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Abstract: We introduce a model for monocular RGB relative pose estimation of
a ground robot that trains from scratch without pose labels nor prior knowledge
about the robot’s shape or appearance. At training time, we assume: (i) a robot
fitted with multiple LEDs, whose states are independent and known at each frame;
(ii) knowledge of the approximate viewing direction of each LED; and (iii) avail-
ability of a calibration image with a known target distance, to address the ambi-
guity of monocular depth estimation. Training data is collected by a pair of robots
moving randomly without needing external infrastructure or human supervision.
Our model trains on the task of predicting from an image the state of each LED
on the robot. In doing so, it learns to predict the position of the robot in the image,
its distance, and its relative bearing. At inference time, the state of the LEDs is
unknown, can be arbitrary, and does not affect the pose estimation performance.
Quantitative experiments indicate that our approach: is competitive with SoA ap-
proaches that require supervision from pose labels or a CAD model of the robot;
generalizes to different domains; and handles multi-robot pose estimation.
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Figure 1: By solving the multi-LED state classification task (blue for off LEDs, red for on; F for
front, B for back, L for left, R for right), our model learns from scratch to estimate the location of
the robot (u, v) in the image, its relative distance d, and relative bearing angle ψ w.r.t. the camera.
These variables are used in combination with the camera intrinsics to recover the pose of the robot.

1 Introduction

Relative localization of mobile robots is fundamental for applications involving multiple robots that
must coordinate with each other [1]. SoA pose estimation approaches solve the problem by training
a deep neural network in a supervised way, assuming access to a large dataset of images representing
the robot, each labeled with its true relative pose [2, 3]. Acquiring such a dataset in real environments
is expensive and requires external infrastructure for generating ground truth labels [4]. Acquiring it
in simulation requires a realistic and textured CAD model of the robot, while trained predictors suffer
from the sim-to-real gap [5]. Novel object pose estimation approaches also assume access to CAD
models, used to generate templates with known robot poses and matched with patches of the input
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image using learning-based descriptors [6, 7, 8]. However, the availability of visually-accurate and
up-to-date CAD models of the robot is a strong requirement, especially for custom-built platforms.

In this work, we assume no access to data labeled with robot poses nor prior knowledge of the robot’s
3D shape or texture. In contrast, we assume each robot to be equipped with K LEDs that can be
independently turned on and off, and to know the approximate direction from which each LED is
visible relative to the robot’s heading. In this challenging scenario, we propose a novel approach for
training a robot pose estimation model from scratch: training data is collected fully autonomously,
without any external supervision, by a pair of robots that move in an arbitrary, possibly unknown
way in the environment, without a shared frame of reference. Each robot broadcasts (e.g., via a
radio link) the true state (on or off) of all of its LEDs, which are toggled multiple times during
data collection, independently from each other, and in a random way. Our approach handles data
that features a visible robot infrequently: considering that robot poses are unavailable during data
collection, each robot will be visible in the other’s Field of View (FOV) only in a small, unknown
subset of the frames acquired. Given a frame of the camera taken from a robot, called observer, our
model predicts the state of each of the K LEDs of the other robot, called target, i.e., a classification
problem on K independent binary labels. This is a pretext task as solving it is not our ultimate goal;
indeed, our end task is to predict the full pose (position and orientation) of the target.

During inference, the LEDs are no longer needed: our model estimates, directly from a camera
frame, the robot’s position in the image, its bearing relative to the camera, and its apparent image
size (see Figure 1). We compute the metric distance of the robot from its apparent image size with
a calibration based on a single image depicting the robot and annotated with its distance from the
camera, a similar assumption to Depth Anything [9, 10].

To the best of our knowledge, no other SoA approach learns pose estimation without pose labels
or a CAD model of the robot. Through a careful design of the neural network architecture and
loss function, the model is forced to understand the robot’s structure, which is crucial for pose
estimation. We further remark that the model is given no information on how the LEDs appear
visually; our model learns to recognize them as part of its classification task. The only assumption
is that the LED state affects the robot’s appearance in a way that is observable from an image of the
robot acquired from a given, approximately known range of directions.

Our main contribution is methodological; we propose an approach for learning visual pose esti-
mation of robots by training on the self-supervised pretext task of multi-LED state classification.
Experimental results indicate that: (i) the approach trains pose estimation models that are competi-
tive with SoA approaches requiring supervision from pose labels or a CAD model of the robot; (ii)
training is robust to data featuring a visible robot only in a limited amount of camera frames; (iii)
the LED state does not impact the pose estimation performance; (iv) models generalize to unseen
environments with no fine-tuning and are capable of multi-robot pose estimation; (v) the approach
can fine-tune a pre-trained model to a different deployment environment.

