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Abstract

This work proposes a simple yet effective ap-001
proach for leveraging large language models002
(LLMs) in Chinese spelling correction (CSC)003
task. Our approach consists of two components:004
a large language model and a minimal distor-005
tion model. At each decoding step, the large006
language model calculates the probabilities of007
the next token based on the preceding context.008
Then, the distortion model adjusts these proba-009
bilities to penalize the generation of tokens that010
deviate too far from the input. Different from011
the prior supervised fine-tuning and prompt-012
based approaches, our approach enables effi-013
cient CSC without requiring additional training014
or task-specific prompts. To address practical015
challenges, we propose a length reward strat-016
egy to mitigate the local optima problem during017
beam search decoding, and a faithfulness re-018
ward strategy to reduce over-corrections. Com-019
prehensive experiments on five public datasets020
demonstrate that our approach significantly im-021
proves LLM performance, enabling them to022
compete with state-of-the-art domain-general023
CSC models.1024

1 Introduction025

Spelling errors are common in Chinese text because026

many Chinese characters have similar pronuncia-027

tions or shapes. This similarity makes it difficult028

for both humans to type and for machines to rec-029

ognize the characters correctly. These errors may030

cause misunderstandings, diminish the credibility,031

or degrade the performance of downstream appli-032

cations (Si et al., 2023). Therefore, the research on033

Chinese Spelling Correction (CSC) has become ur-034

gently necessary and attracted increasing attention035

in recent years (Hong et al., 2019; Bao et al., 2020;036

Xu et al., 2021; Li et al., 2022; Wu et al., 2023;037

Dong et al., 2024, inter alia).038

1Our anonymized code is available at https://anonymou
s.4open.science/r/simple-csc.
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shì
Partially Generated Sentence:

明 天 九 十 周 末 了 ， 又 可 以 根 朋 友 出 去 玩 了 。
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Append: 跟

Figure 1: An illustration of our approach. The correct
sentence should be “明天就是周末了，又可以跟朋
友出去玩了。” (Tomorrow is the weekend, allowing
for going out to play with friends again.).

Recently, researchers propose to leverage large 039

language models (LLMs) to improve CSC per- 040

formance. These approaches fall into two cate- 041

gories: prompt-based and supervised fine-tuning. 042

The prompt-based approaches, which are widely 043

used in the LLM era, feed CSC-related instructions 044

and the input sentence into an LLM, and expect 045

the LLM to output a corrected sentence. The ex- 046

periment setting is called few-shot if a few CSC 047

examples are included in the instructions, and zero- 048

shot if no examples are provided. Li et al. (2023a) 049

first investigate the prompt-based approach and 050

conduct extensive experiments under different set- 051

tings. Moreover, they propose different strategies 052

for selecting proper examples. Dong et al. (2024) 053

follow the work of Li et al. (2023a), and propose 054

to enrich the prompt with additional information, 055

such as pronunciation and glyph of characters. All 056

their experiments show that the prompt-based ap- 057

proach leads to unsatisfactory CSC performance, 058

1

https://anonymous.4open.science/r/simple-csc
https://anonymous.4open.science/r/simple-csc


especially when compared to previous non-LLM059

based approaches.060

The second class of approaches are based on su-061

pervised fine-tuning (SFT). The main difference062

between the prompt-based and the SFT-based ap-063

proaches is the latter fine-tunes the LLM over the064

CSC training data. This fine-tuning is performed065

one mini-batch at a time, with output corrected sen-066

tences as the training objective, in a teacher-forcing067

manner. Li et al. (2023a) explore the SFT-based068

approach under various settings and using different069

strategies. They find that the SFT-based approach070

achieve better performance than the prompt-based071

approach. However, the performance still lags be-072

hind previous non-LLM results by large margin.073

In contrast to both the prompt-based and SFT-074

based approaches, we propose a simple prompt-075

free and training-free framework to leverage LLMs076

for the CSC task. As shown in Figure 1, our ap-077

proach consists of two components: a large lan-078

guage model and a distortion model. At each de-079

coding step, the large language model generates a080

token based on the current context. Then a minimal081

distortion model determines whether the generated082

token is deviated too far from the input characters.083

In practice, we find that the local optima prob-084

lem of beam search decoding and over-correction085

hinder the performance of our approach. To ad-086

dress these issues, we propose two straightforward087

rewards, the length reward and faithfulness reward.088

We conduct comprehensive experiments on five089

public datasets from various domains and genres,090

including more than 50,000 sentences. The re-091

sults clearly show that our approach significantly092

improves the performance of LLMs in the CSC093

task. Our approach also demonstrates remark-094

able domain generalization capabilities, outper-095

forming state-of-the-art domain-general CSC mod-096

els trained on extensive synthetic CSC data (ap-097

proximately 34 million pairs) on most datasets.098

In summary, our contributions are as follows:099

‚ We propose a simple yet effective framework100

to leverage LLMs for the CSC task, requiring nei-101

ther additional training nor prompts.102

‚ Two straightforward rewards, the length re-103

ward and faithfulness reward, are introduced to ad-104

dress the local optima problem and over-correction105

issue, respectively.106

‚ Comprehensive experiments demonstrate that107

our approach significantly improves the perfor-108

mance of LLMs in the CSC task, showcasing re-109

markable domain generalization capabilities.110

Type Example Proportion
Identical 机 (jı̄) 0.962
Same Pinyin 基 (jı̄) 0.023
Similar Pinyin 七 (qı̄) 0.008
Similar Shape 仉 (zhǎng) 0.004
Unrelated 能 (néng) 0.003

Table 1: Examples of the different distortion types of
the corrected token “机” (jı̄). The distribution of the
types is calculated from the development set.

2 Our Approach 111

Given an input sentence x “ x1, x2, ¨ ¨ ¨ , xn, 112

where xi denotes a character, a CSC model out- 113

puts a sentence of the same length, denote as 114

y “ y1, y2, ¨ ¨ ¨ , yn. The key to the CSC task is 115

how to model the score of the input and output 116

sentence pair, i.e., scorepx,yq. 117

Under a perspective of probabilistic modeling, 118

the joint probability can be decomposed into two 119

parts: 120

ppx,yq “ ppx | yq ppyq

“ pDMpx | yq pLLMpyq
(1) 121

The first part corresponds to a distortion model, 122

which captures the relationships between x and 123

y. In other words, it interprets how spelling errors 124

transform y to x. Another important function of 125

the distortion model is to make sure that y repre- 126

sents the same “meaning” as x, i.e., faithfulness. 127

The second part corresponds to a large lan- 128

guage model, which makes sure that y is fluent 129

and correct from the language use perspective. In 130

this work, we employ generative LLMs, including 131

Baichuan2, Qwen1.5, and InternLM2. 132

Please note that our use of LLMs is prompt- 133

free. We do not provide CSC-related instructions 134

and examples as the prompt. More importantly, 135

we do not give the input sentence to LLMs. We 136

use LLMs as pure traditional language models for 137

evaluating next-token probabilities. 138

2.1 A Minimal Distortion Model 139

Our distortion model adopts character-level factor- 140

ization: 141

log pDMpx | yq “
ÿ

i

log pDMpxi | yiq (2) 142

To further simplify the model, we do not com- 143

pute distortion probabilities for specific charac- 144

ter pairs, i.e., pc1, c2q. Instead, we first classify 145
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pc1, c2q into one of five distortion types, denoted146

