Under review as a conference paper at ICLR 2025

CONTINUOUS SPIKING GRAPH ODE NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spiking Graph Networks (SGNs), as bio-inspired neural models that address en-
ergy consumption challenges for graph classification, have attracted considerable
attention from researchers and the industry. However, SGNs are typically applied in
static scenarios with real-valued inputs and cannot be directly utilized for dynamic
prediction because of their limited capacity to handle dynamic real-valued features,
denoted as architectural inapplicability. Moreover, they suffer from accuracy loss
due to the inherently discrete nature of spike-based representations. Inspired by
recent graph ordinary differential equation (ODE) methods, we propose the frame-
work named Continuous Spiking Graph ODE Networks (CSGO), which leverages
the advantages of graph ODE to address the architectural inapplicability, and em-
ploys high-order structures to solve the problem of information loss. Specifically,
CSGO replaces the high energy-consuming static SGNs with an efficient Graph
ODE process by incorporating SGNs with graph ODE into a unified framework,
thereby achieving energy efficiency. Then, we derive a high-order spike representa-
tion capable of preserving more information. By integrating this with a high-order
graph ODE, we propose the second-order CSGO to address the information loss
challenge. Furthermore, we prove that the second-order CSGO maintains stability
during the dynamic graph learning. Extensive experiments validate the superiority
of the proposed CSGO in performance while maintaining low power consumption.

1 INTRODUCTION

Spiking Graph Networks (SGNs) (Zhu et al.
2022; [Xu et al., [2021) are a type of artificial neu-
ral network specifically designed to process graph
information in a manner similar to the human
brain. SGNs typically transform static and real-
valued graph features into discrete spikes, and
then emulate the neuron’s charging and discharg-
ing processes to achieve spikes representation for
graph classification. The distinctive features of
SGNis is their ability to capture semantic spik-
ing representations while maintaining low energy
consumption, making them well-suited for event-
based processing tasks (Yao et al., [2021), such
as object recognition (Gu et al.| [2020; |Li et al.,
2021)), real-time data analysis (Zhu et al., 2020b;
Bauer et al.| 2019)), and graph classification (Li
et al.l [2023;|Zhu et al.| [2022; | Xu et al., [2021)).

'\ { Static Prediction for Real Value
i

{ Static Prediction for Real Value ‘.
i i

1 ['
' .

| TTM : 1 TTM» H Architectural
H : = : o Inapplicability
' g0 g

' - =

1 g8] 2 L

| 4 Propagate (. 4 Propagate | = . Significant

1

! o bl | Wap Encey

! Node Binary Featurcs ! Node Binary Features ! Consumption
'

1

i

i |
Information

! sample ¢ !

i

Loss
' ' S f
' '
' '
' '
' '
' '

' '
Information ,
sample ¢ Loss 1

0 n

N Dynamic step

Figure 1: Illustration of information loss and ar-
chitecture inapplicability. Information loss arises
from the sampling of real-value inputs, while the
architecture inapplicability refers to the unsuit-
ability of dynamic real-valued SGN methods.

SGNs are commonly applied in scenarios that handle static real-valued or continuous binary in-
puts (Guo et al.,|2022; Wang et al., 2022; |Lv et al.,|2023)). For real-valued features, SGNs initially
sample binary features on each node using a Bernoulli Distribution (Zenke & Gangulil 2018), where
the probability corresponds to the feature’s real values. These features are then propagated by simu-
lating the neuron’s charging and discharging processes. However, limited research has explored the
application of SGNs to dynamic real-valued inputs. Typically, simply sampling binary features and
calculating the spiking representation at each dynamic step results in significant energy consumption,
rendering it unsuitable for low-power devices. Additionally, the inherent characteristic of SGNs that

Under review as a conference paper at ICLR 2025

transforms continuous features into binary representations leads to information loss and performance
degradation (Yan et al.|2021). As shown in Figure[l] the architectural inapplicability and information
loss problems limit the application of SGNs for dynamic graph prediction in real-world scenarios.

Inspired by recent developments in graph ordinary differential equations (Graph ODEs) (Battaglia
et al., [2016; [Kipf et al.L [2018)), which typically use GNNs to obtain node representations through
ordinary differential equations, and recognizing that higher-order neural networks can preserve more
information (Luo et al.l 2023)), we propose utilizing high-order SGNs and Graph ODEs to address
these challenges. However, incorporating Graph ODE with SGNs for dynamic prediction tasks is
difficult due to the following challenges: (1) How fo efficiently incorporate the SGNs and Graph
ODE into a unified framework? SGNs and Graph ODEs process information along two distinct
dimensions: the latency dimension in SGNs and the dynamic evolution in graph-based models. A
key challenge is how to merge these dual processes into a cohesive framework that maintains the
energy-efficient properties of SGNs while leveraging the dynamic learning capabilities of Graph
ODEs. (2) How to alleviate the problem of information loss of SGNs? SGNs achieve low power
consumption by discretizing continuous features, but this binarization often leads to a significant
loss of fine-grained information, reducing performance. Addressing the information loss in SGNs is
therefore another critical challenge. (3) How to guarantee the stability of the proposed framework?
Traditional graph-based techniques encounter the challenge of exploding and vanishing gradient
problems when modeling the dynamic evolution of GNNs. Therefore, devising a stable model for
graph learning with theoretical guarantee constitutes the third prominent challenge.

To tackle these challenges, we propose a framework named Continuous Spiking Graph ODE Net-
works (CSGO) for dynamic graph learning tasks. Specifically, to address the first challenge, we
approach it by considering SGNs as a type of ODE and integrating it with Graph ODE into a frame-
work, denoted as CSGO-1st. The CSGO-1st structure models the initial representation using SGNs
by considering the inner time latency at each dynamic step and evaluates the dynamics evolution
with Graph ODE iteratively. Furthermore, to address the information loss problem caused by SGNs,
we derive a high-order spike representation with second-order SGNs structure and incorporate with
high-order Graph ODE, which referred to as CSGO-2nd. Moreover, we provide the theoretical
guarantee that CSGO successfully mitigates issues related to exploding and vanishing gradients. We
perform comprehensive evaluations of CSGO against state-of-the-art methods on various graph-based
datasets, showcasing the efficacy and versatility of the proposed approach.

In summary, the contributions can be summarized as follows: (1) Problem Setup. We present a
novel problem in SGNs, emphasizing the challenge of achieving high performance while maintaining
low power consumption for dynamic graph classification tasks. (2) Novel Architecture. We propose
the CSGO, which efficiently incorporates SGNs and Graph ODE into a unified framework, retaining
the energy-efficient properties of SGNs while preserving the ability to capture dynamic changes
in Graph ODE. Furthermore, we first derive the second-order spike representation and study the
backpropagation of second-order SGNs to mitigate the information loss problem. (3) Theoretical
Analysis. We provide a theoretical proof demonstrating that CSGO effectively mitigates the issue
of exploding and vanishing gradients, ensuring the stability of our proposed method. (4) Extensive
Experiments. We evaluate the proposed CSGO on extensive graph-based learning datasets, which
evaluate that our proposed CSGO outperforms the variety of state-of-the-art methods.