2 Related Work

Supervision in Visual Object Pose Estimation. Approaches designed for visual object pose es-
timation can be directly applied to robots. In this context, different assumptions about the object’s
appearance are made, serving as supervision during training. Traditional approaches assume ac-
cess to a large dataset labeled with object poses [11, 2, 3]. A less strict assumption is to have
access to a realistic textured CAD model of the object, used to generate inexpensive simulated
data [12, 13, 14, 15, 16]. Recent works leverage deep template matching [17] to estimate the pose of
novel objects, further leveraging foundation models such as Segment Anything Model (SAM) [18] to
segment objects that are matched using DINOv2 [19] features with rendered templates of the object
at known poses [6]. The pose of the matched template is refined with a point matching stage [20, 21],
with PnP [7, 22], or by iteratively minimizing the optical flow between the template and segmented
image [8]. Approaches based on NeRF [23] or Gaussian Splatting [24] assume access to images
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of a static scene labeled with the camera pose. They are used to estimate the pose of objects by
iteratively minimizing the photometric error with [25] or without an initial pose estimate [26, 27].

All the above methods learn pose estimation on data annotated by strong supervision sources (e.g.,
tracking system, textured CAD model of objects, calibrated views). By contrast, our proposed
approach makes no such assumption: we rely on pose-free, real-world data autonomously generated
by two robots and labeled only with the binary state of multiple and independent LEDs.

Weakly Supervised Learning in Computer Vision. In Weakly Supervised Learning (WSL), ob-
ject detection and image segmentation are learned by training on a classification task with inexpen-
sive image-level labels [28]. Class Activation Map (CAM) [29, 30, 31] approaches are used to find
the most discriminative areas for classifying the image. Crucially, discriminative areas for an image
classification task depict the object of interest, enabling object detection [32] and segmentation [33].
WSL enables manipulation from image-level labels [34], where the reward signal for an RL agent
tasked to pick and place objects is derived from the embeddings of an image depicting an object and
another with the object removed. In our work, we take inspiration from WSL in computer vision
and go beyond a simple detection task: we introduce a novel approach for full pose estimation of
robots, learned by the model as a result of solving a multi-label binary classification task.

Self-supervised Robot Learning. Learning complex robotic tasks from real-world data requires
labels as a form of supervision, whose collection is time-consuming and expensive. To reduce re-
liance on labeled data, approaches pre-train models on pretext tasks to learn valuable pattern recog-
nition skills [35, 36, 37, 38, 39], and later fine-tune them with a limited amount of labels on the
end task of interest: as an example, approaches mask image patches and task a model to fill out
the missing areas, given as input the masked image [35] and additional views of the scene [36, 37].
Recently, works showed that LED state classification pretext task is conducive to fine-tuning with
labeled data on the task of visual robot detection [38], and pose estimation [39]. By contrast, our
approach does not require fine-tuning or strongly annotated data to learn robot pose estimation.

3 Method

Given an RGB image I ∈ RW×H×3 of width W and height H collected by the observer robot,
our model estimates the 2D pose P = ⟨x, y, ψ⟩ of the target robot relative to observer’s camera.
Additionally, the model classifies the state (on or off) of K independent LEDs mounted on the
target’s body and visible from a known range of directions. Formally, we define the deep learning
model mθ(I) = ⟨û, v̂, d̂, ψ̂, l̂⟩ where θ are the model parameters; û and v̂ are the image-space
coordinates of the robot; d̂ is the distance of the robot from the camera in the scene; ψ̂ is the robot’s
orientation relative to the camera; and l̂ = ⟨l̂1, . . . , l̂K⟩ are the predicted probabilities that each of
the K LEDs is turned on. Using the model prediction, we recover the robot pose by back-projecting
its image location using the camera intrinsic parameters, selecting the point at the estimated distance
from the optical center, and combining it with the rotation ψ̂. We optimize the model parameters θ
through gradient descent with a Binary Cross Entropy (BCE) loss defined on the LED states; details
on the neural network architecture and training hyper-parameters can be found in the appendix.

