Under review as a conference paper at ICLR 2024

SOFT 1EP: ON THE EXPLORATION INEFFICACY OF
GRADIENT-BASED STRONG LOTTERY EXPLORATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Edge-popup (EP) is a de facto algorithm to find strong lottery tickets (SLT), the
sparse subnetworks that achieve high performance without weight updates. EP
finds the subnetworks by optimizing a score vector representing the importance
of each edge, and selects subnetworks given optimized scores. This paper first
shows that such a simple gradient-based method results in a suboptimal solution
due to the existence of dying edges. Specifically, we show that most edges are
never selected during the search process, i.e., EP might be trapped around the local
minima nearby random subnetworks and need help to search the entire spaces of
subnetworks effectively. We then propose a soft iterative edge-pop (Soft iEP) as a
simple mechanism to better explore search spaces. Unlike the standard iterative
pruning that masks out a certain amount of edges and thus induces a similar
problem to the dying edges, Soft iEP do not disable the bottom edges at each
cycle, i.e., leave a chance to be selected at the end regardless of whether it was
chosen at the former cycle. Empirical validations show that iEP with soft pruning
stably outperforms both EP and iEP w/ hard pruning on ImageNet, CIFAR-10, and
CIFAR-100 and reduces dying edges. Our results also provide new insight into
why iterative pruning helps to find good sparse networks.

1 INTRODUCTION

Ramanujan et al.| (2020); (Chijiwa et al.| (2021); [Yeo et al.| (2023) demonstrated that a randomly
initialized neural network contains sparse subnetworks that achieve comparable performance with
fully-trained dense networks. For example, Ramanujan et al.| (2020) shows that randomly initialized
WideResNet50 contains subnetworks that achieve comparable performance to trained ResNet34
without updating weights. Such sparse networks are called as strong lottery tickets (SLT), since it
shares the core concept with lottery tickets hypothesis (Frankle and Carbin, |2019) in a sense that both
suggest a randomly initialized over-parameterized networks contain subnetworks that attain good
properties. It has been raising attention on the phenomenon of SLT, not only its intriguing property
of the overparameterized random networks (Du et al.| [2018; |Allen-Zhu et al., [2019)), but also several
practical benefits including that (1) SLT is robustness to the binarization or quantization and weights
to save the memory footprint (Diffenderfer et al.| 2021} |Diffenderfer and Kailkhural [2021)), and (2)
unlearned weight can be reconstructed only by storing random seed and binary masks (Okoshi et al.|
2022)). [Hirose et al.[(2022) proposed specialized hardware to accelerate inference using the property.

Many subsequent works support the existence of SLT, both empirically (Ramanujan et al., [2020;
Chijiwa et al.,|2021; Sreenivasan et al., 2022} |Yeo et al., [2023)) and theoretically (Malach et al.,|2020;
Pensia et al.| |2020; |Orseau et al., 2020; Burkholz, 20225 da Cunha et al.||2022). Although the problem
of discovering a good subnetwork can be naturally cast as a combinatorial optimization (Korte et al.,
2011), it is usually intractable given a huge number of parameters. Instead, most prior methods
rely on edge-pop (EP) algorithm (Ramanujan et al., [2020), which cast the structure search as a
sort of stochastic optimization. Specifically, EP first assigns a real-valued score for each edge and
updates its score via the loss calculated using subnetworks selected based on the scores (e.g., by a
threshold). Prior studies show that EP can find SLT that is comparable with fully-trained networks
on various model sizes (from small conv to wide ResNet), datasets (including ImageNet), and tasks
(classification and generation (Ramanujan et al., [2020; |Yeo et al.| [2023)).

Under review as a conference paper at ICLR 2024

Initialization During training Termination

== Selected edges (4+4=8)
Dying edges (6+4 = 10)
Reverted edges (2+4=6)

% Dying Ratio = 10/24 (=42%)

Figure 1: Visualization of the dying edges. Black edges are selected at the current iteration, blue
edges are currently masked but selected at least once, and red edges (dying edges) are masked and
never selected at the time. The ratio of dying edges (dying ratio) is 42% in the example.

Despite the dominant use of EP, such a simple gradient-based method is not designed for combinatorial
optimization and leads to suboptimal subnetworks. To illustrate the problem, we introduce the notion
of dying edge, which represents an edge that is never activated during the optimization process of EP
(red edges in[Figure T)). Our empirical results show that the standard EP induces many dying edges,
e.g., 40% of edges are dying when training ResNet18 on CIFAR-10 when pruning approximately half
the edges, which leads to suboptimal performance. In other words, EP only searches areas nearby
randomly selected initial subnetworks, and can not fully explore entire search spaces.

Based on the observation, we propose soft iterative edge-popup (Soft iEP), which couple the success
in the standard lottery tickets hypothesis (LTH) and the dying edge problem introduced in this
paper. Similar to the iterative pruning in the standard LTH, Soft iEP repeatedly applies the edge-pop
algorithm with a gradually increasing prune rate after each cycle. However, the standard convention
in LTH, which we referred to as hard pruning that masks out a certain amount of edges before starting
the next cycle based on the current pruning ratio p, does not necessarily or even hurts the performance
in SLT. This is because hard pruning might filter out edges at the early cycle of iterative pruning and
induce a similar problem to the dying edge problem. Instead, we propose a soft version of iterative
pruning, called soft pruning, which gradually increases the pruning rate but does not entirely disable
the bottom p edges at each cycle. In other words, all edges can be selected at the end, regardless of
whether it was chosen at former cycles.

