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ABSTRACT

State-of-the-art deep Q-learning methods update Q-values using state transition
tuples sampled from the experience replay buffer. This strategy often uniformly
and randomly samples or prioritizes data sampling based on measures such as
the temporal difference (TD) error. Such sampling strategies can be inefficient at
learning Q-function because a state’s Q-value depends on the Q-value of succes-
sor states. If the data sampling strategy ignores the precision of Q-value estimate
of the next state, it can lead to useless and often incorrect updates to the Q-values.
To mitigate this issue, we organize the agent’s experience into a graph that explic-
itly tracks the dependency between Q-values of states. Each edge in the graph
represents a transition between two states by executing a single action. We per-
form value backups via a breadth-first search starting from the set of terminal
states and successively moving backwards. We empirically show that our method
is substantially more data-efficient than several baselines on a diverse range of
goal-reaching tasks. Notably, the proposed method also outperforms baselines that
consume more batches of training experience and operates from high-dimensional
observational data such as images.

1 INTRODUCTION

A significant challenge in reinforcement learning (RL) is to overcome the need for large amounts
of data. Off-policy algorithms have received great attention because of its ability to reuse data by
experience replay (Lin, 1992) for learning the policy. The key ingredient in off-policy methods is
learning a Q-function (Watkins & Dayan, 1992) which estimates the expected sum of future rewards
(i.e., return) at a state. State-of-the-art deep RL algorithms train the Q-function by bootstrapping
Q-values from state transitions sampled from the experience replay buffer (Mnih et al., 2015). In
bootstrapping, the sum of the immediate reward and the succeeding state’s Q-value are used as the
target (or “labels”) for the current state’s Q-value. Because of the dependency on the successor
states’ Q-value, the order in which states are sampled to update the Q-value substantially influences
the convergence speed of Q-value. An improper update order results in slow convergence.

As a motivating example, consider the Markov Decision Process (MDP) shown in Figure 1. Let the
agent receive a positive reward when it reaches the goal state (labeled as G), but zero at other stated.
(note that our method does not need rewards to be 0 or 1). Starting from stateC, the agent can obtain
the reward by visiting states in the sequence C → D → G. Now if the Q-value of taking action a
at state D, Q(D, a), is inaccurate, then using it to update Q(C, a) will lead to an incorrect estimate
of Q(C, a). It is therefore natural to start at the terminal state G and first bootstrap Q-values of
preceding states (D,E), and then for states (A,B,C). Using such a reverse order for bootstrapping
ensures that for each state, the Q-values of successor states are updated before an update is made to
the current state’s value. In fact, it has been proven that for acyclic MDPs such a reverse sweep is
the optimal order for bootstrapping (Bertsekas et al., 2000). Other works (Grześ & Hoey, 2013; Dai
& Hansen, 2007; Dai et al., 2011) have further empirically demonstrated the effectiveness of reverse
sweep in cyclical MDPs.

However, it is challenging to perform Q-learning with reverse sweep in high-dimensional state
spaces since the predecessors of each state are often unknown. State-of-the-art Q-learning meth-
ods (Mnih et al., 2015; Lillicrap et al., 2015; Haarnoja et al., 2018; Fujimoto et al., 2018) resort to
random sampling of data from the replay buffer. Their speed of convergence can be slow as these
methods do not account for the structure in state transitions when selecting the order of states for
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Figure 1: The ordering of states used for updating Q-values directly effects the convergence speed.
(a) Consider the graphical representation of the MDP with the goal state (G). Each node in the graph
is a state. The arrows denote possible transitions (s, a, r, s′) and the numbers on the arrows are the
rewards r associated with the transition. (b) Random sampling wastes many backups at states with
zero values (gray) while each backup of reverse sweep propagates values (orange) one step back.

updating the Q-values. The speed of convergence matters because data collection is interleaved
with Q-value updates. If the Q-values are incorrect, the agent may take actions that result in low
rewards. Such data is useless for improving the Q-values of states in the high-return trajectories.
Therefore, the slower convergence of Q-values is directly linked to the data inefficiency. One way
to reduce dependence on data is to artificially increase the speed of convergence by increasing the
ratio between the Q-learning update steps and the data collection steps. However, when function
approximators are used to estimate the Q-value, excessive updates on a fixed set of interaction data
can lead to over-fitting and overestimation of the Q-values, resulting in worse overall performance.
Our experiments in Section 5.4 empirically confirm this hypothesis.

To speed up Q-function convergence in high-dimensional state spaces, we approximate the reverse
sweep update scheme via stitching the trajectories stored in the replay buffer to construct a graph.
The graph is built directly from high-dimensional observations (e.g., images). Each state is a vertex,
and two vertices are connected with an edge if the agent transitions between them during training
time. As a result, trajectories are joined when a common state appears in two different rollouts. In
our framework, graph building and exploration proceed iteratively. The resulting graph provides
information about the predecessor of each state, which is used to determine the update order of
the Q-function based on the reverse sweep principle. The reverse sweep is initiated from a set
of terminal states because bootstrapping is not required to determine the correct Q-value for these
states. We call this method Topological Experience Replay (TER) because the update order of Q-
values is based on the topology of the state space.

2 RELATED WORKS

Experience replay Devising an experience replay strategy to improve Q-learning is an active
field in deep RL. Prioritized Experience Replay (PER) (Schaul et al., 2015) prioritize states by the
bootstrapping errors (also called as temporal difference (TD) error) (Schaul et al., 2015). Since
during training the TD error depends on a (possibly) erroneous estimate of the Q-values, PER can
lead to slow convergence speed. Episodic Backward Update (EBU) (Lee et al., 2019) and Lin
(1992) replays interactions in trajectories in the reverse order of state visitations in every episode.
However, for instance, in Figure 1, moving backward in a trajectory (A,E,B,D,G) misses the
other predecessors of D (i.e., C) while the Q-value of D affects that of C. DisCor (Kumar et al.,
2020) re-weights the error of state transitions to approximate the optimal bootstrapping order while
the conservative weighting scheme of DisCor impedes learning progress. Different from the above
works, we reorder states for updates based on the states’ Q-value dependency.

Reverse sweep Similar ideas of reverse sweep were studied in different scenarios. Assuming
the access to the simulators, Florensa et al. (2017) trained RL agents from initial states that are
closer to the goal and are gradually chosen to be farther away. Moore & Atkeson (1993) fitted an
environment dynamics model for generating the predecessors of the states of high bootstrapping
errors successively backward to update the Q-values. Goyal et al. (2019) extended this algorithm
by a learned generative model to perform backward rollouts from high-value states. Schroecker
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et al. (2019) trained an imitation learning model to match the expert’s predecessor state distribution
generated by a backtracking model. Instead of augmenting the training dataset by manipulating
simulators or generating synthetic data, our method rearranges the existing dataset to aid training.