as typepc1, c2q. Then we use the probability of the147

type as the distortion probability of the character148

pair:149

pDMpc1 | c2q “ pptypepc1, c2qq (3)150

Table 1 illustrates the distortion types. The pro-151

portions are obtained from small subsets of popular152

CSC training data, described later in §3.1. We153

directly employ the proportions as the distortion154

probabilities.155

Please note that we claim our approach as156

training-free, since the LLMs are used in an off-157

the-shelf manner and the distortion model only re-158

lies on several frequency values, which can be eas-159

ily counted from a small dataset.160

Given pc1, c2q, we implement a simple rule-161

based tool to decide the distortion type. Among162

the five types, “Similar Pinyin” and “Similar163

Shape” are more complex to handle. We give de-164

tails in Appendix A, and release the tool, along165

with other code in this work.166

2.2 Next-token Probabilities from LLM167

Typically, the output vocabulary of a LLM contains168

both single- and multi-character tokens. In other169

words, given a sentence y “ y1...yn, there exists170

many ways to segment it into a sequence of tokens.171

We use t “ t1...tm to denote a specific token-level172

segmentation of y, i.e., a path for the LLM to gen-173

erate the character sequence, where tj “ c1 . . . ck174

and k ě 1. Then, the log probability of y can be175

decomposed as:176

log pLLMpyq “
ÿ

j

log pLLMptj | tăjq (4)177

After combining the distortion model, the proba-178

bility of a partial output sentence is:179

log ppx, tďjq “ log ppx, tăjq

` log pLLMptj | tăjq

`

k
ÿ

r“1

log pDMpcr | xl`rq

(5)180

where k “ ℓptjq and l “ ℓptăjq are the lengths of181

tj and tăj , respectively.182

2.3 Beam Search Decoding183

During inference, the basic operation at step j is to184

select a token tj and append it to the current partial185

sequence tăj . We follow the standard practice,186

and adopt beam search decoding, that only retains187
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Figure 2: A real example of the decoding process for the
input sentence “要求师公单位对...” (Requesting the
master unit to ...). Here, “施工” (shı̄gōng, construction)
is misspelled as “师公” (shı̄gōng). Without the length
reward, the correct character “施” is fail to be select into
the beam.

the top-K candidates at each decoding step for 188

computational efficiency. We adopt a beam size of 189

8 throughout the paper. 190

In particular, one technical detail is closely re- 191

lated with our length reward strategy and thus wor- 192

thy of further discussion. As discussed above, most 193

LLMs generate sentences at token-level and one 194

token may contain either a single character or mul- 195

tiple characters. This implies that the beam search 196

procedure is aligned according to token numbers 197

rather than character positions. In other words, at 198

any given inference step, candidates in the beam 199

may varies greatly in the number of characters gen- 200

erated so far. For instance, one candidate contains 201

5 characters, whereas another candidate contains 8 202

characters. 203

2.4 Length Reward 204

Our preliminary experiments show that the vanilla 205

approach, as described in Equation 5, produces un- 206

satisfactory results. Detailed analysis shows that 207

the paths explored in the beam search space are 208

dominated by single-character tokens, as shown in 209

Figure 2a. As we all know, multi-character tokens 210

are created by merging characters that frequently 211

occur together, capturing the most common pat- 212

terns in the language. LLMs are trained for and, 213

in turn, very good at generating multi-character to- 214

kens. Therefore, it is counter-intuitive to deprive 215
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小明 想去

买 (Unrelated)

书店 (Unrelated)

¨ ¨ ¨

苏州

¨ ¨ ¨

宿州

¨ ¨ ¨

Xiaoming Wants to go

to buy

0.064

Bookstore

0.029

Suzhou, Jiangsu0.0039

Suzhou, Anhui0.000003

✘: Over-correction

✔

Figure 3: A real example of the probabilities for the
next token, given the partial sequence “小明想去” from
the sentence “小明想去宿州” (Xiaoming wants to go
to Suzhou, Anhui).

such capability from LLMs.216

To handle the issue, we design a simple length217

reward so that the model favors and keeps multi-218

char tokens during beam search:219

scorepx, tďjq “ scorepx, tăjq

` log pLLMptj | tăjq

`

k
ÿ

r“1

log pDMpcr | xl`rq

` α ˆ pℓptiq ´ 1q

(6)220

where α is a hyperparameter for balance the weight221

of the length reward, considering that the other222

two components use log probabilities, whereas the223

length reward uses numbers directly. Please note224

that we use scorep¨q instead of pp¨q, since the val-225

ues are no longer probabilities.226

As shown in Figure 2b, thanks to the length re-227

ward, the correct token “施工单位” (construction228

unit) is now ranked within the top-K candidates.229

2.5 Faithfulness Reward230

Under our prompt-free use, the LLM component is231

unaware of the input sentence, and only focuses on232

the fluency and correctness of the output sentence233

from the language use perspective.234

We observe that our approach, even with the235

length reward, tends to over-correct the input sen-236

tence, i.e., changing its original meaning. Figure 3237

gives an example. Given the partial output sen-238

tence, i.e., “小明想去” (Xiaoming wants to go to),239

the LLM component gives a probability of 0.0039240

to “苏州” (sūzhōu), which is a very famous city241

in Jiangsu Province. In contrast, it gives a much242

lower probability of 3 ˆ 10´6 to the original input243

token, i.e., “宿州” (sùzhōu), which is a less famous244

city in Anhui Province. The distortion model fails245

to remedy such great gap. As the result, our ap-246

proach adopts the “correction”. However, under247

such circumstances, it is better to reserve the origi- 248

nal tokens. 249

To mitigate this issue, we introduce a faithful- 250

ness reward: 251

scorepx, tďjq “ scorepx, tăjq

` log pLLMptj | tăjq

` p1 ` HLLMp¨qq ˆ

¨

˝

řk
r“1 log pDMpcr | xl`rq

`

α ˆ pℓptiq ´ 1q

˛

‚

(7) 252

where HLLMp¨q denote the entropy of next-token 253

probabilities.2 If the entropy is high, meaning 254

that the LLM is uncertain about the next token, 255

the distortion model, along with the length reward, 256

will play a more important role in deciding the 257

next token. From Table 1, we can see that the 258

“Identical” type has a much higher probability 259

than others. That is, the distortion model always 260

favors the original input tokens. 261

3 Experimental Setup 262

3.1 Datasets. 263

Real-world test sets We perform experiments 264

across five distinct CSC datasets: Sighans (Wu 265

et al., 2013; Yu et al., 2014; Tseng et al., 2015), 266

CSCD-IME (Hu et al., 2022), MCSCSet (Jiang 267

et al., 2022), ECSpell (Lv et al., 2023), and Lemon 268

(Wu et al., 2023), covering a broad spectrum of do- 269

mains and genres. The details and statistics of these 270

datasets can be found in Appendix B. For Sighans, 271

we utilize the revised versions released by Yang 272

et al. (2023b), which have been manually verified 273

and corrected for errors of the original datasets, and 274

name them as rSighan for clarity. 275

Pseudo development set Since there is no pub- 276

licly available, manually labeled, domain-general 277

development set for CSC, we have chosen to split a 278

small portion of the existing synthetic training data 279

for hyperparameter tuning, naming it Pseudo-Dev. 280

Specifically, we use 1,000 sentences each from the 281

synthetic training data of Hu et al. (2022) and Wang 282

et al. (2018) as our development set. 283

Selected datasets for analyses Given the ab- 284

sence of a domain-general development set for 285

CSC and the potential limitations of the Pseudo- 286

Dev set in representing real-world data, we conduct 287

2Since LLMs have different output vocabularies V , we
divide the entropy by log |V|, which can be understood as the
maximum entropy, and the value will fall into r0, 1s.
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S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç S-Fæ C-Fæ FPRç