Note that it is true that the iterative pruning is well-known in the standard lottery tickets hypothesis
(LTH) (Frankle and Carbin, 2019; [Paul et all |2022); however, its benefits have not been fully
investigated in the context of SLT. Indeed, our results show that the standard iterative pruning used
in the LTH does not work well on the SLTH setup, especially in high sparsity region. Moreover,
the reason why iterative pruning helps to find LT is not fully understood (Zhang et al., 2021 |Paul
et al., [2022), making it nontrivial whether the same approach works well on different setups. Our
results suggest that understudied benefits of iterative pruning to ease the exploration inefficiency of
the gradient-based optimization.

Our empirical validations on image classification tasks using various datasets (ImageNet (Deng et al.,
2009), CIFAR-10, and CIFAR-100 (Krizhevsky et al.l 2009)) show that iEP with soft pruning stably
outperforms both EP and iEP w/ hard pruning on all datasets and model size (ResNet18, ResNet50,
ResNet101, and WideResNet50). Notably, it discovered a subnetwork that is sparser than ResNet-34
but exceeds the performance of trained dense ResNet34 by over 2.4% in the accuracy of ImageNet
(76.0% with 20M parameters). We also investigate the benefit of softness in iterative pruning from
the perspective of the exploration efficiency.

2 BACKGROUND

Definition 2.1 (Strong Lottery Ticket Hypothesis (SLTH)). Let g(x; 0) be a target dense network,
e.g. trained via standard gradient descent, with a test accuracy a. Consider a dense network f(x; 0y)
whose weights are randomly initialized (8y ~ Dy). There exists a mask m € {0, 1}“90” such that
f(x;m ® 6y) reaches a test accuracy a’ without any training, where @’ > a, and ||m|y < |6)].

Informally, strong lottery tickets hypothesis (SLTH) (Zhou et al., 2019; |Ramanujan et al.| [2020;
Malach et al., |2020) states that the randomly initialized networks themselves contain sparse subnet-
works that achieve comparable performance with trained networks. This paper refers to the mask
itself or the sparse subnetworks f(a;m © 6y) as strong lottery tickets (SLT).

Difference between SLTH and LTH. As the name suggests, the SLTH is closely related to the
lottery tickets hypothesis (LTH) (Frankle and Carbin, 2019; [Paul et al.l 2022)). Both hypotheses
suggest the existence of “good” and sparse subnetworks in sufficiently large, randomly connected

Under review as a conference paper at ICLR 2024

neural networks but differ in how they measure the “goodness” of subnetworks. Namely, The LTH
considers the subnetworks that reach good performance after training. SLTH considers the stronger
condition, where the subnetworks achieve good performance without training. Due to the difference,
they employ different methods to find subnetworks. Namely, LT is discovered based on the magnitude
of the weight after training, and SLT is discovered based on the score value that represents the
importance of each weight. This paper focuses on the finding of SLT.

Iterative Pruning and Rewinding. In LT, iterative pruning and rewinding are two components
dominantly used in practice to improve the performance of the subnetworks. To be more specific,
most studies in LT use iterative magnitude pruning, which iteratively prune weights based on the
magnitude of weights after training the network for a certain number of epochs. At the end of each
cycle, the weights and/or learning rate is rewinded to the certain epochs of training, and repeat the
process K times, which is known to be vital. However, it is not tailored for SLT, and the effectiveness
of these concepts in SLT is not fully investigated. Besides, the reason why iterative pruning is
necessary to find good subnetworks is still not fully understood (Zhang et al.,|2021; [Paul et al., [2022).
We discuss the benefit of iterative pruning with the dying edge problem introduced in this paper.

Theoretical Finding about SLTH Compared to LTH, SLTH is still under-investigated; however,
the existence of SLT has been validated both theoretically and empirically. Malach et al.| (2020)
provide a first proof of SLTH for fully connected networks with ReL U activation functions. They show
that a subnetwork hidden in a sufficiently large randomly initialized neural network can approximate
any target network with a high probability. Subsequently, [Pensia et al.|(2020); Orseau et al.| (2020)
derive tighter bounds regarding the required network size from approximating a target network. More
recently, Burkholz et al.|(2021) proved the existence of a much stronger version of lottery tickets,
called universal tickets, which are subnetworks that can be reused across a variety of tasks without
further training on the target tasks. However, these studies focus on the existence of strong lottery
tickets and do not provide an analysis of the behavior of EP widely used in empirical studies.

Empirical Finding about SLTH Besides the theoretical analysis, several studies have empirically
shown the existence of SLT. While it has not yet been called strong lottery tickets, a study by (Zhou
et al.l2019) is a pioneer work that showed it is possible to train networks only via weight masking.
However, due to the lack of a sophisticated masking algorithm, its performance was not good as with
the dense training, and empirical experiments are limited to small-scale datasets. Later, Ramanujan
et al.| (2020) proposed EP and showed that EP efficiently discovered SLT that performed on par with
the dense training. More recently, | Yeo et al.|(2023) investigates strong lottery tickets in generative
models, specifically generative adversarial networks, and shows that EP with moment matching loss
(Gretton et al.,[2006) can discover subnetworks that can generate good images on CelebA, FFHQ,
and LSUN with the similar amount of final parameters.

Ramanujan et al.[(2020) proposed an algorithm called Edge-Popup (EP), and subsequent works
also use EP. In the EP, a popup score s (s € R, s > 0) is assigned to each weight in the network,
representing the contribution of the weight to the network. The score is usually drawn from a uniform
distribution. Given a pruning ratio k, each layer’s top-(1 — k) highest scores are selected in the
forward path. The pruning ratio % is usually fixed during training and is the same for each layer,
but it can be dynamic and different for each layer. The prediction is then used to calculate the loss.
Let s as a randomly initialized scores corresponding to initialized weights 8y, m; € {0, 1}“90|
as a mask vector deterministically decided by s and prune rate k. While initial weights 8y can
be sampled from arbitral distributions, we mainly sample it from a signed constant distribution I/
introduced by Ramanujan et al.| (2020). Specifically, we set each weight as a constant except for
randomly chosen sign (+ or -), which means that the weights of layer [can be represented like
0y = [oh, —1*ol,~1xcl--- 1xol J=c'«[l,—1,—1,--- 1]. Following (Ramanujan et al.,
2020), we use the standard deviation of Kaiming Normal (He et al.|[2015) as the constant value.

