
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

CONTINUOUS SPIKING GRAPH ODE NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Graph Networks (SGNs), as bio-inspired neural models that address en-
ergy consumption challenges for graph classification, have attracted considerable
attention from researchers and the industry. However, SGNs are typically applied in
static scenarios with real-valued inputs and cannot be directly utilized for dynamic
prediction because of their limited capacity to handle dynamic real-valued features,
denoted as architectural inapplicability. Moreover, they suffer from accuracy loss
due to the inherently discrete nature of spike-based representations. Inspired by
recent graph ordinary differential equation (ODE) methods, we propose the frame-
work named Continuous Spiking Graph ODE Networks (CSGO), which leverages
the advantages of graph ODE to address the architectural inapplicability, and em-
ploys high-order structures to solve the problem of information loss. Specifically,
CSGO replaces the high energy-consuming static SGNs with an efficient Graph
ODE process by incorporating SGNs with graph ODE into a unified framework,
thereby achieving energy efficiency. Then, we derive a high-order spike representa-
tion capable of preserving more information. By integrating this with a high-order
graph ODE, we propose the second-order CSGO to address the information loss
challenge. Furthermore, we prove that the second-order CSGO maintains stability
during the dynamic graph learning. Extensive experiments validate the superiority
of the proposed CSGO in performance while maintaining low power consumption.

1 INTRODUCTION

Figure 1: Illustration of information loss and ar-
chitecture inapplicability. Information loss arises
from the sampling of real-value inputs, while the
architecture inapplicability refers to the unsuit-
ability of dynamic real-valued SGN methods.

Spiking Graph Networks (SGNs) (Zhu et al.,
2022; Xu et al., 2021) are a type of artificial neu-
ral network specifically designed to process graph
information in a manner similar to the human
brain. SGNs typically transform static and real-
valued graph features into discrete spikes, and
then emulate the neuron’s charging and discharg-
ing processes to achieve spikes representation for
graph classification. The distinctive features of
SGNs is their ability to capture semantic spik-
ing representations while maintaining low energy
consumption, making them well-suited for event-
based processing tasks (Yao et al., 2021), such
as object recognition (Gu et al., 2020; Li et al.,
2021), real-time data analysis (Zhu et al., 2020b;
Bauer et al., 2019), and graph classification (Li
et al., 2023; Zhu et al., 2022; Xu et al., 2021).

SGNs are commonly applied in scenarios that handle static real-valued or continuous binary in-
puts (Guo et al., 2022; Wang et al., 2022; Lv et al., 2023). For real-valued features, SGNs initially
sample binary features on each node using a Bernoulli Distribution (Zenke & Ganguli, 2018), where
the probability corresponds to the feature’s real values. These features are then propagated by simu-
lating the neuron’s charging and discharging processes. However, limited research has explored the
application of SGNs to dynamic real-valued inputs. Typically, simply sampling binary features and
calculating the spiking representation at each dynamic step results in significant energy consumption,
rendering it unsuitable for low-power devices. Additionally, the inherent characteristic of SGNs that

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

transforms continuous features into binary representations leads to information loss and performance
degradation (Yan et al., 2021). As shown in Figure 1, the architectural inapplicability and information
loss problems limit the application of SGNs for dynamic graph prediction in real-world scenarios.

Inspired by recent developments in graph ordinary differential equations (Graph ODEs) (Battaglia
et al., 2016; Kipf et al., 2018), which typically use GNNs to obtain node representations through
ordinary differential equations, and recognizing that higher-order neural networks can preserve more
information (Luo et al., 2023), we propose utilizing high-order SGNs and Graph ODEs to address
these challenges. However, incorporating Graph ODE with SGNs for dynamic prediction tasks is
difficult due to the following challenges: (1) How to efficiently incorporate the SGNs and Graph
ODE into a unified framework? SGNs and Graph ODEs process information along two distinct
dimensions: the latency dimension in SGNs and the dynamic evolution in graph-based models. A
key challenge is how to merge these dual processes into a cohesive framework that maintains the
energy-efficient properties of SGNs while leveraging the dynamic learning capabilities of Graph
ODEs. (2) How to alleviate the problem of information loss of SGNs? SGNs achieve low power
consumption by discretizing continuous features, but this binarization often leads to a significant
loss of fine-grained information, reducing performance. Addressing the information loss in SGNs is
therefore another critical challenge. (3) How to guarantee the stability of the proposed framework?
Traditional graph-based techniques encounter the challenge of exploding and vanishing gradient
problems when modeling the dynamic evolution of GNNs. Therefore, devising a stable model for
graph learning with theoretical guarantee constitutes the third prominent challenge.

To tackle these challenges, we propose a framework named Continuous Spiking Graph ODE Net-
works (CSGO) for dynamic graph learning tasks. Specifically, to address the first challenge, we
approach it by considering SGNs as a type of ODE and integrating it with Graph ODE into a frame-
work, denoted as CSGO-1st. The CSGO-1st structure models the initial representation using SGNs
by considering the inner time latency at each dynamic step and evaluates the dynamics evolution
with Graph ODE iteratively. Furthermore, to address the information loss problem caused by SGNs,
we derive a high-order spike representation with second-order SGNs structure and incorporate with
high-order Graph ODE, which referred to as CSGO-2nd. Moreover, we provide the theoretical
guarantee that CSGO successfully mitigates issues related to exploding and vanishing gradients. We
perform comprehensive evaluations of CSGO against state-of-the-art methods on various graph-based
datasets, showcasing the efficacy and versatility of the proposed approach.

In summary, the contributions can be summarized as follows: (1) Problem Setup. We present a
novel problem in SGNs, emphasizing the challenge of achieving high performance while maintaining
low power consumption for dynamic graph classification tasks. (2) Novel Architecture. We propose
the CSGO, which efficiently incorporates SGNs and Graph ODE into a unified framework, retaining
the energy-efficient properties of SGNs while preserving the ability to capture dynamic changes
in Graph ODE. Furthermore, we first derive the second-order spike representation and study the
backpropagation of second-order SGNs to mitigate the information loss problem. (3) Theoretical
Analysis. We provide a theoretical proof demonstrating that CSGO effectively mitigates the issue
of exploding and vanishing gradients, ensuring the stability of our proposed method. (4) Extensive
Experiments. We evaluate the proposed CSGO on extensive graph-based learning datasets, which
evaluate that our proposed CSGO outperforms the variety of state-of-the-art methods.

2 RELATED WORK

Graph Ordinary Differential Equations. Recently, numerous methods based on dynamic GNNs
have emerged for modeling dynamic interaction systems (Battaglia et al., 2016; Kipf et al., 2018; Chen
et al., 2018; Ju et al., 2024). These methods commonly employ GNNs to initialize node representations
at discrete timestamps, which are then utilized for predicting node behaviors. Nevertheless, these
discrete methodologies often necessitate the presence of all nodes at each timestamp (Huang et al.,
2020; 2021; Yin et al., 2023a; 2022), which is challenging to achieve in real-world scenarios. In
contrast, ODE has proven to be effective in modeling system dynamics when dealing with missing
data (Chen et al., 2018). Recent works (Poli et al., 2019; Gupta et al., 2022) involve initializing state
representations with GNNs, followed by the establishment of a neural ODE model for both nodes
and edges, guiding the evolution of the dynamical system. Additionally, high-order correlations (Luo
et al., 2023; Zhang et al., 2022) have been shown to efficiently model the dynamic evolution of graphs.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We integrate energy-efficient SNNs into Graph ODE, thereby retaining the low energy characteristics
of SNNs while harnessing the dynamic learning capabilities of Graph ODE.