69.3 80.7 10.1 41.4 44.2 27.6 17.8 27.6 12.0 34.9 45.4 13.7 28.2 31.6 19.1
– – – 74.4 76.6 – – – – – – – – – –
– – – – – – 80.9 – – – – – – – –
– – – – – – – – – 85.7 – 5.4 – – –

47.5 57.5 16.9 52.0 53.9 25.7 35.3 48.5 7.5 57.1 64.9 6.4 48.0 49.3 13.1
47.7 57.4 15.1 51.0 53.4 28.5 35.3 48.5 8.1 57.6 66.2 7.6 47.2 48.8 13.1
47.3 56.9 9.6 49.5 51.6 29.3 37.8 50.2 6.8 59.3 68.4 8.6 50.2 51.3 11.8

ZSP 19.0 18.4 49.1 22.6 14.5 35.3 13.6 8.0 77.5 34.5 22.3 30.3 17.5 9.8 40.9
FSP 31.8 38.5 21.4 35.7 32.7 10.5 42.6 47.1 4.4 56.8 53.1 5.8 35.1 25.2 9.5
OUR 59.1 70.9 10.4 63.2 66.2 16.5 66.0 76.9 1.7 84.5 89.8 4.9 53.2 56.2 9.1
ZSP 29.0 31.4 41.1 34.3 31.3 24.5 40.2 45.4 3.8 50.9 49.0 14.4 31.8 26.8 16.1
FSP 32.2 35.1 45.7 44.4 40.7 20.0 39.0 43.0 20.6 57.4 58.0 13.5 36.9 30.3 19.8
OUR 54.4 68.0 17.2 52.6 57.7 25.8 61.1 72.6 3.1 81.6 88.2 6.5 45.9 49.9 14.3
ZSP 31.0 30.4 57.3 34.9 29.2 40.6 19.0 12.5 80.5 45.2 37.5 31.6 32.8 26.5 27.8
FSP 24.0 28.3 50.0 30.3 26.2 23.4 28.3 29.5 36.2 46.5 44.6 26.3 28.4 19.4 28.6
OUR 57.1 70.0 12.6 60.7 64.1 19.7 63.2 72.9 2.6 82.4 88.8 5.1 49.8 53.7 10.7

System rSighans CSCD-IME MCSCSet ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe:

Hu et al. (2022)
Jiang et al. (2022)
Liu et al. (2023)
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 2: Main Results. :: We reran the released code of ReaLiSe (Xu et al., 2021), along with their released
models, to obtain the results. ReaLiSe, was trained on the in-domain, gold-standard data of the Sighans dataset and
represents a SOTA model for it. The numbers in gray represent the out-of-domain results for ReaLiSe.

in-depth analyses on three distinct datasets to cover288

a broad spectrum of language use. These include289

errors made by Chinese learners (rSighan 15), col-290

loquial and diverse text from novels (Lemon Nov),291

and formal and standard text from official docu-292

ments (ECSpell Odw).293

3.2 Evaluation Metrics.294

We follow the convention to use the sentence-level295

correction F1 (S-F) score as the main evaluation296

metric. Besides, we also report character-level297

correction F1 (C-F) and sentence-level false posi-298

tive rate (FPR) to provide a more comprehensive299

view of the model performance.300

3.3 Baselines301

We compare our approach against prompt-based302

method under two settings: zero-shot prompting303

(ZSP) and few-shot prompting (FSP). For few-304

shot settings, we use the BM25 and Rouge similarity305

metrics to select 10 most similar in-context exam-306

ples for each input sentence, as proposed by Li307

et al. (2023a), from the Pseudo-Dev. During infer-308

ence, we adopt the greedy decoding strategy.3 The309

prompt details can be found in Appendix C.3.310

3We observe that the improvement of beam search is
marginal and sometimes even detrimental.

We do not compare against supervised fine- 311

tuning methods in this study for two reasons. First, 312

our approach is training-free, making direct com- 313

parisons with supervised fine-tuning methods un- 314

fair. Second, supervised fine-tuning methods are 315

computationally expensive and time-consuming, 316

particularly for large-scale LLMs. 317

To provide a more comprehensive compari- 318

son, we also present results from state-of-the-art 319

domain-general CSC models trained on 34 million 320

pairs of synthetic CSC data for reference. These in- 321

clude Finetuned BERT (Devlin et al., 2019), Soft- 322

masked BERT (Zhang et al., 2020), and ReLM 323

according to (Liu et al., 2023).4 324

Additionally, for datasets that include in-domain 325

manually annotated data, we report results from 326

models specifically trained on it, serving as another 327

reference point. 328

3.4 Hyperparameters 329

We conduct experiments on three open-source 330

LLMs: the Baichuan2 (Yang et al., 2023a), 331

Qwen1.5 (Bai et al., 2023) and InternLM2 (Cai 332

et al., 2024). We use the “Base” version of each 333

LLM family. The distortion probabilities for each 334

4The results of these models were obtained by running
the released code along with the corresponding checkpoints
provided at https://github.com/gingasan/lemon.git.
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Input 商务部前头，11月底完成

Reference 商务部牵头，11月底完成

ReLM 商务部牵头，11月底完成

BC2 13B ZSP 商务部前面，11月底完成

BC2 13B FSP 商务部日前，11月底完成

BC2 13B OUR 商务部牵头，11月底完成

Input 虎珀酸索莉那新片主要功能是什么

Reference 琥珀酸索利那新片主要功能是什么

ReLM 琥珀酸索莉那新片主要功能是什么

BC2 13B ZSP 琥珀酸索利那新片主要功能是什么

BC2 13B FSP 虎珀酸索莉那新片主要功能是什么

BC2 13B OUR 琥珀酸索利那新片主要功能是什么

Table 3: Qualitative examples of our approach and the
baselines. Corrections marked in “Blue” are correct or
suggested by the reference, while those in “Red” are
incorrect.