Given a batch of data {(z;,;)} 2 ,, where B is a batch size, EP updates s by

B
s* = argmin Y _ L(f(zi;mj © 60),v:), (1)

where © represents element-wise product and L represents a loss function. EP uses stochastic
gradient descent (SGD) to solve the above optimization. As the gradient can not be naively computed
for unselected weights, EP uses a straight-through estimator (Bengio et al.|[2013)) to calculate the
gradient for scores; i.e., the gradient of the sign function is treated as the identity.

Under review as a conference paper at ICLR 2024

Trained Network Target Network EF9¢ Type of Dying Edges

Tme negative
O._ 8....0 ?glnEgt;?)ges
» O ““ ot False negative
O O ““ O O === dying edges
O g

Figure 2: Illustration of true negative dying edges (blue) and false negative dying edges (red). The
former is a dying edge that does not contribute to the prediction, i.e., not included in the target
network. The latter is a dying edge included in the target network and should be selected.

3 EXPLORATION INEFFICIENCY OF EP

As mentioned in the introduction, the dying edge is referred to as the edge that is never selected until
the termination of EP. visualize the concept of dying edge. In the black edges
represent selected edges, whose score s exceeds a threshold and thus is used for the current forward
path. The selected edges can be changed during the optimization, as the corresponding score matrix s
changed during optimization. We referred to such edges as reverted edges (blue dashed line). Finally,
at the termination, some edges might never be selected at all iterations. We call such edges as dying
edges since they never contributed to the forward path. Since EP uses a straight-through estimator,
scores corresponding to masked edges are updated, while the gradients are coarse compared to the
actual gradients. More generally, at each iteration ¢, we can calculate the dying ratio d; given the
sum of the history of mask m<, =3 m;:

Z;I:Gmt 635-,0
60| 7

1€1---t

dy = (@)
where d, o is a Kronecker delta. By definition, d; is monotonically decreased, and the initial dying
ratio dy is always equal to the pruning rate k, i.e., d; < dy = k. As a corollary, k — d, represents
the percentage of edges that are first masked but selected at least once during the training. The latter
metric is handy for comparing the behavior among different pruning ratios.

Intuitively, a higher dying ratio is a bad sign and indicates the exploration inefficacy of an algorithm,
as it means that many edges need to be better tested during the entire search process. However, it is
possible that some edges are actually useless and should be filtered out early as possible. In other
words, there are two types of dying edges: (1) true negative dying edge that is not included in the
target network and useless, and (2) false negative dying edge that is included in the target network
and should not be masked. [Figure 2] visualize the distinction between true negative and false negative
dying edges. Due to two types of dying edges, a low dying ratio could also lead to performance
degradation due to exploitation inefficacy. For example, if we choose the edges completely random at
every iteration, the dying ratio must be zero at some iteration, but it will not give good performance.
Unfortunately, it is impossible to distinguish these two types in practice because the target network is
unknown. Besides, even if we know or can assume the target network, an algorithm can find equally
good but different networks due to the symmetry of neural networks. Therefore, we mainly focus on
the simple dying ratio and investigate its relationship with the final performance.

Case study: EP induces a surprisingly high dying ratio. To analyze the behavior of EP, we first
quantify the dying ratio when applying EP on CIFAR-10 and SVHN. Specifically, we applied EP
to ResNet-18 following the configurations of (Ramanujan et al.,[2020). Namely, we
used SGD optimizer for 100 epochs with batch size 128, weight decay 0.0001, momentum 0.9, and
learning rate 0.1, decayed using a cosine annealing schedule. [Table T|show the final dying ratio dr
and k — dp with various pruning ratios k (20% to 83.2%). We repeated the same experiment with
different seeds four times and showed the average values. Since the standard deviation is extremely
low (e.g., le-4 when k = 0.2), we omit it for simplicity. The table shows that dr naturally increases
as we use larger k. For example, when k& = 0.200, the dying ratio is 0.028 for CIFAR-10, but when
k = 0.488, the dying ratio is 0.293, which means almost half of the masked edges are never selected.
In addition, show that £ — dr, which represents the fraction of edges that are masked at the
beginning of training but selected at the end, is around 0.20 in CIFAR-10 regardless of the choice of

Under review as a conference paper at ICLR 2024

Table 1: Dying ratio dp when applying EP with different pruning ratio k. k — dr represents the
percentage of edges that are first masked but selected at least once during the training.

k=dy | .200 .360 .488 .590 .672 .738 .790 .832
dr | .028 166 .293 .395 479 540 .606 .656
k—dp | 172 194 195 195 .193 .190 .184 .176

Table 2: Effect of hyperparameters (weight and score initialization) on test accuracy and dying ratio
(DR). As default parameters, we use (score initialization, weight initialization) = (Kaiming Uniform
(uniform), Signed Kaiming Constant (sc)), and the pruning rate is set at 0.7 in all experiments.