Our model architecture is a Fully Convolutional Network (FCN) [40] composed solely of convolu-
tion and pooling layers. It outputs a set of two-dimensional feature maps (maps for short) composed
of cells. Specifically, we exploit that each output cell of a FCN attends only to a local area of the
input image, represented by the Receptive Field (RF). Given a monocular image, our model pro-
duces an LED state map L̂k for each LED, a localization map P̂ , and a relative bearing map Λ̂. All
these maps have the same H ′ ×W ′ shape. Each cell of the L̂k map takes values in the [0, 1] range,
indicating the confidence that the k-th LED is turned on or off (represented by 1 and 0, respectively).
If the LED is not visible inside the RF, the cell will have a value of 0.5 to indicate uncertainty; this
is the case for most cells whose RF captures background areas of the image. To this end, we define a
multi-label binary classification task on the LED states, with the loss Lkled = BCE(l̂k, lk) computed
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Figure 2: Overview of the approach: (a) given an input image, our approach predicts the robot’s
location in the image and its bearing relative to the camera. (b) We apply this mechanism over
multiple rescaled versions of the input image to infer the robot’s distance to the camera.

between each cell l̂k of the LED state map L̂k and the ground truth state lk of the k-th LED; as such,
the loss Lkled is itself composed of maps divided into cells, having one map for each of the K LEDs.

Robot Localization. Most cells in L̂k cannot predict the correct LED state because their limited
RF does not capture the robot, leading to high values in the Lkled loss maps. An intuitive way to lower
the loss is to give less weight to errors corresponding to areas not depicting a robot and give more
weight to the cells that see the robot (i.e., have the robot inside the RF) as they can predict the LED
states. Thus, we allow the model to spatially weight the Lkled maps through the P̂ map; each cell in
P̂ takes values in the [0, 1] range, and indicates the belief about the robot’s presence inside its RF.
We normalize this map with the softmax function, denoted as P̂norm, and define the localization loss
Lkloc = Lkled ⊙ P̂norm, where ⊙ indicates the element-wise product; the softmax prevents the model
from trivially setting the loss to zero. With this formulation, the model is driven to produce high
values in the cells of P̂ whose RF contains the robot, as these will generally correspond to the low
loss cells of Lkled. This weighting mechanism can be seen as spatial attention in CNNs [41], with the
difference being that we apply it directly to a loss function instead of raw model features.

Figure 3: Visibility function for a robot with
four LEDs at the cardinal directions. ψ̂ is a
cell of the predicted bearing map Ψ̂, and λ̂k is
the visibility weight for each of the K LEDs.

Robot Relative Bearing Estimation. Whenever
the robot is visible in the image, some of its LEDs
are occluded by its own body. Since these LEDs are
not visible, the model is unable to predict their state,
contributing to high values in the Lkloc maps. We in-
troduce a weighing mechanism for the localization
loss based on the predicted robot’s bearing; it allows
the model to downplay errors caused by occluded
LEDs as long as it correctly predicts the robot’s bear-
ing. To accomplish this, we introduce the predicted
robot’s bearing map Ψ̂, whose cells have values in
the [−π, π] range. Each cell represents the robot’s
bearing relative to the camera, i.e., which side of the
robot is visible, encoded as an angle (see Figure 1).
We use a differentiable function to map the predicted
bearing Ψ̂ to K visibility scores, one for each LED, resulting in the Λ̂k maps. Each element of Λ̂k is
defined as λ̂k = cos(ψ̂+ 2π

K (k−1)), where ψ̂ is an element of Ψ̂; we designed Λ̂k forK equidistant
LEDs mounted on the robot. This visibility function reasonably approximates each LED’s visibility
from different viewing directions, though it is not precise nor the result of calibration. We normalize
the map values such that, given an orientation, all K coefficients are non-negative and sum to one
(see Figure 3). The Λ̂k maps are then used to compute the orientation loss Lkori = Lkloc ⊙ Λ̂k.
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Figure 4: Model’s output maps (a single scale was selected for visualization purposes). The P̂ map
represents the robot’s presence, Ψ̂ its bearing, and L̂k the LED states (1 for back, 2 for front).

Robot Distance Estimation. Given an image, when the robot’s apparent size and that of the RF
do not match well, it interferes with correctly predicting the LED states: if the robot appears much
larger than the RF, the cell will miss contextual information about the robot’s structure; if it is much
smaller, the RF will contain unrelated background information as the robot will be represented by
few pixels. We address this problem and exploit its solution to estimate the relative robot’s distance,
as the apparent image size of an object is directly proportional to its distance from the camera: we
pass the same image at different scales {s1, . . . , sS} to the model and consider the output maps L̂k,s,
P̂ s, Ψ̂s from each forward pass, where k is an LED and s an image scale, as shown in Figure 2. The
output maps from the different passes are upscaled to have matching spatial dimensions. Then, we
compute the normalized multi-scale localization map P̂ms-norm = softmax(P̂ s1,...,sS ). We combine
the previous loss with the multi-scale formulation and define the loss Lk,sms = BCE(L̂k,s, lk) ⊙
P̂ sms-norm ⊙ Λ̂k,s. By normalizing over all image scales, we enable the model to make a convex
combination of scales, ensuring the robot size best fits into the combined multi-scale RFs. The
coefficients of the combinations are used to compute the robot’s distance from the camera.