type of distortion model were derived from the335

statistics of the Pseudo-Dev dataset. During infer-336

ence, we adopt beam search with a beam size of 8.337

We tuned α, on the Pseudo-Dev, exploring a range338

from 0.0 to 5.0 in increments of 0.5. Eventually, α339

was set to 2.5 for all experiments.340

4 Main Results341

4.1 Results on CSC Datasets342

The main results of our approach and the baselines343

on the CSC datasets are shown in Table 2.344

Results show that, after applying our approach,345

all three LLM families outperforms their zero-shot346

and few-shot prompting baseline on all five datasets347

by a large margin. Our approach not only achieves348

a higher sentence- and character-level correction349

F1 score, but also reduces the false positive rate.350

Compared to the recent state-of-the-art domain-351

general CSC models, which are trained on 34M352

synthetic CSC data, our approach also achieves353

competitive or even superior performance on most354

datasets, especially on the MCSCSet and ECSpell355

datasets. The results indicate that our approach has356

a better generalization across different domains and357

genres than the current domain-general SOTAs.358

However, our approach still largely lags behind359

the domain-specific SOTAs trained on the gold-360

standard labeled data (from 1.2 to 21.8 on S-F361

score) of each dataset. Take the Baichuan2 model362

as an example. The smallest gap (1.2) is on the363

ECSpell dataset, which may be because the text in364

that dataset is more formal and standard, while the365

largest gap (19.8) happens on the MCSCSet dataset,366

S-Fæ S-Pæ S-Ræ C-Fæ C-Pæ C-Ræ FPRç

ReLM 55.5 61.1 50.8 61.0 78.5 49.9 9.5
GPT3.5 41.2 41.0 41.4 44.6 40.0 50.5 25.9
GPT4 43.5 38.1 50.8 47.1 37.9 62.2 47.5
BC2 13B┌┐ 59.6 66.5 54.0 67.3 78.3 59.0 8.3
Q1.5 14B OUR 57.6 62.5 53.4 66.0 74.1 59.4 10.2
IL2 20B└┘ 60.5 67.2 55.0 67.8 78.7 59.6 8.3

ReLM 36.4 46.7 29.8 36.0 49.2 28.3 14.3
GPT3.5 19.4 20.8 18.1 19.6 17.4 22.5 30.4
GPT4 30.6 28.4 33.1 31.9 25.2 43.4 33.5
BC2 13B┌┐ 45.3 53.7 39.1 49.1 57.0 43.2 13.1
Q1.5 14B OUR 38.2 41.7 35.3 43.7 44.5 43.0 21.8
IL2 20B└┘ 42.8 49.9 37.5 46.4 52.8 41.4 15.3

ReLM 66.5 67.5 65.6 73.0 86.4 63.1 7.1
GPT3.5 57.1 61.4 53.4 59.1 60.3 57.9 5.0
GPT4 73.1 73.0 73.3 75.6 73.8 77.5 5.0
BC2 13B┌┐ 92.0 94.4 89.7 93.8 95.6 92.1 0.4
Q1.5 14B OUR 87.4 88.6 86.3 91.6 91.8 91.3 2.9
IL2 20B└┘ 91.1 92.9 89.3 93.8 95.9 91.8 0.4

rSighan 15

ZSP

Lemon Nov (1000)

ZSP

ECSpell Odw

ZSP

Table 4: The comparison to GPT family on the rSighan
15, Lemon Nov, and ECSpell Odw datasets. The
version of GPT3.5 is ‘gpt-3.5-turbo-0125’, GPT4 is
‘gpt-4-0613’. BC2 is short for Baichuan2, Q1.5 for
Qwen1.5, and IL2 for InternLM2.

on which the text contains many medical terms and 367

abbreviations, requiring profound domain knowl- 368

edge. The gap between our approach and the 369

domain-specific SOTAs indicates that, though our 370

approach has shown a good generalization ability, 371

there is still a large room to be perfected. 372

4.2 Qualitative Examples 373

We provide two qualitative examples to illustrate 374

the performance of our approach in Table 3. 375

In the first case (“Led by the Ministry of Com- 376

merce, to be completed by the end of November”), 377

the word “牵头” (qiāntóu, led by) is misspelled as 378

“前头” (qiántóu, front) in the input sentence. Both 379

the ZSP and FSP baselines mistakenly put their at- 380

tention on the character “前” (front) and incorrectly 381

correct “前头” to “日前” (a few days ago) and “前 382

面” (front), respectively. Such corrections are not 383

only implausible but also linguistically awkward. 384

In contrast, the domain-general model ReLM and 385

our approach successfully correct the misspelling. 386

In the second case (“What are the main functions 387

of Solifenacin Succinate Tablets”), the name of the 388

drug “琥珀酸索利那新片” (Solifenacin Succinate 389

Tablets) is misspelled. To correct the misspelling, 390
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Dev True Dev True Dev True

Idt. -0.04 -0.03 -0.04 -0.02 -0.04 -0.02
Sa.P. -3.75 -4.00 -3.75 -4.66 -3.75 -4.17
Si.P. -4.85 -5.02 -4.85 -5.45 -4.85 -5.87
Si.S. -5.40 -8.63 -5.40 -8.04 -5.40 -6.66
S-Fæ 59.8 +0.9 43.2 0.0 89.7 -0.8
C-Fæ 68.2 +1.4 47.7 +0.2 93.0 -0.3
FPRç 8.1 0.0 13.6 +0.3 1.3 0.0

rSighan 15 Lemon Nov ECSpell Odw

Distortion Model: log pDM

Table 5: The impact of distortion model on the per-
formance of Baichuan2 7B. “True” denotes that the
distortion model is derived from the true distortion dis-
tribution of each dataset. “ Dev” represents the distortion
model from the Pseudo-Dev.

the knowledge of the medical domain is required.391

In this case, the ReLM model fails to correct the392

misspelling, while the zero-shot prompting base-393

line and our approach successfully correct it. It is394

worth noting that the few-shot prompting baseline395

also fails to correct the misspelling, which indicates396

that the inclusion of inappropriate examples may397

lead to worse performance.398

5 Discussion399

5.1 Comparison to GPT family400

In the domain of LLMs, the GPT family stands401

out as a top-tier leader. This subsection presents a402

comparison between GPTs and our approach.403

Since we have to pay to use the GPT family,404

conducting a comprehensive evaluation becomes405

very expensive. As a result, we have limited our406

comparison to a small-scale study, focusing on the407

three datasets mentioned in Section 3.1.5408

Compared to both GPT3.5 and GPT4, our ap-409

proach achieves higher sentence- and character-410

level corrections F1 scores across all datasets,411

along with a significantly reduced rate of false pos-412

itives. However, our approach may exhibit a lower413

recall rate for character-level corrections compared414

to GPT4, indicating that our approach might miss415

some errors that GPT4 can successfully correct.416

5.2 Effectiveness of the Estimated Distortion417

Model418

The distortion model is a key component in our419

approach. In this work, we utilize a minimal dis-420

tortion model and directly estimate the distortion421

5The original Lemon-Nov dataset includes 6,000 sentences,
which is excessively large for our scope. Therefore, we se-
lected the first 1,000 sentences for this comparison.