| Conv8 ResNet18
| CIFAR-10 SVHN CIFAR-10 SVHN

Test Acc DR Test Acc DR Test Acc DR Test Acc DR

|
|
So 6o ‘
89.61 41.77 96.16 34.07 93.19 52.31 96.77 50.64

scaled sc uniform
scaled sc normal
sc uniform
normal uniform

87.45 50.11 95.76 45.47 92.62 59.18 96.42 57.98
88.02 42.01 95.92 35.70 93.22 52.85 96.78 51.37
87.52 46.38 95.63 40.81 9243 54.57 96.73 52.69

k. Since the subnetworks are first selected entirely random at the first iteration, the results suggest
that EP might be trapped around the local minima nearby random subnetworks and need help to
search the entire spaces of subnetworks effectively. We also tested how the initialization of s and 6
affects the dying ratio in[Table 2} While the choice of initialization affects the dying ratio, the default
parameter is the best or on par in almost all cases (highest accuracy and lowest dying ratio). More
discussion on how the choice of the general hyperparameter (including learning rate, batch size, and

weight decay) could affect the dying ratio is discussed in the

4 PROPOSAL: SOFT ITERATIVE EDGE PoPUP

In this section, we propose a simple remedy to the dying edge problem induced by EP. Inspired by the
success of iterative pruning in the standard LTH, we propose soft iterative edge-pop to alleviate the
dying edge problem and facilitate better exploration. We first introduce iEP with hard pruning, which
follows the standard convention in LTH. We then propose a new mechanism called soft pruning to
solve the problem of hard pruning from the perspective of the dying edges.

4.1 ITERATIVE EDGE PoprUP (IEP) WITH HARD PRUNING

Suppose we want to prune the edges of a network 8, by a fraction of k. As described in[section 2}
the standard edge-pop always prunes edges by the fraction of k& from the beginning to the end, but
k can be dynamically changed during the search process. Iterative edge popup first masks p << k
percent of weights from the entire search space 8, and then at the second cycle, i.e., generate m;
using the standard EP with the pruning rate p. At the second cycle, iEP again masks p percent of
weights from m; © 60, and repeat the process until we reach the desired pruning ratio. We refer to
p as shrinkage rate to distinguish it from the target prune rate k. With the initial pruning ratio m,
(1 —m)(1 — p)*~! weights are remaining after i-th cycle. By default, we set p = m for simplicity.

While the general concept of iterative pruning is simple, there are several ways to repeat the process.

Fine tuning (FT) Fine-tuning starts the next cycle with the scores trained in the prior cycle. For
the learning rate -y, we use the final learning rate in the first iteration for the subsequent iterations,
following the convention in LTH (Li et al.,|2017; Liu et al.;2019). Note that, in the case of the LTH,
it is shown that fine-tuning-based iterative pruning can cause significant degradation (Renda et al.|
2020). Instead, most studies in LTH use a technique called rewinding, which restarts the optimization
from the initial weights 8, not the trained weights 7. Since we do not train weights, the same
approach is invalid, but we tested the following three rewinding approaches.

Score rewinding (SRw) Score rewinding retrains by rewinding both the learning rate and the
scores. The initial scores s are used as the initial value of the scores for every i-th cycle, and the
learning rate and scheduler are the same as those used in the first iteration. In the lottery hypothesis,

Under review as a conference paper at ICLR 2024

Table 3: Comparison of different iterative pruning algorithms tested in the paper. At i-th cycle, hard
iEP inheret m}_; and select p percent of edges from m}_,; ® wy. Contrary, soft iEP uses s;_; as
the initialization of score vectors but does not limit the search spaces. sq: initial scores, s;_;: learned
scores at prior cycle, y: initial learning rate, and 7;_1: learning rate at the end of cycle (i — 1).

Algorithm pruning rate k; score init s;;; learning rate search space

EP 1-—(1-p) S0 v 0o

Hard iEP w/ FT D si v m;_, ©6

w/ SRw P EN) ¥ m;_; ©60

w/ SRi p S0 ¥ m;_; © 6

w/ LR D sy y m;_; ©0
(Default) Soft iEPw/LR 1 — (1 —p)* s Y 0o
w/LR and w/ zero init 1 —(1—p)* m}_,©s_, 0 0o
w/SRw and w/ zeroinit 1 —(1—p)® m}_; ©sp ¥ 0o

it is typical to rewind to the initial weight values saved at the first iteration, and this is a commonly
used iterative method in IMP (Frankle et al., [2020).

Score reinitializing (SRi) Score reinitializing retrains by rewinding the learning rate, but the scores
are reinitialized. Therefore, the initial values of the scores for the i-th cycle are randomly initialized
§ ~ Dy. The learning rate is the same as in learning rate rewinding and SRw.

Learning rate rewinding (LR) Learning rate rewinding retrains by rewinding only the learning
rate. Although the initial values of the scores s in the ¢-th cycle are set to s;_1, the learning rate is
reset to the initial value and decayed by the same scheduler as the first iteration.

summarize the above-mentioned four variants of iEP. While these methods differ in what they
inherit, they share a common aspect of keeping the masks from the previous cycle fixed. We denote
this approach as hard pruning since it completely omits the bottom p edges after each cycle.

4.2 DRAWBACK OF ITERATIVE HARD PRUNING AND ITS REMEDY

One immediate advantage of iterative hard pruning is that it allows for setting a lower pruning rate in
each cycle. By completely removing the bottom p percent of edges that were not selected in each
cycle, achieving a desired pruning rate k£ through multiple iterations of smaller pruning is possible. As
shown in[Table T} the dying ratio decreases when the pruning rate is low, which seems reasonable at
first glance. However, the above explanation does not consider the possibility that edges masked in the
early stages were actually necessary, i.e., the existence of disguised dying edges. When performing
hard pruning in this manner, there is a possibility that, in the worst-case scenario, we are generating
false negative dying edges corresponding to the masks that have been removed so far.