Finally, we define the complete loss function in Equation (1) to obtain a scalar loss value. It computes
the average over the spatial, LED, and scale dimensions of the multi-scale loss, where X[i, j] is the
indexing operator accessing the value of the cell at row i and column j of a generic map X . Note
that this loss accounts for all aspects captured by Lori, reformulated in multi-scale fashion.

L =
1

K

K∑
k=1

S∑
s=1

H′∑
i=1

W ′∑
j=1

Lk,sms [i, j] (1)

Model Inference. We compute the predicted robot location in the image (û, v̂) as the barycenter
of the P̂ sms-norm maps. The predicted relative bearing is the weighted average of Ψ̂s by P̂ sms-norm and
is directly mapped to the robot’s orientation. Lastly, we estimate the robot’s distance by measuring
its apparent size in the original input image, which is proportional to its physical distance from the
camera. We identify the robot’s apparent size in the image by summing each P̂ sms-norm map over its
spatial dimensions, obtaining a vector of S elements that sum to one. Using this vector to apply a
linear combination of scale factors, we obtain a scalar representing the robot’s size in the original
input image. Similarly to Depth Anything [9, 10], the predicted distance requires a calibration: we
multiply it with the calibration factor dc derived from a single image with a known robot distance.
Note that we do not explicitly handle external occlusions to the LEDs. However, our experiments
show the model is resilient to partial and total occlusions caused by the camera’s FOV. Following the
inference procedure, we report an average running time of 6.5ms per image (153 Hz) on a NVIDIA
GeForce RTX 4080. More details on model inference can be found in the appendix.

4 Experimental setup

We apply our proposed approach to the DJI Robomaster S1 robot, a ground rover equipped with a
monocular RGB camera with a resolution of 640×360 pixels mounted on top of a pan and tilt turret.
The robot features six multi-color LEDs, of which we consider four for our experiments: the two on
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Figure 5: Random training samples from the datasets: laboratory (top row), gym (1-3 on bottom),
classroom (4-6 on bottom), and break room (7-9 on bottom). On the right, the LED state (blue for
off, red for on; F for front, B for back, L for left, R for right) is reported for each LED; white circles
mark the robot. Only 23% of collected samples feature a visible robot in the laboratory training set.

the turret and the front and back ones on the robot’s base (see Figure 1); the left and right LEDs of
the base are always turned off and ignored during training and evaluation.

Data Collection. We let the two robots randomly move in different environments and indepen-
dently randomize the state of each of the four LEDs every five seconds. Each robot broadcasts its
LED states which are used as labels for the images acquired by the other one. In total, the robots col-
lected 131K samples in a laboratory environment, which are sequentially split into the the training
Tlab (116K samples), validation Vlab (10K samples), and testing Qlab (5K samples) sets. Having no
access to pose labels while randomly exploring, no measures are taken to ensure that the robots are
in each other’s FOV; consequently, 77% of the training-set images depict an empty background with
no robots, as shown in the top row of Figure 5. To validate the model and assess its performance, the
pose of both robots is collected using a motion capture system. Our quantitative evaluation is carried
out on the subset of testing set samples with a visible robot, amounting to 1K samples, denoted as
Qν

lab. We stress that pose information is not made available to any of our models. However, we
consider a supervised upperbound to measure the maximum performance achievable with our setup.

Additionally, data is collected in less unstructured environments, having no external tracking system
and, as a consequence, no ground truth poses. In detail, the robots collected 34K samples in a
classroom, 48K samples in a gym, and 45k samples in a break room. We combine samples from the
three environments to create the Out of Domain (OOD) dataset, where we split data into a training
set Tood (120K samples), validation set Vood (5K samples), and testing set Qood (2K samples).

Baselines. We compare our model against Mean Predictor, CNOS [6], and Upperbound models:
Mean Predictor always returns the mean relative pose of the robot in the laboratory training set.
Upperbound is a version of our architecture trained in a fully supervised fashion, i.e., it represents
the assumption that pose labels are available for every image and trains with pose labels in the
laboratory training set, denoted as T ∗

lab. CNOS is a SoA novel object pose estimation approach
based on the CAD model of the object of interest; it segments the input image using SAM [18],
matches the segmentations to rendered templates using the features from DINOv2 [19], and returns
the known pose of the matched template as its prediction. Specifically, we generate 400 templates
by rendering the robot’s textured CAD model at 4 distance settings (0.5m, 1m, 2m, 4m) across 100
different orientations. We also consider MegaPose[17] as a baseline; similarly to CNOS, it matches
the input image with templates of the robot’s CAD model, and uses the recovered pose as an initial
pose guess refined with a render & compare strategy. However, its quantitative performance is worse
than all other baselines considered and takes more than a minute to infer the pose from an image.