Graph for RL Prior works organizing experience into a graph focused on temporally abstracted
planning. Savinov et al. (2018) learn to build a graph for navigation from images. Eysenbach et al.
(2019); Zhang et al. (2021); Emmons et al. (2020) provide RL agents with sub-goals by planning
over graph. Zhu et al. (2020) regularizes the Q-learning training via an additional graph Q-function
defined over graph. Instead of taking advantages of temporal abstraction from graph, we use a graph
to maintain states’ dependency for improving Q-function learning.

Model-based RL Graph is similar with the world model used in model-based RL, but TER uses
it for a different purpose. The classic work (Sutton, 1991) maintains the state transition probabili-
ties of each state and sample states by these transition probabilities to update the Q-values. Recent
model-based methods (Hafner et al., 2019; Nagabandi et al., 2018; Deisenroth & Rasmussen, 2011)
typically learn a world model (e.g., neural network or Gaussian process) for generating “imaginary”
data for training the RL agent or planning. Imaginary data augments the replay buffer, improving
the agent’s performance by training it with data absent in the replay buffer. Instead of generating
synthetic state transitions, TER employs the graph to find a better update order of each state tran-
sition in the existing replay buffer for training the value function. In other words, model-based RL
augments the dataset while TER sorts the dataset.

3 PRELIMINARIES

We consider reinforcement learning (RL) (Sutton & Barto, 2018) in an episodic discrete-time
Markov decision process (MDP). The objective of RL is to find the optimal policy, π∗, that max-
imizes expected return E

[∑T−1
τ=t γ

τ−trτ |st = s
]
∀s ∈ S , where γ is a discount factor (Sutton &

Barto, 2018), the S represents the set of all states in the MDP, and τ denotes the time step. At a time
step τ , the agent takes the action aτ = π(sτ ), receives reward rτ = (sτ , aτ , sτ+1), and transitions to
the next state sτ+1, where R is the reward function. At the time τ of task completion (e.g., reaching
goal states) the episode termination indicator E(sτ ) = 1, otherwise E(sτ ) = 0.

Q-learning is a popular algorithm for finding the optimal policy. It learns the Q function Q(s, a) =

E
[∑T−1

τ=t γ
τ−trτ |st = s, at = a

]
using bootstrapping operations: Q(s, a) ← R(s, a, s′) +

γmaxa′ Q(s′, a′) where s′ is the state encountered on executing action a in the state s. The pol-
icy π(s) can be easily derived as: π(s) := arg maxaQ(s, a). When S is high-dimensional, the Q
function is usually represented by a deep neural network (Mnih et al., 2015). The interaction data
collected by the agent is stored in an experience replay buffer (Lin, 1992) in the form of state tran-
sitions (st, at, rt, st+1). The Q function is updated using stochastic gradient descent on batches of
data randomly sampled from the replay buffer.

4 METHOD

Our method, topological experience replay (TER), is central at performing reverse sweep to update
the Q-function in high-dimensional state spaces. Reverse sweep is known to accelerate Q-function
convergence yet requires the knowledge of predecessors of a state, which is often unknown in high-
dimensional state spaces. We overcome this limitation by building a graph from the replay buffer and
guide the Q-function update with a reverse sweep over the graph. Section 4.1 presents the overview
of our proposed algorithm. In Section 4.2, we describe the procedure for building the graph from
high-dimensional states. Next, in Section 4.3, we describe how the graph is used to determine
the update order for Q-learning. Finally, we present a batch mixing technique in Section 4.4 that
guarantees TER to converge.

4.1 TOPOLOGICAL EXPERIENCE REPLAY

Assumption Similar to prior works of reverse sweep in tabular domains (Dai & Hansen, 2007),
we assume that the objective of the MDPs is to reach terminal states (i.e., goal states). When an
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agent successfully completes the task, the agent must be at some terminal states. This assumption
is required, otherwise reverse sweep will not help the agent learn optimal Q-value faster. Another
assumption is that an agent must be able to visit the same state twice so that we can find the joint
state between two episodes for building the graph. This is an admissible assumption since Zhu
et al. (2020) shows that an agent can visit repeated states even in high-dimensional image state
spaces Bellemare et al. (2013).

Overview TER iteratively interleaves between graph building and reverse sweep online during
training. The agent collects experience at each step and periodically updates the Q-function. Each
new transition (s, a, r, s′) is mapped to an edge on the graph. When updating the Q-function, TER
performs a few steps of reverse sweep for making a batch of training samples. The reverse sweep
starts from the vertices associated with terminal states. Each step in the sweep gathers transitions
stored at an edge for training the Q-function. The batch mixing technique mixes the transitions
that are fetched during reverse sweep and randomly sampled from the replay buffer, ensuring those
transitions disconnected from terminal states to be updated. The pseudo-code in Algorithm 1 details
the whole procedure.

4.2 GRAPH BUILDING

Data structure We organize the replay buffer as an unweighted graph of state transitions. The
graph keeps track of the predecessors of states and stores the transitions. Let an unweighted graph
be G = {V,E}, where V,E denote the set of vertices and edges, respectively. As the graph will
be queried frequently for replaying experience, we desire a query-efficient data structure. Thus, we
implement G as a nested hash table, where the outer (v′) and inner (v) keys correspond to a pair of
vertices in an edge e(v, v′) ∈ E where v, v′ ∈ V . We associate a transition (s, a, r, s′) with an edge
by a hash function φ. Each edge e(v, v′) stores a list of transitions (s, a, r, s′) where v = φ(s) and
v′ = φ(s′). We then can retrieve the predecessor transitions of a state in O(1) time.

Hashing Since high-dimensional states cannot directly serve as the hash-tables keys for fast query,
we require a encoding function φ : S 7→ Rd that transforms states to low-dimensional representa-
tions (keys in the graph G). The minimal requirements of this encoding function is being able to
distinguish two different states. We thus make use of random projection as the encoding function
φ(s) := Ms where s ∈ S , M is a matrix with elements randomly sampled from a normal distri-
bution Normal(0, 1/d), where d denotes the dimension of projected vectors1, as prior work has
empirically found that random projections can distinguish individual visual observations (Burda
et al., 2019; Zhu et al., 2020). Though an encoding function that aggregates states with similar
task-relevant features would be helpful for determining better update orders, we simply use random
projection, since our focus is not representation learning for hashing.

