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ABSTRACT

Large Language Models (LLMs) have shown their great power in addressing
masses of challenging problems in various areas, including textual adversarial
attack and defense. With the fast evolution of LLMs, the traditional textual ad-
versarial attack strategies, such as character-level, word-level, and sentence-level
attacks, can no longer work on large models at all. In this paper, we propose an
adversarial attack method via euphemism rephrase to LLMs (short for EuphemAt-
tack), which can still deceive LLMs without altering the original meaning and
being understandable to humans. Specifically, the perturbation instructions are
designed to generate linguistically coherent and human-like adversarial examples,
and a dual-layer hybrid filter is integrated to ensure both semantic similarity and
linguistic naturalness. Our EuphemAttack aims to rephrase the original statement
into implicit, euphemistic, or ironic expressions that are prevalent in everyday lan-
guage, which can maintain semantic fidelity and entity consistency while subtly
altering sentiment cues to mislead LLMs. The experiments on the state-of-the-art
LLMs, including GPT-4 and DeepSeek, demonstrate the effectiveness of our Eu-
phemAttack. Through a comprehensive evaluation that includes coherence, fluen-
cy, grammar, and naturalness, our EuphemAttack can significantly better maintain
text quality in contrast to other attack methods.

1 INTRODUCTION

Adversarial textual attacks aim to mislead Natural Language Processing (NLP) systems, including
text classification, machine translation, and data clustering systems, which makes some subtle per-
turbations to input text for leading unintended results (Liu et al., 2024a). The essential principle
of adversarial textual attack is to interfere with the system’s output without affecting user under-
standing. According to the perturbation units imposed on the text, existing methods can roughly be
categorized into three types: character-level attacks, word-level attacks, and sentence-level attacks
(Zhang et al., 2020). Character-level attacks introduce perturbations by altering individual charac-
ters, such as through misspellings or homoglyph substitutions (Rocamora et al., 2024). Word-level
attacks modify input text by replacing specific words with synonyms, misspellings, or other select-
ed alternatives (Li et al., 2023). Sentence-level attacks involve paraphrasing or reordering entire
sentences to mislead the model (Shi et al., 2022).

However, with the rapid development of LLMs, the model has shown their great power in addressing
masses of challenging problems in various areas, and existing textual attack methods are becoming
increasingly ineffective on large models (Levy et al., 2023; Samsami et al., 2024). As illustrated
in Figure 1, given the original text, ”Waiting in line for hours is really frustrating and wastes so
much of my time”. The character-level attack perturbs ”Waiting” and ”hours” to ”Waitng” and
”hourse”, respectively. These attacks cannot interfere with the judgment of LLMs. Similarly, the
word-level attack modified ”line” and ”frustrating” to ”queue” and ”annoying”, the sentence-level
attack reorders sentences, both of which have failed against LLMs.

To address this challenge, in this paper, we propose an adversarial attack method via euphemism
rephrase (EuphemAttack), which can successfully attack LLMs without altering the original mean-
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Figure 1: The examples of textual adversarial attack with existing character-level, word-level, and
sentence-level methods, which are becoming increasingly ineffective on large models. In contrast,
our method can deceive LLMs without changing the original meaning of the sentences.

ing and being understandable to humans. As illustrated in Figure 1, the original text is rephrased
into ”Line for hours? Mwah. Total ’vibe’ - said no one ever”, which is an implicit, euphemistic,
and ironic expression that is prevalent in everyday language. The rephrased sentence can maintain
semantic fidelity and entity consistency while subtly altering sentiment cues to mislead LLMs.

Specifically, the perturbation instructions are first designed to generate linguistically coherent and
human-like adversarial examples. Then, a dual-layer hybrid filter is integrated to ensure both seman-
tic similarity and linguistic naturalness. The experiments on the state-of-the-art LLMs, including
GPT-4 and DeepSeek, demonstrate the effectiveness of our EuphemAttack. Through a comprehen-
sive evaluation that includes coherence, fluency, grammar, and naturalness, our EuphemAttack can
significantly better maintain text quality in contrast to other attack methods. The main contributions
of our EuphemAttack can be summarized as follows:

(1) EuphemAttack can successfully attack LLMs, which eliminates the limitations of existing ad-
versarial textual attack methods in the era of large models.

(2) In contrast to existing sentence-level methods that modify the semantics of the original text
during the attack, EuphemAttack can maintain semantic invariance while still deceiving LLMs.

(3) Not only the experimental results on SOTA LLMs prove the effectiveness of our method, but also
the comprehensive evaluation including coherence, fluency, grammar, and naturalness demonstrates
the advantage of our method in semantic preservation.

The source code and dataset will be available at GitHub if the paper can be accepted.

2 RELATED WORK

We introduce the related works w.r.t. textual adversarial attacks and evaluation paradigm of attacks.
Due to the page limitation, the completed related works are discussed in Appendix A.

Textual Adversarial Attacks According to the perturbation units imposed on the text, tradition-
al methods can roughly be categorized into three types: character-level attacks (Rocamora et al.,
2024), word-level attacks (Li et al., 2023), and sentence-level attacks (Li et al., 2023). However,
these methods typically require access to model internals or confidence scores, limiting their appli-
cability to white-box or soft-label black-box scenarios. The emergence of LLMs has necessitated

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

new attack strategies, such as beam search (Zang et al., 2020), genetic algorithms (Liu et al., 2024b),
and LLM-as-attacker paradigms (Chao et al., 2025). A promising new direction involves confidence
elicitation techniques (Formento et al., 2025), which attempt to guide attacks by extracting calibrat-
ed confidence estimates from black-box models. While these methods show potential, they often
still sacrifice semantic coherence or naturalness in pursuit of successful attacks. Building on this
foundation, our EuphemAttack operates in a black-box setting while maintaining both effectiveness
and naturalness through prompt-based control and semantic filtering, addressing key limitations in
existing attack strategies.

