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ABSTRACT

Considerable efforts have been devoted to machine learning (ML) for combinatorial
optimization (CO) problems, especially on graphs. Compared to the active and
well-established research for representation learning of text and vision, etc., it
remains under-studied for the representation learning of CO problems, especially
across different types. In this paper, we try to fill this gap (especially for NP-
complete (NPC) problems, as they, in fact, can be reduced to one another). Our
so-called ConRep4CO framework, performs contrastive learning by first transform-
ing CO instances in various original forms into the form of Boolean satisfiability
(SAT). This scheme is readily doable, especially for NPC problems, including
those practical graph decision problems (GDPs) which are inherently related to
their NP-hard optimization versions. Specifically, each positive pair of instances
for contrasting consists of an instance in its original form and its corresponding
transformed SAT form, while the negative samples are other instances not in cor-
respondence. Extensive experiments on seven GDPs (most of which are NPC)
show that ConRep4CO significantly improves the representation quality and gen-
eralizability to problem scale. Furthermore, we conduct extensive experiments
on NP-hard optimization versions of the GDPs, including MVC, MIS, MC and
MDS. The results show that introducing ConRep4CO can yield performance im-
provements of 61.27%, 32.20%, 36.46%, and 45.29% in objective value gaps
compared to problem-specific baselines, highlighting the potential of ConRep4CO
as a unified pre-training paradigm for CO problems.

1 INTRODUCTION

Combinatorial optimization (CO) has been attracting wide interest for its practical importance from
logistics [41] to finance [36]. Compared with the vector or matrix-like data, e.g., image, text, and the
associated short-range tasks, e.g., classification and regression, the CO problems are inherently more
challenging due to their discrete and non-convex nature with complex constraints, which often leads
to NP-complete (NPC) or even NP-hard complexity [26].

Despite the recent extensive research on machine learning (ML) for CO [3; 15], there still exist many
limitations: compared to the well-developed learning approaches for representation of text [35] and
vision [50], the tailored representation learning framework for CO problems remain under-explored.
In fact, existing ML4CO literature in technique is mainly tailored to a single problem type, e.g.,
TSP [43], which may become a bottleneck for their ability in the sense of not leveraging the potential
cross-domain learning. This gap is especially pronounced with the fast development of multi-modality
joint representation learning out of the CO area, e.g. CLIP [38] for both text and image.

In this paper, we try to fill the above gap by advancing the pre-training representation learning
paradigm for CO problems, particularly by selecting various NPC problems, mainly including the
so-called graph decision problems (GDPs), as pre-training tasks 1. The hope is that the model trained
jointly on various problem types will exhibit better expressiveness and generalization ability. To

1GDPs are the decision versions of general NP-hard CO problems, such as the k-independent set problem
corresponding to the maximum independent set (MIS) problem, and encapsulate the core challenges of CO.
From the 21 NP-complete problems identified by [26], 10 are GDPs, highlighting their fundamental importance.
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achieve our objective, we particularly leverage an important fact: NPC problems can be reduced to
one another, and can all be transformed into Boolean satisfiability (SAT), making SAT a common
form to bridge different original forms. This also suggests that they inherently share a latent structure
worth being exploited for effective representations and ultimately for the goal of high-quality problem
solving. Furthermore, there is a strong connection between GDPs and their optimization versions,
which are more practical in real-world applications. Most CO problems can be converted into their
decision versions by adding a target value. Prior results [25] have also established polynomial-time
equivalences between decision and optimization for key CO problems. We select GDPs as pretraining
tasks to learn representations, maintaining the potential to leverage the learned representations to
enhance general CO problem-solving beyond GDPs.

Specifically, we develop a contrastive pre-training learning paradigm, ConRep4CO, tailored to CO
problems beyond the vanilla version for images [9]. The pre-training is performed by contrasting
problem instances, where the positive sample is defined as a pair of a vanilla GDP instance with its
corresponding SAT form, while the negative sample is a pair that is not in correspondence. Also, a
decision loss is applied to guide each model to effectively learn the feature representations of the
respective instances and capture the unique characteristics of its assigned problem domain. Extensive
experiments are conducted to evaluate the effectiveness of the ConRep4CO paradigm, comprising
two parts: 1) representation evaluation, and 2) enhancement of CO problem-solving. For 1),
since there is no universal metric for CO representation evaluation, in the context of our discussion,
we use the accuracy of solving GDPs as a measure. We first assess the representation quality and
generalizability to problem scale by solving GDPs on both pre-training identical distribution and more
difficult instances. We also evaluate the cross-domain generalizability by the solving performance on
unseen GDP domains. For 2), we incorporate ConRep4CO into the training of problem-specific neural
solvers for minimum vertex cover (MVC), maximum independent set (MIS), maximum clique (MC),
and minimum dominating set (MDS). The neural solvers enhanced by ConRep4CO consistently show
significant performance improvements, demonstrating the practical applicability of ConRep4CO
beyond GDPs. The highlights of the paper are as follows.

1) We try to advance the frontier of representation learning, beyond the classic instance forms, e.g.,
text/vision, by proposing ConRep4CO, a novel contrastive pre-training paradigm to learn general
representations across different CO problems with complex discrete constraints and variables.

2) We leverage the SAT form to build the positive/negative pairs for our carefully designed contrastive
learning scheme, based on the fact that GDPs (i.e., NPC problems) can be reduced into the SAT form.
A merit is that our contrastive approach is augmentation-free, as CO instance augmentation itself is a
notoriously challenging task due to unique problem structures. This is in contrast to the trivial image
augmentation as done in contrast to vision problems, which, in fact, is also a bottleneck for directly
reusing the contrastive learning approaches in vision to combinatorial tasks.