S-Fæ S-Pæ S-Ræ C-Fæ C-Pæ C-Ræ FPRç

Vanilla 18.0 15.9 20.6 20.7 14.3 37.6 52.9
w/ LR +39.4 +43.4 +35.0 +43.7 +53.3 +23.9 -38.4
w/ FR +3.8 +6.2 +0.8 +5.4 +8.3 -6.6 -19.3
w/ Both +41.9 +50.1 +34.1 +47.4 +63.5 +23.0 -44.8

Vanilla 19.4 18.0 20.9 23.6 17.1 38.3 38.5
w/ LR +17.1 +19.5 +14.6 +19.0 +21.9 +8.6 -13.7
w/ FR +9.0 +13.5 +4.7 +8.5 +13.5 -4.5 -18.8
w/ Both +23.9 +34.2 +16.0 +24.1 +38.4 +3.6 -25.0

Vanilla 65.3 65.3 65.3 70.4 65.4 76.2 10.1
w/ LR +25.4 +26.9 +24.0 +22.5 +28.5 +15.6 -9.7
w/ FR +4.7 +11.2 -0.8 +7.5 +19.7 -4.5 -6.7
w/ Both +24.4 +26.4 +22.5 +22.6 +29.9 +14.6 -8.8

rSighan 15

Lemon Nov

ECSpell Odw

Table 6: Ablation results of Baichuan2 7B. “LR” and
“FR” represent “length reward” and “faithfulness reward”
respectively. “Both” means using both length reward
and faithfulness reward.

probabilities from the statistics of the Pseudo-Dev 422

dataset. Obviously, this estimation will be different 423

from the true probabilities. 424

To verify the effectiveness of the estimated dis- 425

tortion model, we conduct experiments comparing 426

the estimated distortion model with the true distor- 427

tion model. The results are presented in Table 5. 428

The upper part of the table shows the difference 429

between the estimated distortion model and the 430

true distortion model. We can see that the esti- 431

mated one is quite close to the true one, except for 432

the Similar Shape distortion type. The lower part 433

shows that the difference between the performance 434

them is marginal, indicating that the estimated 435

distortion model is sufficient for our approach to 436

achieve a good performance, and has good general- 437

ization ability across different datasets. 438

5.3 Impact of the Length Reward 439

In this work, we propose a length reward strategy 440

to alleviate the local optima problem during the 441

beam search decoding. The “w/ LR” column in 442

Table 6 shows the performance change when in- 443

cluding the length reward to the vanilla decoding 444

process. Results clearly show that the length re- 445

ward significantly improves the performance on all 446

three datasets, yielding an average improvement of 447

+27.3 in terms of the sentence-level correction F1 448

score and +28.4 in the character-level correction 449

F1 score. This improvement can be attributed to 450

increases in both precision and recall, indicating 451

that the length reward is crucial to our approach. 452
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5.4 Impact of the Faithfulness Reward453

The faithfulness reward component is designed to454

mitigate the over-correction problem. As shown455

in Table 6, the vanilla decoding process typically456

has a much higher character-level recall than preci-457

sion. The faithfulness reward, as shown in the “w/458

FR” column, can effectively improve the precision,459

though it may slightly reduce the recall. Over-460

all, the faithfulness reward balances the trade-off461

between precision and recall, leading to a higher462

correction F1 score.463

5.5 Impact of Combining Both Rewards464

The “w/ Both” column in Table 6 shows the perfor-465

mance change when including both the length and466

faithfulness rewards. In datasets with less formal467

text, more colloquial expressions, and more diverse468

name entities, like the rSighan-15 and Lemon-Nov469

datasets, the combination of the two rewards can470

achieve a better performance than using them sep-471

arately. However, on the ECSpell-Odw dataset,472

which is composed of formal text and standardized473

collocations, the effectiveness of combining the474

two rewards is less significant.475

6 Related Works476

6.1 Chinese Spelling Check477

Previous research on the CSC task can be divided478

into three eras, accompanied with paradigm shift.479

The Early Unsupervised Era Early CSC ap-480

proaches mainly utilized unsupervised pipeline sys-481

tems (Yeh et al., 2013; Yu et al., 2014; Yu and Li,482

2014; Huang et al., 2014; Xie et al., 2015). These483

systems typicaly consist of three main components:484

an error detection module to identify potential er-485

rors in the input sentence, a confusion set to gen-486

erate candidate corrections for each detected error,487

resulting in numerous candidates, and a statistical488

n-gram language model to rank these candidates489

and select the most probable correction.490

The Supervised Learning Era By 2018, the ad-491

vent of techniques for automatically generating492

pseudo-labeled data had begun to address the chal-493

lenge of data scarcity in CSC (Wang et al., 2018),494

marking a shift in the paradigm of CSC research to-495

wards a supervised learning era dominated by deep496

neural networks. This era saw researchers explor-497

ing various avenues to enhance CSC performance.498

Some focused on finding better model architectures499

(Zhang et al., 2020; Zhu et al., 2022), while oth- 500

ers delved into more effective training strategies 501

(Liu et al., 2022; Wu et al., 2023; Liu et al., 2023). 502

Additionally, there was an effort to enrich models 503

with information beyond text, such as phonetic or 504

visual features (Cheng et al., 2020; Xu et al., 2021; 505

Li et al., 2022; Liang et al., 2023). 506

The LLM Era Our work represents an initial 507

foray into what could be considered the third era of 508

CSC research: the LLM era. This phase explores 509

the potential of LLMs in addressing the CSC task. 510

As mentioned in the introduction, related studies 511

in this era fall into two categories: prompt-based 512

and supervised fine-tuning. In contrast to these 513

methods, our approach requires neither additional 514

training nor prompts. 515

6.2 Decoding Methods of LLMs 516

Intervening in the decoding process is a common 517

approach to improve LLMs’ task-specific perfor- 518

mance. There are two popular approaches in this 519

category: Contrastive decoding and Constrained 520

decoding. Contrastive decoding (Li et al., 2023b) 521

refines the output probabilities by comparing the 522

output probabilities of expert and amateur models, 523

being successful used in reasoning improvement 524

(O’Brien and Lewis, 2023) and hallucination miti- 525

gation (Shi et al., 2023). Constrained decoding, on 526

the other hand, uses constraints to guide the decod- 527

ing process, making the output more aligned with 528

the task-specific requirements (Wang et al., 2023; 529

Geng et al., 2023). 530

Our work is closely related to the constrained 531

decoding approaches, where a distortion model is 532

used to influence the LLM decoding process. 533

7 Conclusion 534

In this work, we propose a simple, training-free, 535

and prompt-free approach to leverage LLMs for 536

the CSC task. Two components, a large language 537

model and a minimal distortion model, co-operate 538

to correct spelling errors. We alleviate the local 539

optima problem and over-correction issue, with 540

two simple strategies, length reward and faithful- 541

ness reward, respectively. Our comprehensive 542

experiments have shown that our approach sig- 543

nificantly improves LLM performance. Through 544

our approach, LLMs demonstrate remarkable do- 545

main generalization capabilities, surpassing SOTA 546

domain-general CSC models, that are trained on 547

extensive synthetic CSC data, on most datasets. 548
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Limitations549

The scope of this study is limited to the task of550

Chinese spelling correction, which is a subset of551

text error correction. Our approach is not equipped552

to directly address complex text errors that involve553

grammar, semantics, or pragmatics. To tackle these554

errors, one could design an appropriate distortion555

model, though it might necessitate the adoption556

of more intricate rules or the implementation of557

a model based on neural networks. In our future558

work, we aim to explore ways that would allow our559

approach to handle these complex errors.560

Moreover, our approach can be applied to any561

task that involves converting a given input into562

a natural language sentence. It utilizes a model563

to measure the transformational relationship be-564

tween the input and the output of a large language565

model, ensuring that the outputs meet the specific566

requirements of the task. It would be interesting567

to investigate the effectiveness of our approach to568

other tasks, such as text summarization and ma-569

chine translation, through the development of task-570

specific transformation models.571
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A Implement of Distortion Model775