We propose a new mechanism called soft pruning to alleviate the issue. Unlike hard pruning, soft
pruning does not entirely disable the bottom p edges at each cycle (Figure 9). Therefore, all edges can
be selected at the end, regardless of whether it was chosen at former cycles. Similar to hard pruning,
soft pruning also benefits from the lower pruning ratio, especially at the beginning of the iterative
process. Specifically, at each cycle, 4, soft iEP optimize [Equation I]inheriting scores of previous
cycle s7_; as the initial values of the scores. Note that, only LR rewinding and FT are applicable for
soft pruning since if we rewind the score it degenerates to the standard EP. Since FT often provides
worse performance, we use LR rewinding without mentioning otherwise.

It is worth noting that the proposed soft pruning is similar to the soft filter (channel) pruning (He
et al., 2018} |[Kang and Han| 2020) proposed in pruning in dense networks. Specifically, unlike hard
filter pruning which fixes the pruned filter, soft filter pruning assigns zero to the pruned weight at the
pruning phase but the weight of the pruned filter is to be updated during subsequent optimization.
Given that, we also compared different variants of soft pruning, which we denoted as soft pruning w/
zero init (the last row of [Table 3). However, we found that initializing the score to zero at the pruning
phase (the end of the cycle) induces the dying edge, and harts the performance (subsubsection C.2.1).

Since the primal difference between EP and soft iEP is whether the score is randomly initialized or
pre-trained on prior cycles (see[Table 3), the success of the soft iEP also indicates the importance of
the initialization to reduce the dying edges. If the edges with equal importance (or uncertainty) have

Under review as a conference paper at ICLR 2024

ResNet-18 / CIFAR10

76 Wide ResNet-50_»

o
(=]

le ResNet-50

ResNet-101 _—
Vd -

Test Accuracy (%)
%
S

S ’ / ResNet-101 Wide R—e—s‘rﬁz;so 70
573 ResNet-101__——""" Net-34 _
Q - ~
2 72 ResNet-101 §‘60
3 g
=71 p Dense g
A - EP 740
ResNet-50/ 3
R4 lieRand - Qmwa%ﬁ,q%v'\meqauamezm
ResNet.18 —— Hard iEP N S N e NN AN
69 < Soft iEP % of Weights Remaining
¢ ResNet-50
3 TS VRS 7w T T e EP —— Hard iEP (LR) % Hard {EP (SRi)
of Parameters (Millions) - Hard iEP (FT) —=— HardiEP (SRw) —=— SoftiEP (LR)
(a) ImageNet (b) CIFAR-10 and CIFAR-100

Figure 3: Comparing the performance of EP, iEP w/ hard pruning, and iEP w/ soft pruning. (a)
ImageNet, (b) CIFAR-10 and CIFAR-100. Both hard iEP and soft iEP use LR rewinding by default.

similar scores, the dying edge should be small since exchanging these edges becomes easier. The
randomly initialized scores do not exhibit such cluster behavior. Most scores of the distribution of the
scores leaned by soft iEP tended to be minimal values, while some took large values, i.e., soft iEP
first identifies good edges and assigns similar scores on other edges that still need to be explored.

5 EXPERIMENTS

ImageNet [Figure 3|(a) compared the subnetworks found by hard iEP (blue), soft iEP (red), EP
(green), IteRand (Chijiwa et al.| (2021)), yellow), and dense networks trained by the standard gradient
descent over weights (black). Regarding IteRand, we directly take the value from the original paper.
They do not provide results on Wide ResNet50. Following (Ramanujan et al.,[2020), the subnetworks
are optimized using the SGD optimizer for 100 epochs with a learning rate of 0.3, weight decay of
0.00003, and momentum of 0.875. The learning rate is decayed using the cosine annealing after a
5-epoch for warm-up. The batch size is set to 512, and the weight initialization method is Signed
Kaiming Constant. The number of iterations in iterative pruning is set to 3, and the percentage
of weights remaining in the last iteration is set to 30% by decreasing 0.3% at each iteration. We
tested models with various sizes (ResNet-50/101 and Wide ResNet-50) for the edge-pop and iEP, and
ResNet-18/34 for the standard weight training. For results other than iterative pruning, we cite the

results of (Ramanujan et al.} [2020; [Chijiwa et al., 2021).

We can make the following observations. (1) The subnetworks discovered by soft iEP provide superior
performance to all EP, IteRand, and trained dense networks across all model sizes. For example, with
WideResNet-50 as the search spaces, soft iEP achieves 76.0% accuracy with about 20M parameters,
which is about 2.7 points higher than EP and the dense training given a similar number of parameters.
(2) The performance gain over EP expands as the model size increases. The results suggest that the
standard EP can not handle large search spaces, but iEP (at least partially) cures the problem. (3) In
iEP, it can be observed that soft pruning generally achieves higher performance than hard pruning.

Note that, while the [Figure 3] (a) compares the Soft iEP and dense training given the same parameter
count (thus same inference FLOPS), there are several differences in other aspects among them.
For example, the dense training and EP require less training FLOPS since the proposed method
employs iterative training. Besides, dense training is not tailored to sparse training and thus can be
significantly improved by using advanced methods like LT (iterative magnitude pruning), RigL (Evci]
et al} [2020)), dynamic sparse trainig [2020), ITOP [2021), Free Tickets (Liuj
et al.,[2022)), Sup Tickets [2022), CigL [2023)), etc. To clarify this point, we

compared the dense LT with the proposed method and its variants, showing that the dense training
still has performance merits especially when we need higher sparsity (see [subsubsection C.2.1).
Nevertheless, the SLT-based method still has practical merits on the memory footprint as discussed
in the introduction, encouraging future research to fill the gap between dense training and SLT. For
example, 23M parameters (ResNet-50) can be stored as approximately 2.87M bytes (binary mask for