Evaluation Metrics. All metrics are computed on Qν
lab: for localization, we measure the median

distance of the robot’s center pixel location, called Euv; for the orientation, we compute the median
circular error [42], called Eψ; for the distance, we measure the mean absolute percentage error of
the distance –which is not influenced by the distance distribution in the dataset compared to the
absolute error–, called Ed, and defined as |d− d̂|/d; for the LED classification, we measure the
AUC averaged over the LEDs that are visible according to the ground truth robot pose. Similarly
to SO-Pose [43], we measure the overall goodness of our approach with the pose accuracy metric
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Table 1: Performance metrics computed on the laboratory testing set Qν
lab, three replicas per row.

Model Supervision Euv Eψ Ed Γ45◦

1m AUC Point plot for Γ45◦

1m [%] →
[px] ↓ [deg] ↓ [%] ↓ [%] ↑ [%] ↑ Error bars mark 95% CI

Mean Predictor Tlab 141 86 34 10 50

0 50 100

Ours Tlab 17 17 24 70 98
Ours (OOD) Tood 27 55 60 29 89
CNOS [6] CAD model 13 72 35 25 N/A
Upperbound T ∗

lab 18 14 11 93 99

represented as Γ45◦

1m and defined as the percentage of predictions with a position error of less than 1
meters and orientation error of less than 45◦ from the ground truth pose. The threshold values are
heuristically set such that Upperbound has a score greater than 90% in the Γ45◦

1m metric.

5 Results

We evaluate the pose estimation performance of our approach by training our model on the labo-
ratory training dataset and evaluating it on the testing set collected in the same environment. For
evaluating the model, we ignore empty scenes in the testing set. We report the results in Table 1,
where we observe that our self-supervised model significantly better than the baselines despite re-
quiring to be trained only on a dataset of images labeled with the binary state of four LEDs, needing
no auxiliary segmentation model or rendered CAD templates.
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Figure 6: Our self-supervised model pre-
dictions vs ground truth on Qν

lab. Our ap-
proach discretizes distances into three bins,
resulting in a coarse step function.

Our model’s performance largely surpasses the Mean
Predictor and closely follows the Upperbound. The
performance gap with the latter is in the distance es-
timation; this is explained by the fully-supervised ap-
proach regressing the robot’s distance as a continuous
value, as opposed to our method relying on a discrete
number of scales for the prediction, as depicted in Fig-
ure 6. In preliminary experiments, we verified that the
issue can be mitigated by using more scales during in-
ference. The CNOS approach has the lowest Euv er-
ror, thanks to the performance of SAM [18] and access
to the robot’s CAD model. However, it struggles the
most in predicting the distance and heading. Upon in-
specting the problem, we discovered that DINOv2’s
embeddings [19] have similar values for a rendered
robot template and its horizontal reflection, and for the
same pose at different distances.

LEDs are not necessary at deployment time We test our model on the subset of Qν
lab with images

having all visible LEDs turned off, where it scoresEuv = 19.6px, Eψ = 19.23◦, andEd = 25.7%.
The small difference in performance compared to testing on the entire Qν

lab demonstrates that the
approach is robust and does not require a specific LED state for accurate pose estimation. Higher
errors are attributed to the reduced visibility of the robot when LEDs are off.

Fine Tuning to Novel Environments. We consider a model pre-trained using our approach
on Tood and fine-tuned (using our approach) on an increasing number of samples from the
laboratory (from 5K to 115K). The third row of Table 1 reports the performance of the
model pre-trained on OOD data and later tested on Qν

lab without fine-tuning; the performance
of the model is better than the mean predictor, while it struggles with distance estimation.
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Figure 8: Predicted robot poses (x-axis in red, y-axis in green, z-axis in blue) by models trained with
our approach: a model trained on Tlab applied to Qν

lab (1-4); a model trained on Tood and applied to
the testing set in classroom (5, 6), gym (7), and break room (8); a model trained on Tlab applied to
images with multiple robots (9, 10). Large errors occur when the images are blurred or robots are
far from the camera (3), while smaller errors occur when robot and background blend together (4).
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Figure 7: Metrics of a model trained from
scratch on Tlab (in green) and a model pre-
trained on Tood and fine-tuned on Tlab (in yel-
low). The performance of Mean Predictor
(in gray) and Upperbound (in magenta) are
reported as dashed lines for comparison.