2 RELATED WORK

Graph Ordinary Differential Equations. Recently, numerous methods based on dynamic GNNs
have emerged for modeling dynamic interaction systems (Battaglia et al.,|2016; Kipf et al.,[2018; |Chen
et al.l[2018;Ju et al.,|2024). These methods commonly employ GNNs to initialize node representations
at discrete timestamps, which are then utilized for predicting node behaviors. Nevertheless, these
discrete methodologies often necessitate the presence of all nodes at each timestamp (Huang et al.|
2020; 2021} |Yin et al., [2023a}; 2022), which is challenging to achieve in real-world scenarios. In
contrast, ODE has proven to be effective in modeling system dynamics when dealing with missing
data (Chen et al., 2018)). Recent works (Poli et al.l 2019;|Gupta et al., 2022) involve initializing state
representations with GNNs, followed by the establishment of a neural ODE model for both nodes
and edges, guiding the evolution of the dynamical system. Additionally, high-order correlations (Luo
et al.,|2023; |Zhang et al.|[2022) have been shown to efficiently model the dynamic evolution of graphs.

Under review as a conference paper at ICLR 2025

We integrate energy-efficient SNNs into Graph ODE, thereby retaining the low energy characteristics
of SNNs while harnessing the dynamic learning capabilities of Graph ODE.

Spiking Graph Networks. SGNs (Zhu et al.,[2022; Xu et al.| 2021)) have emerged as a promising
solution for addressing energy consumption challenges on graph classification tasks. Recently,
various SGNs (Xu et al.,[2021; |Wang & Jiang, 2022; Zhu et al., 2022)) have demonstrated low energy
consumption and high bio-fidelity. These models employ similarly reactive spiking neurons (Gerstner
& Kistler, [2002)) to process propagated graph data, achieving both low energy consumption and
maintained bio-fidelity. However, these methods are generally applied in the scenarios of static
real-valued or continuous binary inputs (Guo et al.,[2022; Wang et al 2022} |Lv et al.,[2023). There
is still limited research focusing on dynamic spiking graphs with real-valued inputs. Although some
works have attempted to apply static SNNs to dynamic graphs (Li et al.} 2023; Yin et al.,|2024) by
calculating the static spiking representation at each dynamic step and then predicting the evolution
with a new spiking layer, these methods generally demand substantial energy consumption, rendering
them impractical for low-power devices. Our approach ingeniously combines SGNs with Graph ODE
to effectively capture the dynamic changes while maintaining low power consumption.

3 PRELIMINARIES

3.1 DyYNAMIC GRAPH NEURAL NETWORKS

Problem Formulation: Given a graph G = (V, £) with the node set V and the edge set £. X €
RIVI*? i5 the node feature matrix, d is the feature dimension. The binary adjacency matrix denoted
as A € RVI*IVI where a;; = 1 denotes there exists a connection between node 7 and j, and vice
versa. Our goal is to learn a node representation H for downstairs tasks.

First-order Graph ODE: The first graph ODE method is proposed by (Xhonneux et al., [2020).
Considering the Simple GNN (Wu et al.||2019) with H,,,; = AH,, + Hy, the solution is given by:

dH(t)
dt
where E = £(X) is the output of the encoder ¢ and the initial value H(0) = (InA)~}(A — I)E.

=InAH(t) +E, H(t)=(A-1)" (A D _D)E + ADE, D

Second-order Graph ODE: To model high-order correlations in dynamic evolution, (Rusch et al.|
2022) first propose the second-order graph ODE, which is represented as:

X" =o(Fy(X,t) — 71X — X, 2)

where (Fy(X, 1)), = Fo (X;(t), X;(t),1) is a learnable coupling function with parameters ¢. Due
to the unavailability of an analytical solution for Eq. 2} GraphCON (Rusch et al.| [2022) addresses it
through an iterative numerical solver employing a suitable time discretization method. GraphCON
utilizes the IMEX (implicit-explicit) time-stepping scheme, an extension of the symplectic Euler
method (Hairer et al.l [1993)) that accommodates systems with an additional damping term.

YY" = Yn—l + At [O’(F@(Xn_l,tn_l)) _ ,an—l _ aYn—l] , (3)
X" =X""'4+ AtY", n=1,---,N,
where At > 0 is a fixed time-step and Y", X" denote the hidden node features at time ¢t = nAt.

3.2 SPIKING NEURAL NETWORKS

First-order SNNs: In contrast to traditional artificial neural networks, SNNs convert input data
into binary spikes over time, with each neuron in the SNNs maintaining a membrane potential that
accumulates input spikes. A spike is produced as an output when the membrane potential exceeds a
threshold. And the first-order SNNs is formulated as:

Urt1,i = Mur; — Vipsei) + ZwijST,j +0b, srq1=H(urr15 — Vin), (4)
J

where H(x) is the Heaviside function, which is the non-differentiable spiking function. s, ; is the
binary spike train of neuron %, A is the constant. w;; and b are the weights and bias of each neuron.

Under review as a conference paper at ICLR 2025

| Pre-spike IPost—spike

Spiking Graph Process

Graph ODE Process ODE Steps N

Figure 2: Overview of the proposed CSGO. The proposed CSGO takes a graph with node features
as input, which are initially encoded using the SGNs (first-order or second-order). Subsequently, a
high-order Graph ODE process is employed to evolve the dynamic representation of nodes. Finally,
the representation is projected for downstream tasks.

Second-order SNNs: The first-order neuron models assume that an input voltage spike causes an
immediate change in synaptic current, affecting the membrane potential. However, in reality, a spike
leads to the gradual release of neurotransmitters from the pre-synaptic neuron to the post-synaptic
neuron. To capture the temporal dynamics, we utilize the synaptic conductance-based LIF model,
which considers the gradual changes in input current over time. To solve this, (Eshraghian et al.|
2023)) propose the second-order SNN, which is formulated as:

Lpn=al, + WXrp1, Urg1,i=PuUri+ Ly, — R, $;; =H(urp1,—Vin), (5)

where a = exp(—At/Teyn), B = exp(—At/Timem), Tsyn models the time constant of the synaptic
current in an analogous way to how 7,,.,,, models the time constant of the membrane potential.

4 METHODOLOGY

In this part, we present the proposed CSGO for dynamic spiking graph learning. CSGO incorporates
Graph ODE with SGNss into a unified framework, which preserves the advantage of Graph ODE for
low energy consumption dynamic evolution. To mitigate the problem of information loss attributed
to SGNs, we involve the derivation of second-order spike representation and differentiation for
second-order SGNs, and then coordinate with high-order Graph ODE, referred to as CSGO-2nd.
Finally, we present a theoretical proof to ensure that CSGO effectively mitigates the challenges
associated with gradient exploding and vanishing. The details of CSGO are illustrated in Figure 2]

4.1 FIRST-ORDER CSGO

Specifically, SGNs propagate information within time latency 7, and the Graph ODE evaluates feature
evolution on different layers [. We propose the first-order CSGO, which integrates SGNs with Graph
ODEs, allowing information to be interactively propagated through both SGNs and the Graph ODE:

Proposition 1 Define the first-order SNNs as d;f‘ = g(ul,7), and first-order Graph ODE as

du],

o = f(ul,n), then the first-order CSGO can be formulated as:

“dn
N-1 T N T
uk 22/0 f (/0 g(uj,x)da:) dy + /Ni1 f </0 g(ui,x)dm) dy (6)
T N-1 N T
:2/0 g (/0 f(u?j,x)dy) dzr + /N_1 f </0 g(ui,x)dm) dy. @)

Under review as a conference paper at ICLR 2025

where T' is the total latency of SNNs, and N is the steps of Graph ODE, uy denotes the neuron
membrane on latency x € [0,T)| and ODE step y € [0, N|. The derivation is shown in Appendix@

From Proposition[T} we observe that incorporating SNNs with Graph ODEs essentially involves eval-
uating the membrane potential v through the ODE process and obtaining the spiking representation at
each ODE step n. To model the dynamic process of graphs in spiking scenarios, CSGO-1st leverages
the Graph ODE instead of calculating the spiking representation at every step, thereby efficiently
addressing the issue of energy consumption. In our implementation of the CSGO-1st, we employ
Eq.[I5]by initially calculating spike representations with the initial real-valued features, followed
by modeling the evolution of node embeddings. As described in (Meng et al.| [2022), the first-order

N N—T1
spike representation at step n is denoted as: H(0) = % By combining Eq. |1} we have:
dH(n) SN AN-TS0
i = lTLAH(TL) + 71—\/;1 A\N—T) (8)
where s? is the binary spiking representation on latency 7 at the first step, and A = exp(—) with

An < K, K is the time constant. We can then obtain the spiking output s = H (H(n)) on step n
with the Heaviside function H, and utilize it for the final prediction.

4.2 SECOND-ORDER SPIKING NEURAL NETWORKS

The proposed first-order CSGO addresses the challenge of combining SNNs with Graph ODE
to achieve energy-efficient modeling for dynamic graph learning. However, the first-order SNN's
typically suffer from the information loss issue (Yin et al.| | 2023b)). Motivated by recent advancements
in high-order models (Luo et al., [2023), which addresses high-order correlations of nodes, we
introduce the second-order CSGO to tackle the aforementioned issue. In this part, we begin by
deriving the second-order spike representation and investigating the backpropagation of second-order
SNNss.

4.2.1 SECOND-ORDER SNNS FORWARD PROPAGATION

We first propose the forward propagation of second-order SNNs. We set the forward propagation
layer of SNNs to L. According to Eq.[5] the propagation can be formulated as:

i—1

ut(r) = (r — 1) + (1 — 51’)% (I N1 = 1)+ W's" (1)) = Vi s'(7),

wherei = 1, --- , L denotes the i-th layer, s” and s denote the input and output of SNNGs, respectively.
I is the mput of the ¢-th layer 7 =1,---,T is the time step on SNNs and 7" is the total latency.
OZ - 6.13])(A7-/ syn) - exp(A7-/ mem) and 0 < At < { syn’ 'mem}

4.2.2 SECOND-ORDER SPIKE REPRESENTATION

Considering the second-order SNNs model defined by Eq.[5] we first define the weighted average

input current as [(T) = Bay E"EOT(ﬂ (;(ﬂnT RT;;)fi’;(")

Here we treat a(T) as the spike train of {s(n)}Z

, and the scaled weighted firing rate as

N Vin o0 —g BT s(n)
CL(T) = # Z:’L‘_}Ll(ﬁT On aT—m)Ar"
to the first-order spike representation (Meng et al., [2022), we directly determine the relationship

between 1(T') and a(T') using a differentiable mapping. Specifically, by combing Eq. |5, we have:
uw(T 4+ 1) =pu(r) + alsyn(7) + Linput(7) — Vans(7)

Similarly

n=1"

k—1) k—1) (9)
=B%u(r —k+ 1)+ @Y BTayn(r i) + > B (Tinput (T — i) — Vins(r — i)).

=0 =0

By summing Eq.[9]over 7 = 1 to 7', we have:

_L = T—n _ T—-n\7. _ l — T—n
uT) =5 > o) lin(n) = 5 > BT Vis(n). (10)
n=0 n=0

Under review as a conference paper at ICLR 2025

Dividing Eq.[10]by A7 S0 25 (87" — aT—™):
B—al(T) u(T)
B AT ATBY (BT —aT)
o TsynTmem _ ppy u(T)
Ten ~Tap - ATBS (BT —al)]

a(T) =

. . 1—a/ B _ TsynTmem 1 . TsynTmem
since Aligo e and AT < —Tsyn T, wecan appr0x1mate AAr < by E———
Following (Meng et al.,[2022), and take a(T") € [0, %] into consideration and assume Vj, is small,

u(T)

we ignore the term BB TN (FTm—aT)’

and approximate a(7") with:

. ~ TsynTmem 3 V;fh
1 T)=~cl SR E (T, 0, —= 11
T1—I>nooa() camp (Tmem — Tsyn ()7 ’ AT) , (
where clamp(x, a,b) = maz(a, min(z,b)). During the training of the second-order SNNs, we have
Proposition 2] and the detailed derivation is shown in Appendix B}

o ~0 IR S e) i _ Vi Saso BT)
Proposition 2 Define a°(T) = ST T T A and &*(T) = ST (G T A S

[1, L), where o' = exp(—AT/7l,,) and ' = exp(—AT [T},). The differentiable mappings is:

Ti TAT

mem syn

z":clamp<TSy"TmemWZ =10 VZ;h),Z':l,"' , L.

If lim a*(T) =z fori=0,1,--- ,L — 1, then a1 (T) ~ z**! when T — <.

T—o00

4.2.3 DIFFERENTIATION ON SECOND-ORDER SPIKE REPRESENTATION

In this part, we use the spike representation to drive the backpropagation training algorithm for
second-order SNNs. With the forward propagation of the i-th layers, we get the output of SNN
with s = {s(1),---,s(T)}, i € [1,L]. We define the spike representation operator 7(s) =
1 Vi3, 20 BT "s(n)

B NSy (BT —aT-m)AT’
assuming the loss function as £, we calculate the gradient -2

oL 0L 9o 9L Dot 9o’

and get the final output o* = r(s L) For the simple second-order SNN,

()Wl as:

)) S Vi
o' =r(s") = clamp (V\/"r(sz_l),o7 ”") .

OWi — 9ot OWi Joitl doi Wi’ AT
(1
We can compute the gradient of second-order SNNs by calculatlng " and aavow based on Eq.

4.3 SECOND-ORDER CSGO

Having obtained the second-order spike representation for SNNs, we introduce the second-order
CSGO. While obtaining an analytical solution for the second-order CSGO may not be feasible, we
can derive a conclusion similar to Proposition[I} The specifics are presented as follows.

d“t —

Proposmon 3 Define the second-order SNNs as —— “t +4

ODE as dtg + ’ydu’ = f(u],t), then the second-order CSGOfollows:

u; = /ONh (/OTe(utT)dT> dt = /OTe (/ON h(u{)dt) dr,

20, T T 2,,T T
o uj ouj 0 uj ouj

s.t. 2 “1‘6?:9(1%), o2 +7 ot :f(ut)7

= g(u], 1), and second-order Graph

where e(u]) fo g(ul)dr — 5(ul —u?), fo (uf)dt — y(uly — uf), aeg;;) = g(u})
and ah(u’) = f(u]). 0 and 7y are the hyperparameters of second-order SNNs and Graph ODE.