Spiking Graph Networks. SGNs (Zhu et al., 2022; Xu et al., 2021) have emerged as a promising
solution for addressing energy consumption challenges on graph classification tasks. Recently,
various SGNs (Xu et al., 2021; Wang & Jiang, 2022; Zhu et al., 2022) have demonstrated low energy
consumption and high bio-fidelity. These models employ similarly reactive spiking neurons (Gerstner
& Kistler, 2002) to process propagated graph data, achieving both low energy consumption and
maintained bio-fidelity. However, these methods are generally applied in the scenarios of static
real-valued or continuous binary inputs (Guo et al., 2022; Wang et al., 2022; Lv et al., 2023). There
is still limited research focusing on dynamic spiking graphs with real-valued inputs. Although some
works have attempted to apply static SNNs to dynamic graphs (Li et al., 2023; Yin et al., 2024) by
calculating the static spiking representation at each dynamic step and then predicting the evolution
with a new spiking layer, these methods generally demand substantial energy consumption, rendering
them impractical for low-power devices. Our approach ingeniously combines SGNs with Graph ODE
to effectively capture the dynamic changes while maintaining low power consumption.

3 PRELIMINARIES

3.1 DYNAMIC GRAPH NEURAL NETWORKS

Problem Formulation: Given a graph G = (V, E) with the node set V and the edge set E . X ∈
R|V|×d is the node feature matrix, d is the feature dimension. The binary adjacency matrix denoted
as A ∈ R|V|×|V|, where aij = 1 denotes there exists a connection between node i and j, and vice
versa. Our goal is to learn a node representation H for downstairs tasks.

First-order Graph ODE: The first graph ODE method is proposed by (Xhonneux et al., 2020).
Considering the Simple GNN (Wu et al., 2019) with Hn+1 = AHn +H0, the solution is given by:

dH(t)

dt
= lnAH(t) +E, H(t) = (A− I)−1(e(A−I)t − I)E+ e(A−I)tE, (1)

where E = ε(X) is the output of the encoder ε and the initial value H(0) = (lnA)−1(A− I)E.

Second-order Graph ODE: To model high-order correlations in dynamic evolution, (Rusch et al.,
2022) first propose the second-order graph ODE, which is represented as:

X
′′
= σ(Fθ(X, t))− γX− αX

′
, (2)

where (Fθ(X, t))i = Fθ (Xi(t),Xj(t), t) is a learnable coupling function with parameters θ. Due
to the unavailability of an analytical solution for Eq. 2, GraphCON (Rusch et al., 2022) addresses it
through an iterative numerical solver employing a suitable time discretization method. GraphCON
utilizes the IMEX (implicit-explicit) time-stepping scheme, an extension of the symplectic Euler
method (Hairer et al., 1993) that accommodates systems with an additional damping term.

Yn = Yn−1 +∆t
[
σ(Fθ(X

n−1, tn−1))− γXn−1 − αYn−1
]
,

Xn =Xn−1 +∆tYn, n = 1, · · · , N,
(3)

where ∆t > 0 is a fixed time-step and Yn, Xn denote the hidden node features at time tn = n∆t.

3.2 SPIKING NEURAL NETWORKS

First-order SNNs: In contrast to traditional artificial neural networks, SNNs convert input data
into binary spikes over time, with each neuron in the SNNs maintaining a membrane potential that
accumulates input spikes. A spike is produced as an output when the membrane potential exceeds a
threshold. And the first-order SNNs is formulated as:

uτ+1,i = λ(uτ,i − Vthsτ,i) +
∑
j

wijsτ,j + b, sτ+1,i = H(uτ+1,i − Vth), (4)

where H(x) is the Heaviside function, which is the non-differentiable spiking function. sτ,i is the
binary spike train of neuron i, λ is the constant. wij and b are the weights and bias of each neuron.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Overview of the proposed CSGO. The proposed CSGO takes a graph with node features
as input, which are initially encoded using the SGNs (first-order or second-order). Subsequently, a
high-order Graph ODE process is employed to evolve the dynamic representation of nodes. Finally,
the representation is projected for downstream tasks.

Second-order SNNs: The first-order neuron models assume that an input voltage spike causes an
immediate change in synaptic current, affecting the membrane potential. However, in reality, a spike
leads to the gradual release of neurotransmitters from the pre-synaptic neuron to the post-synaptic
neuron. To capture the temporal dynamics, we utilize the synaptic conductance-based LIF model,
which considers the gradual changes in input current over time. To solve this, (Eshraghian et al.,
2023) propose the second-order SNN, which is formulated as:

Iτ+1 = αIτ +WXτ+1, uτ+1,i = βuτ,i + Iτ+1,i −R, sτ,i = H(uτ+1,i − Vth), (5)

where α = exp(−∆t/τsyn), β = exp(−∆t/τmem), τsyn models the time constant of the synaptic
current in an analogous way to how τmem models the time constant of the membrane potential.

4 METHODOLOGY

In this part, we present the proposed CSGO for dynamic spiking graph learning. CSGO incorporates
Graph ODE with SGNs into a unified framework, which preserves the advantage of Graph ODE for
low energy consumption dynamic evolution. To mitigate the problem of information loss attributed
to SGNs, we involve the derivation of second-order spike representation and differentiation for
second-order SGNs, and then coordinate with high-order Graph ODE, referred to as CSGO-2nd.
Finally, we present a theoretical proof to ensure that CSGO effectively mitigates the challenges
associated with gradient exploding and vanishing. The details of CSGO are illustrated in Figure 2.

4.1 FIRST-ORDER CSGO

Specifically, SGNs propagate information within time latency τ , and the Graph ODE evaluates feature
evolution on different layers l. We propose the first-order CSGO, which integrates SGNs with Graph
ODEs, allowing information to be interactively propagated through both SGNs and the Graph ODE:

Proposition 1 Define the first-order SNNs as duτ
n

dτ = g(uτ
n, τ), and first-order Graph ODE as

duτ
n

dn = f(uτ
n, n), then the first-order CSGO can be formulated as:

uT
N =2

∫ N−1

0

f

(∫ T

0

g(ux
y , x)dx

)
dy +

∫ N

N−1

f

(∫ T

0

g(ux
y , x)dx

)
dy (6)

=2

∫ T

0

g

(∫ N−1

0

f(ux
y , x)dy

)
dx+

∫ N

N−1

f

(∫ T

0

g(ux
y , x)dx

)
dy. (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

where T is the total latency of SNNs, and N is the steps of Graph ODE, ux
y denotes the neuron

membrane on latency x ∈ [0, T] and ODE step y ∈ [0, N]. The derivation is shown in Appendix A.