A.1 Standard of Transformation Types776

Identical Transformations An identical distor-777

tion occurs when the input character is the same as778

the correct character.779

Same Pinyin Characters that share the same pro-780

nunciation, disregarding tone, undergo a “Same781

Pinyin” distortion. Due to the existence of het-782

eronyms in Chinese, such as “和”, which can be783

pronounced in multiple ways including “hé”, “hè”,784

“huó”, “huò”, and “hú”, we classify two charac-785

ters as undergoing a same pinyin distortion if they786

share at least one pronunciation. The pypinyin6787

library is utilized to determine character pronun-788

ciations, with the ktghz2013 and large_pinyin789

from pypinyin-dict.7 providing a more accurate790

pronunciation for these determinations.791

Similar Pinyin We categorize distortions as792

“Similar Pinyin” when two characters have pro-793

nunciation that is recognized as similar by prede-794

fined rules, which are based on Yang et al. (2023b).795

For instance, ‘qı̄” and “jı̄” are considered similar796

due to the common mispronunciation of the con-797

sonant “q” as “j”. A list of consonants and vowels798

considered similar can be found in Tables 7 and 8,799

respectively.800

Similar Shape The similarity in the shape of801

characters is evaluated by combining their four-802

corner code with their radical and component infor-803

mation. For example, the characters “机” and “仉”804

have the four-corner codes “47910” and “27210”,805

respectively. Given that the last digit primarily806

serves to distinguish characters with identical pre-807

ceding digits and that “机” and “仉” share two of808

these digits, their four-corner code similarity is cal-809

culated as 2 ˆ 1
4 “ 0.5. Considering their radical810

and component (“木,几” for “机” and “人,几” for811

“仉”), which share the component “几” but differ812

in radicals, their similarity is 1 ˆ 1
2 “ 0.5. Thus,813

the overall similarity is averaged to 0.5. With a814

similarity threshold set at 0.45, these characters are815

considered to undergo a similar shape distortion.816

Furthermore, character pairs where one is a radical817

or component of the other, such as “机” and “几”,818

are also classified under similar shape distortions.819

All non-Chinese characters are only allowed to820

6https://github.com/mozillazg/python-pinyin
7https://github.com/mozillazg/pypinyin-dict

j Ñ ● q x z ■✕ ■✕ ■✕ ■✕ ■✕

q Ñ j ● x ■✕ c ■✕ ■✕ ■✕ ■✕

x Ñ j q ● ■✕ ■✕ s ■✕ ■✕ ■✕

z Ñ j ■✕ ■✕ ● c s zh ■✕ ■✕

c Ñ ■✕ q ■✕ z ● s ■✕ ch ■✕

s Ñ ■✕ ■✕ ■✕ z c ● ■✕ ■✕ sh
zh Ñ ■✕ ■✕ ■✕ z ■✕ ■✕ ● ch sh
ch Ñ ■✕ ■✕ ■✕ ■✕ c ■✕ zh ● sh
sh Ñ ■✕ ■✕ ■✕ ■✕ ■✕ s zh ch ●

r Ñ ● l ■✕ ■✕ ■✕ ■✕ ■✕ ■✕

l Ñ r ● n d t ■✕ ■✕ ■✕

n Ñ ■✕ l ● d t ■✕ ■✕ ■✕

d Ñ ■✕ l n ● t b ■✕ ■✕

t Ñ ■✕ l n d ● ■✕ p ■✕

b Ñ ■✕ ■✕ ■✕ d ■✕ ● p m
p Ñ ■✕ ■✕ ■✕ ■✕ t b ● ■✕

m Ñ ■✕ ■✕ ■✕ ■✕ ■✕ b p ●

g Ñ ● k h ■✕

k Ñ g ● h ■✕

h Ñ g k ● f
f Ñ ■✕ ■✕ h ●

Corrected Ñ Input

Table 7: Consonants with similar pronunciation.

an Ñ ● ang uan uang ian ■✕

ang Ñ an ● uan uang ■✕ iang
uan Ñ an ang ● uang ian ■✕

uang Ñ an ang uan ● ■✕ iang
ian Ñ an ■✕ uan ■✕ ● iang
iang Ñ ■✕ ang ■✕ uang ian ●

en Ñ ● eng un ■✕

eng Ñ en ● ■✕ ■✕

un Ñ en ■✕ ● ong
ong Ñ ■✕ ■✕ un ●

in Ñ ● ing
ing Ñ in ●

o Ñ ● uo
uo Ñ o ●

ü Ñ ● u
u Ñ ü ●

Corrected Ñ Input

Table 8: Vowels with similar pronunciation.

be transformed into themselves. 821

A.2 Type Priority 822

In scenarios where a character can be classified un- 823

der multiple distortion types, for example, “机” (jı̄) 824

and “玑” (jı̄), which can be classified as both having 825
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Datasets
Subsets Y13 Y14 Y15 Test Test Law Med Odw
#Sentence 1,000 1,062 1,100 5,000 19,650 500 500 500
Error Ratio 97.70 56.69 56.18 46.06 50.00 51.00 45.20 52.40
Average Length 74.33 50.01 30.64 57.63 10.91 29.74 49.60 40.51
Average Err./Sent. 1.48 0.88 0.78 0.51 0.93 0.78 0.71 0.81

Identical 98.01 98.25 97.45 99.12 91.47 97.38 98.56 98.01
Same Pinyin 1.62 1.30 1.83 0.74 6.60 1.82 1.15 1.55
Similar Pinyin 0.28 0.40 0.66 0.13 1.05 0.51 0.19 0.28
Similar Shape 0.05 0.01 0.03 0.00 0.39 0.25 0.08 0.13
Unrelated 0.04 0.04 0.02 0.00 0.45 0.04 0.01 0.02

Recall Upper Bound 97.24 97.18 98.71 99.70 90.82 97.65 98.67 98.47

rSighans Cscd Mcsc ECSpell

Distortion Type Proportion (%)

Datasets
Subsets Car Cot Enc Gam Med New Nov –
#Sentence 3,410 1,026 3,434 400 2,090 5,892 6,000 2,000
Error Ratio 51.09 46.20 50.99 38.75 50.38 50.00 50.23 93.55
Average Length 43.44 40.12 39.83 32.99 39.28 25.16 36.24 36.94
Average Err./Sent. 0.56 0.47 0.52 0.41 0.49 0.55 0.57 1.42

Identical 98.64 98.78 98.63 98.73 98.64 97.80 98.43 96.15
Same Pinyin 0.90 0.75 0.93 0.89 0.94 1.50 0.95 2.34
Similar Pinyin 0.31 0.25 0.28 0.26 0.27 0.51 0.43 0.78
Similar Shape 0.02 0.07 0.06 0.01 0.02 0.05 0.02 0.40
Unrelated 0.12 0.14 0.09 0.11 0.12 0.13 0.16 0.31

Recall Upper Bound 91.38 89.34 94.28 90.54 92.82 93.98 89.08 88.03

Lemon Pseudo-Dev

Distortion Type Proportion (%)

Table 9: The statistics of the datasets used in the experiments. Recall Upper Bound represents the sentence-level
upper bound of the recall under the distortion model that we use in this work.