Evaluation Paradigm of Attacks Early approaches for natural language generation relied on
surface-level lexical overlap metrics like BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and
METEOR (Banerjee & Lavie, 2005), which proved effective for structured tasks but showed poor
performance in leveraging contextualized representations to better capture semantic similarity. With
the development of pre-trained models like BERT and BART, model-based evaluation paradigms
assess output quality across dimensions such as relevance, consistency, and factuality (Zhang et al.,
2019; Yuan et al., 2021). While these approaches marked significant progress, they still struggled to
capture semantic changes in the textparticularly the subtle shifts in meaning that are crucial for eval-
uating adversarial examples. More recently, LLMs are prompted to assess the quality of generated
content (Gu et al., 2024). These evaluators utilize chain-of-thought reasoning and multi-dimensional
criteria (e.g., coherence, fluency, informativeness) to achieve high agreement with human annotators.
The typical framework includes JudgeLM (Zhu et al.), CPDA (Liu et al., 2023a), and G-Eval (Mao
et al., 2024). Our EuphemAttack builds on this emerging paradigm by proposing a fine-grained,
LLM-guided evaluation strategy, which assess not only the attack success rate but also the semantic
preservation, emotional subtlety, and linguistic naturalness of adversarial outputs.

3 METHODOLOGY

3.1 MOTIVATION

Most existing textual adversarial attacks remain confined to surface-level manipulations, such as
character perturbations, synonym substitutions, or syntactic rearrangements. While these strategies
are often effective against earlier text classification models, they largely fail against LLMs, which
exhibit strong robustness to lexical noise and shallow paraphrasing. In contrast, natural language
itself is not limited to literal word choices or rigid sentence structures. Human communication
frequently relies on linguistic devices, including metaphor, irony, understatement, and especially e-
uphemism, to reshape meaning while preserving semantic intent. These linguistic ”tricks” are subtle
yet powerful, while they can soften sentiment, obscure emotional cues, or shift pragmatic tone with-
out altering factual content. Our work is motivated by the hypothesis that such implicit linguistic
mechanisms, long overlooked in adversarial NLP, may serve as a novel pathway for crafting adver-
sarial examples that remain natural and intelligible to humans while misleading LLMs, which is not
a straightforward application of existing techniques. By operationalizing euphemism as a control-
lable adversarial perturbation, we move beyond conventional manipulations of tokens or sentence
structures and demonstrate that linguistic strategies themselves can constitute an effective attack
space. Our EuphemAttack sheds light on a promising technical route for semantic-based textual
adversarial attack to LLMs.

3.2 PROBLEM FORMULATION

Consider a classification model F : X → Y that maps text sequences from domain X to labels
in Y . The objective of the textual adversarial attack is to generate an adversarial text sequence X ∗
that maintains semantic fidelity and linguistic plausibility while causing the model to produce an
incorrect classification, i.e., F(X ) = Y and F(X ∗) = Y∗ 6= Y . This can be formalized as:

X ∗ = arg max
X∗∈Q(X )

S(X ,X ∗) (1)

where Q(X ) denotes the set of quality-preserving variants of X , defined in the subsection ”Prompt
Constructed”. The S represents the overall quality score of the adversarial example. The constraints
can be formulated as:
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Figure 2: The framework of our EuphemAttack. The instructions, including attack objective, en-
tity retention, and perturbation guidance, are first considered to construct prompts. Then these
prompts are utilized to generate some candidate adversarial examples. A hybrid filter that combines
BERTScore and perplexity-based evaluations is introduced to select better adversarial examples.
Finally, these examples are used as few-shot learning for the textual adversarial attack.

Sim(X ,X ∗) ≥ τs, PPL(X ∗) ≤ τp. (2)

where Sim(X ,X ∗) measures the semantic similarity between the original and adversarial texts,
PPL(X ∗) represents the perplexity score of the adversarial text as assessed by a language model,
and τs and τp are thresholds for semantic similarity and acceptable perplexity, respectively.

3.3 FRAMEWORK OF OUR EUPHEMATTACK

The essential idea of our EuphemAttack is to guide a LLM with few constructed adversarial attack
examples. These instances are constructed following two key constraints: (1) preserving named
entities and critical content from the original input, and (2) using special perturbation rules to align
with common linguistic conventions and human intuition. With these constructed adversarial attack
examples, the LLM is guided to generate rephrased text for attacking. For example, given the
original text X along with its corresponding label y, the rephrased text X ′ is constructed and used
to guide LLM for generating textual attacks.

Prompt Constructed In our method, we begin by presenting some texts along with their corre-
sponding label in a carefully designed prompt, referred to as the Original Input. This serves as
the foundational input for guiding subsequent adversarial attacks. Notably, due to the page limita-
tion, details of each prompt in this section are presented in Appendix.B. Specifically, these carefully
designed prompts are structured into three aspects:

(1) Attack Objective: It guides the model to generate a new sentence that preserves the original
meaning, aligns with the target label, and adheres to natural language expression habits.

(2) Entity Retention: To ensure the factual consistency and reliability of rephrased text, we intro-
duce an entity preservation mechanism within the LLM framework. Given the input text X , this
mechanism strictly retains all original entities E = {e1, e2, . . . , en} exactly as they appear in X .
These entities encompass proper names of individuals, locations, organizations, brands, and other
identifiable expressions. The prompts in this mechanism are explicitly restricted from introducing,
modifying, or omitting any element in E , and the semantic roles and relationships involving these
entities must remain intact. This approach is critical for preserving the integrity of information,
particularly in scenarios where entity accuracy is paramount.

(3) Perturbation Guidance: It provides clear instructions for generating linguistically coherent and
human-like adversarial examples, ensuring that the perturbations are subtle yet effective in mislead-
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ing the model. Given an input text X with an associated sentiment label y, this strategy selectively
attenuates overt emotional expressions while preserving core semantic content. This strategy is
sentiment-aware: for y > 0 (i.e., positive instance), we rephrase it into a restrained, calm, or emo-
tionally neutral manner; for y < 0 (i.e., negative instance), we express it using euphemistic, implicit,
or subtly ironic constructions. Additionally, the transformation may incorporate culturally grounded
linguistic devices, such as idioms, metaphors, or historical allusions, to maintain fluency and con-
textual appropriateness. By embedding sentiment in more implicit forms, this strategy reduces the
salience of emotional cues, thereby increasing the potential to mislead sentiment classifiers without
compromising the coherence or plausibility of the text.

When guiding the model to rephrase sentences, our prompts explicitly included label information.
This design follows prior work that used labeled data for controlled generation (Xu et al., 2024),
and was not intended to manipulate the model into producing oppositely labeled data. Instead, by
employing a few-shot prompting strategy, we aim to preserve the original semantic content while
inducing subtle stylistic shifts consistent with the target label. Our objective is to expose the vulner-
ability of LLM-based classifiers to label-guided adversarial rephrasing.

