derivatives of L in Eq. (89), we obtain

∂2L

∂b2

∣∣∣∣
γ

= EX

[
∂f1
∂b

∣∣∣∣
γ

X +
∂f2
∂b

∣∣∣∣
γ

]
= π0π1,

∂2L

∂b∂e

∣∣∣∣
γ

= EX

[
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

]
= 0,

∂2L

∂b∂w

∣∣∣∣
γ

= EX

[
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

∣∣∣∣
γ

]
= 0,

∂2L

∂b∂a

∣∣∣∣
γ

= EX

[
∂f1
∂a

∣∣∣∣
γ

X +
∂f2
∂a

∣∣∣∣
γ

]
= 0,

∂2L

∂e2

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
(1 + 2w|w|)

∣∣∣∣
γ

+ EX

[
(f1X + f2)

(
X − 1

2

)]
4e2a (1 + 2w|w|)

∣∣∣∣
γ︸ ︷︷ ︸

0

+ EX

[(
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

)(
X − 1

2

)]
2
(
1 + ae2

)
(1 + 2w|w|)︸ ︷︷ ︸

0

= EX [(2f1(1 + 2w|w|)− f1 + 2f2(1 + 2w|w|)X − f2]

∣∣∣∣
γ

= EX [(f1(1 + 4w|w|) + f2(2 + 4w|w|)X − f2]

∣∣∣∣
γ

= (f1(1 + 4w|w|) + f2(2 + 4w|w|))π1 − f2

∣∣∣∣
γ

(a)
= ((p+ q − 1)(1 + 4w|w|)− π1(p+ q − 1)(2 + 4w|w|))π1 + π1(p+ q − 1)

= π1(p+ q − 1) (1 + 4w|w| − π1(2 + 4w|w|) + 1)

(b)
= 2π1π0(p+ q − 1)(1 + 2w|w|),

(93)

where (a) follows from the fact that f1|γ = p+q−1, f2|γ = σ(b)−p = p
p+q−p = −p

p+q (p+q−1) =

−π1(p+ q − 1) and (b) from 1− π1 = π0. Returning to the remaining second derivatives,

55

∂2L

∂e∂w

∣∣∣∣
γ

=
∂

∂e
EX

[
(f1X + f2)

(
X − 1

2

)]
4e2
(
1 + ae2

)
|w|
∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)] (
8e
(
1 + ae2

)
|w|+ 8e3a|w|

) ∣∣∣∣
γ

+ EX

[(
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

)(
X − 1

2

)]
4e2
(
1 + ae2

)
(|w|)

= 0,

∂2L

∂e∂a

∣∣∣∣
γ

=
∂

∂e
EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
4e3 (1 + 2w|w|)

∣∣∣∣
γ

+ EX

[(
∂f1
∂e

∣∣∣∣
γ

X +
∂f2
∂e

∣∣∣∣
γ

)(
X − 1

2

)]
e4 (1 + 2w|w|)

= 0,

∂2L

∂w2

∣∣∣∣
γ

=
∂

∂w
EX

[
(f1X + f2)

(
X − 1

2

)]
4e2
(
1 + ae2

)
|w|
∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
4e2
(
1 + ae2

)
sign(w)

+ EX

[(
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

∣∣∣∣
γ

)(
X − 1

2

)]
4e2
(
1 + ae2

)
|w|

= 0,

∂2L

∂w∂a

∣∣∣∣
γ

=
∂

∂w
EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
2e4|w|

∣∣∣∣
γ

+ EX

[(
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

)∣∣∣∣
γ

]
e4 (1 + 2w|w|)

= 0,

∂2L

∂a2

∣∣∣∣
γ

=
∂

∂a
EX

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

∣∣∣∣
γ

= EX

[
(f1X + f2)

(
X − 1

2

)]
2e4|w|

∣∣∣∣
γ

+ EX

[(
∂f1
∂w

∣∣∣∣
γ

X +
∂f2
∂w

)∣∣∣∣
γ

]
e4 (1 + 2w|w|)

= 0.

(94)

Congregating all the second derivatives from Eq. (93) and Eq. (94) into the Hessian H(γ) in Eq. (90),
we finally obtain

H(γ) = π0π1

1 0 0 0
0 2(p+ q − 1)(1 + 2w|w|) 0 0
0 0 0 0
0 0 0 0

 ,

56

which is identical to the Hessian obtained in the proof of Thm. 7 (App. J.2) for e = 0. Thus it follows
that Γmin(p, q) ⊆ R4 and Γsad ⊆ R4 defined below are a set of local minima and saddle points
respectively:

Γmin(p, q) ≜

{
γmin = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) > 0, b = log

p

q

}
,

Γsad(p, q) ≜

{
γsad = (e, w, b, a) ∈ R4 : e = 0, (p+ q − 1)(1 + 2w|w|) ≤ 0, b = log

p

q

}
.

Now we focus on the remaining set of critical points.