Under review as a conference paper at ICLR 2025

The details are derived in Appendix [C| Similarly to the CSGO-1st, we implement the CSGO-2nd by
calculating the spike representation on the initial step with Eq.[TT|and then modeling the evolution
of node embeddings with second-order Graph ODE using Eq. [3] Furthermore, we analyze the
differentiation of the CSGO-2nd to optimize its performance. Denote the loss function as £ =

S 12 S . R . T 9ol
> |XT — X;|?, and X, is the label of node i. With the chain rule, we have: 2% ;= 0L 8°,N aoTl .
v W = 8oL dol, OW
1

As traditional GNN models face the problem of exploding or vanishing gradients (Rusch et al., [2022)),
we further analyze the upper bound of the gradient in the proposed CSGO-2nd.

Proposition 4 Let X" and Y™ be the node features, generated by Eq.[3] and At < 1. The gradients
of the second-order Graph ODE W and second-order SNNs W* are bounded as follows:

oL | _ B'DAL(1+TNAt) 0 0
< . N
’an < . g};}(lxll +1Y7])
"DAH(1 + TNAt 2 4
+6 Chs) (max |Xi|+BvNAt) ,
v 1<i<v
0L | (14 NTAt)(1+ LOAT)Vi, N -
< . ; .
B v5?Ar 12, PO e, I “‘”

where 3 = max |o(z)|, 8 = max|o (z)], D = max —~—, and T := 6 + 45 D max [[W™1,
T x 1, € N>

% \/didj’
©:=6+48D max ||[W?||1. d; is the degree of node i, X; is the label of node i. Eq.|13|can

be obtained from (Rusch et al) 2022)) directly, and the derivation of the Eq. is presented in
Appendix[D|

The upper bound in Proposition 4{ demonstrates that the total gradient remains globally bounded,
regardless of the number of Graph ODE layers N and SNNs layers L, as long as At ~ N~! and
AT ~ L™, This effectively addresses the issues of exploding and vanishing gradients.

5 EXPERIMENTS

To evaluate the effectiveness of our proposed CSGO, we conduct extensive experiments with CSGO
across various graph learning tasks, including node classification and graph classification.

5.1 EXPERIMENTAL SETTINGS

Datasets. For the node classification, we evaluate CSGO on homophilic (i.e., Cora (McCallum;
et al., 2000), Citeseer (Sen et al., [2008)) and Pubmed (Namata et al.,2012)) and heterophilic (i.e.,
Texas, Wisconsin and Cornell from the WebKBB) datasets, where high homophily indicates that
a node’s features are similar to those of its neighbors, and heterophily suggests the opposite. The
homophily level is measured according to (Pei et al., [2020), and is reported in Table [[|and [2] In
the graph classification task, we utilize the MNIST dataset (LeCun et al., [1998)). To represent the
grey-scale images as irregular graphs, we associate each superpixel (large blob of similar color) with
a vertex, and the spatial adjacency between superpixels with edges. Each graph consists of a fixed
number of 75 superpixels (vertices). To ensure consistent evaluation, we adopt the standard splitting
of 55K-5K-10K for training, validation, and testing purposes (Rusch et al.,2022).

Baselines. For the homophilic datasets, we use standard GNN baselines: GCN (Kipf & Welling,
2017), SGC (Wu et al., 2019), GAT (Velickovic et al., 2017)), MoNet (Monti et al.,[2017), Graph-
Sage (Hamilton et al.,[2017), CGNN (Xhonneux et al.,|2020), GDE (Poli et al.,2019), GRAND (Cham+
berlain et al.;|2021)), GraphCON (Rusch et al.}[2022)) and SpikingGCN (Zhu et al.,|2022)). Due to the
assumption that neighbor feature similarity does not hold in heterophilic datasets, we utilize additional
GNN s as baselines: GPRGNN (Chien et al., [2020), H2GCN (Zhu et al.,[2020al), GCNII (Chen et al.|
2020), Geom-GCN (Pei et al.l 2020) and PairNorm (Zhao & Akoglu} [2019). For graph classification
task, we apply ChebNet (Defferrard et al.,[2016), PNCNN (Finzi et al., 2021)), SplineCNN (Fey et al.}
2018)), GIN (Xu et al., 2019), and GatedGCN (Bresson & Laurent, 2017) for comparison.

"http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-1 1/ www/wwkb/

Under review as a conference paper at ICLR 2025

Table 1: The test accuracy (in %) for node Table 2: The test accuracy (in %) for node clas-
classification on homophilic datasets. The sification on heterophilic datasets. All results
results are calculated by averaging the re- represent the average performance of the re-
sults of 20 random initializations across 5 spective model over 10 fixed train/val/test splits.
random splits. The mean and standard de- Bold numbers means the best performance, and
viation of these results are obtained. Bold underline numbers indicates the second best per-
numbers means the best performance, and formance.

underline numbers indicates the second best

performance. Texas Wisconsin Cornell
Homophily level 0.11 0.21 0.30

Cora Citeseer Pubmed
Homophily level 0.81 0.74 0.80 GPRGNN 78.4+4.4 82.9+4.2 80.3£8.1
GAT 816105 685102 767403 H2GCN 84.9+72 87.7+5.0 82.7£5.3

~ppr 6£0.2 50. 7403
MoNet 813413 712420 786423 GCNII 77.6+3.8 80.4+3.4 77.943.8
GraphSage 792477 716419 774422 Geom-GCN 66.8+2.7 64.5+£3.7 60.5+3.7
CGNN 814+1.6 669+18 66.6+4.4 PairNorm 60.3+4.3 48.4+6.1 58.9+3.2
ggﬁ ;?;i%% ;:gﬁé ;3;i;; GraphSAGE 82.4+6.1 81.24+5.6 76.0£5.0
GAT 818+13 714419 787423 MLP 80.8+4.8 85.3+3.3 81.9+64
SGC 81.5404 717404 792403 GCN 55.1+52 51.8+£3.1 60.5+5.3
GRAND 83.6+1.0 734405 78.8%1.7 GAT 52.246.6 49.4+4.1 61.945.1
GraphCON-GCN 819217 720421 788426 GraphCON-GCN 85.4+4.2 87.8+33 84.3+4.8

Tap - . E
SpikingGCN 807406 725402 TIEL03 GraphCON-GAT 82.2+4.7 85.743.6 83.2+7.0
CSGO-1st 833421 737420 769427 CSGO-1st 81.6+6.2 849+3.2 80.4+19
CSGO-2nd 83.7+13 752420 79.6+2.3 CSGO-2nd 87.3+4.2 88.8+2.5 83.742.7

Implementation Details. For the homophilic node classification task, we report the average results
of 20 random initialization across 5 random splits. For the heterophilic node classification task, we
present the average performance of the respective model over 10 fixed train/val/test splits. The results
of baselines are reported in (Rusch et al.|[2022). For CSGO-1st, we set the hyperparameter A to 1. As
for CSGO-2nd, we set the hyperparameters « and 5 to 1 as default. The time latency N in SNNs are
set to 8. For all the methods, we set the hidden size to 64 and the learning rate to 0.001 as default. All
the experiments are conducted on the same device, equipped with NVIDIA A6000 GPU.