Candidate Adversarial Example Generation These designed prompts are input into the LLMs to
generate multiple candidate adversarial examples that adhere to the predefined perturbation rules.

Hybrid Filter Unlike conventional methods that rely solely on classifier feedback, our method
combines BERTScore and perplexity-based evaluations to rigorously enforce output quality. Giv-
en a candidate sentence si and the original input sref, we compute the semantic similarity using
BERTScore:

BERTScore(si) = F1(si, sref) (3)

To assess linguistic plausibility, we compute the perplexity of each candidate and normalize it across
all samples:

p̃i =
PPL(si)−minj PPL(sj)

maxj PPL(sj)−minj PPL(sj) + ε
(4)

where PPL(si) denotes the perplexity of sentence si and ε is a small constant to prevent division by
zero. This formula normalizes the perplexity values to the range [0,1] using min-max normalization.

Finally, a combined score is calculated by balancing the two aspects:

Score(si) = α · BERTScore(si)− (1− α) · p̃i (5)

where α ∈ [0, 1] controls the relative importance of semantic preservation and fluency.

Attack Assessment Finally, the selected adversarial examples by the hybrid filter are utilized as
few-shot learning for the textual adversarial attack. Given the selected adversarial examples X ′,
these instances are used to guide LLM for generating textual attacks.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTINGS

4.1.1 DATASETS

We evaluate EuphemAttack on three English datasets (IMDB1, Amazon2, Yelp3) and three Chinese
datasets (Dianping4, Ctrip5, JD6). The statistics are shown in Table 6. Notably, we selected a subset
of the dataset in the experiments to ensure diversity and broad coverage across various domains.

1https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews
2https://www.kaggle.com/datasets/nabamitachakraborty/amazon-reviews
3https://huggingface.co/datasets/fancyzhx/yelp_polarity
4https://www.modelscope.cn/datasets/DAMO_NLP/yf_dianping/summary
5https://github.com/cgq666/Chinese-text-sentiment-classification-dataset/

tree/master/Ctrip
6https://github.com/cgq666/Chinese-text-sentiment-classification-dataset/

tree/master/JD.com

5
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4.1.2 VICTIM MODELS

In the experiments, we introduce the SOTA English and Chinese LLMs as victim models, includ-
ing GPT-4o and Llama-3.1-8B-Instruct for their excellence in English tasks, alongside DeepSeek,
Qwen2.5-7B-Instruct, and GLM-4-9B-Chat in Chinese. In other words, these LLMs are introduced
as attacked models to validate the effectiveness of different textual adversarial attack methods.

4.1.3 BASELINES

The SOTA textual adversarial attack methods are introduced as baselines, including DeepWordBug
(Gao et al., 2018), TextFooler (Jin et al., 2019), SSPAttack (Liu et al., 2023b), HyGloadAttack (Liu
et al., 2024b) and CEAttack (Formento et al., 2025) for English, Homophone Transformation (Gong
et al., 2023), Morphonym Transformation (Sun et al., 2025), Similar Word Swapping (SimSwap)
(Xiong et al., 2024), and Masked Language Model-guided substitution (MLMSub) (Zhang et al.,
2024) for Chinese, and PromptAttack (Xu et al., 2024) for both language.

4.1.4 EVALUATION METRICS

In evaluating the performance of our EuphemAttack, we utilized two primary metrics: Attack Accu-
racy (Acc) and Attack Success Rate (ASR). Acc refers to the accuracy of the target model obtained on
the generated adversarial examples. The larger the difference between the original model’s accuracy
and the attacked model’s accuracy, the more effective the attack is considered to be. ASR measures
the proportion of samples that were originally correctly classified by the model but were misclas-
sified after the adversarial attack, indicating the effectiveness of the adversarial attack method. To
comprehensively evaluate the quality of semantic fidelity in generated adversarial examples, we em-
ployed a multi-dimensional assessment framework encompassing Coherence (Coh.), Fluency (Flu.),
Grammaticality (Gram.), and Naturalness (Nat.). These dimensions were evaluated using a 5-point
Likert scale Chiang & Lee (2023); Ouyang et al. (2022); Kotonya et al. (2023), where higher scores
indicate superior quality in the respective dimension. We will elaborate on the advantages of the
Likert scale in contrast to traditional metrics such as similarity scores and BERTScore in subsequent
sections. For all metrics, we report the average scores across all generated adversarial examples for
each dataset. To ensure the credibility and real-world applicability of our findings, we complement-
ed the automated evaluation with human assessment of the adversarial examples.

It is worth mentioning that, due to the page limitation, the statistics of all datasets, and details of
experimental setting for our EuphemAttack and all the baselines are presented in Appendix.C.

4.2 EXPERIMENTAL RESULTS

Table 1: Comparison of our method with other methods on English datasets. The best results are
highlighted in bold, and the second-best results are underlined. Ori. represents the original accuracy
of the model on the dataset, Acc. is the accuracy after adversarial attacks, and ASR is the attack
success rate.

Victim Method IMDB Amazon Yelp
Ori.% Acc.% ASR% Ori.% Acc.% ASR% Ori.% Acc.% ASR%

GPT-4o

DeepWordBug

93.10

91.35 1.88

95.35

95.13 0.23

97.22

97.02 0.21
TextFooler 91.83 1.36 93.97 1.45 96.80 0.43
SSPAttack 90.17 3.14 91.82 3.70 94.37 2.93

HyGloadAttack 87.90 5.59 89.45 6.19 94.69 2.60
CEAttack 86.97 6.58 88.87 6.79 94.89 2.39

PromptAttack 92.70 0.43 95.00 0.37 96.98 0.25
Ours 82.65 11.22 85.88 9.93 91.35 6.04

Llama

DeepWordBug

77.85

75.68 2.79

84.88

81.33 4.18

89.68

87.48 2.45
TextFooler 72.03 7.48 77.78 8.36 86.30 3.77
SSPAttack 74.08 4.85 81.18 4.36 86.61 3.43

HyGloadAttack 73.80 5.20 80.98 4.59 87.35 2.59
CEAttack 72.22 7.23 80.55 5.10 86.80 3.21

PromptAttack 77.32 0.68 84.49 0.46 89.15 0.59
Ours 61.18 21.41 62.75 26.07 65.60 26.85
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Table 2: Comparison of our method with other methods on Chinese datasets. All details are consis-
tent with the above Table 2.