(ii) Stationary points with EX [f1X + f2] = 0, e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0. For this set of
points, the Hessian remains undefined because ∂f1

∂e ,
∂f2
∂e ,

∂f1
∂a , ∂f2

∂a do not exist (Eq. (91)). This non-
existence arises since sign

(
1 + ae2

)
is undefine 1 + ae2 = 0. However, even in this scenario,when

e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0, we have z1 = z2 = b. Hence,

f1 = σ(b) + p+ q − 1− σ(b) = p+ q − 1,

f2 = σ(b)− p.

Thus the expectation term EX [f1X + f2] = (p+ q − 1)EX [X] + σ(b) − p = (p+ q − 1)π1 +
σ(b)− p = 0. Simplifying, σ(b) = p

p+q , which implies b = log p
q .

We could attempt to understand the characterization of the points on this manifold through local
perturbation analysis. However, in this work, we classify them as stationary points and leave the
comprehensive characterization for future research. This set of points Γstation(p, q) ⊆ R4 is defined
as

Γstation(p, q) ≜

{
γmin = (e, w, b, a) ∈ R4 : e ̸= 0, 1 + ae2 = 0, 1 + 2w|w| = 0, b = log

p

q

}
.

This concludes the proof.

N.3 Proof of Lemma 14

Proof. Recall from Lemma 13 that for θ = (e, w, a) ∈ R3, we have

∂L

∂e
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e

(
1 + ae2

)
(1 + 2w|w|)

− E
[
(f1X + f2)

(
X − 1

2

)]
· 2e3a (1 + 2w|w|) ,

∂L

∂w
= −E

[
(f1X + f2)

(
X − 1

2

)]
· 2e2

(
1 + ae2

)
(|w|+ sign (w)w) ,

∂L

∂a
= −E

[
(f1X + f2)

(
X − 1

2

)]
· e4 (1 + 2w|w|) ,

where X ∈ {0, 1} is a Bernoulli random variable with X ∼ Bern(p/(p+ q)), and

f1 ≜ 1− p− q − ϕ1 + ϕ0, f2 ≜ p− ϕ0,

ϕ1 ≜ σ

(
e2
(
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

ϕ0 ≜ σ

(
e2
(
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

)
+ b⋆

)
,

57

where the optimal bias b⋆ is obtained by solving π1f1 + f2 = 0. Using the definition of the gradient
flow that θ̇ = −∇L(θ) for θ = θt, we have

ẇ = −L(θ)

∂w
= E

[
(f1X + f2)

(
X − 1

2

)]
· 2e2

(
1 + ae2

)
(|w|+ sign (w)w)

⇒ ẇ

e2 (|w|+ sign (w)w)
= E

[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
.

(95)

Similarly for a,

ȧ = −L(θ)

∂a
= E

[
(f1X + f2)

(
X − 1

2

)]
e4 (1 + 2w|w|)

⇒ ȧ

e4
= E

[
(f1X + f2)

(
X − 1

2

)]
(1 + 2w|w|) .

(96)

Likewise, for e,

ė = −L(θ)

∂e
= E

[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
e (1 + 2w|w|)

+ E
[
(f1X + f2)

(
X − 1

2

)]
(1 + 2w|w|) 2e3a.

(97)

By substituting the expressions of Eq. (95) and Eq. (96) into Eq. (97):

ė = E
[
(f1X + f2)

(
X − 1

2

)]
2
(
1 + ae2

)
︸ ︷︷ ︸

Eq. (95)

e (1 + 2w|w|)

+ E
[
(f1X + f2)

(
X − 1

2

)]
(1 + 2w|w|)︸ ︷︷ ︸

Eq. (96)

2e3a.

(98)

Thus, we obtain

ė =
ẇ

2e2 (|w|+ sign (w)w)
e (1 + 2w|w|) + ȧ

e4
2e3a. (99)

On rearranging and simplifying:

eė =
ẇ

(|w|+ sign (w)w)
(1 + 2w|w|) + ȧ2a

⇒ eė =
ẇ

2 (|w|)
(1 + 2w|w|) + 2aȧ.

(100)

Integrating the above equation on both sides:

∫
eė =

∫
ẇ

4 (|w|)
(1 + 2w|w|) +

∫
2aȧ

⇒ e2(t)

2
=

sign(w(t)) · log |w(t)|+ w(t)2

2
+ a(t)2 +

c

2

⇒ e2(t) = sign(w(t)) · log |w(t)|+ w(t)2 + 2a(t)2 + c.

(101)

Note that here c ∈ R, is a constant that depends on the initial conditions. Thus the energy E(θt) =
E(θ0) for w0 ̸= 0.

58

N.4 Proofs of Lemma 16, Lemma 15, and Thm. 3

Proof. We note that the proofs of Lemma 16, Lemma 15 directly follow from that of their counterparts
Lemma 11 and Lemma 10 using Łojasiewicz’s theorem to characterize the convergence of the gradient
flow. Thm. 3 is a direct consequence of Lemma 16, Lemma 15.