5.2 PERFORMANCE COMPARISION

Homophilic Node Classification. Table [I| Table 3: The test accuracy (in %) for graph classi-
shows the results of the proposed CSGO with fication on MNIST datasets. Bold numbers means
the comparison of baselines. From the results, the best performance, and underline numbers indi-
we find that: (1) Compared with the discrete cates the second best performance.

methods (i.e., the baselines excluding Graph-

CON), the continuous methods (GraphCON and Model Test accuracy
CSGO) achieve the best and second best perfor- ~y oy et Defferrard ot al.l 2016} 75.62
mance, indicating that the continuous methods MoNet (Monti et al.| 2017} 91.11
would help to capture the dynamic changes and ~ PNCNN (Finzi et al.||[2021) 98.76
subtle dynamics from graphs. (2) CSGO-1st SplineCNN (Fey et al.[2018) 95.22
and CSGO-2nd outperforms other baselines in GatedGEN flla'fezs(;(l)rgl’|& Laurent| 2017} o708
most cases. We attribute that, even if SNNs Gon (Kipf & Welling| 2017) 88.89
loses some detailed information, CSGO can still GAT (Velickovic et al.|[2017) 96.19
achieve good performance on the relatively sim- ~ GraphCON-GCN (Rusch et al.;|2022) 98.68
ple homophilic dataset. Furthermore, the ap- _ GraphCON-GAT (Rusch et al.[2022) 9891
plication of SNNs contributes to improved effi- ~ CSGO-1st 98.82
ciency in the CSGO framework. (3) CSGO-2nd ~_©SGO-2nd 98.92

consistently outperforms the CSGO-1st. This

highlights the significance of introducing high-order structures to preserve information and mitigates
the information loss issue caused by first-order SNNs. Although high-order structures suffer higher
energy costs compared to first-order, the performance gains make it worthwhile to deploy them. (4)
CSGO-1st and CSGO-2nd outperforms the spiking-based method (i.e., Spiking) in most case. This
can be attributed to the incorporation of Graph ODE, which efficiently captures the dynamic evolution
while maintaining low energy consumption.

Under review as a conference paper at ICLR 2025

Heterophilic Node Classification. Table [2] shows the results of heterophilic node classification,
and we observe that: (1) The traditional message-passing-based methods (GCN, GAT, GraphSAGE
and Geom-GCN) perform worse than the well-designed methods (GPRGNN, H2GCN, GCNII,
GraphCON and CSGO) for heterophilic datasets. This disparity comes from the inaccurate assumption
of neighbor feature similarity, which doesn’t hold in heterophilic datasets. The propagation of
heterophilic information between nodes would degrade the model’s representation ability, leading
to a decline in performance. (2) The CSGO-1st performs less effectively than GraphCON. This is
because node prediction tasks on heterophilic datasets are more influenced by the characteristics
of heterophilic features compared to homophilic datasets. Consequently, the information loss issue
caused by first-order SNNs results in worse model performance. (3) The CSGO-2nd consistently
outperforms CSGO-1st, providing further evidence of the effectiveness of high-order structures in
preserving information and mitigating the issue of information loss.

Graph Classification. We present the graph classification results of our proposed CSGO alongside
comparison baselines in Table From the results, we have the following observations: (1) In
the graph classification tasks, dynamic graph methods (i.e., CSGO and GraphCON) consistently
outperform the baseline methods across all cases. This underscores the importance of employing a
continuous processing approach when dealing with graph data, enabling the extraction of continuous
changes and subtle dynamics from graphs. (2) The CSGO-1st performs worse than the CSGO-2nd,
highlighting the significance of incorporating high-order structures to obtain additional information
for prediction, without incurring significant overhead. (3) The CSGO-I1st performs worse than
GraphCON-GAT and better than GraphCON-GCN. Compared to GraphCON-GCN, the information
loss caused by SNNs does not critically affect graph representation ability. On the contrary, the
binarization operation of SNNs contributes to reduced energy consumption. Graph-GAT outperforms
CSGO-1st, mainly because the GAT method enhances graph representation. However, Graph-GAT
still lags behind CSGO-2nd, indicating that the introduction of high-order structures mitigates the
information loss issue associated with first-order methods.

5.3 ENERGY EFFICIENCY ANALYSIS

To assess the energy efficiency of CSGO, 10
we use the metric from (Zhu et al., [2022), el P pasigul
which quantifies the energy consumption GraphCon-GEN

for node prediction. Specifically, we fol- al

low the spike method (Cao et al., [2015)), _
counting the total spikes during inference 107
across three datasets to estimate the energy
consumption of SNNs. In Figure [3] we
compare the energy consumption of tradi-
tional GNNs, including standard methods 108
like GCN and GAT, Graph ODE methods

such as GraphCon-GCN and GraphCon- 106
GAT, the spike-based method SpikeGCN, Cora Citeseer Pubmed
and the proposed CSGO-1st and CSGO-
2nd. Traditional GNNs are evaluated on) ¢
GPUs (NVIDIA A6000). while, follow- baselines on different datasets.

ing (Zhu et al.||2022)), the spike-based models are evaluated on neuromorphic chips (ROLLS (Indiveri
et al.,|2015))). From the results, we find that (1) The spike-based methods, i.e., SpikeGCN, CSGO-1st
and CSGO-2nd, exhibit significantly lower energy consumption compared to traditional GNNs,
demonstrating the superior energy efficiency of SNNs. (2) The CSGO-1st has a lower energy con-
sumption than SpikeGCN, while CSGO-2nd consumes slightly more than SpikeGCN. Given the
better performance of CSGO-2nd, it is worthwhile to deploy CSGO-2nd. Besides, we analyze the
ablation study and hyperparameters of CSGO. The details are presented in Appendix [E and [F

Energy / pJ
g

Figure 3: Energy consumption comparison with various

6 CONCLUSION

In this paper, we address the practical problem of continuous spiking graph learning and propose an
effective method named CSGO. CSGO integrates SNNs and Graph ODE into a unified framework

Under review as a conference paper at ICLR 2025

from two distinct dimensions, thus retaining the benefits of low-power consumption and fine-grained
feature extraction. Considering that the high-order structure would help to relieve the problem of
information loss, we derive the second-order spike representation and investigate the backpropagation
of second-order SNNs, by incorporating with high-order Graph ODE, we introduce the second-order
CSGO. Furthermore, to ensure the stability of CSGO, we prove that CSGO mitigates the gradient
exploding and vanishing problem. Extensive experiments on diverse datasets validate the efficacy
of proposed CSGO compared with various competing methods. In future work, we will explore the
higher-order structure for more efficient continuous graph learning.

REFERENCES

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Proceedings of the Conference on Neural
Information Processing Systems, 2016.

Felix Christian Bauer, Dylan Richard Muir, and Giacomo Indiveri. Real-time ultra-low power ecg
anomaly detection using an event-driven neuromorphic processor. IEEE transactions on biomedical
circuits and systems, 13(6):1575-1582, 2019.

Xavier Bresson and Thomas Laurent. Residual gated graph convnets. arXiv preprint
arXiv:1711.07553, 2017.