Under review as a conference paper at ICLR 2024

1 —@ Soft iEP w/ ResNet18 =+ EP w/ ResNetl8 |
—&~ Soft iEP w/ ResNet18x2 =M= EP w/ ResNet18x2 \

86 1 —® softiEp —— EP 86 1 —@ Soft iEP w/ ResNext29 —X- EP w/ ResNext29 \
== Soft iEP wf MC (N=3) == EP w/ MC (N=3) =&~ soft iEP w/ ConvMixer =»=- EP w/ ConvMixer “
84 T 84 T
0 \’w é)ca {\ %'L Qca ,G'\ 'eb'n’\ .;ab% 3 .',;9 ,_,;, '»9'1.»‘1- £ 0 \’w é)ca q"\ %'L Qca ,G'\ 'eb'n’\ 055& 3 .',;9 ?’\’W"b\’b"?\' £
Remaining ratio Remaining ratio
(a) w/ Multicoated tickets (b) Architecture

Figure 4: (a) Comparing performance of soft iEP and multicoated lottery tickets
[2022). We use a 3-coated supermask both for EP and Soft iEP and use the linear option proposed
in the original paper. (b) Soft iEP vs. EP with different architectures (ResNet18x2, ResNext, and
ConvMixer). Results on CIFAR100 are provided in fsubsubsection C.2.2}

each edge), while dense models require 46M bytes (if we use the standard 32 bits for storing each
edge). Structured pruning can further reduce the footprint of both SLT and dense networks.

CIFAR-10 and CIFAR-100 [Figure 3|(b) compares the performance of various retraining methods
discussed in|subsection 4.1} Here we show the results with ResNet18; the tendency is the same with
other architectures (e.g., VGG). We used the SGD for 100 epochs with the cosine annealing LR
scheduler. The batch size is set to 128, the learning rate to 0.1, the weight decay to 0.0001, and the
momentum to 0.9. We set the shrinkage rate p = 0.2 at each cycle. Similar to (a), the colors
correspond to different methods. We compare different rewinding techniques, namely fine-tuning
(FT), learning rate rewinding (LR), score rewinding (SRw), and score re-initializing (SRi). We repeat
the experiments with three seeds and report average performance and standard error. In addition,
we compare the proposed method with multicoated tickets (Okoshi et al} [2022)) in[Figure 4}a, and
compare EP and soft iEP on various backbone networks: ResNet18x2, ResNext(32x4d) (Xie et al.}
2016), and ConvMixer(256x8) (Trockman and Kolter} [2022))).

We can make the following observations. (1) soft iEP stably performs best across datasets and
remaining ratio, especially under the region of non-trivial remaining ratio (e.g., < 0.035). Hard iEP
with learning rate rewinding performs slightly better than other rewinding methods, but its differences
are marginal. The results suggest the merit of soft pruning. (2) Most retraining methods, except
fine-tuning, provide performance gain over EP. When comparing the maximum test accuracy of
ResNet-18, iterative pruning is 1.33 and 1.84 points higher than one-shot pruning on CIFAR-10
and CIFAR-100. (3) No rewinding (fine-tuning) performs poorly, even significantly worse than
EP. The results are consistent with the prior knowledge of LT. (4) Multicoated tickets improve the
performance on the high sparsity region on EP, but soft iEP generally outperforms it. Besides, Soft
iEP can be combined with multicoated tickets, and provide similar performance gain. (5) Soft iEP
stably improve the performance regardless of the architecture choice.

Does soft iEP reduce the dying edges? [Figure 5}(a) compares the dying ratio when applying EP
(green), hard iEP (blue), and soft iEP (red) on CIFAR-10. For hard iEP, we plot two values: (1)
apparent dying edges (dashed line) that count the dying edges among m,;_; ® 68y, and (2) worst case
dying edges (solid line) that assume all masked edges are disguised dying edges. Note that the dying
edges for iterative pruning are counted for each cycle, so it is fair to compare with EP and iEP. The
figure shows that soft iEP drastically reduces the dying ratio in almost all regions. The dying ratio is
near zero, especially at the beginning of a few cycles. Note that, while the dying ratio of soft iEP then
increases and crosses with that of EP around 10%, the performance of soft iEP is significantly better
than EP in the region, as shown in[Figure 3}(b). Although it is hard to prove, the results suggest that
soft iEP reduces the false negative dying edges, especially at the exploration phases (early cycles),
and starts to remove true negative dying edges after a few cycles.

Benefit of soft pruning To deeply understand the benefit of soft pruning, we visualize the transition
of score ranking during the entire cycle of iterative pruning ([Figure 5}(b)). Each line corresponds
to the ranking of each edge (randomly sampled 200 edges), and red represents the edge selected at
the 3.5% remaining ratio. By definition, all red edges are always above the threshold (black line) in
hard pruning. On the other hand, the results of soft pruning show that the finally selected edge might

Under review as a conference paper at ICLR 2024

Hard Pruning
2007 == et naes nanan nans s T
100) \ —— % of Weights Pruned =N = — M I
x0T EP B ‘
N\ S . ™ Kl
%0 \ Hard TEP £ 100 : \
**** Hard iEP (apparent) ~ \
% ~—— SoftiEP \
o0 \
B 60 0
)
g 2000 =
= E
[a)
w5 40]
° -~
R 5 100
=4
20
o =y S
iiiiiiiii D R R NN O RERUEC SIS
0| % of Weights Remaining
0 20 40 60 80
% of Weights Remaining Not selected at 3.5% Selected at 3.5% —— Threshold
(a) Dying ratio dr (b) Score

Figure 5: (a) Comparing the dying ratios at different remaining rates among various methods. (b)
Visualizing the transition of score rank of randomly sampled 200 edges. (Red) selected at 3.5%
remaining rate, (blue) not selected at the remaining ratio, and (black) threshold of each cycle.

have smaller scores in earlier cycles. In other words, the results suggest that the scores might not
be well calibrated and should not be entirely discarded, especially in the earlier cycle of iterative
pruning and should not be entirely discarded, especially in the earlier cycle of iterative pruning. In
isubsection C.3] we further discuss the difference of subnetworks obtained by EP, Hard iEP, and soft
iEP, and show that they converge to different structures and soft iEP use parameters more effectively.