Victim Method DianPing CTrip JD
Ori.% Acc.% ASR% Ori.% Acc.% ASR% Ori.% Acc.% ASR%

DeepSeek

Homophone

77.14

76.67 0.61

81.26

74.69 8.09

93.33

76.98 17.52
Morphonym 74.85 2.97 78.97 2.82 78.11 16.31

SimSwap 75.94 1.56 74.96 7.75 69.13 25.93
MLMSub 76.62 0.67 69.18 14.87 67.56 27.61

PromptAttack 76.48 0.86 79.70 1.92 92.83 0.54
Ours 59.91 22.34 68.95 15.15 71.93 22.93

Qwen

Homophone

74.16

74.16 0

81.26

76.75 5.55

93.55

80.73 13.70
Morphonym 74.02 0.19 79.88 1.70 81.96 12.39

SimSwap 73.24 1.24 78.44 3.47 90.64 3.11
MLMSub 73.86 0.41 76.87 5.40 73.95 20.95

PromptAttack 73.99 0.23 78.04 3.96 92.88 0.72
Ours 56.98 23.17 67.80 16.56 63.97 31.62

GLM

Homophone

74.26

73.26 1.35

73.53

70.22 4.50

91.64

75.98 17.09
Morphonym 71.68 3.47 72.48 1.43 79.39 13.37

SimSwap 72.50 2.37 72.15 1.88 88.84 3.06
MLMSub 74.10 0.22 69.85 5.00 68.70 25.03

PromptAttack 73.42 1.13 72.00 2.08 89.62 2.20
Ours 56.10 24.45 65.45 10.99 64.06 30.10

The experimental results presented in Table 1 and Table 2 reveal less significant insights into the
effectiveness of existing adversarial attack methods on LLMs. Existing attack methods, including
DeepWordBug, TextFooler, and PromptAttack, demonstrate limited success in reducing the accu-
racy of LLMs. In some cases, the adversarial strategy inadvertently triggers the model’s counter-
adversarial mechanisms, such as PromptAttack, leading to an increase in accuracy rather than a
decrease. This phenomenon highlights the robustness of current LLMs against conventional adver-
sarial attacks, underscoring the need for more sophisticated and targeted attack strategies.

In contrast, our EuphemAttack consistently achieves superior ASR across both English and Chinese
datasets, as evidenced by the results. For instance, on the Amazon dataset, when Llama is used as
the victim model, our method achieves an ASR of 26.07%, significantly outperforming DeepWord-
Bug (4.18%) and TextFooler (8.36%). Similarly, on the DianPing dataset, our approach achieves
an ASR of 22.34%, surpassing other methods such as SimSwap (2.97%) and MLMSub (1.56%).
These results demonstrate the effectiveness of our method in overcoming the inherent robustness of
LLMs, providing a more reliable and impactful adversarial attack framework. This advancement not
only highlights the vulnerabilities of these models but also paves the way for further research into
improving their resilience against adversarial threats.

Overall, from the results, it is evident that EuphemAttack demonstrates effective adversarial attacks
across all datasets and models. This highlights the robustness and versatility of EuphemAttack in
adapting to diverse linguistic and contextual scenarios. The strong transferability of our method
underscores its potential to uncover vulnerabilities in a wide range of language models, paving the
way for further advancements in adversarial attack strategies and model robustness evaluation.

4.3 EVALUATION OF SEMANTIC PRESERVATION

The results presented in Table 3 illustrate the accuracy of the Llama model under adversarial attacks
generated by three PromptAttack methods using GPT-4o and DeepSeek. For these PromptAttack
methods, appending meaningless perturbation sentences, paraphrasing attacks, and syntactic trans-
formation attacks are included at the end.

In contrast to the main experimental results, these PromptAttack methods have achieved good attack
effects, but they have changed the semantics of the original text. While commonly used sentence-
level attack strategies are introduced, the hallucination problem inherent in LLMs often leads Promp-
tAttack to generate sentences that, despite appearing similar to the original, convey entirely opposite
meanings.

Evaluation with Likert Scale
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Table 3: Comparison of PromptAttack accuracy (%) on Llama using adversarial examples. Results
for IMDB, Amazon, Yelp, DianPing, CTrip, and JD are generated by GPT-4o and DeepSeek. Lower
values indicate more successful attacks.

Method IMDB Amazon Yelp DianPing CTrip JD
PromptAttack-1 32.24 30.33 30.28 37.63 31.61 64.54
PromptAttack-2 13.80 12.05 6.00 7.47 8.73 17.25
PromptAttack-3 13.27 11.90 6.73 8.30 10.82 17.16

Table 4: Evaluation of Semantic Preservation including our EuphemAttack and the variants of
PromptAttack, evaluated by GPT-4o, Qwen3-8b and Human Annotators. PA-1, PA-2, and PA-3
denote three PromptAttack variants: appending meaningless perturbation sentences, paraphrasing
attacks, and syntactic transformation attacks, respectively. Coh. (Coherence), Flu. (Fluency), Gram.
(Grammaticality), Nat. (Naturalness). Higher scores are better (scale 1-5). Bold indicates best
results.

Datasets Method GPT-4o Qwen3-8b Human Annotators
Coh. Flu. Gram. Nat. Coh. Flu. Gram. Nat. Coh. Flu. Gram. Nat.

IMDB

PA-1 3.86 3.96 4.07 3.63 3.03 2.93 2.53 3.14 3.55 3.67 3.44 3.39
PA-2 4.41 4.68 4.82 4.26 3.08 3.00 2.86 3.21 4.19 4.36 4.28 4.02
PA-3 4.44 4.73 4.84 4.24 3.08 2.98 2.87 3.14 4.21 4.34 4.31 4.01
Ours 4.67 4.86 4.95 4.48 4.59 4.42 4.92 4.71 4.43 4.61 4.55 4.27

Amazon

PA-1 3.79 4.11 4.22 3.68 3.04 3.00 2.80 3.08 3.51 3.74 3.60 3.46
PA-2 4.27 4.64 4.80 4.27 3.07 2.98 2.90 3.16 4.07 4.29 4.31 4.05
PA-3 4.28 4.61 4.80 4.19 3.03 2.99 2.94 3.06 4.04 4.28 4.29 3.98
Ours 4.53 4.84 4.91 4.49 4.62 4.21 4.93 4.76 4.32 4.57 4.51 4.24