the same pinyin and a similar shape, we prioritize826

the distortion type according to the following or-827

der: 1) Identical; 2) Same Pinyin; 3) Similar828

Pinyin; 4) Similar Shape; 5) Unrelated.829

A.3 Using an Inverted Index for Efficient830

Distortion Model Calculation831

During each decoding step, the distortion model832

calculates the probability of transforming the input833

sequence xa:b into a candidate token ti:834

gpx, tiq “

k
ÿ

r“1

log pDMpcr | xl`rq, (8)835

where the function gpx, tiq must be computed for836

each candidate token ti in the vocabulary V , result-837

ing in a huge computational cost.838

To address this challenge, we propose the use839

of an inverted index to reduce the calculation pro-840

cess, by only considering relevant tokens, and ig-841

noring irrelevant tokens. For a token, we can pre-842

construct indexed entries to represent it, such as843

<0,ji,SamePinyin>, <1,kou,SimilarPinyin>, 844

and <0,仉,SimilarShape> for “机构” (jı̄ gòu). 845

Upon receiving an input sequence, the index en- 846

ables rapid retrieval of relevant tokens, thereby lim- 847

iting probability calculations exclusively to these 848

tokens. As the subset of relevant tokens is sub- 849

stantially smaller than the complete token set, em- 850

ploying an inverted index considerably reduces the 851

computational burden. 852

A.4 Small Tricks for Distortion Model 853

We adopt three small tricks to enhance our distor- 854

tion model. First, for character pairs commonly 855

misused in everyday writing, such as “的”, “地”, 856

and “得”, we categorize these as “Identical” dis- 857

tortions, allowing the model to correct these errors 858

with lower difficulty. 859

Second, we found that, although the previously 860

described rules adequately cover most similar re- 861

lationships between characters, a few exceptions, 862

approximately 0.01% of total character pairs, still 863
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System and User Prompts for baselines

System Prompt:
你是一个优秀的中文拼写纠错模型，中文拼写纠错模型即更正用户输入句子中的拼写错
误。
User Prompt:
你需要识别并纠正用户输入的句子中可能的错别字并输出正确的句子，纠正时必须保证改
动前后句子必须等长，在纠正错别字的同时尽可能减少对原句子的改动(不添加额外标点符
号，不添加额外的字，不删除多余的字)。只输出没有错别字的句子，不要添加任何其他解
释或说明。如果句子没有错别字，就直接输出和输入相同的句子。

Figure 4: Prompt templates used in our FSP and ZSP baselines.

persist. To identify these outliers, we leveraged864

tools from previous studies (Wu et al., 2023; Hu865

et al., 2022) by incorporating their structure con-866

fusion sets and spelling similarity matrices. We867

classify character pairs found within the structure868

confusion set or those with a spelling similarity869

matrix distance of less than 1 as “Other Similar”870

distortions.871

Finally, we have chosen not to entirely exclude872

unrelated distortions. Instead, we allow each token873

to possess up to one unrelated character distortion,874

to which we assign a very low probability.875

Employing these tricks has led to marginal yet876

consistent improvements in our approach’s perfor-877

mance.878

B Details of Real-world Test Sets879

This section details the test sets used in our study,880

providing insights into their composition and rele-881

vance to real-world Chinese text.882

‚ Sighan series: This series of datasets is one883

of the most widely used benchmark datasets for884

Chinese spelling correction (Wu et al., 2013; Yu885

et al., 2014; Tseng et al., 2015). However, it faces886

criticism for two main reasons: firstly, it consists887

of essays written by Chinese learners, which may888

not accurately represent typical Chinese texts. Sec-889

ondly, its limited diversity could hinder the eval-890

uation of models’ generalization capabilities. De-891

spite these concerns, we include it in our evaluation892

to allow for comparison with prior studies. How-893

ever, we utilize the revised version by Yang et al.894

(2023b), which has manually verified and corrected895

the errors in the original dataset.896

‚ CSCD-IME: A real-world Chinese social me-897

dia corpus collected and annotated by Hu et al.898

(2022). It can better represent the variety of texts899

found in real-world settings and includes a broad900

spectrum of errors. 901

‚ MCSCSet: A large-scale corpus from the 902

medical domain, collected and annotated by Jiang 903

et al. (2022). It features numerous errors specific 904

to medical terminology, making it an excellent re- 905

source for evaluating models’ generalization capa- 906

bilities in this area. 907

‚ ECSpell: A small-scale, multi-domain corpus 908

annotated by Lv et al. (2023). It encompasses three 909

domains: legal documents, medical treatments, and 910

official document writing. 911

‚ Lemon: The most recent and largest multi- 912

domain corpus to date, collected and annotated by 913

Wu et al. (2023). It spans seven domains: law, 914

medicine, encyclopedia, gaming, automotive, con- 915

tracts, news, and novels. 916

The detailed statistics of these datasets are shown 917

in Table 9. 918

C Details of Experiments 919

C.1 Evaluation Details 920

Following the convention of Lemon dataset, we 921

ignore all sentences that the length of the input sen- 922

tence is not equal to that of the output sentence. 923

During evaluation, we convert all full-width punc- 924

tuation to half-width and remove all whitespaces 925

from the input and output sentences to guarantee a 926

fair comparison. 927

C.2 Levenshtein Alignment for 928

Character-Level Evaluation 929

Traditional point-wise evaluation methods fall short 930

when models add or delete characters, as they can 931

inaccurately mark all subsequent characters as in- 932

correct due to a single addition or deletion. To over- 933

come this, we implement Levenshtein algorithm 934

to align the model output with the target sentence. 935

This approach allows us to calculate character-level 936
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Figure 5: The scores of Baichuan2 7B with different beam sizes. The solid lines represent the results of our
approach, and the dashed lines represent the results of the few-shot baseline. We can observe that larger beam sizes
may lead to worse C-F scores in few-shot settings.

metrics based on the aligned results, providing a937

more reasonable evaluation of character-level per-938

formance.939

C.3 Prompt Examples940

In this work, we use the prompt-based method to941

activate the CSC ability of the baseline LLMs. The942

task-specific instructions are adopted from Li et al.943

(2023a). The prompt used for the baselines are944

shown in Table 4. We disable the sampling mecha-945

nism and set the temperature to 0.0 to ensure deter-946

ministic decoding.947

C.4 Pre- & Post-processing for Baselines948

In this study, we employ several pre- and post-949

processing techniques to mitigate the errors intro-950

duced by the limitations of baseline systems. This951

ensures a fair comparison between our approach952

and the baselines.953

BERT-based baselines Most current CSC mod-954

els utilize BERT. However, BERT presents chal-955

lenges that can degrade performance during evalua-956

tion: 1) Full-width Punctuation: BERT’s tokeniza-957

tion process may normalize full-width punctuation958

to half-width, leading to numerous unnecessary959

punctuation replacements. To counter this, we pre-960

vent the model from modifying the original punc-961

tuation; 2) Special Tokens: BERT-based models962

may predict a special ‘[UNK]‘ token in some cases,963

resulting in the removal of the original character.964

In these instances, we retain the original character965

when a special token is predicted; 3) Input Length966

Limitation: BERT-based models show limited gen-967

eralization beyond their maximum training length.968

We truncate inputs to a maximum length of 128969

characters and concatenate the remaining charac-970

ters to the output.971

LLM baselines The outputs of LLMs some- 972

times fail to align with evaluation, primarily due 973

to their inadequate instruction-following capabil- 974

ity. To address this, we apply specific rules for 975

post-processing: 1) Redundant Phrases: We re- 976

move redundant phrases such as “修改后的句 977

子是：” (The corrected sentence is:), identified 978

through common patterns input in the model out- 979

put; 2) Redundant Punctuation: Many sentences 980

in the dataset lack terminal periods, yet some mod- 981

els inappropriately add them. To prevent incorrect 982

evaluations due to this discrepancy, we remove any 983

added terminal period if the original sentence did 984

not have one. 985

D More Analyses 986

D.1 Influence of Beam Size 987

During searching the most likely correction se- 988

quence, the beam search algorithm is used to avoid 989

the exponential growth of the search space and the 990

local minimum caused by greedy search. Knowing 991

the impact of the beam size on the performance 992

helps researchers to choose a proper beam size to 993

balance the trade-off between the performance and 994

the computational cost. The results are shown in 995

Figure 5. Though the larger beam size consistently 996

leads to better performance, the improvement be- 997

comes marginal when the beam size is larger than 6. 998

E Detailed Results 999

Due to the space limitation, we only present the 1000

average results of each dataset in the main text. 1001

The detailed results of each dataset are shown in 1002

Table 10, Table 11, and Table 12. 1003
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Datasets
Subsets Y13 Y14 Y15 Law Med Odw Car Cot Enc Gam Med New Nov