3) Our method learns the representation across different types beyond a single type. Such a unified
paradigm facilitates representation learning through knowledge transfer among problem domains and
mutual enhancement. Extensive experiments show that ConRep4CO not only improves representation
quality but also significantly enhances problem-solving for various CO problems.

2 RELATED WORK

Machine Learning for CO. The application of machine learning to graph-based CO problems has a
rich history, with recent research demonstrating substantial advancements in this domain [27; 3; 32].
Most ML-based approaches for CO follow a two-stage framework: (1) Graph representation learning,
where graph instances are embedded into low-dimensional vector spaces through graph neural
networks (GNNs) [20; 6; 8]; and (2) The utilization of these learned representations to solve CO
problems [24; 37; 40]. Our ConRep4CO paradigm focuses on enhancing the first stage by proposing
a more general training approach. While previous work has largely focused on designing network
architectures [28; 19; 46], our approach emphasizes the development of a training paradigm that
leverages information from multiple problem types. There are also recent works on training with
different types of CO, e.g., GOAL [10], UniCO [34] and MAB-MTL [49]. However, these works are
orthogonal to ours as they directly follow the multi-task paradigm without contrastive pre-training.

Graph Contrastive Learning. Many graph contrastive frameworks rely on graph augmentations,
which can be broadly categorized into two types: (1) structural perturbations, such as node dropping,
edge sampling, and graph diffusion [11; 23]; and (2) feature perturbations, such as adding noise
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to node features [21]. These augmentation strategies have demonstrated effectiveness across a
range of tasks, from graph-level representations [21; 55] to node-level representations [48; 45]. Our
ConRep4CO paradigm moves beyond traditional graph augmentations by contrasting graph instances
across multiple problem types. Instead of solely relying on structural and feature perturbations,
ConRep4CO leverages the inherent characteristics of different CO problems, enabling the model to
capture higher-level characteristics. Note that our approach is augmentation-free. We believe this
is a nice property as graph augmentation2 itself is a notoriously complex problem and much more
complex than that on image data, as done in the vanilla contrastive paradigm SimCLR [9], where
the augmented positive samples are generated by adding perturbations on the image e.g,. cropping,
translating, warping etc.

3 METHODOLOGY

We present details of our Contrastive Representation alignment and learning for Combinatorial
Optimization (ConRep4CO) paradigm. We start by introducing the preliminary background on
representations of graph decision problems and SAT in Sec. 3.1. Then, we elaborate on our approach
to aligning multiple problem types in Sec. 3.2. Finally, we introduce the overall pipeline and
implementation of our ConRep4CO, as well as some important training details in Sec. 3.3.

3.1 PRELIMINARIES

Graph decision problem (GDP). As a fundamental computational challenge, its goal is to determine
the existence of specific properties within a given graph. These properties can vary, from identifying
whether a graph contains a particular substructure, e.g. a clique or cycle, to assessing whether it meets
conditions like connectivity or planarity. Graph decision problems are typically the decision versions
of general NP-hard CO problems, e.g., the k-independent set problem corresponding to the maximum
independent set problem, and the k-vertex cover problem corresponding to the minimum vertex cover
problem, making them essential in the context of NPC problems. In particular, ML-based models can
be effectively utilized to address GDPs. The objective is to learn a representation of a specific GDP
type and use it to predict decisions based on the input graph. These representations can be understood
as mappings that translate the structural properties of the input graphs into corresponding decisions,
thereby capturing the underlying patterns required for decision-making in GDPs.

SAT problem. A Boolean formula in propositional logic consists of Boolean variables connected
by logical operators “and” (∧), “or” (∨), and “not” (¬). A literal, denoted as li, is defined as either
a variable or its negation, and a clause cj is represented as a disjunction of n literals,

∨n
i=1 li. A

Boolean formula is in Conjunctive Normal Form (CNF) if it is expressed as a conjunction of clauses∧m
j=1 cj . Given a CNF formula, the Boolean Satisfiability Problem (SAT) aims to determine whether

there exists an assignment π of Boolean values to its variables under which the formula evaluates to
true. If such an assignment π exists, the formula is called satisfiable, where π is called a satisfying
assignment; otherwise, it is unsatisfiable. Graph representations play an important role in analyzing
SAT formulas, with four common primary forms [4]: the literal-clause graph (LCG), literal-incidence
graph (LIG), variable-clause graph (VCG), and variable-incidence graph (VIG). The LCG is a
bipartite graph consisting of two types of nodes—literals and clauses—where an edge between a
literal and a clause signifies the occurrence of that literal in the clause. LIG, in contrast, consists
solely of literal nodes, with edges representing the co-occurrence of two literals within the same
clause. VCG and VIG are derived from LCG and LIG by merging each literal with its negation.

3.2 MODAL ALIGNMENT Matching

CNF Formula

 p  cnf  10  34

 -1  -2  -3   0

  1  -3   0

 -2 -3   0

...

SAT GraphGraph Decision Problem

K-clique  p  cnf  25  66

  1   2   0

 -1   3   0

  2  -3  0

...

K-color  p  cnf  20  51

  1   2   3   0

 -1  -2   0

  2   3   0

...

Figure 1: Transformation process from various GDP
instances to the unified LCG representation of SAT.