Yelp

PA-1 3.83 3.98 4.06 3.79 3.05 3.00 2.70 3.12 3.60 3.72 3.49 3.54
PA-2 4.30 4.60 4.77 4.28 3.09 3.01 2.88 3.11 4.09 4.27 4.22 4.03
PA-3 4.32 4.65 4.79 4.26 3.06 3.00 2.91 3.10 4.12 4.25 4.24 4.01
Ours 4.59 4.85 4.92 4.47 4.53 4.17 4.89 4.64 4.36 4.55 4.49 4.19

DianPing

PA-1 3.58 3.63 3.35 3.41 3.10 3.24 3.07 3.18 3.33 3.41 3.17 3.22
PA-2 4.03 4.32 4.23 3.91 3.27 3.60 3.46 3.48 3.87 3.95 3.82 3.71
PA-3 3.97 4.23 4.06 3.85 3.24 3.56 3.37 3.44 3.81 3.88 3.76 3.64
Ours 4.65 4.84 4.83 4.43 3.34 3.93 3.92 3.68 4.39 4.52 4.43 4.12

CTrip

PA-1 3.73 3.81 3.68 3.57 3.18 3.47 3.13 3.27 3.44 3.53 3.37 3.28
PA-2 3.81 4.22 4.15 3.66 3.30 3.76 3.58 3.45 3.65 3.97 3.79 3.49
PA-3 3.76 4.13 4.02 3.59 3.29 3.71 3.51 3.46 3.59 3.91 3.72 3.43
Ours 4.46 4.32 4.85 4.21 3.39 4.03 4.09 3.66 4.19 4.08 4.41 4.05

JD

PA-1 3.45 3.60 3.25 3.41 3.07 3.21 3.03 3.24 3.32 3.45 3.19 3.26
PA-2 3.65 4.22 4.08 3.68 3.10 3.47 3.27 3.36 3.50 3.93 3.81 3.54
PA-3 3.58 4.15 4.02 3.66 3.10 3.45 3.27 3.36 3.47 3.86 3.74 3.48
Ours 4.21 4.79 4.78 4.17 4.53 4.17 4.89 4.64 4.18 4.42 4.37 4.02

Since traditional evaluation metrics like similarity and BERTScore fail to capture these nuanced
semantic characteristics, they primarily focus on surface-level text similarity rather than the deeper
semantic coherence and naturalness of the generated text. To overcome these limitations, we propose
a comprehensive evaluation method that employs the SOTA models to conduct fine-grained assess-
ments across multiple dimensions. Our method evaluates adversarial examples based on Coherence
(Coh.), Fluency (Flu.), Grammaticality (Gram.), and Naturalness (Nat.), using a Likert scale. By
performing multiple rounds of generation and averaging the results, we ensure robust and reliable
evaluation that captures both the effectiveness of the attack and the quality of the generated text.

As shown in Table 4, our EuphemAttack achieves superior performance across all evaluation di-
mensions compared to the three PromptAttack variants. This demonstrates the effectiveness of E-
uphemAttack in maintaining text quality while performing adversarial attacks. The lower scores
of PromptAttack methods can be attributed to their primary focus on sentiment polarity alteration,
which often compromises semantic integrity. Furthermore, the varying text lengths in their gener-
ated examples can lead to inconsistencies between the beginning and end of the text, resulting in
lower evaluation scores. These findings emphasize the crucial balance between preserving semantic
meaning and achieving adversarial effectiveness in attack strategy design.

Evaluation with Humans
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To further validate the reliability of semantic preservation beyond LLM-based assessments, we con-
ducted the human evaluations in this section. Specifically, we engage three undergraduate students
with backgrounds in computational linguistics to perform independent annotations. For accurate
evaluation, we required a minimum agreement of two annotators on the label. Each annotator evalu-
ated the adversarial examples along four dimensions, including Coherence, Fluency, Grammaticali-
ty, and Naturalness, using a 5-point Likert scale consistent with the automated evaluation protocol.
Due to the page limitation, the information of these annotators is shown in Appendix.D.

From the results that reported in Table 4, we can observe that the results of human evaluations ex-
hibit a trend highly consistent with those of the automated LLM-based assessments. Specifically,
both evaluation protocols consistently rank EuphemAttack above all PromptAttack variants across
Coherence, Fluency, Grammaticality, and Naturalness. Although human scores are slightly more
conservative than the automated ones (e.g., Fluency and Grammaticality ratings are marginally low-
er), the relative differences between methods remain stable. This consistency indicates that the
automated evaluation is not producing spurious rankings and that the improvements demonstrated
by EuphemAttack are robust across evaluators. Moreover, the close alignment suggests that LLM-
as-a-judge can serve as a scalable proxy for large-scale evaluation, but human assessments remain
indispensable for verifying the credibility of semantic preservation. Overall, these complementary
results highlight that EuphemAttack not only achieves strong attack performance but also maintains
linguistic quality in ways that are perceptible and validated by human readers.

To measure inter-annotator consistency, we further calculate common agreement metrics such as
Cohens Kappa Cohen (1960) and Fleisss Kappa Fleiss (1971). Cohens Kappa measures agreement
between two raters, and Fleisss Kappa is used to assess the degree of agreement among multi-
ple raters. The Kappa result be interpreted as follows: values≤0 as indicating no agreement and
0.01-0.20 as none to slight, 0.21-0.40 as fair, 0.41-0.60 as moderate, 0.61-0.80 as substantial, and
0.81-1.00 as almost perfect agreement. The inter-annotator agreement scores are presented in Table
5, the statistic underscores a substantial level of agreement among our human annotators, reaffirming
the consistency and reliability of the annotations.

Table 5: Kappa agreement scores for annotation pairs

Annotation Pair Score

Cohen’s Kappa (A1-A2) 0.472
Cohen’s Kappa (A1-A3) 0.698
Cohen’s Kappa (A2-A3) 0.703
Fleiss’s Kappa (A1-A2-A3) 0.614

Due to the page limitation, the experiments for ”Effects of Different Generators” and ”Case Study
and Model Fine-tuning” are presented in Appendix.E and Appendix.F, respectively.