70.1 64.0 73.9 38.9 23.1 42.8 32.5 40.1 29.1 12.6 31.8 31.2 20.2
– – – 91.2 82.4 83.6 – – – – – – –

50.6 40.4 51.6 58.5 47.8 65.1 52.0 63.1 45.3 32.8 50.7 56.1 35.8
51.6 40.2 51.3 58.5 48.5 65.9 52.3 63.8 44.1 28.3 48.9 55.6 37.7
45.8 40.6 55.5 60.4 50.9 66.5 53.3 66.7 47.7 33.7 53.8 58.8 37.1

ZSP 26.4 12.0 18.5 37.6 23.0 43.0 15.3 14.9 24.0 12.7 21.6 19.8 14.1
FSP 41.1 23.1 31.3 60.2 50.4 60.0 32.2 45.3 38.9 24.6 39.0 39.7 26.4
OUR 63.6 54.1 59.6 82.6 78.9 92.0 52.7 62.9 51.9 37.1 60.1 63.9 43.5
ZSP 41.6 17.4 28.1 53.3 38.9 60.7 28.5 42.0 33.8 20.5 35.3 37.3 25.3
FSP 45.3 22.1 29.2 60.8 44.1 67.2 34.2 49.1 42.5 23.7 41.2 38.3 29.6
OUR 56.9 48.6 57.6 84.1 73.2 87.4 46.0 57.2 44.6 28.3 52.9 55.8 36.4
ZSP 42.3 20.9 29.7 47.7 31.9 55.9 29.8 42.6 34.3 21.2 40.0 34.7 27.2
FSP 34.0 16.4 21.6 48.2 34.0 57.1 24.9 37.6 31.1 16.1 35.8 31.8 21.8
OUR 57.8 53.1 60.5 83.9 72.3 91.1 49.7 59.0 48.2 31.8 55.9 63.3 40.5

rSighans ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe
Liu et al. (2023)
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 10: The detailed sentence level correction F1 score.

Datasets
Subsets Y13 Y14 Y15 Law Med Odw Car Cot Enc Gam Med New Nov

85.0 76.3 80.9 48.7 34.4 53.0 37.4 42.7 32.9 16.3 33.8 35.1 23.2

64.3 51.0 57.2 66.3 59.0 69.5 53.0 64.1 46.0 35.6 52.3 57.5 36.3
65.6 49.3 57.3 67.2 61.3 70.0 53.6 63.3 45.4 31.6 51.0 57.9 38.5
58.6 51.1 61.0 68.3 63.9 73.0 54.4 66.1 48.2 37.5 55.1 60.5 37.1

ZSP 29.6 11.2 14.5 20.5 16.6 29.8 7.8 7.4 12.5 4.1 11.9 14.2 10.6
FSP 51.8 29.7 34.0 54.9 52.5 51.8 14.0 35.3 23.0 9.5 29.5 39.0 26.2
OUR 79.1 66.3 67.3 88.8 86.7 93.8 57.5 64.0 56.5 39.6 61.7 66.2 47.9
ZSP 48.8 18.9 26.5 53.5 35.4 58.1 27.1 26.8 32.0 12.7 32.1 35.1 21.5
FSP 51.3 23.3 30.6 61.5 45.9 66.6 20.0 38.3 34.0 18.5 37.6 34.7 28.9
OUR 75.2 62.8 66.0 88.6 84.5 91.6 52.4 56.3 49.6 34.3 54.6 59.5 42.6
ZSP 46.0 18.1 27.3 40.5 22.8 49.3 24.7 31.9 29.7 12.3 31.0 29.2 26.6
FSP 42.4 19.4 23.2 46.5 34.7 52.6 11.1 25.2 15.1 7.8 28.2 28.6 20.1
OUR 76.8 65.5 67.8 88.9 83.6 93.8 54.6 62.0 53.1 36.7 57.9 65.9 45.3

rSighans ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe

Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 11: The detailed character level correction F1 score.
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Datasets
Subsets Y13 Y14 Y15 Law Med Odw Car Cot Enc Gam Med New Nov

13.0 9.6 7.7 10.6 18.6 11.8 20.9 13.4 20.8 22.5 16.5 16.7 22.6
– – – 7.4 6.5 2.2 – – – – – – –

21.7 16.5 12.5 4.9 11.3 2.9 12.3 8.3 13.9 22.5 8.3 9.4 17.3
13.0 17.6 14.5 6.1 11.7 5.0 12.4 7.1 14.8 20.4 9.6 10.6 16.6
4.4 15.0 9.5 7.8 11.0 7.1 12.1 5.6 12.6 20.8 5.7 8.4 17.5

ZSP 34.8 58.3 54.4 26.9 43.1 21.0 40.6 54.2 35.9 41.6 35.4 41.1 37.6
FSP 21.7 19.4 23.2 7.8 9.1 0.4 8.3 7.4 10.2 20.0 4.6 8.3 7.7
OUR 8.7 14.1 8.3 4.5 9.9 0.4 5.9 6.9 8.9 19.2 3.9 5.7 13.0
ZSP 34.8 54.4 34.2 5.7 35.4 2.1 18.5 15.8 13.5 18.4 11.8 14.0 20.7
FSP 30.4 52.8 53.9 9.8 27.0 3.8 17.9 21.6 20.5 26.9 15.0 18.9 18.1
OUR 21.7 19.6 10.2 4.9 11.7 2.9 11.2 7.8 14.8 29.4 5.4 10.1 21.2
ZSP 65.2 58.0 48.8 26.5 50.7 17.7 28.8 23.7 30.0 30.6 23.0 34.0 24.2
FSP 39.1 56.5 54.4 23.7 37.2 18.1 27.0 29.0 29.8 38.4 22.5 25.2 28.3
OUR 13.0 16.5 8.3 2.5 12.4 0.4 8.5 6.9 12.2 22.5 3.7 6.1 15.1

rSighans ECSpell Lemon

Domain-Specific SOTAs (Trained on in-domain gold-standard data of each dataset)
ReaLiSe
Liu et al. (2023)
Domain-General SOTAs (Trained on about 34M synthetic CSC data)
Finetuned BERT
Softmasked BERT
ReLM

LLMs (without CSC-specific training)

Baichuan2
(13B)

Qwen1.5
(14B)

InternLM2
(20B)

Table 12: The detailed sentence level false positive rate.
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