6 CONCLUSION AND LIMITATION

Empirical analysis of EP from the dying ratio perspective. In we introduce the
notion of the dying ratio that measures the exploration inefficacy to find a good structure.
show that EP induces surprisingly many dying edges, and[Table T|suggest that the higher dying ratio
hinder the performance. Results provide new insight into the behavior of EP, which needs to be better
investigated and led to the invention of a better algorithm.

Testing various iterative pruning in SLT for the first time. = While the benefit of LT is well-known,
its benefit is not empirically investigated in SLT. We tested variants of iterative pruning customized
for SLT (summarized in [Table 3), and tested it on standard benchmarks (Figure 3). The results
might be a starting point for discussing the connection between LT and SLT from the methodological
perspective and investigating why iterative pruning is necessary to find (strong) lottery tickets.

Contribution 3: Proposal of soft pruning technique to improve performance. In addition to the
direct application of iterative pruning, we propose a new mechanism tailored for SLT setup (Figure 9}
[Figure 5}(a) shows that our proposal successfully reduces the dying edges, and [Figure 3|shows that
our proposal stably outperforms all baselines. Notably, the subnetwork discovered by soft iEP from
WideResNet-50 achieves 76.0% accuracy, which is 2.4 points higher than EP, and the dense training
gave a similar number of parameters and outperformed hard iEP and IteRand.

Limitation (1) The proposed method is the increased search time since we apply EP iteratively.
This issue is not unique to SLT and is discussed in the conventional LT. Existing research tries to
reduce retraining steps after rewinding, which could also be applied to our setup. (2) The theoretical
investigation of why dying edges occur and the theoretical justification for the success of soft pruning
would be the next step worth investigating and validating. Besides, the connection between the dying
edge problem and prior theoretical discussions is worth investigating. For example, [Pensia et al.
(2020) proved the existence of SLT using a subset-sum formulation, i.e., they show that a subset-sum
of uniformly selected values can approximate the weight of the target network. In one aspect, our
findings support the theoretical analysis, as the proposed method improves performance by enlarging
the search space. However, it is also worth exploring why the original EP still works sufficiently well
even with a very high dying ratio, which contradicts the assumption of the subset sum formulation.

Under review as a conference paper at ICLR 2024

REFERENCES

Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, Ali Farhadi, and Mohammad Rastegari.
What’s hidden in a randomly weighted neural network? In 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19, 2020, 2020.

Daiki Chijiwa, Shin’ya Yamaguchi, Yasutoshi Ida, Kenji Umakoshi, and Tomohiro Inoue. Pruning
randomly initialized neural networks with iterative randomization. Advances in Neural Information
Processing Systems, 34:4503—4513, 2021.

Sangyeop Yeo, Yoojin Jang, Jy-yong Sohn, Dongyoon Han, and Jaejun Yoo. Can we find strong
lottery tickets in generative models? AAAI Conference on Artificial Intelligence, 2023.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. arXiv preprint arXiv:1810.02054, 2018.

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. Learning and generalization in overparameterized
neural networks, going beyond two layers. Advances in neural information processing systems, 32,

2019.

James Diffenderfer, Brian R Bartoldson, Shreya Chaganti, Jize Zhang, and Bhavya Kailkhura.
A winning hand: Compressing deep networks can improve out-of-distribution robustness. In
A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, Advances in Neural
Information Processing Systems, 2021. URL https://openreview.net/forum?id=
YygAOyppTR.

James Diffenderfer and Bhavya Kailkhura. Multi-prize lottery ticket hypothesis: Finding accurate
binary neural networks by pruning a randomly weighted network. In International Conference
on Learning Representations, 2021. URL https://openreview.net/forum?id=U_
mat0b9iv.

Yasuyuki Okoshi, Angel Lépez Garcia-Arias, Kazutoshi Hirose, Kota Ando, Kazushi Kawamura,
Thiem Van Chu, Masato Motomura, and Jachoon Yu. Multicoated supermasks enhance hidden
networks. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and
Sivan Sabato, editors, Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pages 17045-17055. PMLR, 17-23
Jul 2022. URL https://proceedings.mlr.press/v162/okoshi22a.htmll

Kazutoshi Hirose, Jachoon Yu, Kota Ando, Yasuyuki Okoshi, Angel Lépez Garcia-Arias, Junnosuke
Suzuki, Thiem Van Chu, Kazushi Kawamura, and Masato Motomura. Hiddenite: 4k-pe hidden
network inference 4d-tensor engine exploiting on-chip model construction achieving 34.8-to-16.0
tops/w for cifar-100 and imagenet. In 2022 IEEE International Solid-State Circuits Conference
(ISSCC), volume 65, pages 1-3. IEEE, 2022.

Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Alliot Nagle, Hongyi Wang, Kang-
wook Lee, and Dimitris Papailiopoulos. Rare gems: Finding lottery tickets at initialization.
Advances in Neural Information Processing Systems, 2022.

Eran Malach, Gilad Yehudai, Shai Shalev-Shwartz, and Ohad Shamir. Proving the lottery ticket
hypothesis: Pruning is all you need. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, 2020.