5 CONCLUSION

With the advanced natural language understanding capabilities of LLMs, existing textual attack
methods often fail to affect them effectively. In this paper, we propose a novel textual attack method
for generating adversarial examples that strike a balance between semantic preservation and senti-
ment manipulation. Our method employs carefully designed perturbation instructions to produce
linguistically coherent and human-like adversarial texts. Additionally, a dual-layer hybrid filtering
mechanism is introduced to ensure both semantic consistency and linguistic fluency. Extensive ex-
periments conducted across multiple datasets and model architectures demonstrate that our method
outperforms the SOTA baselines in terms of attack success rate while maintaining high text quality.

In the future, we will extend our work in two directions. Firstly, we plan to extend it to multilin-
gual and code-mixed settings, explore controllable perturbation strength for flexible attack intensity.
Secondly, we will investigate integrating sociolinguistic methods to enhance naturalness and develop
defense strategies against implicit adversarial attacks.
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A COMPLETE RELATED WORKS

Here, the completed related works w.r.t. textual adversarial attacks and evaluation paradigm of
attacks are discussed.

A.1 TEXTUAL ADVERSARIAL ATTACKS

According to the perturbation units imposed on the text, traditional methods can roughly be catego-
rized into three types: character-level attacks, word-level attacks, and sentence-level attacks.

• Character-level attacks operate by introducing perturbations such as insertions, deletions,
or substitutions at the character level, often exploiting vulnerabilities in tokenization or the
sensitivity of models to spelling variations. For example, VertAttack (Rusert, 2024) exploits
classifiers inability to read vertically written text by rewriting informative words in a verti-
cal format, while Charmer (Rocamora et al., 2024) designs a method that leverages model
gradient information and a position subset selection strategy to efficiently generate adver-
sarial examples with minimal perturbations. Although these approaches are lightweight
and efficient, they frequently yield unnatural or noisy text that can be easily detected by
humans or spell checkers.
• Word-level attacks manipulate the input at the lexical level, typically by replacing or substi-

tuting words with semantically similar alternatives while attempting to preserve grammat-
icality and meaning. A representative example is HQA-Attack (Liu et al., 2023c), which
proposes a black-box hard-label attack that iteratively substitutes original words back and
optimizes with synonyms to achieve high semantic similarity and low perturbation rate
under limited queries. Similarly, HyGloadAttack (Liu et al., 2024b) introduces a hybrid
optimization framework with global substitution and a gradient-guided quick search, effec-
tively mitigating local optima and reducing query overhead in hard-label black-box textual
attacks. Compared with character-level perturbations, these methods usually produce more
fluent adversarial samples, but they rely heavily on lexical resources and embedding quali-
ty, and may still introduce subtle semantic drift.
• Sentence-level attacks apply more substantial modifications, often involving paraphrasing

or regenerating entire sentences to achieve adversarial effects. For instance, PI generates
adversarial texts by inserting semantically meaningless parentheses and leverages a beam
search strategy to maximize attack success while preserving semantics (Li et al., 2025).
In contrast, recent studies exploit class probability feedback, with S2B2-Attack modeling
adversarial distributions via variational autoencoders and applying score-based search to
surpass blind and decision-based sentence-level attacks (Moraffah & Liu, 2024). These ap-
proaches can generate fluent and human-like adversarial samples, but they generally require
more computation and risk introducing larger shifts in semantics compared to character- or
word-level perturbations.

However, these methods typically require access to model internals or confidence scores, limiting
their applicability to white-box or soft-label black-box scenarios. Beyond these, researchers have
also explored semantic-level attacks, which aim to preserve fluency while subtly altering meaning.
For example, paraphrasing techniques (Xu et al., 2024) aim to restate sentences with equivalent
meaning but different wording, enhancing transferability. Cross-lingual transformations (Bhandar-
i & Chen, 2023) leverage multilingual models to create adversarial examples by translating text
between languages.

Another line of work emphasizes task-specific adversarial scenarios, such as evading toxic content
detection, misinformation classification, or sentiment analysis systems (Bespalov et al., 2023; Przy-
była et al., 2024). These studies highlight that adversarial text is not merely a technical challenge
but also a significant threat to the secure deployment of NLP applications, particularly in domains
where the stakes are high, such as content moderation and public opinion analysis. As large lan-
guage models (LLMs) become more prevalent, they introduce new opportunities and risks, leading
to the development of attacks targeting safety alignment and jailbreaking (Yi et al., 2024; Zhou et al.,
2024). These emerging challenges underscore the need for more sophisticated attack strategies that
go beyond simple perturbations, calling for techniques that can navigate the complexity of modern
NLP systems.
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To enhance the efficacy of attacks, a variety of optimization strategies have been proposed, including
beam search (Zang et al., 2020), genetic algorithms (Liu et al., 2024b), reinforcement learning, and
LLM-as-attacker paradigms. A promising new direction involves confidence elicitation techniques
(Formento et al., 2025), which attempt to guide attacks by extracting calibrated confidence estimates
from black-box models. However, most existing attacks still struggle to balance attack success,
semantic coherence, and stealthiness.

Meanwhile, there is a growing body of research on defensive strategies, such as adversarial training,
robust optimization, and consistency regularization (Zhao et al., 2024; Yang et al., 2024). While
defenses reduce attack success rates to some extent, they often come at the cost of reduced model
generalization. This tension further underscores the need for new attack paradigms that not only
break existing defenses but also produce adversarial samples with higher semantic plausibility.

Building on this foundation, we propose a novel textual adversarial attack method that leverages
linguistic patterns such as euphemism, sarcasm, and implicit sentiment expression. Our EuphemAt-
tack operates in a black-box setting while maintaining both effectiveness and naturalness through
prompt-based control and semantic filtering, addressing key limitations in existing attack strategies.

A.2 EVALUATION PARADIGM OF ATTACKS

Early approaches for natural language generation relied on surface-level lexical overlap metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), and METEOR (Banerjee & Lavie, 2005). While
effective for structured tasks such as summarization, these metrics fail to capture nuanced meaning
shifts introduced by adversarial attacks. Other simple measures, such as edit distance or cosine
similarity, provide complementary views but still lack semantic sensitivity.

With the development of pre-trained models like BERT and BART, model-based evaluation
paradigms emerged, enabling assessment of relevance, consistency, and factuality through contextu-
alized embeddings (Zhang et al., 2019; Yuan et al., 2021). These approaches significantly improved
semantic alignment but still exhibited limitations in capturing subtle pragmatic shifts, which are
often crucial in adversarial scenarios. More importantly, many existing evaluations only focus on at-
tack success rate or perturbation size, while overlooking adversarial properties such as stealthiness,
cross-model transferability, and emotional subtlety.