We aim to enhance the learned represen-
tations of graph instances across a diverse
range of GDPs by incorporating and syn-
thesizing information from multiple GDP
types. Specifically, we conceptualize each
GDP type as a distinct problem modality.
By adopting this multi-modal perspective,
we explore the potential for cross-modal
information-passing schemes. Note that

2The CO instance can often be represented as a certain graph, e.g., a bipartite graph in [14].
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SAT
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SAT Output
Module

Representation

Extractor

Representation

Extractor

Output Module

Output Module

Representation

Extractor

Output Module

SAT Model

Graph Model

Data Flow

Loss Flow

Figure 2: Overview of ConRep4CO with the proposed contrastive learning scheme. Given instances
from multiple GDP types and their corresponding SAT graphs, a graph model is trained for each GDP
type alongside a SAT model. Each model is composed of a Representation Extractor and an Output
Module. The input graphs are processed by the Representation Extractor to generate instance-level
representations, which are subsequently fed into the Output Module to produce the final decisions for
each instance. The decision loss is applied individually to each model, while the contrastive loss is
applied to each graph model. All contrastive losses are applied to the SAT model.

the term ‘modality’ is not strictly defined. We hope to express that the problems represent different
forms of a higher-level underlying difficulty and share a common underlying structure.

Significant challenges arise due to the inherent disparities and structural gaps between different GDP
types, often exhibiting varying graph topologies and problem characteristics. To fill this gap, we
propose introducing SAT as a unified intermediary modality. The core concept involves transforming
each GDP instance into its corresponding CNF formula, effectively converting it into a SAT instance.
Once transformed, we construct a SAT-based graph representation for each instance, ensuring that
all GDP instances, regardless of their original modalities, are standardized into an equivalent SAT
graph representation. This transformation allows for uniform modeling across disparate problem
types. Fig. 1 clarifies our approach to modal transformation.

graph model Neg. pair

SAT model N
eg. pair

graph model Neg. pair

SAT model N
eg. pair

K-clique

SAT

Transform

Transform

Pos. pair

Transform

Figure 3: An example of the contrastive learning pro-
cess, where ’Pos. pair’ and ’Neg. pair’ refer to positive
and negative pairs, respectively. A similar process ap-
plies to other modalities with SAT.

After this transformation, we leverage
contrastive learning to align the different
modalities. Specifically, each GDP in-
stance and its corresponding SAT instance
form a positive pair to train both the SAT
and graph models, while SAT instances de-
rived from other GDP instances within the
same GDP type serve as negative samples
for the graph model. Similarly, other GDP
instances within the same type serve as neg-
ative samples for the SAT model. Fig. 3
illustrates the contrastive learning process.
The SAT modality, in turn, aligns with all
other modalities. The goal is to facilitate in-
formation transfer across GDP modalities
while preserving the distinct characteristics of each problem type.

3.3 CONREP4CO PARADIGM

3.3.1 OVERVIEW

In this section, we provide a detailed introduction to ConRep4CO. Fig. 2 exhibits an overview.

Consider n types of GDPs, denoted as P1,P2, . . . ,Pn, along with n corresponding graph sets
G1,G2, . . . ,Gn. For simplicity, assume that each graph set Gi contains m graphs, i.e., Gi =
{G1

i ,G2
i , . . . ,Gm

i }, for i = 1, 2, . . . , n. The objective is to solve problem Pi on graphs in Gi. In total,
there are m× n instances, denoted by Iji = (Pi,Gj

i ), where i = 1, 2, . . . , n and j = 1, 2, . . . ,m.

4
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We first transform each of the m×n GDP instances into CNF, thereby generating their corresponding
SAT graphs, i.e., (Pi,Gj

i ) → Bj
i , where Bj

i is the constructed SAT graph.

Then, we develop n distinct graph models, M1, . . . ,Mn, each for one GDP type, and one unified SAT
model Msat to address the problem space. Both the graph models and the SAT model are structured
around two key components: the Representation Extractor and the Output Module. The Represen-
tation Extractor, implemented as a GNN-based network, is responsible for learning and extracting
representations from the input graph instances, whether derived from GDP or SAT transformations.
The Output Module, implemented as an MLP, then utilizes these learned representations to produce
task-specific outputs, thereby enabling the resolution of the given problem.

In training, we jointly train the (n+ 1) models corresponding to the n GDP modalities along with
the SAT modality. The supervision is derived from two parts: the decision loss and the contrastive
loss. The decision loss is applied independently to each model, guiding the encoder to learn domain-
specific feature representations. Meanwhile, contrastive loss is employed to facilitate feature fusion
and message passing across different modalities, enabling the models to leverage complementary
information from other problem domains. For training sample and label preparation, one cost
comes from generating the corresponding SAT form for each instance, which requires a polynomial
complexity. While this cost is negligible for computing labels for the training instances.

3.3.2 LOSS FUNCTION

We introduce the definition and computation of the two key loss functions used in ConRep4CO.

Decision Loss Ldec. It is defined as a binary cross-entropy loss, which can be computed by:

Ldec =
∑

i∈Batch

{
−dgt

i log(dout
i )− (1− dgt

i ) log(1− dout
i )

}
, (1)

where dout denotes the output decision of the models, and dgt refers to the ground truth label. For
each model, the decision loss is independently computed and applied.

Contrastive Loss Lcon. Here we adopt the classic contrastive objective as widely used in litera-
ture [9; 22; 44], to facilitate the alignment between the GDP and SAT modalities. Taking Pn and the
SAT modality as an example, Lcon is formulated as:

Lcon,n =

N∑
i=1

{
− log

exp(sim(r̂in, r̂
i
sat)/τ)∑N

j=1 Ij ̸=i exp(sim(r̂in, r̂
j
sat)/τ)

− log
exp(sim(r̂in, r̂

i
sat)/τ)∑N

j=1 Ij ̸=i exp(sim(r̂jn, r̂isat)/τ)

}
(2)

where N represents the number of instance pairs in a batch, r̂in denotes the normalized representation
of the i-th instance in the Pn modality, and r̂isat denotes the normalized representation of the
corresponding instance in the SAT modality, derived from the i-th instance of the Pn modality. The
parameter τ is the temperature scalar, and I is an indicator function. The function sim(·, ·) measures

the cosine similarity between two representations, defined as sim(ri, rj) =
r⊤i rj

∥ri∥∥rj∥ .