From Proposition 1, we observe that incorporating SNNs with Graph ODEs essentially involves eval-
uating the membrane potential u through the ODE process and obtaining the spiking representation at
each ODE step n. To model the dynamic process of graphs in spiking scenarios, CSGO-1st leverages
the Graph ODE instead of calculating the spiking representation at every step, thereby efficiently
addressing the issue of energy consumption. In our implementation of the CSGO-1st, we employ
Eq. 15 by initially calculating spike representations with the initial real-valued features, followed
by modeling the evolution of node embeddings. As described in (Meng et al., 2022), the first-order
spike representation at step n is denoted as: H(0) =

∑N
τ=1 λN−τs0τ∑N
τ=1 λN−τ . By combining Eq. 1, we have:

dH(n)

dt
= lnAH(n) +

∑N
τ=1 λ

N−τs0τ∑N
τ=1 λ

N−τ
, (8)

where s0τ is the binary spiking representation on latency τ at the first step, and λ = exp(−∆n
κ) with

∆n ≪ κ, κ is the time constant. We can then obtain the spiking output sTn = H (H(n)) on step n
with the Heaviside function H, and utilize it for the final prediction.

4.2 SECOND-ORDER SPIKING NEURAL NETWORKS

The proposed first-order CSGO addresses the challenge of combining SNNs with Graph ODE
to achieve energy-efficient modeling for dynamic graph learning. However, the first-order SNNs
typically suffer from the information loss issue (Yin et al., 2023b). Motivated by recent advancements
in high-order models (Luo et al., 2023), which addresses high-order correlations of nodes, we
introduce the second-order CSGO to tackle the aforementioned issue. In this part, we begin by
deriving the second-order spike representation and investigating the backpropagation of second-order
SNNs.

4.2.1 SECOND-ORDER SNNS FORWARD PROPAGATION

We first propose the forward propagation of second-order SNNs. We set the forward propagation
layer of SNNs to L. According to Eq. 5, the propagation can be formulated as:

ui(τ) =βiui(τ − 1) + (1− βi)
V i−1
th

∆t

(
αiIi−1(τ − 1) +Wisi−1(τ)

)
− V i

ths
i(τ),

where i = 1, · · · , L denotes the i-th layer, s0 and si denote the input and output of SNNs, respectively.
Ii is the input of the i-th layer, τ = 1, · · · , T is the time step on SNNs and T is the total latency.
αi = exp(−∆τ/τ isyn), β

i = exp(−∆τ/τ imem) and 0 < ∆τ ≪ {τ isyn, τ imem}.

4.2.2 SECOND-ORDER SPIKE REPRESENTATION

Considering the second-order SNNs model defined by Eq. 5, we first define the weighted average

input current as Î(T) = 1
(β−α)2

∑T−1
n=0 (β

T−n−αT−n)Iin(n)∑T−1
n=0 (β

T−n−αT−n)
, and the scaled weighted firing rate as

â(T) = 1
β2

Vth

∑T−1
n=0 βT−ns(n)∑T−1

n=0 (β
T−n−αT−n)∆τ

. Here we treat â(T) as the spike train of {s(n)}Tn=1. Similarly
to the first-order spike representation (Meng et al., 2022), we directly determine the relationship
between Î(T) and â(T) using a differentiable mapping. Specifically, by combing Eq. 5, we have:

u(τ + 1) =βu(τ) + αIsyn(τ) + Iinput(τ)− Vths(τ)

=β2u(τ − k + 1) + α

k−1∑
i=0

βiIsyn(τ − i) +

k−1∑
i=0

βi(Iinput(τ − i)− Vths(τ − i)).
(9)

By summing Eq. 9 over τ = 1 to T , we have:

u(T) =
1

β − α

T−1∑
n=0

(βT−n − αT−n)Iin(n)−
1

β

T−1∑
n=0

βT−nVths(n). (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Dividing Eq. 10 by ∆τ
∑T−1

n=0 (β
T−n − αT−n):

â(T) =
β − α

β

Î(T)

∆τ
− u(T)

∆τβ
∑T−1

n=0 (β
T−n − αT−n)

≈ τsynτmem

τmem − τsyn
Î(T)− u(T)

∆τβ
∑T−1

n=0 (β
T−n − αT−n)

,

since lim
∆τ→0

1−α/β
∆τ =

τsynτmem

τmem−τsyn
and ∆τ ≪ 1

τsyn
− 1

τmem
, we can approximate β−α

β∆τ by τsynτmem

τmem−τsyn
.

Following (Meng et al., 2022), and take â(T) ∈ [0, Vth

∆τ] into consideration and assume Vth is small,
we ignore the term u(T)

∆τβ
∑T−1

n=0 (β
T−n−αT−n)

, and approximate â(T) with:

lim
T→∞

â(T) ≈ clamp

(
τsynτmem

τmem − τsyn
Î(T), 0,

Vth

∆τ

)
, (11)

where clamp(x, a, b) = max(a,min(x, b)). During the training of the second-order SNNs, we have
Proposition 2, and the detailed derivation is shown in Appendix B.

Proposition 2 Define â0(T) =
∑T−1

n=0 βT−n−2
i s0(n)∑T−1

n=0 (β
T−n
i −αT−n

i)∆τ
and âi(T) =

V i
th

∑T−1
n=0 βT−n−2

i si(n)∑T−1
n=0 (β

T−n
i −αT−n

i)∆τ
, i ∈

[1, L], where αi = exp(−∆τ/τ isyn) and βi = exp(−∆τ/τ imem). The differentiable mappings is:

zi=clamp

(
τ isynτ

i
mem

τ imem−τ isyn
Wizi−1, 0,

V i
th

∆τ

)
, i = 1, · · · , L.

If lim
T→∞

âi(T) = zi for i = 0, 1, · · · , L− 1, then âi+1(T) ≈ zi+1 when T → ∞.

4.2.3 DIFFERENTIATION ON SECOND-ORDER SPIKE REPRESENTATION

In this part, we use the spike representation to drive the backpropagation training algorithm for
second-order SNNs. With the forward propagation of the i-th layers, we get the output of SNN
with si = {si(1), · · · , si(T)}, i ∈ [1, L]. We define the spike representation operator r(s) =
1
β2

Vth

∑T−1
n=0 βT−ns(n)∑T−1

n=0 (β
T−n−αT−n)∆τ

, and get the final output oL = r(sL). For the simple second-order SNN,

assuming the loss function as L, we calculate the gradient ∂L
∂Wi as:

∂L
∂Wi

=
∂L
∂oi

∂oi

∂Wi
=

∂L
∂oi+1

∂oi+1

∂oi

∂oi

∂Wi
, oi = r(si) ≈ clamp

(
Wir(si−1), 0,

V i
th

∆τ

)
.

(12)
We can compute the gradient of second-order SNNs by calculating ∂oi+1

∂oi and ∂oi

∂Wi based on Eq. 12.

4.3 SECOND-ORDER CSGO

Having obtained the second-order spike representation for SNNs, we introduce the second-order
CSGO. While obtaining an analytical solution for the second-order CSGO may not be feasible, we
can derive a conclusion similar to Proposition 1. The specifics are presented as follows.