Update scheme The graph is iteratively updated online at each time step by the incoming transi-
tion and each transition (st, at, rt, st) is stored into the hash table G. We add φ(st) and φ(st+1) to
the vertex set V and append the transition (st, at, rt, st+1) to the list of transitions stored in the edge
e(φ(st), φ(st+1)). We can retrieve the predecessor transitions of s′ by querying e(v, φ(s′)) ∀v ∈ V
for a reverse sweep. The predecessor transitions of a state is aggregated from multiple trajecto-
ries. Let (sA, aA, rA, s

′
A) and (sB , aB , rB , s

′
B) be two transitions from different trajectories. Both

transitions can be retrieved by e(v, v′) ∀v ∈ V if v′ = φ(s′A) = φ(s′B) (i.e., outer keys of G).

4.3 REVERSE SWEEP

Algorithm Once the graph is built, the next step is to determine the ordering of states for updating
the Q-values. Same as common experience replay methods, Q-function is periodically updated
online with mini-batches of data sampled using a fixed replay ratio (Fedus et al., 2020). Each batch
of training data is collected via a reverse sweep. More specifically, we maintain a record of vertices
that correspond to terminal states, and this set is denoted by VE . Each terminal vertex ve acts as the
root node. We perform a reverse breadth-first search (BFS) on the graph starting from a subset of ve
sampled from VE separately. The ve serves as the initial frontier vertex v′. For a frontier vertex v′

1If s is an image, we flatten s into an one dimensional vector before the transformation.
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in the search tree, we first sample its predecessors v and append the corresponding state-transitions
sampled from e(v, v′) to a batch queue. Then we set all the predecessors v to be the new frontier
vertices and fetch transitions. Once there are B transitions in the batch queue, we pop out B
state-transitions for updating the Q-function. We resume the tree search next time starting from the
frontier v′ to update the Q-function. Note that BFS only expands each vertex once, and thus infinite
loop on cyclic (i.e., bi-directional) edges will not happen. When there is no vertex to expand, reverse
sweep is restarted from a set of root vertices sampled from VE again.

Complexity Compared with uniform experience replay (UER) (Lin, 1992; Mnih et al., 2015), the
extra memory needed is at most |E| low-dimensional vectors in the hash-table’s keys. Instead of
growing endlessly, the graph G is pruned once the number of transitions (s, a, r, s′) on the graph
is greater than a user-specified replay buffer capacity. For pruning details and the hyperparameter
settings, see the Section A. The time complexity of making a batch of training transitions is O(B)
as we fetch data from B vertices. We show that the wallclock computation time is close to typical
methods in Section A.7.

4.4 BATCH MIXING

One potential drawback of starting the reverse sweep from only terminal states is that the states that
are unreachable from the terminal states will never be updated. Consequently, the Q-values of such
states are not updated, which impedes the convergence of Q-learning. Prior work (Dai & Hansen,
2007) has shown that interleaving value updates at randomly sampled transitions and at transitions
selected by any prioritization mechanism ensure the convergence. Thus, we mix experience from
TER and PER Schaul et al. (2016) to form training batches using a mixing ratio η ∈ [0, 1]. For each
batch, η fraction of the data is from PER, and 1− η is from TER. Additional details of batch mixing
are provided in the supplementary material Section A.

Algorithm 1 Topological Experience Replay for Q-Learning
Input: A hash function φ, a warm up period Twarm, a batch size B

1: Set empty graph G ← {V = ∅, E = ∅} and terminal vertices set VE ← ∅
2: Set search queue and batch queue as empty queues and visited vertex ← ∅ for

BFS
3: for t = 0, 1, . . . do . online training loop
4: Take action at and receive experience (st, at, rt, st+1)
5: Add φ(st) and φ(st+1) to V , and e(φ(st), φ(st+1)) to E
6: Augment the terminal vertices set VE ← VE ∪ {φ(st+1)} if E(st+1) = 1
7: while t > Twarmup and len(batch queue) < B do
8: if search queue is empty then
9: Add sampled vertices from VE to search queue, visited vertex← ∅

10: end if
11: Pop v′ from search queue until v′ /∈ visited vertex
12: Sample a subset of the predecessors edges EP (v′) = {e(u, u′) ∈ E | u′ = v′} of v′
13: Push v ∈ {v | e(v, v′) ∈ EP (v′)} to search queue
14: Push (s, a, r, s′) stored at each predecessor edge e(v, v′) ∈ EP (v′) to batch queue
15: Mark v′ as expanded: visited vertex← visited vertex ∪ {v′}
16: end while
17: if t > Twarmup then
18: Pop a minibatch of experience b = {(si, ai, ri, s′i)}Bi=1 from batch queue
19: Update Q function with b
20: end if
21: end for

5 EXPERIMENTS

We aim to answer the following primary questions: (1) Does TER accelerate the speed of conver-
gence of Q-learning? (2) Does TER improve sample efficiency in high-dimensional state spaces?
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(3) Does baselines with higher replay ratios match TER’s efficiency? In addition, Section 5.5 ana-
lyzes the effect of batch mixing in TER, and Section 5.6 investigates why TER improves the sample
efficiency.

5.1 SETUP

Environments We evaluate TER in Minigrid (Chevalier-Boisvert et al., 2018) and
Sokoban (Schrader, 2018) as the tasks’ objectives are to reach terminal states (i.e., goal states) and
both domains have challenging tasks for Q-learning. In Minigrid and Sokoban, the agent observes
the top-down image view of a grid map and moves around in the grid map to complete the task. For
each task, the map is randomly generated at each episode, so the policy needs to generalize across
different map configurations. In Sokoban, the task is to push all the boxes on the map to the target
positions where the map sizes and the number of boxes can be varied. We denote a configuration in
the format <size>x<size>-<num. boxes>. All of the environment details can be found in
the Section C.

Baselines. We compare TER with uniform experience replay (UER) (Lin, 1992; Mnih et al., 2015),
prioritized experience replay (PER) (Schaul et al., 2016), episodic backward update (EBU) (Lee
et al., 2019), and DisCor (Kumar et al., 2020). UER uniformly samples state-transition tuples from
the replay buffer. PER prioritizes experience with high temporal difference (TD) (Sutton, 1988)
errors defined as |rt + maxa′ Q(s′, a′) − Q(s, a)|. EBU uniformly samples an episode from the
replay buffer, and updates the Q-values of the state-action pairs in the sampled episode reversely.
For example, given an episode [s1, a1, r1, s2, a2, r2, s3, . . . sT−1, aT−1, rT−1, sT ], EBU updates in
a sequence [Q(sT−1, aT−1), Q(sT−2, aT−2), . . . , Q(s1, a1)]. DisCor re-weights each Q-function
update inversely proportional to the estimated bootstrapping error |Q∗(s′, a′)−Q(s′, a′)| of a state-
action pair (s, a), where Q∗ denotes the optimal Q-function.