N.5 Informal proof of Thm. 11

Proof. [Informal] For θ = (e, w, a), recall from Lemma 13 that the derivative of the loss L with
respect to e is

∂L

∂e
= EX

[
(f1X + f2)

(
X − 1

2

)]
2e
(
1 + ae2

)
(1 + 2w|w|)

+ EX

[
(f1X + f2)

(
X − 1

2

)]
2e3a (1 + 2w|w|) ,

where

f1 = σ(z1)− σ(z2) + p+ q − 1,

f2 = σ(z2)− p,

z1 ≜ e2
[
1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b,

z2 ≜ e2
[
−1

2

(
1 + ae2

)
(1 + 2w|w|) + w|w(1 + ae2)|

]
+ b.

Assuming the initialization is very small, making any product of quantities in θ = (e, w, a, b) much
smaller than the individual quantities. Therefore, we can consider these products to be approximately
zero. That is, ∀x, y ∈ θ, x ≥ xy & y ≥ xy & xy ≈ 0. Hence,

z1 = b,

z2 = b,

f1 = p+ q − 1,

f2 = σ(b)− p.

Hence the gradient with respect to e is

∂L

∂e
= 2EX [(f1X + f2) (X)] e. (102)

Simplifying the expectation term, EX [(f1X + f2)X] = (f1 + f2)π1 = f1π1 − f1π
2 = (p+ q −

1)(π1 − π2
1), where we used the fact that b is optimal in the above equations, specifically where

f1π1 + f2 = 0. Thus the gradient flow for the parameter e is governed by

ė = −∂L

∂e
= −(p+ q − 1)(π1 − π2

1)e ⇒ e = e0 exp(−(p+ q − 1)(π1 − π2
1)t).

Since (p+ q − 1)(π1 − π2
1) > 0, e → 0, which denotes it converges to the local minima.

59

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and precede the (optional) supplemental material. The checklist does NOT
count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims are in the form of theorems that are proved in Sections 3 and 4 and
experimental results in Sec. 5.2, for which our code is made available for reproducibility.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

60

Justification: Though we do not have an explicit section for limitations, we outline the
shortcomings in our approach in the conclusion and list them as future direction.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theorems are stated with required assumptions and proofs are provided
either in the appendix or the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all our code as open access and describe the experimental setup in
App. I.

61

Guidelines:
• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the code, available at https://anonymous.4open.
science/r/Local-to-Global-C70B/.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

62

https://anonymous.4open.science/r/Local-to-Global-C70B/
https://anonymous.4open.science/r/Local-to-Global-C70B/
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experiment details are in App. I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experiments are repeated 5 times.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: These are unrelated to the results of the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.

63

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All ethical practices were followed.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: No direct societal impacts.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No risk.

64

https://neurips.cc/public/EthicsGuidelines

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We use code from [26] which is cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No assets are releasd, but code is made publicly available.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

65

paperswithcode.com/datasets

Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

66

	Introduction
	Problem Setting
	Canonical Low-rank Parameterization
	Loss Landscape with Canonical Parameterization

	Learning Dynamics
	Gradient Flow with Attention

	Empirical Results
	Low-rank Parameters
	Effect of Initialization: Broader Implications
	Higher-Order and Multi-State Markov Chains

	Related Works
	Conclusion
	Single-layer transformer: architecture and results
	Loss landscape results

	Low-rank structure of the optima
	Canonical reparameterization
	Analysis of the loss with the bias, L(bold0mu mumu appendix,b), in Eq. (4) and Eq. (23)
	Technical lemmas

	Analysis of the loss without bias, L(bold0mu mumu appendix), and proof of Thm. 1
	Proof of Thm. 1

	Gradient flow analysis without attention
	Proof of Thm. 2
	Gradient flow dynamics for p+q<1

	Gradient flow analysis with attention
	Canonical parameterization with attention
	Analysis of the loss function L(bold0mu mumu subappendix) from Eq. (42)
	Gradient flow analysis
	Role of standard initialization

	Additional empirical results
	Gaussian initialization converges to low-rank
	Low-rank initialization stays low-rank

	Model architecture and hyper-parameters
	Proofs of theorems in App. D
	Proof of Thm. 7
	Proof of Thm. 6

	Proofs of technical lemmas in App. D
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4

	Proofs of lemmas in App. E
	Proof of Lemma 5
	Proof of Lemma 6
	Proof of Lemma 7
	Proof of Lemma 8

	Proofs of lemmas in App. F
	Proof of Lemma 9
	Proof of Lemma 10
	Proof of Lemma 11
	Proof of Lemma 12

	Proofs of lemmas in App. G
	Proof of Lemma 13
	Proofs of Thm. 9 and Thm. 10
	Proof of Lemma 14
	Proofs of Lemma 16, Lemma 15, and Thm. 3
	Informal proof of Thm. 11