Proposition 3 Define the second-order SNNs as d2uτ
t

dτ2 + δ
duτ

t

dτ = g(uτ
t , τ), and second-order Graph

ODE as d2uτ
t

dt2 + γ
duτ

t

dt = f(uτ
t , t), then the second-order CSGO follows:

uτ
t =

∫ N

0

h

(∫ T

0

e(uτ
t)dτ

)
dt =

∫ T

0

e

(∫ N

0

h(uτ
t)dt

)
dτ,

s.t.
∂2uτ

t

∂τ2
+ δ

∂uτ
t

∂τ
= g(uτ

t),
∂2uτ

t

∂t2
+ γ

∂uτ
t

∂t
= f(uτ

t),

where e(uτ
t) =

∫ T

0
g(uτ

t)dτ − δ(uT
t − u0

t), h(u
τ
t) =

∫ N

0
f(uτ

t)dt − γ(uτ
N − uτ

0),
∂e(uτ

t)
∂τ = g(uτ

t)

and ∂h(uτ
t)

∂t = f(uτ
t). δ and γ are the hyperparameters of second-order SNNs and Graph ODE.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

The details are derived in Appendix C. Similarly to the CSGO-1st, we implement the CSGO-2nd by
calculating the spike representation on the initial step with Eq. 11 and then modeling the evolution
of node embeddings with second-order Graph ODE using Eq. 3. Furthermore, we analyze the
differentiation of the CSGO-2nd to optimize its performance. Denote the loss function as L =∑
i∈V

∣∣XT
i − X̄i

∣∣2, and X̄i is the label of node i. With the chain rule, we have: ∂L
∂Wl = ∂L

∂oT
N

∂oT
N

∂ol
N

∂ol
T

∂Wl .

As traditional GNN models face the problem of exploding or vanishing gradients (Rusch et al., 2022),
we further analyze the upper bound of the gradient in the proposed CSGO-2nd.

Proposition 4 Let Xn and Yn be the node features, generated by Eq. 3, and ∆t ≪ 1. The gradients
of the second-order Graph ODE Wl and second-order SNNs Wk are bounded as follows:∣∣∣∣ ∂L

∂Wl

∣∣∣∣ ≤ β
′
D̂∆t(1 + ΓN∆t)

v

(
max
1≤i≤v

(|X0
i |+ |Y0

i |)
)

+
β

′
D̂∆t(1 + ΓN∆t)

v

(
max
1≤i≤v

|X̄i|+ β
√
N∆t

)2

,

(13)

∣∣∣∣ ∂L
∂Wk

∣∣∣∣ ≤ (1 +NΓ∆t)(1 + LΘ∆τ)Vth

vβ2∆τ

(
max
1≤i≤v

|XN
i |+ max

1≤i≤v
|X̄i|

)
. (14)

where β = max
x

|σ(x)|, β′
= max

x
|σ′

(x)|, D̂ = max
i,j∈V

1√
didj

, and Γ := 6 + 4β
′
D̂ max

1≤n≤T
||Wn||1,

Θ := 6 + 4β
′
D̂ max

1≤n≤N
||Wn||1. di is the degree of node i, X̄i is the label of node i. Eq. 13 can

be obtained from (Rusch et al., 2022) directly, and the derivation of the Eq. 14 is presented in
Appendix D.

The upper bound in Proposition 4 demonstrates that the total gradient remains globally bounded,
regardless of the number of Graph ODE layers N and SNNs layers L, as long as ∆t ∼ N−1 and
∆τ ∼ L−1. This effectively addresses the issues of exploding and vanishing gradients.

5 EXPERIMENTS

To evaluate the effectiveness of our proposed CSGO, we conduct extensive experiments with CSGO
across various graph learning tasks, including node classification and graph classification.

5.1 EXPERIMENTAL SETTINGS

Datasets. For the node classification, we evaluate CSGO on homophilic (i.e., Cora (McCallum
et al., 2000), Citeseer (Sen et al., 2008) and Pubmed (Namata et al., 2012)) and heterophilic (i.e.,
Texas, Wisconsin and Cornell from the WebKB1) datasets, where high homophily indicates that
a node’s features are similar to those of its neighbors, and heterophily suggests the opposite. The
homophily level is measured according to (Pei et al., 2020), and is reported in Table 1 and 2. In
the graph classification task, we utilize the MNIST dataset (LeCun et al., 1998). To represent the
grey-scale images as irregular graphs, we associate each superpixel (large blob of similar color) with
a vertex, and the spatial adjacency between superpixels with edges. Each graph consists of a fixed
number of 75 superpixels (vertices). To ensure consistent evaluation, we adopt the standard splitting
of 55K-5K-10K for training, validation, and testing purposes (Rusch et al., 2022).

Baselines. For the homophilic datasets, we use standard GNN baselines: GCN (Kipf & Welling,
2017), SGC (Wu et al., 2019), GAT (Velickovic et al., 2017), MoNet (Monti et al., 2017), Graph-
Sage (Hamilton et al., 2017), CGNN (Xhonneux et al., 2020), GDE (Poli et al., 2019), GRAND (Cham-
berlain et al., 2021), GraphCON (Rusch et al., 2022) and SpikingGCN (Zhu et al., 2022). Due to the
assumption that neighbor feature similarity does not hold in heterophilic datasets, we utilize additional
GNNs as baselines: GPRGNN (Chien et al., 2020), H2GCN (Zhu et al., 2020a), GCNII (Chen et al.,
2020), Geom-GCN (Pei et al., 2020) and PairNorm (Zhao & Akoglu, 2019). For graph classification
task, we apply ChebNet (Defferrard et al., 2016), PNCNN (Finzi et al., 2021), SplineCNN (Fey et al.,
2018), GIN (Xu et al., 2019), and GatedGCN (Bresson & Laurent, 2017) for comparison.

1http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-11/www/wwkb/

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: The test accuracy (in %) for node
classification on homophilic datasets. The
results are calculated by averaging the re-
sults of 20 random initializations across 5
random splits. The mean and standard de-
viation of these results are obtained. Bold
numbers means the best performance, and
underline numbers indicates the second best
performance.

Cora Citeseer Pubmed
Homophily level 0.81 0.74 0.80

GAT-ppr 81.6±0.3 68.5±0.2 76.7±0.3
MoNet 81.3±1.3 71.2±2.0 78.6±2.3
GraphSage 79.2±7.7 71.6±1.9 77.4±2.2
CGNN 81.4±1.6 66.9±1.8 66.6±4.4
GDE 78.7±2.2 71.8±1.1 73.9±3.7
GCN 81.5±1.3 71.9±1.9 77.8±2.9
GAT 81.8±1.3 71.4±1.9 78.7±2.3
SGC 81.5±0.4 71.7±0.4 79.2±0.3
GRAND 83.6±1.0 73.4±0.5 78.8±1.7
GraphCON-GCN 81.9±1.7 72.9±2.1 78.8±2.6
GraphCON-GAT 83.2±1.4 73.2±1.8 79.5±1.8
SpikingGCN 80.7±0.6 72.5±0.2 77.6±0.5

CSGO-1st 83.3±2.1 73.7±2.0 76.9±2.7
CSGO-2nd 83.7±1.3 75.2±2.0 79.6±2.3

Table 2: The test accuracy (in %) for node clas-
sification on heterophilic datasets. All results
represent the average performance of the re-
spective model over 10 fixed train/val/test splits.
Bold numbers means the best performance, and
underline numbers indicates the second best per-
formance.

Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

GPRGNN 78.4±4.4 82.9±4.2 80.3±8.1
H2GCN 84.9±7.2 87.7±5.0 82.7±5.3
GCNII 77.6±3.8 80.4±3.4 77.9±3.8
Geom-GCN 66.8±2.7 64.5±3.7 60.5±3.7
PairNorm 60.3±4.3 48.4±6.1 58.9±3.2
GraphSAGE 82.4±6.1 81.2±5.6 76.0±5.0
MLP 80.8±4.8 85.3±3.3 81.9±6.4
GCN 55.1±5.2 51.8±3.1 60.5±5.3
GAT 52.2±6.6 49.4±4.1 61.9±5.1
GraphCON-GCN 85.4±4.2 87.8±3.3 84.3±4.8
GraphCON-GAT 82.2±4.7 85.7±3.6 83.2±7.0

CSGO-1st 81.6±6.2 84.9±3.2 80.4±1.9
CSGO-2nd 87.3±4.2 88.8±2.5 83.7±2.7

Implementation Details. For the homophilic node classification task, we report the average results
of 20 random initialization across 5 random splits. For the heterophilic node classification task, we
present the average performance of the respective model over 10 fixed train/val/test splits. The results
of baselines are reported in (Rusch et al., 2022). For CSGO-1st, we set the hyperparameter λ to 1. As
for CSGO-2nd, we set the hyperparameters α and β to 1 as default. The time latency N in SNNs are
set to 8. For all the methods, we set the hidden size to 64 and the learning rate to 0.001 as default. All
the experiments are conducted on the same device, equipped with NVIDIA A6000 GPU.

5.2 PERFORMANCE COMPARISION

Table 3: The test accuracy (in %) for graph classi-
fication on MNIST datasets. Bold numbers means
the best performance, and underline numbers indi-
cates the second best performance.

Model Test accuracy

ChebNet (Defferrard et al., 2016) 75.62
MoNet (Monti et al., 2017) 91.11
PNCNN (Finzi et al., 2021) 98.76
SplineCNN (Fey et al., 2018) 95.22
GIN (Xu et al., 2019) 97.23
GatedGCN (Bresson & Laurent, 2017) 97.95
GCN (Kipf & Welling, 2017) 88.89
GAT (Velickovic et al., 2017) 96.19
GraphCON-GCN (Rusch et al., 2022) 98.68
GraphCON-GAT (Rusch et al., 2022) 98.91

CSGO-1st 98.82
CSGO-2nd 98.92

Homophilic Node Classification. Table 1
shows the results of the proposed CSGO with
the comparison of baselines. From the results,
we find that: (1) Compared with the discrete
methods (i.e., the baselines excluding Graph-
CON), the continuous methods (GraphCON and
CSGO) achieve the best and second best perfor-
mance, indicating that the continuous methods
would help to capture the dynamic changes and
subtle dynamics from graphs. (2) CSGO-1st
and CSGO-2nd outperforms other baselines in
most cases. We attribute that, even if SNNs
loses some detailed information, CSGO can still
achieve good performance on the relatively sim-
ple homophilic dataset. Furthermore, the ap-
plication of SNNs contributes to improved effi-
ciency in the CSGO framework. (3) CSGO-2nd
consistently outperforms the CSGO-1st. This
highlights the significance of introducing high-order structures to preserve information and mitigates
the information loss issue caused by first-order SNNs. Although high-order structures suffer higher
energy costs compared to first-order, the performance gains make it worthwhile to deploy them. (4)
CSGO-1st and CSGO-2nd outperforms the spiking-based method (i.e., Spiking) in most case. This
can be attributed to the incorporation of Graph ODE, which efficiently captures the dynamic evolution
while maintaining low energy consumption.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Heterophilic Node Classification. Table 2 shows the results of heterophilic node classification,
and we observe that: (1) The traditional message-passing-based methods (GCN, GAT, GraphSAGE
and Geom-GCN) perform worse than the well-designed methods (GPRGNN, H2GCN, GCNII,
GraphCON and CSGO) for heterophilic datasets. This disparity comes from the inaccurate assumption
of neighbor feature similarity, which doesn’t hold in heterophilic datasets. The propagation of
heterophilic information between nodes would degrade the model’s representation ability, leading
to a decline in performance. (2) The CSGO-1st performs less effectively than GraphCON. This is
because node prediction tasks on heterophilic datasets are more influenced by the characteristics
of heterophilic features compared to homophilic datasets. Consequently, the information loss issue
caused by first-order SNNs results in worse model performance. (3) The CSGO-2nd consistently
outperforms CSGO-1st, providing further evidence of the effectiveness of high-order structures in
preserving information and mitigating the issue of information loss.

Graph Classification. We present the graph classification results of our proposed CSGO alongside
comparison baselines in Table 3. From the results, we have the following observations: (1) In
the graph classification tasks, dynamic graph methods (i.e., CSGO and GraphCON) consistently
outperform the baseline methods across all cases. This underscores the importance of employing a
continuous processing approach when dealing with graph data, enabling the extraction of continuous
changes and subtle dynamics from graphs. (2) The CSGO-1st performs worse than the CSGO-2nd,
highlighting the significance of incorporating high-order structures to obtain additional information
for prediction, without incurring significant overhead. (3) The CSGO-1st performs worse than
GraphCON-GAT and better than GraphCON-GCN. Compared to GraphCON-GCN, the information
loss caused by SNNs does not critically affect graph representation ability. On the contrary, the
binarization operation of SNNs contributes to reduced energy consumption. Graph-GAT outperforms
CSGO-1st, mainly because the GAT method enhances graph representation. However, Graph-GAT
still lags behind CSGO-2nd, indicating that the introduction of high-order structures mitigates the
information loss issue associated with first-order methods.

5.3 ENERGY EFFICIENCY ANALYSIS

Figure 3: Energy consumption comparison with various
baselines on different datasets.

To assess the energy efficiency of CSGO,
we use the metric from (Zhu et al., 2022),
which quantifies the energy consumption
for node prediction. Specifically, we fol-
low the spike method (Cao et al., 2015),
counting the total spikes during inference
across three datasets to estimate the energy
consumption of SNNs. In Figure 3, we
compare the energy consumption of tradi-
tional GNNs, including standard methods
like GCN and GAT, Graph ODE methods
such as GraphCon-GCN and GraphCon-
GAT, the spike-based method SpikeGCN,
and the proposed CSGO-1st and CSGO-
2nd. Traditional GNNs are evaluated on
GPUs (NVIDIA A6000), while, follow-
ing (Zhu et al., 2022), the spike-based models are evaluated on neuromorphic chips (ROLLS (Indiveri
et al., 2015)). From the results, we find that (1) The spike-based methods, i.e., SpikeGCN, CSGO-1st
and CSGO-2nd, exhibit significantly lower energy consumption compared to traditional GNNs,
demonstrating the superior energy efficiency of SNNs. (2) The CSGO-1st has a lower energy con-
sumption than SpikeGCN, while CSGO-2nd consumes slightly more than SpikeGCN. Given the
better performance of CSGO-2nd, it is worthwhile to deploy CSGO-2nd. Besides, we analyze the
ablation study and hyperparameters of CSGO. The details are presented in Appendix E and F.

6 CONCLUSION

In this paper, we address the practical problem of continuous spiking graph learning and propose an
effective method named CSGO. CSGO integrates SNNs and Graph ODE into a unified framework

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

from two distinct dimensions, thus retaining the benefits of low-power consumption and fine-grained
feature extraction. Considering that the high-order structure would help to relieve the problem of
information loss, we derive the second-order spike representation and investigate the backpropagation
of second-order SNNs, by incorporating with high-order Graph ODE, we introduce the second-order
CSGO. Furthermore, to ensure the stability of CSGO, we prove that CSGO mitigates the gradient
exploding and vanishing problem. Extensive experiments on diverse datasets validate the efficacy
of proposed CSGO compared with various competing methods. In future work, we will explore the
higher-order structure for more efficient continuous graph learning.

REFERENCES

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Proceedings of the Conference on Neural
Information Processing Systems, 2016.