Implementation. We test each experience replay method along with double deep Q-learning
(DQN) (Van Hasselt et al., 2016) with the same architecture used by (Mnih et al., 2015). In DQN,
the Q function is updated once per four environment steps (i.e., replay ratio = 0.25) unless spec-
ified otherwise. We use ε-greedy method for exploration. We have reused implementations of the
baseline methods and DQN from pfrl codebase (Fujita et al., 2021). For EBU, we adapted the
publicly released code 2 in the framework of pfrl. We re-implemented DisCor and verified that
our implementation reproduces the results reported in the paper (Kumar et al., 2020). For TER, we
use η = 0.5 for Minigrid and η = 0.2 for Sokoban. Additional implementation details and our
reproduction of DisCor results are available in Section A.

Evaluation Metric. We ran each experiment with 5 different random seeds and reported the mean
(solid or dashed line) and 95%-confidence interval (computed by bootstrapping method DiCiccio
et al. (1996)) on the learning curves. The learning curves indicate the average normalized return
over 100 testing episodes in a varying number of environment steps. More details are provided in
Section B.

5.2 AN ILLUSTRATIVE EXAMPLE

We experimented with NChain environment, as shown in Figure 2a, to illustrate that TER gives
rise to a more efficient updating order. The only positive reward in NChain emits at the rightmost
terminal state (i.e., node N ). As the only reward is distant from the starting state, it is easy to
observe the impact of a misspecified update order. In order to rule out the influence of exploration,
we collected a fixed number of rollout episodes where the agent took random actions and then used
these pre-collected experiences to train TER and all the baselines. Figure 2b shows the normalized
return and the average Q-value error as the training progresses. The value error is calculated by the
absolute difference between the agent’s Q-function and the ground truth optimal Q-function. We
see that the TER agent obtains the highest score after only 30 value backups, while UER, PER, and
DisCor fail to solve the task in 100 updates, which shows the importance of update order. Even
the best baseline method (EBU) takes twice the number of backups on average. As TER differs

2https://github.com/suyoung-lee/Episodic-Backward-Update
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Figure 2: (a) The illustration of NChain environment. Each node denotes a state, and the arrow
represents a valid transition between two nodes. (b) TER achieves higher performance with fewer
updates and reduces the value error of the Q-function faster than the baselines.

from EBU in that EBU only backtracks from the instantaneous trajectories, this shows the benefits
of backtracking from the episodes stitched by the graph. Also, we show that the value error of TER
reduces faster than the baselines, which suggests that TER converges to the ground truth optimal
Q-function faster.

5.3 HOW DOES TER PERFORM IN A HIGH-DIMENSIONAL STATE SPACE?

We investigated if TER is effective in environments with a high-dimensional state space such as im-
ages in Minigrid and Sokoban (see Section 5.1). Overall, TER outperforms the baselines in Minigrid
and Sokoban, as shown in Figure 3a and Figure 3b. In Sokoban, such improvement is even more
significant when the environment map is bigger, and there are more boxes than the others. Surpris-
ingly, we can see from Figure 3b that EBU and DisCor perform worse than UER. We find that the
averageQ-value of EBU is much bigger than the maximum possible return in the environment (Sec-
tion D), suggesting that EBU suffers from the overestimation problem (Hasselt, 2010) that hinders
theQ-learning. Also, we find that the exploding value error estimates in DisCor impede the learning
progress, where the updates are down-weighted exceedingly due to huge estimates on value error.
In addition, we present the analysis on the influence of random projection dimension d in Section J,
showing that TER is insensitive to the choice of d.

5.4 HOW DOES TER COMPARE TO THE BASELINES WITH A HIGHER REPLAY RATIO?

As we mentioned in Section 1, the convergence speed of Q-learning can affect sample efficiency.
Even though TER demonstrates superior learning efficiency in the previous section, a critical unan-
swered question is whether baselines can achieve similar sample efficiency with more frequent Q-
function updates compared to TER. Thus, for all baselines, we increase the replay ratio defined as
the number of gradient updates per environment transition (Fedus et al., 2020). Figure 4 shows the
learning curves of the baselines with different replay ratios of 0.25, 1.0, 2.0 and TER. For instance,
0.25 means 1 gradient update for every 4 environment steps. Overall, increasing the replay ratio
does not consistently improve the performance of the baselines, except for LavaCrossing-Hard. We
found that a possible reason could be Q-value overestimation (Hasselt, 2010). Figure 4b shows that
the average Q values of the baselines with larger replay ratios are much higher than Rmax (i.e., the
maximum return in the task), implying a significant Q-value over-estimation. We compute the nor-
malized difference between the learned Q values and Rmax: Es,a[Q(s,a)]−Rmax

Rmax
, and Es,a[Q(s, a)] is

the average Q values during training. Therefore, even though we increase the replay ratio, it does
not close the performance gap between the baselines and TER.

5.5 HOW DOES BATCH MIXING AFFECT TER?

Figure 5 shows the learning curves of TER with different batch mixing ratios, where the number in
the legend denotes the batch mixing ratio η defined in Section 4.4. The results of Sokoban show that
a high ratio can fail TER and a low ratio leads to premature convergence. It can be seen that the
best-performing variants are TER with 0.1 and 0.2 mixing ratios. On the contrary, TER is insensitive
to the mixing ratio in Minigrid, where each variant exhibits a similar performance. The reason for
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(a)

(b)

Figure 3: TER outperforms the baselines in (a) Minigrid and (b) Sokoban, demonstrating that TER
can work with high-dimensional state spaces. In (b), the plots are ordered by task difficulty (i.e.,
reward sparsity) from left to right. The performance gain of TER is more salient when rewards are
more sparse. The x-axis is the environment steps. y-axis is the normalized mean return.
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Figure 4: (a) Increasing the replay ratio does not consistently improve the performance of the base-
lines. (b) Increasing replay ratios leads to Q-value overestimation in baselines.

this result could be that the successful experience is easier to get in Minigrid than that in Sokoban.
As the states in a successful episode must be connected to a terminal state, more transitions will be
replayed in the reverse sweep. Hence the issues about the non-updated states can be minor. Overall,
though the choice of mixing ratio can be environment dependent, we empirically found that TER
with mixing ratio 0.1 and 0.2 perform well in both Minigrid and Sokoban.
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Figure 5: The learning curves of TER with different batch mixing ratios. In Sokoban the choice of
mixing ratio is more sensitive than that in Minigrid. TER with mixing ratio 0.1 and 0.2 perform well
in both Minigrid and Sokoban.

5.6 WHY DOES TER OUTPERFORM EBU?

Figure 6: The only difference between TER(single
pred, η = 0) and EBU (β = 0) is trajectory stitch-
ing while TER(single pred, η = 0) still outperforms
EBU (β = 0). This shows that trajectory stitching
results is critical for TER’s performance gain.