We further fine-tune the model on the target domain,
represented by the Fine-tuning model, and compare
with another trained from scratch on the same data,
called From Scratch, in Figure 7. We observe that
training from scratch with less than 30K fine-tuning
samples achieves a worse performance than using a
pre-trained model in different environments, high-
lighting the model’s generalization ability. We note
that the amount of data needed for the from-scratch
model to achieve similar performance to the fine-
tuned one depends on the task: localizing the robot
is easier than estimating its heading which, in turn,
is easier than estimating the robot’s distance.

The Model is Capable of Multi-robot Pose Es-
timation. We show model predictions on unseen
images featuring multiple robots in Figure 8. De-
spite being trained on images with at most one visi-
ble robot, the approach correctly works with images
with multiple ones. In this experiment, each robot
corresponds to a different local maximum of P̂ . De-
tails on adapting the model inference for multi-robot
pose estimation can be found in the appendix.

6 Conclusions

We presented a self-supervised pose estimation approach that does not require pose labels; instead,
supervision is obtained from classifying the state of multiple, independent LEDs on the robot’s body.
A pair of robots collect images and the ground truth LED state of the peer autonomously, without
external hardware, lending the approach to online learning and domain adaptation. Results indicate
that our approach trains a competitive pose predictor, whose performance is not degraded by the
lack of pose labels despite the complexity of the task.

Our approach only assumes that changes in the target variable (e.g., state of the LEDs) affect the
appearance of the robot such that the sensor (e.g., monocular camera) can observe and predict this
change of state. As such, the approach can be applied to different sensors, and other actuators (e.g.
the position of an arm), as long as it affects the robot’s appearance in the sensed data.
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7 Limitations

Our model and experiments focus on 2D pose estimation for ground robots. Extension to 3D would
be trivial for the position component of the pose; for the rotation component, the LED visibility
function would be defined on the space of unit quaternions (representing 3D rotations). In order to
disambiguate robot pitch, additional LEDs would be required that face in directions with positive
and negative pitches. Reconstructing the roll would require considering the detected locations of
each specific LED, which are accessible in the raw LED maps.

The laboratory testing set used in our quantitative experiments, despite being cluttered and full of
distractors on shelves, does not contain images where the target robot is occluded by other objects;
as such, the efficacy of the approach on partial occlusions needs further testing.

Our current formulation relies on rescaling an input image multiple times (three in our experiments),
running a forward pass on each scaled version, and combining the predictions to get the estimated
distance. The accuracy of the resulting distance estimate is limited by the coarse discretization of
the image scales used to estimate the distance. At inference time, this can be mitigated by con-
sidering more scaling factors at the expense of additional computation. In future work, we plan
to explore different multi-scale architectures, such as U-Net models [44], to address this limitation
and improve the pose estimation performance. Further, our approach considers each training frame
individually, disregarding valuable temporal information such as the robot’s odometry or the image
optical flow. The approach can benefit from incorporating this information in the training process,
e.g., by employing an auxiliary consistency loss [45] between pairs of frames.

The training approach assumes to have at most one robot inside the FOV, limiting its application to a
pair of robots collecting data. We plan to extend the approach to handle large groups of collaborative
robots, dramatically improving data collection efficiency and increasing the frames featuring visible
robots (23% in our training set): the amount of useful collected data over a given time interval scales
quadratically with the number of robots simultaneously deployed in the environment.

The main limitation of our approach compared to CAD-based ones is the need to retrain from scratch
for every new robot whose pose is to be estimated. This drawback is mitigated by the ease of
collecting data and the advantage of training directly on real-world images, eliminating the sim-to-
real gap.
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[22] E. P. Örnek, Y. Labbé, B. Tekin, L. Ma, C. Keskin, C. Forster, and T. Hodan. Foundpose:
Unseen object pose estimation with foundation features. In European Conference on Computer
Vision, pages 163–182, 2024.

[23] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:
Representing scenes as neural radiance fields for view synthesis. In European Conference on
Computer Vision, 2020.

[24] B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

[25] L. Yen-Chen, P. Florence, J. T. Barron, A. Rodriguez, P. Isola, and T.-Y. Lin. iNeRF: Inverting
neural radiance fields for pose estimation. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2021.

[26] M. Bortolon, T. Tsesmelis, S. James, F. Poiesi, and A. Del Bue. Iffnerf: Initialisation
free and fast 6dof pose estimation from a single image and a nerf model. arXiv preprint
arXiv:2403.12682, 2024.

[27] B. Matteo, T. Tsesmelis, S. James, F. Poiesi, and A. Del Bue. 6dgs: 6d pose estimation from a
single image and a 3d gaussian splatting model. In European Conference on Computer Vision,
pages 420–436, 2024.

[28] D. Zhang, J. Han, G. Cheng, and M.-H. Yang. Weakly supervised object localization and
detection: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(9):
5866–5885, 2021.