Recently, LLMs have been used as evaluators to assess generated text with high agreement to human
judgments (Gu et al., 2024). Frameworks such as G-EVAL introduce an LLM-as-a-judge paradigm
that combines automatic chain-of-thought, form-based scoring, and probability-weighted aggrega-
tion to improve alignment with human judgments across summarization and dialogue tasks (Liu
et al., 2023d). Similarly, JudgeLM fine-tunes open-source language models with swap augmen-
tation, reference support, and reference drop to mitigate position, knowledge, and format biases,
while also adopting a score-first paradigm to enhance evaluation efficiency (Zhu et al.). Beyond
these, EvalPlanner proposes splitting evaluation reasoning into planning, execution, and judgment,
leveraging unconstrained, self-training data to improve transparency and performance across diverse
tasks, thus reducing reliance on manual component design (Saha et al.).

Despite these advances, challenges remain. Lu et al. present a systematic benchmark of closed- and
open-source LLMs on offensive language detection with annotation-disagreement samples, reveal-
ing performance degradation and overconfidence in ambiguous cases (Lu et al., 2025). Their find-
ings suggest that incorporating disagreement data in few-shot and fine-tuning settings can improve
generalization and alignment with human judgments. More broadly, LLM evaluators continue to
face persistent issues such as subjectivity, sensitivity to prompt design, and potential bias, especially
in adversarial contexts. The inherent complexity of adversarial attacks and the limitations of current
evaluation methods often necessitate additional verification, which can be resource-intensive. This
underscores the need for more refined frameworks that can effectively capture subtle semantic shifts
in adversarial examples without incurring excessive validation costs.

Specifically, we employed large language models to evaluate not only the attack success rate but
also semantic preservation, emotional subtlety, and linguistic naturalness of adversarial outputs.
Multiple advanced models were utilized for semantic evaluation, thereby bridging the gap between
quantitative metrics and qualitative assessments and providing a more comprehensive benchmark
for textual adversarial attacks.
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B THE CONSTRUCTED PROMPTS IN OUR EUPHEMATTACK

Here, the detailed prompts in Section 3.3.1 PROMPT CONSTRUCTION are presented.

(1) The Prompts of Attack Objective:

# Attack Objective
Your task is to generate a new sentence that must meet the following conditions:
1. Keep the semantic meaning of the new sentence unchanged in the sentence.
2. The new sentence should be classified as {target label}.
3. The new sentence should conform to the expression habits of natural human language.

(2) The Prompts of Entity Retention:

# Entity Retention
You must strictly retain all original entities (including names of people, places, organizations,
brands, product names, and any other concrete nouns) exactly as they appear in the {X}.
1. You must not omit, substitute, modify, generalize, or add new entities.
2. The semantic relationships involving these entities must remain unchanged.

(3) The Prompts of Perturbation Guidance:

# Perturbation Guidance
IfX contains expressions that convey strong positive or negative emotions, you must rewrite the
sentence to weaken or hide these emotional expressions. The transformation should employ:

• If {ground turth} is positive, rewrite the sentence in an understated, calm, or indif-
ferent tone.

• If {ground turth} is negative, rewrite the sentence in an euphemistic, implicit, or
subtly sarcastic tone.

Commonly used linguistic techniques such as references to historical or cultural contexts, id-
ioms, proverbs, metaphors, or colloquial expressions where appropriate and consistent with the
sentence context.

C THE STATISTICS OF DATASETS AND EXPERIMENTAL SETTING

C.1 THE STATISTICS OF ALL THE DATASETS

The statistics of all the datasets are presented in Table 6.

Table 6: The statistics of all datasets. ”Pos.Num” and ”Neg.Num” represent the number of positive
and negative instances, respectively.

Dataset DataSize Pos.Num Neg.Num
IMDB 4000 2000 2000

Amazon 4000 2000 2000
Yelp 4000 2000 2000

DianPing 5015 2589 2426
CTrip 9426 6213 2313

JD 4673 2324 2343

C.2 EXPERIMENTAL SETTING

Our method employs a few-shot learning approach, utilizing 5 carefully selected positive-negative
sample pairs to guide the model’s sentence generation process. To ensure the robustness and quality
of our adversarial examples, we generated three distinct sets of adversarial samples using the same
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generation strategy. In this design, the guidance examples help the model retain the core seman-
tics of the input while naturally embedding subtle stylistic cues aligned with the target label. To
reduce potential variance in single evaluations and obtain more reliable results, we conducted three
independent generations for each evaluation and reported the average performance.

Unlike many existing methods that rely on heuristic or beam search with extensive queries, our E-
uphemAttack fully leverages the model’s generative ability by simply generating a few candidates
and selecting the optimal adversarial sample, the query cost remains minimal while still achieving
strong attack performance. For the baselines we employed the default hyperparameters reported in
the original papers. Most baseline methods considered are black box hard label attacks that perfor-
m word replacements based on model decisions or on model scores via extensive model queries.
PromptAttack is an exception and operates in a few-shot setting similar to our method. To assess
transferability, for each baseline we generated adversarial examples under its default configuration
that yielded the best performance, then used those examples to attack the target models evaluated in
this study and compared those results to the performance of our method.

All experiments were conducted on a high-performance server featuring an NVIDIA GeForce RTX
4090 Founders Edition GPU, coupled with a 13th Gen Intel(R) Core(TM) i9-13900K CPU, oper-
ating at a frequency of 3.00 GHz, and equipped with 125 GB of RAM. The experiments utilized
Python version 3.9.16, PyTorch framework, and CUDA version 12.1 to leverage GPU acceleration.

D EVALUATION WITH HUMANS

The undergraduate students are experienced users of major social media platforms, with over five
years of account registration history and more than 20 hours of weekly activity. This extensive usage
enables them to develop a deep understanding of comments commonly found on these platforms.
As shown in the Table 7, we list the information of the annotators.

Table 7: Demographic and Activity Profile of Annotators

Total Annotators Gender (M/F) Age Range Avg. Registration Time Avg. Weekly Active Hours

3 2 / 1 22 – 25 yrs >5 years >20 hours

During the evaluation process, we initially annotated 1,000 data samples jointly by all authors and
inserted them randomly into the original dataset without the annotators’ knowledge. After com-
pleting the annotation, we compared these 1,000 data samples with the original labels. If there
was a significant deviation, indicating unreliable annotation, we replaced it with annotations from a
different annotator.