Each GDP modality is trained using the contrastive loss with the SAT modality, allowing independent
optimization for each GDP model. In parallel, the SAT model is optimized using the average
contrastive losses computed across all GDP modalities, ensuring effective alignment.

3.3.3 TRAINING DETAILS

We adopt a warm start strategy to ensure the models learn robust representations. During the initial
training phase, only the decision loss is utilized, while the contrastive loss is temporarily disabled.
This phase allows the models to focus on learning meaningful task-specific representations based
solely on the decision outcomes. Our insight is to provide a stable foundation for representation
learning before introducing the more complex cross-modal alignment enforced by contrastive loss.

After the warm start phase, we introduce the contrastive loss alongside the decision loss. To balance
the influence of these two losses, we introduce a parameter β, which controls the relative weight of
the decision loss during the joint training phase.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: GDP solving accuracy (%) with confidence intervals (α = 0.05) of the graph models trained
on an identical distribution, measuring the quality of learned representations. ‘SAT Back.’ refers to
SAT model backbone, and ‘Graph Back.’ denotes graph model backbone. The ‘Overall’ column
represents the average accuracy across all datasets.

SAT Back. Graph Back. Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+NeuroSAT GCN
Easy

Graph Model 77.0±0.2 58.5±0.3 60.3±0.6 86.1±0.2 62.7±0.4 71.2±0.2 63.6±0.4 68.5
Graph Model+ConRep4CO 79.3±0.3 62.0±0.1 67.3±0.2 90.2±0.1 67.5±0.5 71.7±0.3 65.4±0.3 71.9

Medium
Graph Model 63.2±0.5 62.2±0.2 59.9±0.4 79.6±0.2 61.1±0.2 70.6±0.5 63.3±0.4 65.7
Graph Model+ConRep4CO 71.3±0.5 64.6±0.2 63.3±0.3 82.2±0.2 64.0±0.1 72.8±0.4 65.7±0.4 69.1

LCG+GCN GCN
Easy

Graph Model 77.0±0.3 58.5±0.2 60.3±0.4 86.1±0.2 62.7±0.3 71.2±0.2 63.6±0.3 68.5
Graph Model+ConRep4CO 79.3±0.2 61.1±0.3 65.0±0.3 89.6±0.1 67.7±0.4 71.1±0.3 64.6±0.2 71.2

Medium
Graph Model 63.2±0.4 62.2±0.2 59.9±0.3 79.6±0.3 61.1±0.2 70.6±0.4 63.3±0.3 65.7
Graph Model+ConRep4CO 71.5±0.3 65.4±0.4 63.4±0.2 81.7±0.2 64.0±0.3 72.3±0.3 64.4±0.4 69.0

VCG+GCN GCN
Easy

Graph Model 77.0±0.3 58.5±0.2 60.3±0.4 86.1±0.2 62.7±0.3 71.2±0.2 63.6±0.3 68.5
Graph Model+ConRep4CO 78.0±0.4 60.6±0.3 62.9±0.3 88.8±0.1 66.3±0.2 71.1±0.3 64.2±0.2 70.3

Medium
Graph Model 63.2±0.4 62.2±0.2 59.9±0.3 79.6±0.3 61.1±0.2 70.6±0.4 63.3±0.3 65.7
Graph Model+ConRep4CO 70.8±0.3 64.2±0.4 63.0±0.2 80.4±0.2 62.1±0.3 71.8±0.3 64.0±0.4 68.0

LCG+NeuroSAT GraphSAGE
Easy

Graph Model 57.9±0.5 50.0±0.3 50.7±0.4 61.8±0.2 52.2±0.3 58.2±0.3 53.8±0.4 54.9
Graph Model+ConRep4CO 79.7±0.2 63.2±0.3 70.8±0.3 93.3±0.1 75.3±0.4 71.0±0.2 63.9±0.3 73.9

Medium
Graph Model 52.8±0.4 56.5±0.2 56.0±0.3 55.2±0.3 50.0±0.4 58.2±0.3 54.8±0.2 54.8
Graph Model+ConRep4CO 72.8±0.3 64.1±0.4 66.7±0.2 85.9±0.2 70.1±0.3 71.7±0.4 64.8±0.3 70.9

LCG+NeuroSAT PGN
Easy

Graph Model 76.2±0.3 58.4±0.2 66.4±0.4 91.6±0.1 67.9±0.3 68.7±0.2 61.7±0.3 70.1
Graph Model+ConRep4CO 77.3±0.2 61.9±0.3 69.7±0.3 93.7±0.2 71.6±0.4 70.3±0.3 61.7±0.2 72.3

Medium
Graph Model 72.4±0.4 62.8±0.3 64.7±0.2 83.0±0.3 68.1±0.2 58.8±0.4 50.4±0.3 65.7
Graph Model+ConRep4CO 72.0±0.3 63.3±0.4 66.0±0.3 86.4±0.2 67.2±0.3 70.8±0.3 63.3±0.4 69.9

LCG+NeuroSAT GraphGPS
Easy

Graph Model 82.4±0.2 77.2±0.3 85.5±0.1 89.9±0.2 76.4±0.3 69.4±0.4 67.4±0.2 78.3
Graph Model+ConRep4CO 83.9±0.3 77.4±0.2 88.5±0.2 90.6±0.1 78.4±0.4 76.3±0.3 66.4±0.3 80.2