[29] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba. Learning deep features for
discriminative localization. In cvpr, pages 2921–2929, 2016.

[30] H. G. Ramaswamy et al. Ablation-cam: Visual explanations for deep convolutional network
via gradient-free localization. In IEEE/CVF winter conference on applications of computer
vision, pages 983–991, 2020.

[31] P.-T. Jiang, C.-B. Zhang, Q. Hou, M.-M. Cheng, and Y. Wei. Layercam: Exploring hierarchical
class activation maps for localization. IEEE Transactions on Image Processing, 30:5875–5888,
2021.

[32] W. Lu, X. Jia, W. Xie, L. Shen, Y. Zhou, and J. Duan. Geometry constrained weakly supervised
object localization. In European Conference on Computer Vision, pages 481–496, 2020.

11



[33] J. Xie, J. Xiang, J. Chen, X. Hou, X. Zhao, and L. Shen. C2am: Contrastive learning of class-
agnostic activation map for weakly supervised object localization and semantic segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 989–998, 2022.

[34] E. Jang, C. Devin, V. Vanhoucke, and S. Levine. Grasp2vec: Learning object representations
from self-supervised grasping. In PMLR Conference on Robot Learning, pages 99–112, 2018.

[35] I. Radosavovic, T. Xiao, S. James, P. Abbeel, J. Malik, and T. Darrell. Real-world robot
learning with masked visual pre-training. In PMLR Conference on Robot Learning, pages
416–426, 2023.

[36] L. Antsfeld and B. Chidlovskii. Self-supervised pretraining and finetuning for monocular depth
and visual odometry. In IEEE International Conference on Robotics and Automation, pages
14669–14676, 2024.

[37] S. Qian, K. Mo, V. Blukis, D. F. Fouhey, D. Fox, and A. Goyal. 3d-mvp: 3d multiview
pretraining for robotic manipulation. arXiv preprint arXiv:2406.18158, 2024.

[38] M. Nava, N. Carlotti, L. Crupi, D. Palossi, and A. Giusti. Self-supervised learning of visual
robot localization using led state prediction as a pretext task. IEEE Robotics and Automation
Letters, 9(4):3363–3370, 2024.

[39] N. Carlotti, M. Nava, and A. Giusti. Learning to estimate the pose of a peer robot in a camera
image by predicting the states of its leds. In IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2763–2769, 2024.

[40] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3431–3440,
2015.

[41] M.-H. Guo, T.-X. Xu, J.-J. Liu, Z.-N. Liu, P.-T. Jiang, T.-J. Mu, S.-H. Zhang, R. R. Martin,
M.-M. Cheng, and S.-M. Hu. Attention mechanisms in computer vision: A survey. Springer
Computational visual media, 8(3):331–368, 2022.

[42] K. V. Mardia and P. E. Jupp. Directional statistics. John Wiley & Sons, 2009.

[43] Y. Di, F. Manhardt, G. Wang, X. Ji, N. Navab, and F. Tombari. So-pose: Exploiting self-
occlusion for direct 6d pose estimation. In IEEE/CVF International Conference on Computer
Vision, pages 12396–12405, 2021.

[44] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical im-
age segmentation. In Springer Medical image computing and computer-assisted intervention,
pages 234–241, 2015.

[45] M. Nava, L. M. Gambardella, and A. Giusti. State-consistency loss for learning spatial per-
ception tasks from partial labels. IEEE Robotics and Automation Letters, 6(2):1112–1119,
2021.

[46] D. P. Kingma and J. Ba. Adam: a method for stochastic optimization. In International Con-
ference on Learning Representations, 2015.

[47] I. Loshchilov and F. Hutter. Sgdr: Stochastic gradient descent with warm restarts. In Interna-
tional Conference on Learning Representations, 2017.

12



Appendix

A Neural Network Training

Throughout this document, we adopt the same FCN architecture, receiving as input an image with
an original resolution of 640×360 pixels and producing maps of 80×45 cells, with a RF of 70×70
pixels. In detail, we designed a lightweight FCN with 6 blocks interleaved by 2x max-pooling and
totaling 179K parameters; each block consists of a 2D convolution, batch normalization, and ReLU
non-linearity. Our approach uses the scaling factors (1, 12 ,

1
4 ) to rescale the original input image with

average pooling and, for each one, does a forward pass to produce the output maps. After the three
forward passes, we upscale the smaller maps to match the 80 × 45 size of the largest map (which
corresponds to the largest scale) using bilinear interpolation. Given these maps, we optimize the loss
function defined in Equation (1) using Adam [46] with an initial learning rate ηinitial = 1e−3 that
smoothly decreases to ηfinal = 1e−4 with cosine interpolation [47] over 100 training epochs. During
training, we apply image augmentation using multiplicative simplex noise and color jittering. The
best set of parameters θ for the model is chosen as the one leading to the smallest validation loss,
usually occurring within the first 60 epochs of training.