Ankit Pensia, Shashank Rajput, Alliot Nagle, Harit Vishwakarma, and Dimitris Papailiopoulos.
Optimal lottery tickets via subset sum: Logarithmic over-parameterization is sufficient. Advances
in Neural Information Processing Systems, 33:2599-2610, 2020.

Laurent Orseau, Marcus Hutter, and Omar Rivasplata. Logarithmic pruning is all you need. In
Hugo Larochelle, Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin,
editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural
Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020.

10

https://openreview.net/forum?id=YygA0yppTR
https://openreview.net/forum?id=YygA0yppTR
https://openreview.net/forum?id=U_mat0b9iv
https://openreview.net/forum?id=U_mat0b9iv
https://proceedings.mlr.press/v162/okoshi22a.html

Under review as a conference paper at ICLR 2024

Rebekka Burkholz. Most activation functions can win the lottery without excessive depth. arXiv
preprint arXiv:2205.02321, 2022.

Arthur da Cunha, Emanuele Natale, and Laurent Viennot. Proving the lottery ticket hypothesis for
convolutional neural networks. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022, 2022.

Bernhard H Korte, Jens Vygen, B Korte, and J Vygen. Combinatorial optimization, volume 1.
Springer, 2011.

Mansheej Paul, Feng Chen, Brett W Larsen, Jonathan Frankle, Surya Ganguli, and Gintare Karolina
Dziugaite. Unmasking the lottery ticket hypothesis: What’s encoded in a winning ticket’s mask?
arXiv preprint arXiv:2210.03044, 2022.

Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, and Jinjun Xiong. Why lottery ticket wins?
a theoretical perspective of sample complexity on sparse neural networks. Advances in Neural
Information Processing Systems, 34:2707-2720, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pages 248-255. Ieee, 2009.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. Advances in neural information processing systems, 32, 2019.

Rebekka Burkholz, Nilanjana Laha, Rajarshi Mukherjee, and Alkis Gotovos. On the existence of
universal lottery tickets. arXiv preprint arXiv:2111.11146, 2021.

Arthur Gretton, Karsten Borgwardt, Malte Rasch, Bernhard Scholkopf, and Alex Smola. A kernel
method for the two-sample-problem. Advances in neural information processing systems, 19,
2006.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages 1026—1034. IEEE
Computer Society, 2015.

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. abs/1308.3432, 2013.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. In 5th International Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track Proceedings, 2017.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value of
network pruning. In 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019.

Alex Renda, Jonathan Frankle, and Michael Carbin. Comparing rewinding and fine-tuning in neural
network pruning. In 8th International Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020, 2020.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, Proceedings of Machine
Learning Research, 2020.

Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang. Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866, 2018.

Minsoo Kang and Bohyung Han. Operation-aware soft channel pruning using differentiable masks.
In International Conference on Machine Learning, pages 5122-5131. PMLR, 2020.

11

Under review as a conference paper at ICLR 2024

Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the lottery:
Making all tickets winners. In International Conference on Machine Learning, pages 2943-2952.
PMLR, 2020.

Junjie Liu, Zhe Xu, Runbin Shi, Ray CC Cheung, and Hayden KH So. Dynamic sparse train-
ing: Find efficient sparse network from scratch with trainable masked layers. arXiv preprint
arXiv:2005.06870, 2020.

Shiwei Liu, Lu Yin, Decebal Constantin Mocanu, and Mykola Pechenizkiy. Do we actually need
dense over-parameterization? in-time over-parameterization in sparse training. In International
Conference on Machine Learning, pages 6989-7000. PMLR, 2021.

Shiwei Liu, Tianlong Chen, Zahra Atashgahi, Xiaohan Chen, Ghada Sokar, Elena Mocanu, Mykola
Pechenizkiy, Zhangyang Wang, and Decebal Constantin Mocanu. Deep ensembling with no
overhead for either training or testing: The all-round blessings of dynamic sparsity. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=RLtgsbpzjl-|

Lu Yin, Vlado Menkovski, Meng Fang, Tianjin Huang, Yulong Pei, and Mykola Pechenizkiy.
Superposing many tickets into one: A performance booster for sparse neural network training. In
Uncertainty in Artificial Intelligence, pages 2267-2277. PMLR, 2022.

Bowen Lei, Ruqi Zhang, Dongkuan Xu, and Bani Mallick. Calibrating the rigged lottery: Making
all tickets reliable. In The Eleventh International Conference on Learning Representations, 2023.
URLhttps://openreview.net/forum?id=KdwnGErdT6.

Saining Xie, Ross Girshick, Piotr Dollar, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. arXiv preprint arXiv:1611.05431, 2016.

Asher Trockman and J Zico Kolter. Patches are all you need? arXiv preprint arXiv:2201.09792,
2022.

Samuel L. Smith, Pieter-Jan Kindermans, and Quoc V. Le. Don’t decay the learning rate, increase
the batch size. In International Conference on Learning Representations, 2018. URL https:
//openreview.net/forum?id=Bl1Yy1BxCZ.

Yuxin Zhang, Mingbao Lin, Yunshan Zhong, Fei Chao, and Rongrong Ji. Lottery jackpots exist in
pre-trained models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch—image—-models, 2019.

Michela Paganini and Jessica Zosa Forde. Bespoke vs. pr\” et-\a-porter lottery tickets: Exploiting
mask similarity for trainable sub-network finding. arXiv preprint arXiv:2007.04091, 2020.

12

https://openreview.net/forum?id=RLtqs6pzj1-
https://openreview.net/forum?id=RLtqs6pzj1-
https://openreview.net/forum?id=KdwnGErdT6
https://openreview.net/forum?id=B1Yy1BxCZ
https://openreview.net/forum?id=B1Yy1BxCZ
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