Since EBU and TER share the idea of reverse
replay, a natural question is what explains the
significant performance gap between the al-
gorithms reported in Section 5.3. To inves-
tigate if the benefit originates from stitching
episodes, we made a variant of TER that dis-
ables batch mixing (i.e., η = 0) and uses only
one search tree and sample one predecessor
during BFS, called TER(single pred, η = 0).
Also, to rule out the influence of Q-value
mixing hyperparameter β (Lee et al., 2019)
and timeout-states in EBU, we set β = 0
for EBU and only replay backward from the
terminal states in this experiment3. As such,
the only difference between TER(single pred,
β = 0) and EBU is the ability to replay back-
ward from a new path through the joint state between different trajectories. Figure 6 shows that
TER(single pred, η = 0) outperforms EBU, suggesting that the performance gap between TER and
EBU likely results from trajectory stitching. In addition to this primary finding, we also show that
applying batch mixing and filtering out timeout-states for EBU do not improve EBU’s performance
in Section H and Section I.

6 CONCLUSION

In conclusion, we showcased that replaying experience in a backward topological order expedites
Q-learning in goal-reaching tasks. Moreover, our experiments demonstrated that TER works in
cyclical MDPs even though the strict topological orders are unclear where the rationale is presented
in Section M. We present more discussion in Section O.
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Buc, E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/
paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf. 3

William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo Larochelle, Mark
Rowland, and Will Dabney. Revisiting fundamentals of experience replay. In International Con-
ference on Machine Learning, pp. 3061–3071. PMLR, 2020. 4, 7

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
riculum generation for reinforcement learning. In Conference on robot learning, pp. 482–495.
PMLR, 2017. 2

10

https://openreview.net/forum?id=H1lJJnR5Ym
https://openreview.net/forum?id=H1lJJnR5Ym
https://github.com/maximecb/gym-minigrid
https://proceedings.neurips.cc/paper/2020/file/385822e359afa26d52b5b286226f2cea-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/385822e359afa26d52b5b286226f2cea-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/5c48ff18e0a47baaf81d8b8ea51eec92-Paper.pdf


Published as a conference paper at ICLR 2022

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International Conference on Machine Learning, pp. 1587–1596. PMLR, 2018.
1

Yasuhiro Fujita, Prabhat Nagarajan, Toshiki Kataoka, and Takahiro Ishikawa. Chainerrl: A deep
reinforcement learning library. Journal of Machine Learning Research, 22(77):1–14, 2021. URL
http://jmlr.org/papers/v22/20-376.html. 6, 13

Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy Lillicrap, Sergey
Levine, Hugo Larochelle, and Yoshua Bengio. Recall traces: Backtracking models for efficient
reinforcement learning. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HygsfnR9Ym. 2
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A APPENDIX

A IMPLEMENTATION DETAIL

We implement all the methods based on (Fujita et al., 2021).

A.1 DEEP Q-NETWORK IMPLEMENTATION DETAIL

We use double DQN (Van Hasselt et al., 2016) for all the methods.

Network architecture Our networks consist of two types of layers: 2-D convolutional
layer Conv2D and fully connected layer Linear. We denote a Conv2D layer with
parameters (input channel dim, output channel dim, kernel size, stride)
and Linear with (input channel dim, output channel dim).

For Minigrid, the DQN architecture is the sequential combination of [Conv2D(40*40*3,
32, 8, 4), Conv2D(32, 64, 4, 2), Conv2D(64, 64, 3, 1), Linear(64,
512), Linear(512, num actions)] with ReLU activation units followed by each layer.

For Sokoban and Atari, the DQN architecture is [Conv2D(84*84*3, 32, 8, 4),
Conv2D(32, 64, 4, 2), Conv2D(64, 64, 3, 1), Linear(3136, 512),
Linear(512, num actions)] with ReLU activation units.

Target network For all environments, we use hard-reset that copies the current Q-function
network to the target network periodically. The target network update interval is 1000 for Minigrid
and 10, 000 for Sokoban and Atari.

Batch size, Optimizer, and Learning rate For all environments, we set batch size=64
for Minigrid, batch size=32 for Sokoban and Atari. The optimizers are Adam with
learning rate=3e-4 for Minigrid and Sokoban. For Atari, we follow the configuration in
(Mnih et al., 2015) and use RMSProp optimizer with learning rate=2.5e-4, alpha=0.95,
eps=1e-2, and momentum=0.0.

ε-greedy exploration We use ε-greedy exploration for our method and the baselines. The value
of ε is linearly decayed from 1.0 to 0.01 in 1M environment steps.

Experience Replay buffer We warm-up the replay buffer with the trajectories where the agent
takes random actions. The warm-up periods are 50, 000 for all environments. The capacity (i.e.,
maximum number of elements) of the buffer is 1M for each environment. We draw 1 batch of
experience from the replay buffer to update theQ-function every 4 environment steps, except for the
experiments in Section 5.4.

A.2 PRIORITIZED EXPERIENCE REPLAY (PER) (SCHAUL ET AL., 2016) IMPLEMENTATION
DETAILS

We use the implementation provided in pfrl. There are two hyper-parameters in PER: α and β.
Following the original paper (Schaul et al., 2016), we set α = 0.6 and β = 0.4. The β linearly
transitions to 1.0 within 1

4 of the total training environment steps in the environment.

A.3 EPISODIC BACKWARD UPDATE (EBU) (LEE ET AL., 2019) IMPLEMENTATION DETAILS

We adapted the code from the official code-base 1 to pfrl and set diffusion factor (Lee et al., 2019)
as 0.5. Note that we also use double DQN for EBU, though the original paper (Lee et al., 2019) uses
the vanilla DQN (Mnih et al., 2015). As a sanity check for the correctness of implementation, we
ran EBU in some of the Atari environments reported in the original paper (Lee et al., 2019). The
results shown in Figure L.15 show that the performances of our reproduced results are higher than

1https://github.com/suyoung-lee/Episodic-Backward-Update
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Mean (sec.) Median (sec.) Min (sec.) Max (sec.)

UER 0.002 3e-5 1e-5 0.086
PER 0.003 0.0001 4e-5 0.28
EBU 0.002 3e-5 1e-5 0.083
DisCor 0.003 4e-5 1e-5 0.11
TER 0.002 0.0002 0.0001 0.256

Table A.1: Computation time of making a batch of training transitions over the training time.

or match the original results in Pong, Kangaroo, and Venture, but lower than the original ones in
Freeway.

A.4 DISCOR (KUMAR ET AL., 2020) IMPLEMENTATION DETAILS

We re-implemented DisCor based on the implementation details provided in the original paper (Ku-
mar et al., 2020). The initial temperature τ is set as 10.0 and the τ is updated to the batch mean of
error network ∆φ prediction over the last target update interval when the target network is updated.
As the original paper suggests, the architecture of the error network ∆φ is the DQN architecture for
each task with an additional fully connected layer at the end.