Yonggiang Cao, Yang Chen, and Deepak Khosla. Spiking deep convolutional neural networks for
energy-efficient object recognition. Int. J. Comput. Vis., 113:54—66, 2015.

Ben Chamberlain, James Rowbottom, Maria I Gorinova, Michael Bronstein, Stefan Webb, and
Emanuele Rossi. Grand: Graph neural diffusion. In Proceedings of the International Conference
on Machine Learning, pp. 1407-1418, 2021.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the International Conference on Machine Learning, pp.
1725-1735, 2020.

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Proceedings of the Conference on Neural Information Processing
Systems, 2018.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. In Proceedings of the International Conference on Learning Representations,
2020.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Proceedings of the Conference on Neural
Information Processing Systems, 2016.

Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,
Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using
lessons from deep learning. Proceedings of the IEEE, 2023.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Miiller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 869-877, 2018.

Marc Anton Finzi, Roberto Bondesan, and Max Welling. Probabilistic numeric convolutional neural
networks. In Proceedings of the International Conference on Learning Representations, 2021.

Waulfram Gerstner and Werner M Kistler. Spiking neuron models: Single neurons, populations,
plasticity. Cambridge university press, 2002.

Fuqiang Gu, Weicong Sng, Tasbolat Taunyazov, and Harold Soh. Tactilesgnet: A spiking graph neural
network for event-based tactile object recognition. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 9876-9882. IEEE, 2020.

10

Under review as a conference paper at ICLR 2025

Yufei Guo, Yuanpei Chen, Liwen Zhang, Xiaode Liu, Yinglei Wang, Xuhui Huang, and Zhe Ma. Im-
loss: information maximization loss for spiking neural networks. In Proceedings of the Conference
on Neural Information Processing Systems, 2022.

Jayesh Gupta, Sai Vemprala, and Ashish Kapoor. Learning modular simulations for homogeneous
systems. In Proceedings of the Conference on Neural Information Processing Systems, pp. 14852—
14864, 2022.

Ernst Hairer, Syvert Norsett, and Gerhard Wanner. Solving Ordinary Differential Equations 1: Nonstiff
Problems, volume 8. 01 1993. ISBN 978-3-540-56670-0. doi: 10.1007/978-3-540-78862-1.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In
Proceedings of the Conference on Neural Information Processing Systems, 2017.

Zijie Huang, Yizhou Sun, and Wei Wang. Learning continuous system dynamics from irregularly-
sampled partial observations. In Proceedings of the Conference on Neural Information Processing
Systems, volume 33, pp. 16177-16187, 2020.

Zijie Huang, Yizhou Sun, and Wei Wang. Coupled graph ode for learning interacting system dynamics.
In Proceedings of the International ACM SIGKDD Conference on Knowledge Discovery & Data
Mining, pp. 705-715, 2021.

Giacomo Indiveri, Federico Corradi, and Ning Qiao. Neuromorphic architectures for spiking deep
neural networks. In IEEE International Electron Devices Meeting (IEDM), pp. 4-2, 2015.

Wei Ju, Siyu Yi, Yifan Wang, Zhiping Xiao, Zhengyang Mao, Hourun Li, Yiyang Gu, Yifang Qin,
Nan Yin, Senzhang Wang, et al. A survey of graph neural networks in real world: Imbalance,
noise, privacy and ood challenges. arXiv preprint arXiv:2403.04468, 2024.

Thomas Kipf, Ethan Fetaya, Kuan-Chieh Wang, Max Welling, and Richard Zemel. Neural relational
inference for interacting systems. In Proceedings of the International Conference on Machine
Learning, pp. 2688-2697, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations, 2017.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

Jintang Li, Zhouxin Yu, Zulun Zhu, Liang Chen, Qi Yu, Zibin Zheng, Sheng Tian, Ruofan Wu, and
Changhua Meng. Scaling up dynamic graph representation learning via spiking neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 8588-8596, 2023.

Yijin Li, Han Zhou, Bangbang Yang, Ye Zhang, Zhaopeng Cui, Hujun Bao, and Guofeng Zhang.
Graph-based asynchronous event processing for rapid object recognition. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pp. 934-943, 2021.

Xiao Luo, Jingyang Yuan, Zijie Huang, Huiyu Jiang, Yifang Qin, Wei Ju, Ming Zhang, and Yizhou
Sun. Hope: High-order graph ode for modeling interacting dynamics. In Proceedings of the
International Conference on Machine Learning, pp. 23124-23139, 2023.

Changze Lv, Jianhan Xu, and Xiaoqing Zheng. Spiking convolutional neural networks for text
classification. In Proceedings of the International Conference on Learning Representations, 2023.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3:127-163, 2000.

Qingyan Meng, Mingqing Xiao, Shen Yan, Yisen Wang, Zhouchen Lin, and Zhi-Quan Luo. Training
high-performance low-latency spiking neural networks by differentiation on spike representation.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
1244412453, 2022.

11

Under review as a conference paper at ICLR 2025

Federico Monti, Davide Boscaini, Jonathan Masci, Emanuele Rodola, Jan Svoboda, and Michael M
Bronstein. Geometric deep learning on graphs and manifolds using mixture model cnns. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
5115-5124, 2017.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying
for collective classification. In International Workshop on Mining and Learning with Graphs,
volume 8§, pp. 1, 2012.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Michael Poli, Stefano Massaroli, Junyoung Park, Atsushi Yamashita, Hajime Asama, and Jinkyoo
Park. Graph neural ordinary differential equations. arXiv preprint arXiv:1911.07532, 2019.

T Konstantin Rusch, Ben Chamberlain, James Rowbottom, Siddhartha Mishra, and Michael Bronstein.
Graph-coupled oscillator networks. In Proceedings of the International Conference on Machine
Learning, pp. 18888-18909, 2022.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. Al magazine, 29(3):93-93, 2008.

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, Yoshua Bengio,
et al. Graph attention networks. In Proceedings of the International Conference on Learning
Representations, 2017.

Beibei Wang and Bo Jiang. Spiking gats: Learning graph attentions via spiking neural network. arXiv
preprint arXiv:2209.13539, 2022.

Siqi Wang, Tee Hiang Cheng, and Meng-Hiot Lim. Ltmd: Learning improvement of spiking neural
networks with learnable thresholding neurons and moderate dropout. In Proceedings of the
Conference on Neural Information Processing Systems, 2022.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Simplify-
ing graph convolutional networks. In Proceedings of the International Conference on Machine
Learning, pp. 6861-6871, 2019.

Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In Proceedings
of the International Conference on Machine Learning, 2020.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? In Proceedings of the International Conference on Learning Representations, 2019.

Mingkun Xu, Yujie Wu, Lei Deng, Faqiang Liu, Guogqi Li, and Jing Pei. Exploiting spiking dynamics
with spatial-temporal feature normalization in graph learning. In Proceedings of the International
Joint Conference on Artificial Intelligence, pp. 3207-3213, 2021.

Zhanglu Yan, Jun Zhou, and Weng-Fai Wong. Near lossless transfer learning for spiking neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, pp. 10577-10584,
2021.

Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guogqi Li.
Temporal-wise attention spiking neural networks for event streams classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pp. 10201-10210, 2021.

Nan Yin, Fuli Feng, Zhigang Luo, Xiang Zhang, Wenjie Wang, Xiao Luo, Chong Chen, and Xian-
Sheng Hua. Dynamic hypergraph convolutional network. In Proceedings of the IEEE Conference
on Data Engineering, pp. 1621-1634, 2022.

Nan Yin, Li Shen, Huan Xiong, Bin Gu, Chong Chen, Xian-Sheng Hua, Siwei Liu, and Xiao Luo.
Messages are never propagated alone: Collaborative hypergraph neural network for time-series
forecasting. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023a.

12

Under review as a conference paper at ICLR 2025

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Bin Gu, and Huan Xiong. Dynamic
spiking graph neural networks. arXiv preprint arXiv:2401.05373, 2023b.

Nan Yin, Mengzhu Wang, Zhenghan Chen, Giulia De Masi, Huan Xiong, and Bin Gu. Dynamic
spiking graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence,
pp. 16495-16503, 2024.

Friedemann Zenke and Surya Ganguli. Superspike: Supervised learning in multilayer spiking neural
networks. Neural computation, 30(6):1514—-1541, 2018.

Yanfu Zhang, Shanggian Gao, Jian Pei, and Heng Huang. Improving social network embedding via
new second-order continuous graph neural networks. In Proceedings of the International ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2515-2523, 2022.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Gener-
alizing graph neural networks beyond homophily. In Proceedings of the Conference on Neural
Information Processing Systems, 2020a.

Xiaojian Zhu, Qiwen Wang, and Wei D Lu. Memristor networks for real-time neural activity analysis.
Nature communications, 11(1):2439, 2020b.

Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Sigiang Luo. Spiking graph convolu-

tional networks. In Proceedings of the International Joint Conference on Artificial Intelligence, pp.
2434-2440, 2022.

13

Under review as a conference paper at ICLR 2025

A PROOF OF PROPOSITION]

Pr?position 1 Define the first-order SNNs as d;T"TL = g(ul,7), and first-order Graph ODE as
% = f(ul, n), then the first-order CSGO can be formulated as:

N-1 T N T

uy =2/0 f (/0 g(uj,x)dw> dy+/N71f </0 g(%ﬁﬂ)@’%) dy (15)
T N-1 N T

:2/0 g (/0 f(ui,x)dy) dzr + /N_1 f </0 g(uj,x)dm) dy. (16)

where T' is the total latency of SNNs, and N is the steps of Graph ODE, u; denotes the neuron
membrane on latency x € [0,T] and ODE step y € [0, N].

Proof.
dup o dup
W_g(unaT)v dn —f(’U/n,Tl),

u] is a function related to variable n and 7, thus,

T+1 n+1
Tt = un + / g(uZ, 2)de, it =l / Fl L y)dy, a7
T n

N T T N-1
—u +/ f (ug_l +/ g(ui,m)dm) dy +/ g (u}‘VQ +/ f(uj,y)dy) dx
0 T-1 0 N-2
N T T N-1
=u) +/ f (ug +/ g(ui,x)dw) dy +/ g (uﬁ +/ f(ufj,y)dy) dz.
0 0 0 0
By adding the initial state on each time step and latency with v = 0 and uj = 0, we have:
N T T N-1
= [1 [stgade)ays [o [sgay)ds
0 0 0 0
N-1 T T N-1 N T
=[] st)ay [Co{ [segaay)der [p([gt) dy
0 0 0 0 N-1 0

(18)

first term second term

N-1 T N T
:2/0 f </o g(ui,x)dz) dy + /N71 f (/0 g(ui,x)dx) dy.
(19)

The first term denotes that the SNNs and Graph ODE are interactively updated during the time step
0 to T'— 1, and the second term denotes that at the last step 7', CSGO simply calculates the Graph
ODE process while ignoring the SNNs for prediction.

14

Under review as a conference paper at ICLR 2025

B PROOF OF PROPOSITION

Zf;é ﬁ?_7l_250(”) and &1 T) — Vtih Zz;ol ﬁ?_n/_Qsi(n) =
Saco(Bi "—ag AT Saco (B "—ai MAT

i

(
) and B¢ = exp(—At/7¢ ,..). The differentiable mappings is:

Proposition 2 Define a°(T) =
[17 L], where o' = exp(_AT/T;'

yn
z' = clamp (.y.sz’_l,Q th) vi=1,---,L.
fnem - Tgyn At
Ileim al(T) =z fori=0,1,--- L — 1, then a"*1(T) ~ 2"+ when T — <.
—00
Proof. From Eq.[0] we have:
k—1 k—1
U(T + 1) = BQU(T - k + 1) + Oéz lesyn(T - Z) + Zﬁl(Iinput(T - Z) - WhS(T - Z))v (20)
i=0 i=0
T—1 T—1
u(T)=a > B Lyn(T —n—1)+ > B (Tinput(T —n —1) = Vips(T —n —1)). (21)
n=0 n=0
Due to:
k .
Lyn(T 4+ 1) = ¥ Ly (r =k + 1) + Y o' Tinpur (7 — 1), (22)
i=0
we have,

T-1 T-1
u(T) =a Z BT_n_llsyn(n> + Z gt (Linput(n) — Vins(n))
n=0 n=0

BT—24-1 (1 _ (%)T—l)

=a a Iin(0) + T @ Lin(1) + -+
B B
BT—ig~1 (1 _ (%)T—i-H)
+ @ Iin(i— 1)+ -+ (B2a ' + B+ a)[;(T — 3)
- B
T—1
+(Bat + 1), (T —2) + o i (T — 1)) — Z BTV, 5(n)
n=0
1 o\ T _ o\ Tt
T—1
o (B =) (T = 1)) = > 67" Wins(n)
n=0
= T—1
5 S (BT ="M Ln(n) = Y BT Wans(n).
n=0 n=0
A T-1gT=n_,T=n\[(n . Vin SST=1 gT=n5(p,
Define I(T') = (B—la)z Z"ng(ﬁmn,ﬂ)_n)() and a(T) = % ié;%:;ﬂf;’_iiaén)), we have:
o(T) = B—a IiT) 3 T_lu(T) | ~ _TsynTmem o T_lu(T) 7
I} T A7S ano (BT-n — aT—n) Tmem — Tsyn ATS Zn:() (BT—n — aT—n)

where o = exp(—AT/Tsyn), B = exp(—AT/Timem)-

Following |Meng et al| (2022), and take a(T) € [0, %} into consideration and as-

. . u(T) . A .
sume Vi, is small, we ignore the term —— 55 T=I (5T —aT—n)’ and approximate (1) with
clamp (WI(T),O,%). Take the average input [(T) = Wz, we have z' =

mem syn

clamp (Sw‘;’ﬁmwizifl, 0, %) If lim a*(T) = z*, then a*™1(T) ~ z'*! when T' — .