Felix Christian Bauer, Dylan Richard Muir, and Giacomo Indiveri. Real-time ultra-low power ecg
anomaly detection using an event-driven neuromorphic processor. IEEE transactions on biomedical
circuits and systems, 13(6):1575–1582, 2019.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Yongqiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. Int. J. Comput. Vis., 113:54–66, 2015.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In Proceedings of the International Conference
on Machine Learning, pp. 1407–1418, 2021.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the International Conference on Machine Learning, pp.
1725–1735, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Proceedings of the Conference on Neural Information Processing
Systems, 2018.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In Proceedings of the International Conference on Learning Representations,
2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Proceedings of the Conference on Neural
Information Processing Systems, 2016.

Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE, 2023.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 869–877, 2018.

Marc Anton Finzi, Roberto Bondesan, and Max Welling. Probabilistic numeric convolutional neural
networks. In Proceedings of the International Conference on Learning Representations, 2021.

Wulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Fuqiang Gu, Weicong Sng, Tasbolat Taunyazov, and Harold Soh. Tactilesgnet: A spiking graph neural
network for event-based tactile object recognition. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 9876–9882. IEEE, 2020.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-
loss: information maximization loss for spiking neural networks. In Proceedings of the Conference
on Neural Information Processing Systems, 2022.

Jayesh Gupta, Sai Vemprala, and Ashish Kapoor. Learning modular simulations for homogeneous
systems. In Proceedings of the Conference on Neural Information Processing Systems, pp. 14852–
14864, 2022.

Ernst Hairer, Syvert Norsett, and Gerhard Wanner. Solving Ordinary Differential Equations I: Nonstiff
Problems, volume 8. 01 1993. ISBN 978-3-540-56670-0. doi: 10.1007/978-3-540-78862-1.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proceedings of the Conference on Neural Information Processing Systems, 2017.

Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from irregularly-
sampled partial observations. In Proceedings of the Conference on Neural Information Processing
Systems, volume 33, pp. 16177–16187, 2020.

Zijie Huang, Yizhou Sun, and Wei Wang. Coupled graph ode for learning interacting system dynamics.
In Proceedings of the International ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 705–715, 2021.

Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep
neural networks. In IEEE International Electron Devices Meeting (IEDM), pp. 4–2, 2015.

Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Zhengyang Mao, Hourun Li, Yiyang Gu, Yifang Qin,
Nan Yin, Senzhang Wang, et al. A survey of graph neural networks in real world: Imbalance,
noise, privacy and ood challenges. arXiv preprint arXiv:2403.04468, 2024.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In Proceedings of the International Conference on Machine
Learning, pp. 2688–2697, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8588–8596, 2023.

Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng Cui, Hujun Bao, and Guofeng Zhang.
Graph-based asynchronous event processing for rapid object recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 934–943, 2021.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In Proceedings of the
International Conference on Machine Learning, pp. 23124–23139, 2023.

Changze Lv, Jianhan Xu, and Xiaoqing Zheng. Spiking convolutional neural networks for text
classification. In Proceedings of the International Conference on Learning Representations, 2023.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127–163, 2000.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12444–12453, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5115–5124, 2017.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In International Workshop on Mining and Learning with Graphs,
volume 8, pp. 1, 2012.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
Graph-coupled oscillator networks. In Proceedings of the International Conference on Machine
Learning, pp. 18888–18909, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. In Proceedings of the International Conference on Learning
Representations, 2017.

Beibei Wang and Bo Jiang. Spiking gats: Learning graph attentions via spiking neural network. arXiv
preprint arXiv:2209.13539, 2022.

Siqi Wang, Tee Hiang Cheng, and Meng-Hiot Lim. Ltmd: Learning improvement of spiking neural
networks with learnable thresholding neurons and moderate dropout. In Proceedings of the
Conference on Neural Information Processing Systems, 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In Proceedings of the International Conference on Machine
Learning, pp. 6861–6871, 2019.

Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In Proceedings
of the International Conference on Machine Learning, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations, 2019.

Mingkun Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guoqi Li, and Jing Pei. Exploiting spiking dynamics
with spatial-temporal feature normalization in graph learning. In Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 3207–3213, 2021.

Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Near lossless transfer learning for spiking neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10577–10584,
2021.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 10201–10210, 2021.

Nan Yin, Fuli Feng, Zhigang Luo, Xiang Zhang, Wenjie Wang, Xiao Luo, Chong Chen, and Xian-
Sheng Hua. Dynamic hypergraph convolutional network. In Proceedings of the IEEE Conference
on Data Engineering, pp. 1621–1634, 2022.

Nan Yin, Li Shen, Huan Xiong, Bin Gu, Chong Chen, Xian-Sheng Hua, Siwei Liu, and Xiao Luo.
Messages are never propagated alone: Collaborative hypergraph neural network for time-series
forecasting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023a.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Bin Gu, and Huan Xiong. Dynamic
spiking graph neural networks. arXiv preprint arXiv:2401.05373, 2023b.

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Huan Xiong, and Bin Gu. Dynamic
spiking graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 16495–16503, 2024.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514–1541, 2018.

Yanfu Zhang, Shangqian Gao, Jian Pei, and Heng Huang. Improving social network embedding via
new second-order continuous graph neural networks. In Proceedings of the International ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2515–2523, 2022.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Gener-
alizing graph neural networks beyond homophily. In Proceedings of the Conference on Neural
Information Processing Systems, 2020a.

Xiaojian Zhu, Qiwen Wang, and Wei D Lu. Memristor networks for real-time neural activity analysis.
Nature communications, 11(1):2439, 2020b.

Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph convolu-
tional networks. In Proceedings of the International Joint Conference on Artificial Intelligence, pp.
2434–2440, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION 1

Proposition 1 Define the first-order SNNs as duτ
n

dτ = g(uτ
n, τ), and first-order Graph ODE as

duτ
n

dn = f(uτ
n, n), then the first-order CSGO can be formulated as:

uT
N =2

∫ N−1

0

f

(∫ T

0

g(ux
y , x)dx

)
dy +

∫ N

N−1

f

(∫ T

0

g(ux
y , x)dx

)
dy (15)

=2

∫ T

0

g

(∫ N−1

0

f(ux
y , x)dy

)
dx+

∫ N

N−1

f

(∫ T

0

g(ux
y , x)dx

)
dy. (16)

where T is the total latency of SNNs, and N is the steps of Graph ODE, ux
y denotes the neuron

membrane on latency x ∈ [0, T] and ODE step y ∈ [0, N].

Proof.

duτ
n

dτ
= g(uτ

n, τ),
duτ

n

dn
= f(uτ

n, n),

uτ
n is a function related to variable n and τ , thus,

uτ+1
n = uτ

n +

∫ τ+1

τ

g(ux
n, x)dx, uτ+1

n+1 = uτ+1
n +

∫ n+1

n

f(uτ+1
y , y)dy, (17)

uT
N =uT−1

N−1 +

∫ N

N−1

f(uT
y , y)dy +

∫ T

T−1

g(ux
N−1, x)dx

=uT−2
N−2 +

∫ N

N−2

f
(
uT
y , y

)
dy +

∫ T

T−2

g(ux
N−1, x)dx

=u0
0 +

∫ N

0

f
(
uT
y , y

)
dy +

∫ T

0

g(ux
N−1, x)dx

=u0
0 +

∫ N

0

f

(
uT−1
y +

∫ T

T−1

g(ux
y , x)dx

)
dy +

∫ T

0

g

(
ux
N−2 +

∫ N−1

N−2

f(ux
y , y)dy

)
dx

=u0
0 +

∫ N

0

f

(
u0
y +

∫ T

0

g(ux
y , x)dx

)
dy +

∫ T

0

g

(
ux
0 +

∫ N−1

0

f(ux
y , y)dy

)
dx.