E INFLUENCE OF DIFFERENT GENERATORS

To evaluate the robustness of our EuphemAttack with respect to the selection of generator, we fur-
ther conducted experiments using two additional LLMs, Gemini and Qwen3. These models differ
in architecture and training data scale from the primary generator used in our main experiments,
thus providing a complementary perspective on the stability of the proposed approach. Specifical-
ly, we replaced the generator in our attack pipeline with Gemini-2.5-flash and Qwen3-235b-a22b
while keeping the victim models and evaluation settings unchanged. The goal is to assess whether
variations in the generator affect the attack success rate (ASR) and the drop in accuracy.

As shown in Table 8, although different generators lead to slight fluctuations in ASR and accuracy
reduction, the overall trend remains consistent. Gemini tends to generate more diverse paraphras-
es, resulting in slightly higher ASR, whereas Qwen achieves more fluent but less aggressive per-
turbations, leading to slightly lower ASR. These results demonstrate that the effectiveness of our
EuphemAttack is not tied to a single generator, and the attack maintains strong transferability across
different LLMs.

Overall, these findings suggest that our EuphemAttack is generator-agnostic to a large extent. While
different LLMs bring stylistic and lexical variations, the euphemism-based rephrasing strategy reli-
ably introduces semantic-preserving perturbations that can fool victim models. This indicates that
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Table 8: Influence of different generators on all the datasets. For English datasets, adversarial ex-
amples were generated using Gemini-2.5-flash, while for Chinese datasets, Qwen3-235b-a22b was
employed. Ori.% represents the original accuracy, Acc.% indicates the accuracy after adversarial
attacks, and ASR% denotes the attack success rate, with the values in parentheses indicating the
change relative to the main experiments (↑ for increase, ↓ for decrease).

Generator Victim Datasets Ori.% Acc.% ASR%

Gemini

GPT-4o
IMDB 95.25 76.11 20.09(8.87↑)

Amazon 95.27 78.85 17.23(7.3↑)
Yelp 97.67 81.26 16.80(10.76↑)

Llama
IMDB 94.04 70.83 24.68(3.27↑)

Amazon 94.65 72.84 23.04(3.03↓)
Yelp 96.29 75.34 21.76(5.09↓)

Qwen3

DeepSeek
DianPing 78.21 61.34 21.57(0.77↓)

CTrip 82.29 69.87 15.09(0.06↓)
JD 93.80 72.39 22.82(0.11↓)

Qwen
DianPing 76.09 59.94 21.23(1.94↓)

CTrip 83.87 67.52 19.49(2.93↑)
JD 93.84 70.92 24.42(7.2↓)

GLM
DianPing 75.83 58.34 23.07(1.38↑)

CTrip 81.68 65.64 19.64(8.65↑)
JD 92.66 65.47 29.34(0.76↓)

future advances in LLMs could further enhance the quality of generated adversarial examples with-
out undermining the core mechanism of our method.

F CASE STUDY AND MODEL FINE-TUNING

F.1 CASE STUDY

In Table 9, we present a comparative analysis between our EuphemAttack and three variants of
PromptAttack across different domains. These cases further reveal significant limitations in these
baseline approaches. While these methods attempt to generate adversarial examples, they often
struggle to maintain semantic consistency with the original text, resulting in either semantically al-
tered content or invalid adversarial samples that fail to meet semantic perturbation constraints. In
contrast, our EuphemAttack demonstrates superior performance in terms of coherence, conciseness,
and readability. More importantly, it successfully achieves a delicate balance between semantic p-
reservation and effective semantic perturbation. This balance is crucial for generating high-quality
adversarial examples that can effectively test model robustness while maintaining the original mean-
ing and natural language characteristics. The case study further illustrates how our EuphemAt-
tack can subtly alter sentiment while preserving the core message and maintaining grammatical
correctness, making it particularly suitable for real-world applications where semantic integrity is
paramount.

F.2 MODEL FINE-TUNING

As shown in Fig. 3, we conducted fine-tuning experiments on both Bert and Llama across various
English and Chinese datasets, where the adversarially attacked datasets were split into training, val-
idation, and test sets with a ratio of 8:1:1. Bert and Llama are treated as the representative models
of PLMs and open-source LLMs. For Llama, we employed LoRA-based fine-tuning to enhance
efficiency. The results demonstrate that our EuphemAttack, while relatively simple, is highly effec-
tive in significantly degrading model performance. Notably, when we applied the same adversarial
attacks to the fine-tuned models, all accuracy metrics showed significant improvements, with Lla-
ma achieving an impressive 92.08% accuracy even in Chinese language tasks where it traditionally
underperforms. The fine-tuning process proves to be a robust defense mechanism, effectively miti-
gating the influence of our adversarial attacks. This highlights the dual nature of our EuphemAttack:
its capability to expose vulnerabilities in language models and the importance of incorporating ad-
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Table 9: Case study comparing our method with PromptAttack (1: adding meaningless characters,
2: paraphrasing, 3: changing syntactic structure).

Method Sentence Prediction
Original Its cozy vibe and rich flavors won my heart thoroughly.

Positive→Negative
PromptAttack-1 Its cozy vibe and rich flavors won my heart thoroughly.

@r4xmn2
PromptAttack-2 I completely fell in love with its warm atmosphere and delicious

taste.
PromptAttack-3 Thoroughly won over by its rich flavors and cozy vibe, my heart

couldn?t resist.
Ours Its cozy vibe and rich flavors ... well, let’s just say they didn’t go

unnoticed.
Original A messy plot with flat acting left me yawning nonstop.

Negative→Positive
PromptAttack-1 A messy plot with flat acting left me yawning nonstop. @qezro1
PromptAttack-2 The chaotic plot and dull acting kept me fighting off yawns

throughout.
PromptAttack-3 Yawning nonstop was the result of a flat performance combined

with a messy plot.
Ours The plot’s loose threads with understated acting settled me in qui-

et ease.

(a) Bert fine-tuning results (b) Llama fine-tuning results

Figure 3: Fine-tuning results on Bert and Llama across all datasets, showing original accuracy
(Ori.%) and accuracy after fine-tuning (FT.%). Upward arrows indicate performance improvement
after fine-tuning.

versarial samples into training data as a countermeasure to enhance model resilience against such
attacks.
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