Medium
Graph Model 70.7±0.4 62.5±0.3 66.8±0.2 84.9±0.3 61.8±0.2 69.4±0.3 62.6±0.4 68.2
Graph Model+ConRep4CO 71.7±0.3 72.9±0.4 81.8±0.3 85.6±0.2 73.0±0.3 57.2±0.4 63.2±0.3 72.2

3.3.4 INCORPORATING CONREP4CO INTO PROBLEM-SPECIFIC NEURAL SOLVERS

Despite selecting GDPs as the pre-training tasks, ConRep4CO is not restricted to only GDP solving
in practical applications. ConRep4CO can be incorporated into problem-specific neural solvers
to enhance the learned representation and ultimately improve problem-solving. Suppose one has
pre-trained a SAT model (and graph models) using ConRep4CO. The following steps can be taken:

1) Convert the decision version instances of the neural solver’s corresponding problem domain into
CNFs. This can typically be implemented through off-the-shelf tools, such as CNFGen [30], and
requires polynomial complexity, which is negligible for computing labels for the training instances.

2) Use the loss function defined in Sec. 3.3.2 to perform contrastive learning between the neural solver
model and the pre-trained SAT model. The neural solver’s architecture may need minor adjustments,
such as adding an output module, while the parameters of the SAT model are fixed, as the pre-trained
SAT model already contains unified representations for various problems.

3) Fine-tune the neural solver in the original problem domain to adapt the learned representations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the broad applicability of our approach, we select seven GDPs: k-Clique,
k-Dominating Set (k-Domset), k-Vertex Cover (k-Vercov), k-Coloring (k-Color), k-Independent Set
(k-Indset), Perfect Matching (Matching), and Graph Automorphism (Automorph). For each problem,
we randomly generate graph instances that adhere to a distribution specific to the problem. To
ensure a comprehensive and rigorous evaluation, we create datasets with varying levels of difficulty,
categorized as easy, medium, and hard, based on the size and distribution of the generated graphs.
For each easy and medium dataset, we generate 160,000 instances for training, 20,000 instances for
validation, and 20,000 instances for testing. For each hard dataset, we only produce 20,000 instances
for testing to evaluate the generalizability of the learned representations. Additionally, we ensure an
equal distribution of labels, with 50% of instances labeled as satisfiable (1) and 50% as unsatisfiable
(0) across the training, validation, and test sets. The graph instances were transformed into CNF
using generators from CNFGen [30]. Furthermore, we evaluate the effectiveness of ConRep4CO
in enhancing CO problem-solving on four practical CO problems: minimum vertex cover (MVC),
maximum independent set (MIS), maximum clique (MC), and minimum dominating set (MDS). For
MVC, we follow the setting in [54], using Erdős–Rényi (ER) graphs with three scales, containing
approximately 50 to 100, 100 to 200, and 400 to 500 vertices, respectively. For MIS, MC, and
MDS, we follow the setting in [56], using RB graphs [53] for MIS and MC, and BA graphs [2] for
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Table 2: GDP solving accuracy (%) with confidence intervals (α = 0.05) of the graph models on the
hard datasets, measuring the generalizability of learned representations. ‘SAT Back.’ refers to SAT
model backbone, and ‘Graph Back.’ denotes graph model backbone. The terms ‘Easy’ and ‘Medium’
in parentheses indicate the difficulty level of the datasets used for training. The ‘Overall’ column
represents the average accuracy across all datasets.

SAT Back. Graph Back. Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+NeuroSAT GCN

Graph Model (Easy) 54.5±0.2 50.0±0.1 50.0±0.1 54.6±0.4 50.5±0.2 66.4±0.3 63.1±0.1 55.6
Graph Model+ConRep4CO (Easy) 57.1±0.1 50.1±0.1 50.0±0.1 60.5±0.3 50.3±0.2 67.9±0.4 63.6±0.2 57.1
Graph Model (Medium) 57.1±0.1 56.2±0.1 50.0±0.1 63.7±0.5 53.1±0.5 68.3±0.3 63.2±0.2 58.8
Graph Model+ConRep4CO (Medium) 57.8±0.2 56.5±0.1 57.7±0.3 67.6±0.5 56.5±0.4 70.0±0.2 65.3±0.2 61.6

LCG+GCN GCN

Graph Model (Easy) 54.5±0.3 50.0±0.0 50.0±0.0 54.6±0.4 50.5±0.2 66.4±0.3 63.1±0.4 55.6
Graph Model+ConRep4CO (Easy) 52.5±0.4 50.0±0.0 53.9±0.3 55.7±0.2 49.9±0.3 68.6±0.2 63.1±0.3 56.2
Graph Model (Medium) 57.1±0.2 56.2±0.3 50.0±0.0 63.7±0.3 53.1±0.4 68.3±0.4 63.2±0.2 58.8
Graph Model+ConRep4CO (Medium) 57.9±0.3 58.9±0.2 57.4±0.4 65.6±0.3 55.2±0.3 71.2±0.3 64.5±0.4 61.5

VCG+GCN GCN

Graph Model (Easy) 54.5±0.3 50.0±0.0 50.0±0.0 54.6±0.4 50.5±0.2 66.4±0.3 63.1±0.4 55.6
Graph Model+ConRep4CO (Easy) 53.1±0.2 50.0±0.0 50.0±0.0 55.4±0.3 49.6±0.4 68.4±0.4 63.4±0.3 55.7
Graph Model (Medium) 57.1±0.2 56.2±0.3 50.0±0.0 63.7±0.3 53.1±0.4 68.3±0.4 63.2±0.2 58.8
Graph Model+ConRep4CO (Medium) 57.7±0.4 60.5±0.3 57.7±0.3 64.8±0.2 53.6±0.3 69.0±0.3 64.3±0.3 61.1