(18)
By adding the initial state on each time step and latency with u0

t = 0 and uτ
0 = 0, we have:

uT
N =

∫ N

0

f

(∫ T

0

g(ux
y , x)dx

)
dy +

∫ T

0

g

(∫ N−1

0

f(ux
y , y)dy

)
dx

=

∫ N−1

0

f

(∫ T

0

g(ux
y , x)dx

)
dy +

∫ T

0

g

(∫ N−1

0

f(ux
y , y)dy

)
dx︸ ︷︷ ︸

first term

+

∫ N

N−1

f

(∫ T

0

g(ux
y , x)dx

)
dy︸ ︷︷ ︸

second term

=2

∫ N−1

0

f

(∫ T

0

g(ux
y , x)dx

)
dy +

∫ N

N−1

f

(∫ T

0

g(ux
y , x)dx

)
dy.

(19)
The first term denotes that the SNNs and Graph ODE are interactively updated during the time step
0 to T − 1, and the second term denotes that at the last step T , CSGO simply calculates the Graph
ODE process while ignoring the SNNs for prediction.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B PROOF OF PROPOSITION 2

Proposition 2 Define â0(T) =
∑T−1

n=0 βT−n−2
i s0(n)∑T−1

n=0 (β
T−n
i −αT−n

i)∆τ
and âi(T) =

V i
th

∑T−1
n=0 βT−n−2

i si(n)∑T−1
n=0 (β

T−n
i −αT−n

i)∆τ
, i ∈

[1, L], where αi = exp(−∆τ/τ isyn) and βi = exp(−∆τ/τ imem). The differentiable mappings is:

zi = clamp

(
τ isynτ

i
mem

τ imem − τ isyn
Wizi−1, 0,

V i
th

∆τ

)
, i = 1, · · · , L.

If lim
T→∞

âi(T) = zi for i = 0, 1, · · · , L− 1, then âi+1(T) ≈ zi+1 when T → ∞.

Proof. From Eq. 9, we have:

u(τ + 1) = β2u(τ − k + 1) + α

k−1∑
i=0

βiIsyn(τ − i) +

k−1∑
i=0

βi(Iinput(τ − i)− Vths(τ − i)), (20)

u(T) = α

T−1∑
n=0

βnIsyn(T − n− 1) +

T−1∑
n=0

βn(Iinput(T − n− 1)− Vths(T − n− 1)). (21)

Due to:

Isyn(τ + 1) = αkIsyn(τ − k + 1) +

k∑
i=0

αiIinput(τ − i), (22)

we have,

u(T) =α

T−1∑
n=0

βT−n−1Isyn(n) +

T−1∑
n=0

βT−n−1 (Iinput(n)− Vths(n))

=α

βT−1α−1
(
1− (αβ)

T
)

1− α
β

 Iin(0) +

βT−2α−1
(
1− (αβ)

T−1
)

1− α
β

 Iin(1) + · · ·

+

βT−iα−1
(
1− (αβ)

T−i+1
)

1− α
β

 Iin(i− 1) + · · ·+ (β2α−1 + β + α)Iin(T − 3)

+(βα−1 + 1)Iin(T − 2) + α−1Iin(T − 1)
)
−

T−1∑
n=0

βT−n−1Vths(n)

=
1

β − α

((
βT

(
1−

(
α

β

)T
)
Iin(0)

)
+ · · ·+

(
βT−i+1

(
1−

(
α

β

)T−i+1
)
Iin(i− 1)

)

+ · · ·+ (β − α)Iin(T − 1))−
T−1∑
n=0

βT−n−1Vths(n)

=
1

β − α

T−1∑
n=0

(βT−n − αT−n)Iin(n)−
T−1∑
n=0

βT−n−1Vths(n).

Define Î(T) = 1
(β−α)2

∑T−1
n=0 (β

T−n−αT−n)Iin(n)∑T−1
n=0 (β

T−n−αT−n)
, and â(T) = 1

β2

Vth

∑T−1
n=0 βT−ns(n)∑T−1

n=0 (β
T−n−αT−n)

, we have:

â(T) =
β − α

β

Î(T)

∆τ
− u(T)

∆τβ
∑T−1

n=0 (β
T−n − αT−n)

≈ τsynτmem

τmem − τsyn
Î(T)− u(T)

∆τβ
∑T−1

n=0 (β
T−n − αT−n)

,

where α = exp(−∆τ/τsyn), β = exp(−∆τ/τmem).

Following Meng et al. (2022), and take â(T) ∈ [0, Vth

∆τ] into consideration and as-
sume Vth is small, we ignore the term u(T)

∆τβ
∑T−1

n=0 (β
T−n−αT−n)

, and approximate â(T) with

clamp
(

τsynτmem

τmem−τsyn
Î(T), 0, Vth

∆τ

)
. Take the average input Î(T) = Wz, we have zi =

clamp
(

τ i
synτ

i
mem

τ i
mem−τ i

syn
Wizi−1, 0,

V i
th

∆τ

)
. If lim

T→∞
âi(T) = zi, then âi+1(T) ≈ zi+1 when T → ∞.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

C PROOF OF PROPOSITION 3

Proposition 3 Define the second-order SNNs as d2uτ
t

dτ2 + δ
duτ

t

dτ = g(uτ
t , τ), and second-order Graph

ODE as d2uτ
t

dt2 + γ
duτ

t

dt = f(uτ
t , t), then the second-order CSGO follows:

uτ
t =

∫ N

0

h

(∫ T

0

e(uτ
t)dτ

)
dt =

∫ T

0

e

(∫ N

0

h(uτ
t)dt

)
dτ,

s.t.
∂2uτ

t

∂τ2
+ δ

∂uτ
t

∂τ
= g(uτ

t),
∂2uτ

t

∂t2
+ γ

∂uτ
t

∂t
= f(uτ

t),

where e(uτ
t) =

∫ T

0
g(uτ

t)dτ − δ(uT
t − u0

t), h(u
τ
t) =

∫ N

0
f(uτ

t)dt − γ(uτ
N − uτ

0),
∂e(uτ

t)
∂τ = g(uτ

t)

and ∂h(uτ
t)

∂t = f(uτ
t). δ and γ are the hyperparameters of second-order SNNs and Graph ODE.

Proof. Obviously,
∂2uτ

t

∂τ2
+ δ

∂uτ
t

∂τ
= g(uτ

t),
∂2uτ

t

∂t2
+ γ

∂uτ
t

∂t
= f(uτ

t),

so,
∂uτ

t

∂τ
+ δ(uT

t − u0
t) =

∫ T

0

g(uτ
t)dτ,

∂uτ
t

∂t
+ γ(uτ

N − uτ
0) =

∫ N

0

f(uτ
t)dt.