We verified the correctness of our implementation by testing DisCor in Atari Bellemare et al. (2013)
Pong that is reported in the original paper (Kumar et al., 2020). Figure L.15 shows our result of
Pong matches the original result in (Kumar et al., 2020).

A.5 TER IMPLEMENTATION DETAILS

Reverse Breadth-first Search (BFS) Since the number of terminal states in the environment can
be large, we sample the vertices of some terminal states as the roots of BFS search trees. For all
environments, we sample 8 terminal vertices as the roots. For each vertex, we sample at most
3 predecessors to expand instead of enumeration. Enumerating all the predecessors can have too
many predecessors

Vertex Encoding We set the dimension d of the encoded states as 3 for all the environments.

Batch Mixing We set the batch mixing ratio η as 0.5 for Minigrid and 0.1 for Sokoban.

Graph Pruning We prune the graph when the number of transitions stored at the edges in the
graph exceeds the replay buffer capacity. The pruning is carried out according to the ”age” of each
transition. The age of a transition is current env step - transition env step, where
current env step is the current environment steps and transition env step the envi-
ronment step when it was added to the buffer. When sampling a batch of experience from the
batch queue in Algorithm 1, we remove the transition of which age exceeds the replay buffer
capacity from the current batch and from the corresponding edge and pop more transitions from
batch queue to replace the removed transitions. Once an edge has no transitions remaining, we
remove the edge from the graph.

A.6 CODE

Code is included in the zip file.

A.7 COMPARISON OF COMPUTATION TIME

As TER requires performing graph search over the training time, it is worth knowing how much
extra computation time is required by TER. Table A.1 shows that TER’s running time is similar to
canonical experience replay methods on average. Also, the maximum running time over the training
process is not greater than that of PER.
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B EVALUATION DETAIL

We ran each experiment with 5 different random seeds and report the mean (solid or dashed line) and
bootstrapped confidence interval (shaded part) (DiCiccio et al., 1996) on the learning curves. The
learning curves show how the averaged normalized return over 100 testing episodes change over the
number of environment interaction steps.

For each testing episode, we fix the neural network weights ofQ-function and run the agent with the
greedy action (i.e., arg maxaQ(s, a)). Since the greedy action will not change if the state remains
the same, we let the agent take random actions with probability 0.05 to prevent the agent from being
stuck at the same state.

C ENVIRONMENT DETAIL

We illustrate the example maps of each environment in Figure C.1.

1 3 N-1 N2 ...
Start EndNChain

(a) (b) (c)

Figure C.1: (a) NChain. Each circle denotes a state and arrow represents a valid transition between
two circles. (b) Minigrid. This figure shows one example environment in Minigrid. The agent takes
the top-down image view of the two dimensional grid as states. The red arrow denotes the agent,
the green cell is the goal, the yellow square is a door, and the yellow key is used for opening the
door. The black and the gray cells are walk-able areas and walls respectively. The task is to pickup
the key, open the door, and then go to the goal. (c) Sokoban. A randomly sampled environment in
Sokoban domain. The yellow block denotes a box, the red square represents a target position, and
the green object is the agent. The outer brown bricks denote walls and the black cells are walk-able
ares. The goal is to push all the boxes to the target positions.

C.1 CHAIN

For NChain shown in Figure C.1a, there are N states, s1 . . . sN in the state space S and
{forward,backward} actions in the action space A. At each state si, the agent can move to
the next state si+1 by forward and to the last state si−1 by backward. If the agent is at s1, the
action backward will not effect. The agent gets +1 reward when transitioning from sN−1 to sN
and 0 otherwise. An episode terminates when the agent is at sN .

C.2 MINIGRID

The official Minigrid implementation is referred to (Chevalier-Boisvert et al., 2018). Fig-
ure C.1 shows an example top-down view image of the map. For each environment, each
state is an RGB top-down view image resized to to 40 × 40 and the action space is
{turn left, turn right, forward, pickup, drop, toggle}. An episode terminates
when the timestep exceeds the maximum time steps MAXSTEPS dependent on the task or the agent
receives +MAXSTEPS reward. Note that we modify the reward function defined in (Chevalier-
Boisvert et al., 2018) since the default reward function is history dependent function. A history-
dependent reward function is not valid for fully observable MDPs since history data is un-observable
in the state.
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DoorKey The example levels are illustrated in Figure C.2. The task is to pickup the key (yellow
key icon), open the door (yellow square icon), and navigate to the goal (green block). The reward is
defined as

R(s, a, s′) =

{
+MAXSTEPS, the goal is reached
−1, otherwise

Figure C.2: The images of randomly generated levels of DoorKey

Unlock The example levels are illustrated in Figure C.3. The task is to pickup the key (key icon)
and open the door (yellow square icon). The reward is defined as

R(s, a, s′) =

{
+MAXSTEPS, the door is opened
−1, otherwise

Figure C.3: The images of randomly generated levels of Unlock

RedBlueDoors The example levels are illustrated in Figure C.4. he task is to open the red door
(red square) and open the blue door (blue door). The reward is defined as

R(s, a, s′) =

{
+MAXSTEPS, the red door and the blue door are opened sequentially
−1, otherwise

Figure C.4: The images of randomly generated levels of RedBlueDoor

SimpleCrossing-Easy/Hard The example levels are illustrated in Figure C.5a and Figure C.5b.
The task is to navigate through the rooms to reach the goal (green block). There are more rooms in
the hard one.

R(s, a, s′) =

{
+MAXSTEPS, the goal is reached
−1, otherwise

LavaCrossing-Easy/Hard The example levels are illustrated in Figure C.6a and Figure C.6b.The
task is to navigate toward the goal (green block) while avoiding the lava (orange block).

R(s, a, s′) =


+MAXSTEPS, the goal is reached
−MAXSTEPS, lava hit
−1, otherwise
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(a) The images of randomly generated levels of SimpleCrossing-Easy

(b) The images of randomly generated levels of SimpleCrossing-Hard

Figure C.5

(a) The images of randomly generated levels of LavaCrossing-Easy

(b) The images of randomly generated levels of LavaCrossing-Hard

Figure C.6
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C.3 SOKOBAN

The implementation can be found in (Schrader, 2018). We resize each RGB image state observation
to 84× 84.

D AVERAGE Q-VALUES IN Sokoban

We compute the normalized difference between the learned Q values and the maximum return value
in the environment: Es,a[Q(s,a)]−Rmax

Rmax
, where Rmax is the maximum return the agent can get in

the task, and Es,a[Q(s, a)] is the average Q values during training. Figure D.7 shows the average
Q-values in Sokoban.

Figure D.7: EBU tends to over-estimate the Q-values in Sokoban. UER, PER, and DisCor tend to
under-estimate.