LCG+NeuroSAT GraphSAGE

Graph Model (Easy) 50.9±0.4 50.3±0.3 48.1±0.2 50.8±0.3 50.5±0.2 57.8±0.4 55.7±0.3 52.0
Graph Model+ConRep4CO (Easy) 52.9±0.3 59.9±0.4 55.9±0.4 60.2±0.2 58.5±0.3 67.9±0.3 62.1±0.4 59.6
Graph Model (Medium) 50.9±0.4 57.3±0.2 54.7±0.3 50.2±0.4 48.9±0.3 58.4±0.3 55.8±0.2 53.7
Graph Model+ConRep4CO (Medium) 59.7±0.3 59.5±0.3 60.3±0.2 70.2±0.4 56.4±0.4 68.4±0.2 64.2±0.3 62.7

LCG+NeuroSAT PGN

Graph Model (Easy) 54.2±0.3 59.3±0.2 59.5±0.4 63.1±0.3 54.9±0.2 66.3±0.4 60.3±0.3 59.7
Graph Model+ConRep4CO (Easy) 54.6±0.2 59.8±0.3 59.9±0.3 63.3±0.4 55.1±0.3 66.7±0.3 61.0±0.4 60.1
Graph Model (Medium) 60.4±0.4 58.6±0.3 59.7±0.2 69.1±0.3 55.9±0.4 67.1±0.2 63.5±0.3 62.0
Graph Model+ConRep4CO (Medium) 61.2±0.3 58.9±0.4 60.7±0.3 69.7±0.2 58.1±0.3 67.5±0.3 63.3±0.2 62.8

LCG+NeuroSAT GraphGPS

Graph Model (Easy) 59.6±0.2 50.0±0.0 49.9±0.1 50.0±0.0 53.5±0.3 68.0±0.4 57.6±0.3 55.5
Graph Model+ConRep4CO (Easy) 59.3±0.3 50.7±0.1 60.9±0.4 59.6±0.3 53.5±0.4 58.9±0.3 59.5±0.4 57.5
Graph Model (Medium) 63.2±0.3 55.2±0.4 56.8±0.2 68.3±0.4 63.0±0.3 63.9±0.3 58.3±0.4 61.2
Graph Model+ConRep4CO (Medium) 63.8±0.4 60.8±0.3 77.9±0.3 68.9±0.3 65.7±0.4 60.1±0.2 61.4±0.3 65.5

Table 3: GDP solving accuracy (%) with confidence intervals (α = 0.05) of the graph models on
Easy datasets. The ‘Overall’ column represents the average accuracy across all datasets.

Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

Graph Model 76.2±0.2 58.4±0.4 66.4±0.2 91.6±0.5 67.9±0.3 68.7±0.3 61.7±0.2 70.1
Graph Model-Unseen 76.9±0.3 61.0±0.1 70.1±0.2 93.4±0.4 68.6±0.3 69.7±0.1 61.7±0.2 71.6

MDS, generating two scales of datasets with approximately 200 to 300 and 800 to 1200 vertices,
respectively. Please refer to Appendix C for more details about the dataset description and statistics.

Graph/SAT Model Backbones. We implement multiple GNN backbones for the Representation
Extractor in both graph and SAT models. For the graph models, we adopt two widely used backbones,
GCN [28] and GraphSAGE [19], and two advanced backbones with stronger representational capacity,
PGN [47] and GraphGPS [39]. For the SAT model, we implement NeuroSAT and a GCN architecture
specifically tailored for SAT graphs. Moreover, we employ both LCG and VCG as SAT graph
representations. Please refer to Appendix D for more details.

Tasks. The evaluation tasks can be divided into two parts: 1) Representation evaluation, measured
by the performance of graph models on the GDP-solving task, focusing on how the learned repre-
sentations can accurately determine the solution for each specific problem type. The GDP-solving
performance on more difficult instances and unseen GDP domains is used to assess both the in-domain
(problem scale) and cross-domain generalizability of the learned representations. 2) Enhancement
of CO problem-solving, measured by the performance on four CO problems—MVC, MIS, MC,
and MDS—when incorporating ConRep4CO into problem-specific neural solvers, as described in
Sec. 3.3.4. In our experiments, we also observe that the representations learned by the SAT model
have also been enhanced and show potential for use in downstream SAT tasks. Detailed experiments
related to the SAT model can be found in Appendix F.3 and F.4.

Baselines. For 1) representation evaluation, to ensure a fair comparison, we establish baselines
for the graph models trained by ConRep4CO by keeping the architectures identical while modifying
only the training procedures. Each baseline graph model is trained independently on its corresponding
dataset. For 2) enhancement of CO problem-solving, OptGNN and GCNN from [54] are used as
baseline neural solvers for MVC, while GFlowNet from [56] serves as the baseline neural solver for
MIS, MC, and MDS. These models are trained using the methods described in their respective papers
and compared to those incorporating ConRep4CO as outlined in Sec. 3.3.4.
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Table 4: Performance on MVC. ‘OBJ’ refers to the average objective value, where lower is better for
MVC. ‘Optimal’ represents the best-known solution obtained using Gurobi [18].