B Model Inference

The target robot location in the image û, v̂ is computed from P̂ms-norm: at first, we sum the map
cells over the scales S to have a two-dimensional map whose cells indicate the presence of robots
across all scales; secondly, we compute the barycenter of the map by multiplying the values of each
cell by its integer coordinates and summing all cells to obtain û′, v̂′; finally, we localize the robot
by multiplying û′, v̂′ by the integer factor relating the output maps’ resolution to the original input
image resolution. Formally, the procedure can be written as(

û
v̂

)
=

(
W/W ′

H/H′

) S∑
s=1

H′∑
i=1

W ′∑
j=1

(P̂ sms-norm ⊙M)[i, j] (2)

where ⊙ is the element-wise product, and M is the coordinate matrix consisting of cells mij =

(i j)
T .

The target robot orientation ψ̂ is computed as the weighted average of Ψ̂s by P̂ sms-norm, defined as

ψ̂ =

S∑
s=1

H′∑
i=1

W ′∑
j=1

(P̂ sms-norm ⊙ Ψ̂s)[i, j] (3)

Finally, the target robot distance is computed from P̂ sms-norm as follows:

d̂ = dc · d̂′ ; d̂′ =

S∑
s=1

fs ·
H′∑
i=1

W ′∑
j=1

(P̂ sms-norm)[i, j] (4)

In this formula, we first sum the map cells over their width and height to have a one-dimensional
vector whose elements indicate the degree of compatibility between the robot’s image size and the
model’s RF at different scales – the higher the value, the better the robot size matches the RF.
Recalling that the size of the robot’s bounding box in the image is inversely proportional to its
distance, we recover the distance d̂′ as the average of the inverse of scale factors weighted by the
vector defined above. To get a metric prediction from d̂′, we employ a simple calibration procedure:
the robot is placed in front of the camera, and images of it are taken while adjusting its distance; we
pick dc as the distance at which the robot appears with a size of r × r pixels (i.e., our model’s RF,
as introduced in Section 3) in the captured images.

The target robot LED states l̂k are computed as the average of L̂ks weighted by P̂ sms-norm, defined as

l̂k =

S∑
s=1

H′∑
i=1

W ′∑
j=1

(P̂ sms-norm ◦ L̂ks)[i, j] (5)
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C Multi-robot Inference

To allow the model to predict the pose of multiple robots, we modified the way the P̂ map is ob-
tained. As described in Section 3, the cells in P̂ are bound to the [0, 1] value range. This is achieved
by applying a softmax function to the raw activation values of the map. When multiple robots are
present in the input image, the raw map contains multiple peak values at different spatial locations.
Because the softmax function suppresses all non-maxima peaks when the absolute difference be-
tween peaks is high enough, the post-softmax map generally presents only one peak. Hence, our
solution is first to linearly rescale the values into the [0, 1] and then to apply the softmax function to
further suppress noise.

D Detecting Robot Presence

Taking inspiration from Weakly Supervised Learning, we explore how to use our learned model for
robot detection. We consider the problem of classifying whether a robot is visible anywhere in an
image; we take the maximum of P̂ms-norm as the belief about the presence of a robot. When testing
this binary classification approach over Qlab, we obtain an AUC of 83.4%. Additionally, we consider
a method that estimates robot presence based on the model’s confidence in its LED predictions based
the entropy formula:

1

4

4∑
k=1

1−
(
−l̂k · log(l̂k)− (1− l̂k) · log(1− l̂k)

)
(6)

The resulting scalar measures the model’s confidence in its LED state prediction; the closer the
values are to zero (off) or one (on), the higher the confidence. Assuming that the model predicts
the LED state with high confidence only when the robot is visible in the image, we use this value
to detect the robot’s presence. Using this alternative method, we report a robot detection AUC of
97.2%. We believe the difference between the two methods to be caused by the softmax operator
applied to P̂ms-norm: when no robot is visible, the softmax drastically accentuates the noise in the
localization map, leading to many false positives. In this situation, our model produces LED maps
with values close to 0.5, resulting in low confidence and, thus, stronger robot detection.
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Figure 9: Receiver Operator Characteristic (ROC) curves for the robot detection methods presented
in Section D on the laboratory testing set.

14


	Introduction
	Related Work
	Method
	Experimental setup
	Results
	Conclusions
	Limitations
	Neural Network Training
	Model Inference
	Multi-robot Inference
	Detecting Robot Presence