E HYPERPARAMETER SEARCH FOR EBU

As the original paper of EBU (Lee et al., 2019) did not have the best-fit β for the benchmarks we
considered in Section 5.3. Figure E.8 shows that the influence of β is not significant. Thus, we follow
the best-fit parameter reported in (Lee et al., 2019) and select β = 0.5 for all of our experiments.

Figure E.8: Performance of EBU with different β

F STOCHASTIC ENVIRONMENTS EXPERIMENTS

We examine the performance of TER under stochastic transition dynamics in LavaCrossing-Hard.
The stochasticity is realized by replacing the agent’s action with a random action in 10% of steps in
an episode. Figure F.9 shows that this stochasticity does not overshadow the advantage of TER.

18



Published as a conference paper at ICLR 2022

Figure F.9: Performance in stochastic environments

G PSEUDO TERMINAL STATE EXPERIMENTS

We further demonstrate an extension of TER to environments without terminal states. We test TER
in the modified SimpleCrossing-Hard and LavaCrossing-Hard where the episode does not terminate
when the agent reaches the goal. An episode terminates only when the time is up or entering lava.
The agent gets +MAXSTEPS reward when entering the goal, -MAXSTEPS reward when exiting
the goal or entering lava, 0 reward when staying at the goal, −1 reward otherwise. For TER, we
construct ”pseudo terminal states” for reverse sweeping. We keep track of the moving average of
the accumulated rewards at a vertex, sample vertices proportionally to their accumulated rewards,
and start reverse sweeping from the sampled vertices. The sampled vertices are regarded as ”pseudo
terminal states”. The accumulated rewards of, for example, a vertex v is defined as

U(v) :=

∑
sit∈S(v)

G(sit)

|S(v)|

where sit denotes the state at timestep t in episode i, G(sit) corresponds to the accumulated rewards
from the beginning of episode i to timestep t, S(v) := {(sit ∈ Ω | v = φ(sit)} is the set of states
mapped to vertex v, and Ω is the replay buffer. The probability of choosing a vertex v is defined as

P (v) :=
exp(U(v)/κ)∑
v∈V exp(U(v)/κ)

,

where κ denotes the temperature (we set κ = 0.01) of a Boltzmann distribution. Figure G.10
shows that the pseudo terminal state scheme enables TER to outperform the baselines, suggesting
that pseudo terminal states approach could be a promising alternative of terminal states. We also
find that the baselines’ performance drop in the non-terminal version of SimpleCrossing-Hard and
LavaCrossing-Hard. We hypothesize that it is because in the non-terminal version, the agent could
accidentally exit the goal after reaching, so the learning is harder than the original environment.
Moreover, this fact makes learning more challenging in LavaCrossing-Hard since the goal is near
lava and the agent could accidentally hit lava and end up with a large negative reward.

H DOES BATCH MIXING AID EBU?

To investigate if the performance gap between EBU and TER results from batch mixing, we incor-
porate batch mixing with EBU and compare it with TER. We set the batch mixing ratio η same as
that used in TER for every environment. Figure H.11 shows that batch mixing does not improve
EBU’s performance, which suggests that batch mixing is not a critical reason for TER to outperform
EBU.

I DOES FILTERING OUT TIMEOUT STATES IMPROVES EBU?

One possibility that TER outperforms EBU is the difference in the starting states of reverse replay-
ing. TER only starts from the terminal states, while EBU initiates backtracking from both terminal
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Figure G.10: Performance in environments without terminal states

Figure H.11: Incorporating batch mixing with EBU does not aid EBU.

states and timeout states (i.e., the states that trigger resets because of running out of a specified time
limit). We then let EBU starts only from the terminal states and compares it again with TER. Fig-
ure I.12 shows that EBU(no timeout) did not mitigate the performance gap, which suggesting the
choices of starting states of reverse replaying is not crucial.

Figure I.12: Filtering out timeout states does not help EBU match TER’s performance.

J HOW DOES DIMENSION OF d AFFECT TER?

Since we rely on random projection to compress the states and stitch common states in different
trajectories, it is interesting to see if the choice of dimension affects the performance. Let Z := Rd.
Figure J.13 surprisingly shows that TER is insensitive to the dimension of the vectors after the
random projection. We found that even small variations in images lead to huge difference after
random projection. This might explain why even TER(|Z| = 1) can distinguish each state. Note
that as we do not rely on the distances in the space Z to determine the neighbor vertices, it is
acceptable that a pair of state and successor state (s, s′) are distant in the space Z after random
projection.
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Figure J.13: TER is insensitive to the choice of dimension of Z .

K COMPARISON WITH STATE-OF-THE-ART MODEL-BASED RL

As van Hasselt et al. (2019) shows that model-free RL using experience replay can be competitive
with model-based RL using imaginary data, we are interested whether TER can match or surpass
such model-based RL methods. We compare TER with state-of-the-art model-based RL, Dream-
erV2 (Hafner et al., 2020). We implemented TER with double DQN as we mentioned in Section 5.1.
Figure K.14 shows that TER can match DreamerV2’s performance at convergence in 3 out of 4
tasks, albeit DreamerV2 has the luxury of access to imaginary data and more sophisticated models.
DreamerV2 learns a large environment dynamics model and a policy with the latent representations
of the learned dynamics model. The policy is trained by imaginary data generated by the dynamics
model. Generating imaginary data entails expensive computations and lots of wallclock time. Also,
if the environment dynamics model is discontinuous or contact-rich in nature, it is difficult to fit a
good neural network model for generating imaginary data. In such a case, model-free methods can
be preferable to model-based methods.

Additionally, the architecture of DreamerV2 is more complex and harder to tune than TER. TER
consists of the following components:

Q-network: Q(s, a) = Qθ(s, a)

Random projection matrix: φ(s) = Ms,

where θ denotes the weight of the Q-network, while DreamerV2 comprises the following modules:

Recurrent model: ht = fφ(ht−1, zt−1, at−1)

Representation model: zt ∼ qφ(zt|ht, xt)
Transition predictor: ẑt ∼ pφ(ẑt, ht)

Image predictor: x̂t ∼ pφ(x̂t|ht, zt)
Reward predictor: r̂t ∼ pφ(r̂t|ht, zt)

Discount predictor: γ̂t ∼ pφ(γ̂t|ht, zt)
Actor: ât ∼ pψ(ât|ẑt)

Critic: vE(ẑt) ≈ Epφ,pψ
[∑
r≥t

γ̂r−tr̂τ

]
.

For the explanations of each notation, please refer to Hafner et al. (2019). Each component in
dreamer is a neural network and requires tuning the network architecture. As such, we highlight that
TER attains similar performance in the selected domains shown in Figure K.14 with less hyperpa-
rameters.