Define e(uτ
t) =

∫ T

0
g(uτ

t)dτ − δ(uT
t − u0

t), and h(uτ
t) =

∫ N

0
f(uτ

t)dt− γ(uτ
N − uτ

0), we have:

∂uτ
t

∂τ
= e(uτ

t),
∂uτ

t

∂t
= h(uτ

t),

thus,

uτ
t =

∫ N

0

h

(∫ T

0

e(uτ
t)dτ

)
dt =

∫ T

0

e

(∫ N

0

h(uτ
t)dt

)
dτ,

where ∂e(uτ
t)

∂τ = g(uτ
t) and ∂h(uτ

t)
∂t = f(uτ

t).

D PROOF OF PROPOSITION 4

Proposition 4 Let Xn and Yn be the node features, generated by Eq. 3, and ∆t ≪ 1. The gradients
of the second-order Graph ODE Wl and second-order SNNs Wk are bounded as follows:∣∣∣∣ ∂L

∂Wl

∣∣∣∣ ≤ β
′
D̂∆t(1 + ΓN∆t)

v

(
max
1≤i≤v

(|X0
i |+ |Y0

i |)
)

+
β

′
D̂∆t(1 + ΓN∆t)

v

(
max
1≤i≤v

|X̄i|+ β
√
N∆t

)2

,∣∣∣∣ ∂L
∂Wk

∣∣∣∣ ≤ (1 +NΓ∆t)(1 + LΘ∆τ)Vth

vβ2∆τ

(
max
1≤i≤v

|XN
i |+ max

1≤i≤v
|X̄i|

)
.

where β = max
x

|σ(x)|, β′
= max

x
|σ′

(x)|, D̂ = max
i,j∈V

1√
didj

, and Γ := 6 + 4β
′
D̂ max

1≤n≤T
||Wn||1,

Θ := 6 + 4β
′
D̂ max

1≤n≤N
||Wn||1. di is the degree of node i, X̄i is the label of node i.

Proof. Eq. 13 can be obtained from Rusch et al. (2022) directly. Then,

∂L
∂W k

=
∂L
∂ZT

L

∂ZT
L

∂ZT
l

∂ZT
l

∂W k
=

∂L
∂ZT

L

L∏
n=l+1

∂ZT
n

∂ZT
n−1

∂ZT
l

∂W k

=
∂L
∂ZT

L

L∏
n=l+1

∂ZT
n

∂ZT
n−1

∂ZT
l

∂Zk
l

∂Zk
l

∂W k

=
∂L
∂ZT

L

L∏
n=l+1

∂ZT
n

∂ZT
n−1

T∏
i=k+1

∂Zi
l

∂Zi−1
l

∂Zk
l

∂W k
,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

From Rusch et al. (2022), we have:∥∥∥∥ ∂L
∂ZT

L

∥∥∥∥
∞

≤ 1

v

(
max
1≤i≤v

|XT
i |+ max

1≤i≤v
|X̄i|

)
,

∥∥∥∥∂ZT
L

∂ZT
t

∥∥∥∥
∞

≤ 1 + LΓ∆t. (23)

Due to the second-order SNN has a similar formulation to second-order GNN, we have a similar
conclusion, ∥∥∥∥∂ZT

l

∂Zk
l

∥∥∥∥
∞

≤ 1 + TΘ∆τ, (24)

with β = max
x

|σ(x)|, β′
= max

x
|σ′

(x)|, D̂ = max
i,j∈V

1√
didj

, and Θ := 6 + 4β
′
D̂ max

1≤n≤N
||W n||1,

then:
∂Zk

l

∂W k
≈ r(Zk−1

l) ≤ Vth

β2∆τ
, (25)

where r(·) the spike representation operator defined in Eq. 12.

Multipling 23, 24 and 25, we have the upper bound:

∂L
∂W k

≤ (1 + LΓ∆t)(1 + TΘ∆τ)Vth

vβ2∆τ

(
max
1≤i≤v

|XN
i |+ max

1≤i≤v
|X̄i|

)
. (26)

E ABLATION STUDY

Table 4: Ablation results. Bold numbers mean the best performance.

Cora Citeseer Pubmed Texax Wisconsin Cornell Avg.Homophily level 0.81 0.74 0.80 0.11 0.21 0.3

CSGO-1st-2nd 83.2±1.4 74.1±1.4 76.3±2.2 81.7±3.9 85.1±2.8 81.0±1.9 80.2
CSGO-2nd-1st 83.5±1.8 73.4±2.1 77.2±2.3 83.1±3.8 84.4±2.2 81.2±2.7 80.5

CSGO-1st 83.3±2.1 73.7±2.0 76.9±2.7 81.6±6.2 84.9±3.2 80.4±1.9 80.1
CSGO-2nd 83.7±1.3 75.2±2.0 79.6±2.3 87.3±4.2 88.8±2.5 83.7±2.7 83.1

We conducted ablation studies to assess the contributions of different components using two variants,
and the results are presented in Table 4. Specifically, we introduced two model variants: (1) CSGO-
1st-2nd, which utilizes the first-order SNNs and second-order Graph ODE, and (2) CSGO-2nd-1st,
incorporating the second-order SNNs and first-order Graph ODE. Table 4 shows that (1) CSGO-2nd
consistently outperforms other variations, while CSGO-1st-2nd yields the worst performance. This
is because the issue of information loss is crucial for graph representation, and the incorporation of
high-order SNNs assists in preserving more information, consequently achieving superior results.
(2) In most cases, CSGO-2nd-1st outperforms both CSGO-1st and CSGO-1st-2nd, suggesting that,
compared to the capability of Graph ODE in capturing dynamic node relationships, the ability to
mitigate the issue of information loss is more important.

F SENSITIVITY ANALYSIS

In this part, we examine the sensitivity of the proposed CSGO to its hyperparameters, specifically
the time latency parameter (T) in SNNs, which plays a crucial role in the model’s performance. T
controls the number of SNNs propagation steps and is directly related to the training complexity.
Figure 4 shows the results of T across different datasets. We initially vary the parameter T within
the range of {5, 6, 7, 8, 9, 10, 11} while keeping other parameters fixed. From the results, we find
that, the performance exhibits a increasing trend initially, followed by stabilization as the value of T
increases. Typically, in SNNs, spiking signals are integrated with historical information at each time
latency. Smaller values of T result in less information available for graph representation, degrading
the performance. However, large values of N increase model complexity during training. Striking a
balance between model performance and complexity, we set T to 8 as default.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 4: Sensitivity analysis on time latency T in SNNs across various datasets. The solid line
denotes the results of CSGO-1st, and the dotted line denotes the CSGO-2nd.

G IMPACT STATEMENTS

This work introduces an innovative approach for continuous spiking graph neural network, with the
objective of advancing the machine learning field, particularly in the domain of graph neural networks.
The proposed method has the potential to substantially enhance the efficiency and scalability of graph
learning tasks. The societal implications of this research are multifaceted. The introduced method
has the capacity to contribute to the development of more efficient and effective machine learning
systems, with potential applications across various domains, including healthcare, education, and
technology. Such advancements could lead to improved services and products, ultimately benefiting
society as a whole.

18

	Introduction
	Related Work
	Preliminaries
	Dynamic Graph Neural Networks
	Spiking Neural Networks

	Methodology
	First-order CSGO
	Second-order Spiking Neural Networks
	Second-order SNNs Forward Propagation
	Second-order Spike Representation
	Differentiation on Second-order Spike Representation

	Second-order CSGO

	Experiments
	Experimental Settings
	Performance Comparision
	Energy Efficiency Analysis

	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Ablation Study
	Sensitivity Analysis
	Impact Statements