— Tt
mem syn T—00

15

Under review as a conference paper at ICLR 2025

C PROOF OF PROPOSITION
Propositionl 3| Define the second-order SNNs as ddzf; +90
ODE as dtQ + ’yd“‘ = f(u],t), then the second-order CSGOfollows:

i = /ON h (/OTe@;)dT) gt — /02 (/ON hw;)dt) o

dut o

= g(u}, 1), and second-order Graph

82ut7 ouy - 0?ul aut
where e(u]) fo g(ul)dr — §(ul —u?), fo (u]) dt —y(uly — uf), 8655) = g(ul)

and ahé?t) = f(u]). 6 and 7y are the hyperparameters of second-order SNNs and Graph ODE.
Proof. Obviously,

0?uf ouj 0%uj ouj

+ -5 t
ot2 or ot2 ot

ouy T ouy N

so. G wsl =) = [atunan Ghati =)= [i

Define e(u]) fo g(ul)dr — §(ul —u?), and h(u]) fo (u])dt — y(uly — uf), we have:

aU’t _ T % _ T
87_ - e(ut)a at - h(ut)7

uj = /ONh </0Te(ut7)d7> dt = /OTe (/ON h(u[)dt) dr,

where 251 — g(uf) and 2°GE = f(uf).

= g(ug), = f(uf),

thus,

D PROOF OF PROPOSITION [4]

Proposition[d] Let X" and Y™ be the node features, generated by Eq.[3| and At < 1. The gradients
of the second-order Graph ODE W and second-order SNNs W are bounded as follows:

oL B'DA(1 + TNAt) 0 0
X; Y,
’8Wl v (1<L<'U(| | * | |)
'DAL(1+TNA _ 2
+6 td+ 2 (m_ax |Xi|+ﬁvNAt)
v 1<i<o
oL (14+ NTAt)(1+ LOAT)V;y, N o
< 1 . .
‘avvk = VB AT e, X+ max Xl
h = ' D=
where 3 max lo(z)], lo (x)], mzeué F

©:=6+48D max [|W™||1. d; is the degree of node i, X is the label ofnode i.
Proof. Eq. @] can be obtained from Rusch et al|(2022)) directly. Then,

L

oL oL 0zl 0zT oc 0ZT 027

owk ozl ozl owr — 9z oin, 027 OWF

oL + 0zr 0zl oz}

= T T & k
0Zj Wit 0Z, | 0Z; OW

ﬁ YA ﬁ 0Zi 0zF
T T 1—1 Kk’
aZ n=I+1 aZ” Ti=k+1 aZl oW

16

Under review as a conference paper at ICLR 2025

From Rusch et al.|(2022)), we have:

oL
277 |,

0Z7
0z7 ||

1
S(max | xT |—|— max |X|)

v \1<i<w

<1+ LTAL (23)

Due to the second-order SNN has a similar formulation to second-order GNN, we have a similar
conclusion,

ozl
<1+ T7TO6A 24
0ZF <1+ 7, (24)
ith § = B = ()], D = dO:=6+48'D W[y,
with g8 mgx\o(xﬂ B m3x|o (2)] rrjl:gxr an + 4 max [l |1
then:
8Zlk k—1 ‘/th
~r(Z 2
OW'k (Z) = B2AT’)

where r(-) the spike representation operator defined in Eq.
Multipling and 25] we have the upper bound:

oL < (14 LTA)(1 +TOAT)Vy,
oWk — vB2AT

(x | XN |+ ax |X |) (26)
1<z<

E ABLATION STUDY

Table 4: Ablation results. Bold numbers mean the best performance.

Cora Citeseer Pubmed Texax Wisconsin Cornell
Homophily level 0.81 0.74 0.80 0.11 0.21 0.3

CSGO-1st-2nd 83.2+14 74.1£14 763+2.2 81.7£39 851428 81.0£1.9 80.2
CSGO-2nd-1st 83.5+1.8 73.4£2.1 772423 83.1£3.8 844+22 81.2+£27 80.5

CSGO-1st 83.3+2.1 73.7£2.0 769+2.7 81.6£6.2 849+32 804£19 80.1
CSGO-2nd 83.7£1.3 75242.0 79.6t2.3 87.3+4.2 88.8+2.5 83.7+2.7 83.1

Avg.

We conducted ablation studies to assess the contributions of different components using two variants,
and the results are presented in Table[d] Specifically, we introduced two model variants: (1) CSGO-
1st-2nd, which utilizes the first-order SNNs and second-order Graph ODE, and (2) CSGO-2nd-1st,
incorporating the second-order SNNs and first-order Graph ODE. Table 4] shows that (1) CSGO-2nd
consistently outperforms other variations, while CSGO-1st-2nd yields the worst performance. This
is because the issue of information loss is crucial for graph representation, and the incorporation of
high-order SNNs assists in preserving more information, consequently achieving superior results.
(2) In most cases, CSGO-2nd-1st outperforms both CSGO-1st and CSGO-1st-2nd, suggesting that,
compared to the capability of Graph ODE in capturing dynamic node relationships, the ability to
mitigate the issue of information loss is more important.

F SENSITIVITY ANALYSIS

In this part, we examine the sensitivity of the proposed CSGO to its hyperparameters, specifically
the time latency parameter (7°) in SNNs, which plays a crucial role in the model’s performance. T'
controls the number of SNNs propagation steps and is directly related to the training complexity.
Figure [4|shows the results of T" across different datasets. We initially vary the parameter 7" within
the range of {5,6,7,8,9,10, 11} while keeping other parameters fixed. From the results, we find
that, the performance exhibits a increasing trend initially, followed by stabilization as the value of T'
increases. Typically, in SNN, spiking signals are integrated with historical information at each time
latency. Smaller values of 7" result in less information available for graph representation, degrading
the performance. However, large values of IV increase model complexity during training. Striking a
balance between model performance and complexity, we set 1" to 8 as default.

17

Under review as a conference paper at ICLR 2025

0.85

o
o)
S

Accruacy
©
~
(€]

0.70

Figure 4: Sensitivity analysis on time latency 71" in SNNs across various datasets. The solid line

I Cora Citeseer I Pubmed

5 6 7 8 9
Latency T

o
©
S

Accruacy
it I
e} [0}
o 8]

—r—
—v— Texas

. T =
Wisconsin —y_ Cornell

6 7
Latency T

denotes the results of CSGO-1st, and the dotted line denotes the CSGO-2nd.

G IMPACT STATEMENTS

This work introduces an innovative approach for continuous spiking graph neural network, with the
objective of advancing the machine learning field, particularly in the domain of graph neural networks.
The proposed method has the potential to substantially enhance the efficiency and scalability of graph
learning tasks. The societal implications of this research are multifaceted. The introduced method
has the capacity to contribute to the development of more efficient and effective machine learning
systems, with potential applications across various domains, including healthcare, education, and
technology. Such advancements could lead to improved services and products, ultimately benefiting

society as a whole.

18

8 9

	Introduction
	Related Work
	Preliminaries
	Dynamic Graph Neural Networks
	Spiking Neural Networks

	Methodology
	First-order CSGO
	Second-order Spiking Neural Networks
	Second-order SNNs Forward Propagation
	Second-order Spike Representation
	Differentiation on Second-order Spike Representation

	Second-order CSGO

	Experiments
	Experimental Settings
	Performance Comparision
	Energy Efficiency Analysis

	Conclusion
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Proposition 4
	Ablation Study
	Sensitivity Analysis
	Impact Statements