L ADDITIONAL ATARI EXPERIMENTS

We further evaluate TER in four games selected from Atari benchmark where these tasks’ objectives
are not to reach terminal states. Figure L.15 shows that TER performs similarly with the baselines in
these four games, which suggests that violating the terminal state reaching assumption in the task’s
objective does not impede TER’s performance though the agent cannot benefit from TER. Exciting
future work is to discover promising states other than terminal states to start to reverse sweeping for
general RL tasks.
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Figure K.14: Comparison between TER and dreamer.

Figure L.15: Learning curves in Atari games.

M DISCUSSION OF TER IN CYCLICAL MDPS

We discuss the rationale that TER can work in cyclical MDPs. TER improves the Q-learning update
efficiency because we update the Q-values at dependent successors states before the current state’s
Q-values. However, in cyclical MDPs, some states are inter-dependent (i.e., being predecessor and
successor mutually), which renders the correct update order unclear. We argue that under some
assumptions, the optimal backup order exists even in cyclical MDPs.

M.1 OPTIMAL UPDATE ORDER OF Q-LEARNING EXISTS IN EPISODIC CYCLICAL MDPS

In cyclical MDPs, there could be an inverse action at the successor state s′ that moves the agent back
to the current state s, which causes inter-dependency. For example, for a state-action pair (s, a) and
the corresponding successor state s′, there could be an inverse action a′ that transitions from s′ to s.

Fortunately, the Q-value Q(s, a) of a state-action pair (s, a) is not dependent on the Q-values of all
actions at the successor state s′. Let us recall the Q-value update equation

Q(s, a) = R(s, a, s′) + γmax
a′

Q(s′, a′).

Instead, Q(s, a) depends only on the maxa′∈AQ(s′, a′) of the successor state s′. Let the optimal
successor action a′∗ = arg maxa′∈AQ(s′, a′). All Q(s, a′), a′ 6= a′

∗ does not affect the Q(s, a)
update. We just need to ensure that Q(s′, a′

∗
) is updated before Q(s, a). Moreover, for any state s,

we care only about the optimal action a∗ = arg maxa∈AQ(s, a), if we are only interested in finding
the optimal policy.

As the Q-value at each state-action pair depends only on the max Q-value of the successor state, we
are able to define an optimal path from any state. Let a rollout path ω starting from the state s be
[(s1, a1) . . . (sH−1, aH−1) | s1 = s], where H is the path length. The rollout path ω given by the
optimal policy are then [(s1, a

∗
1), . . . (sH−1, a

∗
H−1)], where si denotes the ith state in the path and

a∗i the optimal action at state si.

Under the assumption that the objective is to reach some terminal states, each ω is acyclic, and
merging all ω given by the optimal policy forms a directed acyclic graph (DAG). This assumption is
valid; otherwise, the optimal policy would be a trivial policy endlessly going back and forth between
two states since there must be a terminal state in episodic RL settings. Besides, the merged graph
must be a DAG; otherwise, it indicates there is an optimal action a∗ at a state s is an inverse action.
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For instance, suppose we have two states sA and sB and their corresponding optimal actions a∗A and
a∗B . Let the transition function be P : S × A 7→ S. If sB = P(sA, a

∗
A) and sA = P(sB , a

∗
B), then

the optimal policy will lead the agent to move back and forth between sB and sA. Given that DAG,
the optimal update order is established according to (Bertsekas et al., 2000).

M.2 OPTIMAL UPDATE ORDER IS HARD TO OBTAIN

Though the optimal backup order for the optimal policy for cyclical MDPs exists, we need the
optimal actions at each state for deriving this order. However, the optimal policy is unknown before
we finish the training. Fortunately, under an admissible assumption that rewards at non-terminal
transitions are non-positive, we can exploit the ending state of the optimal policy.

If rewards are non-positive at transitions other than terminal ones, the MDP can be viewed as an
unweighted graph. Under the assumption that the task’s objective is to reach some terminal goal
states, all the paths given by the optimal policy must end at a terminal state. Performing reverse BFS
from the terminal states gives rise to the shortest path (i.e., the optimal policy) from terminal states
to all other states, thus recovering the optimal backup order. Note that even though we can infer the
optimal paths by the terminal states in these environments, training Q-function by the experience
associated with these paths is still preferable. We can only infer the optimal paths from the existing
experience, but training a Q-function based on these paths can generalize to other unseen states.

Nevertheless, there is more than one terminal state in the environment in practice, and we do not
know which one is the terminal state that the optimal policy will end at. One approximation is to
perform reverse sweep from all the terminal states, as TER does. Though the backup order sequences
from these reverse sweeps are not necessarily optimal, we reduce the search space for the optimal
backup order to the permutations of the terminal states. Otherwise, the search space for the update
order is the permutations of all the possible state-action pairs in the environment.

Note that even though the state-action pairs with non-optimal actions are not needed to be updated
(as long as their Q-values are initialized small enough), we still perform value backups because
their Q-values could become higher than that of the optimal actions due to function approximation.
Performing value backups on these state-action pairs makes sure that these Q-values are not over-
estimated.

N DISCUSSION OF TER IN NON-GRID LIKE TASKS

TER is not restricted to grid-like environments. For instance, consider a LunarLander task in Ope-
nAI gym (Brockman et al., 2016). The goal is to control the aircraft to land on the planet. Though
it is not a grid-like environment, we still can build a graph to maintain predecessors of each state in
LunarLander for TER.

O DISCUSSION

What if an agent is unlikely to visit the same state twice? TER is likely to degenerate to EBU
in this case as the graph will end up with multiple independent paths. A quick fix is to aggregate
vertices (i.e., φ(s) from random projection) by their Euclidean distances. However, the Euclidean
distances in the space spanned by randomly projected vectors might not reflect the state similarity
with respect to a task. A viable way is to aggregate states based on their features extracted by
the value function. For example, suppose we have transitions (s1, a1, s2) and (s3, a3, s4) and let
ψ(si) ∀i ∈ {1, 2, 3, 4} be the states’ features in the value function. When we update Q(s2, a) for
any action a, we need to update Q(s1, a1) as well as Q(s3, a3) if ψ(s2) ≈ ψ(s4). Unfortunately,
the graph has to be rebuilt over again whenever the Q-function is updated, which leads to expensive
computation during online training. An interesting follow-up is to develop a faster online graph
update rule that keeps tracking the value function’s feature space ψ changes.

How does TER tackle stochastic transition function? For each vertex in the graph, we can main-
tain the visitation counts from each predecessor during exploration in the environment and calculate
the visitation probabilities from each predecessor by the visitation counts. Given that probabilities,
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we can sample the predecessors according to their visitation probabilities during reverse BFS. On
the other hand, we tested TER in an environment with a stochastic transition function. The results
shown in Figure F.9 suggest that stochasticity does not overshadow the advantage of TER.
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