Graph Optimal
OptGNN OptGNN+ConRep4CO

gain
GCNN GCNN+ConRep4CO

gainOBJ gapabs OBJ gapabs OBJ gapabs OBJ gapabs

ER(50,100) 54.62 55.87 1.25 54.70 0.08 93.60% 55.34 0.72 55.17 0.55 23.61%
ER(100,200) 122.79 126.04 3.25 124.37 1.58 51.40% 128.29 5.50 126.75 3.96 28.00%
ER(400,500) 417.42 420.51 3.09 419.31 1.89 38.83% 443.43 26.01 436.77 19.35 25.61%
avg. gain - - - - - 61.27% - - - - 25.74%

4.2 REPRESENTATION EVALUATION

4.2.1 REPRESENTATION QUALITY EVALUATION

We evaluate the quality of the learned representations by comparing the accuracy of graph models in
solving seven GDPs. The baseline model is referred to as Graph Model, which is trained indepen-
dently on its corresponding dataset. Our proposed approach, denoted Graph Model+ConRep4CO,
initializes the model parameters with a pre-trained checkpoint from ConRep4CO trained on the seven
GDP datasets and is then fine-tuned individually. Table 1 presents the results for six combinations
of SAT and graph backbones, evaluating the performance of both models trained and tested on
datasets with identical distributions, including the easy and medium difficulty datasets. The proposed
approach consistently outperforms the baseline model across most GDP tasks, at both difficulty
levels, and for all six backbone combinations. These findings indicate that integrating ConRep4CO
substantially enhances the quality of the learned representations, enabling more effective capture of
the underlying features and characteristics of GDPs. Consequently, the enhanced representations lead
to improved accuracy in solving GDPs. Notably, when employing the GraphSAGE backbone, our
approach demonstrates a particularly significant performance improvement over the baseline.

4.2.2 IN-DOMAIN GENERALIZABILITY EVALUATION

To assess the in-domain generalization capabilities of the learned representations, particularly in
relation to problem scale, we evaluate their performance on previously unseen hard GDP datasets,
which consist of problem instances with increased scale and complexity. Table 2 presents the results
for six combinations of SAT and graph backbones, with graph models trained on the easy and medium
datasets and tested on the hard datasets. The results clearly demonstrate that the representations
learned by ConRep4CO show improved performance across most GDP tasks, both difficulty levels,
and all six backbone combinations. This indicates that ConRep4CO also improves generalizability to
more challenging and complex problem instances that were previously unseen. The improvement
likely stems from the information transfer between various GDPs during pre-training, allowing the
model to learn shared, more general, and high-level representations. This generality is applicable to
problem scale, further reinforcing the robustness of the learned representations.

4.2.3 CROSS-DOMAIN GENERALIZABILITY EVALUATION

To further evaluate cross-domain generalizability, particularly the ability to generalize to unseen
problem domains during pre-training, we select 6 out of 7 GDPs as pre-training domains, with
the remaining GDP serving as the generalizing domain. After pre-training, we define a new graph
model for the generalizing domain, align it with the pre-trained SAT model from the pre-training
domains, and fine-tune it on 20,000 instances from the generalizing domain. The graph model for
the generalizing domain is referred to as Graph Model-Unseen. We conduct experiments on all
combinations of pre-training domains and report the GDP-solving accuracy for the generalizing
domain in Table 3. Note that each number in the second row corresponds to a complete independent
experiment, where the dataset indicated in the header is the generalizing domain, and the remaining
six GDPs serve as pre-training domains. The results demonstrate that ConRep4CO enables the graph
model to learn better representations for an unseen GDP domain with minimal data, outperforming
the baseline. This indicates that ConRep4CO not only enhances representation quality for specific
tasks but also improves representation learning for problem domains that are completely unseen. The
improvement is likely due to the unified SAT model capturing shared features among pre-training
domains, allowing it to learn a general GDP representation applicable to unseen GDPs. Aligning with
the SAT model helps the graph model learn new GDP representations more effectively and efficiently.

The results also reveal that it is not necessary to include all GDP domains during pre-training when
scaling to a large number of GDPs. Aligning with the pre-trained SAT model allows for effective
transfer to new GDPs with minimal data, showing the practical applicability of ConRep4CO.
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Table 5: Performance on MIS, MC, and MDS. ‘OBJ’ refers to the average objective value, where
higher is better for MIS and MC, and lower is better for MDS. ‘Optimal’ denotes the best-known
solution, obtained using KAMIS [29] for MIS and Gurobi [18] for MC and MDS.

Problem Type Graph Optimal
GFlowNet GFlowNet+ConRep4CO

gain avg. gainOBJ gapabs OBJ gapabs

MIS↑
RB(200,300) 20.10 19.18 0.92 19.56 0.54 41.30%

32.20%RB(800,1200) 43.15 37.48 5.67 38.79 4.36 23.10%

MC↑
RB(200,300) 19.05 16.24 2.81 17.47 1.58 43.77%

36.46%RB(800,1200) 33.89 31.42 2.47 32.14 1.75 29.15%

MDS↓
BA(200,300) 27.89 28.61 0.72 28.19 0.30 58.33%

45.29%BA(800,1200) 103.80 110.28 6.48 108.19 4.39 32.25%

Table 6: Ablation study on cross-domain information transfer. The table presents GDP-solving
accuracy (%) with confidence intervals (α = 0.05). ‘Graph Model+ConRep4CO+Single Domain’
refers to the ablated method by disabling cross-domain information transfer.

Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

Easy
Graph Model+ConRep4CO+Single Domain 78.4±0.4 61.7±0.1 67.1±0.1 89.9±0.2 65.6±0.4 71.5±0.2 65.3±0.2 71.4
Graph Model+ConRep4CO 79.3±0.3 62.0±0.1 67.3±0.2 90.2±0.1 67.5±0.5 71.7±0.3 65.4±0.3 71.9

Medium
Graph Model+ConRep4CO+Single Domain 70.9±0.3 64.0±0.1 62.9±0.1 81.0±0.3 59.9±0.4 72.5±0.2 64.3±0.4 67.9
Graph Model+ConRep4CO 71.3±0.5 64.6±0.2 63.3±0.3 82.2±0.2 64.0±0.1 72.8±0.4 65.7±0.4 69.1

4.3 ENHANCEMENT OF CO PROBLEM-SOLVING

We incorporate ConRep4CO into the training of neural solvers for four CO problems to evaluate
how it enhances general CO problem-solving. The incorporation process is described in Sec. 3.3.4,
denoted as +ConRep4CO. The pre-training datasets are the k-Vercov dataset for MVC, the k-
Indset for MIS, the k-Clique for MC, and the k-Domset for MDS, all with the easy difficulty level.
Table 4 presents the results for MVC, while Table 5 shows the results for MIS, MC, and MDS.
‘gapabs’ refers to the absolute gap between the output objective and the optimal value, and ‘gain’
represents the improvement from incorporating ConRep4CO over the baseline, which is calculated as
(gapabs, baseline − gapabs, ours)/gapabs, baseline × 100%. ‘avg. gain’ is the average gain for each problem
across all problem scales. Incorporating ConRep4CO yields average gains of 61.27% (OptGNN),
32.20%, 36.46%, and 45.29% for MVC, MIS, MC, and MDS, respectively. We observe that the gain
tends to be smaller for larger-scale problems, likely due to the increased difficulty and the growing
discrepancy between the scales of the pre-training datasets and the evaluated problem. However,
across all problem scales, we consistently see substantial performance enhancements. These results
demonstrate that ConRep4CO enhances general CO problem-solving beyond GDPs by effectively
integrating with problem-specific neural solvers, highlighting its strong application potential.

4.4 ANALYSIS ON CROSS-DOMAIN INFORMATION TRANSFER

A central component of our framework is the facilitation of information transfer across different
problem domains. To evaluate the effectiveness of this mechanism, we conduct an ablation study by
disabling the cross-domain information transfer. Specifically, we train each graph model indepen-
dently with its own SAT model, without leveraging cross-domain information. We then compare this
ablated approach with our original method, as shown in Table 6. The results indicate that the ablated
approach yields inferior performance, thereby highlighting the importance and effectiveness of the
cross-domain information transfer in enhancing representation learning.

We also conduct more supplementary experiments to provide further and comprehensive analysis on
ConRep4CO. Please refer to Appendix G for more results.

5 CONCLUSION AND OUTLOOK

We have introduced ConRep4CO, a novel contrastive paradigm designed to promote learning repre-
sentation for CO problems across problem types. The results indicate that it not only improves the
quality and generalizability of the learned representations but also significantly enhances general CO
problem-solving, highlighting the potential of ConRep4CO as a unified pre-training paradigm for CO
research. Future work will focus on exploring unsupervised approaches to reduce reliance on labeled
data, thereby increasing applicability in data-sparse scenarios. Additionally, we will investigate other
potential forms to replace the currently used SAT form to perform contrastive learning, aiming for
broader application to more general CO problems, such as mixed-integer linear programs (MILP).
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A DISCUSSION WITH RELATED WORK

In this section, we discuss the key differences of our ConRep4CO with some prior works [10; 7]
proposing general representation learning methods for CO.

A.1 COMPARISON WITH [10]

GOAL [10] aims to develop a generalist model that uses a single backbone to represent multiple
CO problems. The model employs a multi-type Transformer architecture and attention blocks,
which suggest that different CO problems activate distinct portions of the backbone parameters.
Consequently, GOAL accommodates different problems by utilizing different parts of the shared
parameters, rather than exploiting the commonalities between different problems. Furthermore,
GOAL’s performance is slightly inferior to problem-specific baselines, indicating that the learned
representations are not enhanced for each problem.

In contrast, ConRep4CO focuses on capturing the shared underlying structure across multiple CO
problems, seeking a higher-level, abstract representation that encapsulates the essence common
to different problem domains. By using SAT as a unified intermediary, ConRep4CO facilitates
knowledge transfer and mutual enhancement among problems, enabling insights gained from one
problem to improve the performance on others. Therefore, ConRep4CO outperforms baselines trained
on individual problems.

Overall, ConRep4CO differs from GOAL in its emphasis on leveraging the shared structure of
multiple CO problems to improve the learned representation for individual problems, rather than
simply accommodating problem-specific variations within a single model.

A.2 COMPARISON WITH [7]

The MILP multi-task framework [7] focuses on learning shared representations across tasks within a
single problem domain. It seeks to exploit commonalities among different tasks within the MILP
domain. One could draw an analogy between the front-end network architecture in the framework
and the representation extractor in our graph model, with the task-specific layers serving as different
output modules. The MILP multi-task framework emphasizes improving these output modules with a
single representation extractor, while ConRep4CO prioritizes enhancing the representation extractor
by knowledge transfer and mutual enhancement across diverse problem domains. By doing so,
ConRep4CO learns a higher-level, abstract representation that spans various CO problems, whereas
the MILP framework primarily concentrates on task-specific output layers for a single problem
domain.

To the best of our knowledge, ConRep4CO is the first framework to leverage representations across
different problem domains to improve representations for individual problem domains.

B DISCUSSION ON APPLICABILITY OF CONREP4CO

During the pre-training phase, our framework is designed to handle any NP problem. As long as a
problem can be reduced to SAT, it can be trained within our framework. We would like to clarify
that all NP problems can be reduced to NPC problems, which in turn can be transformed into SAT
problems. This theoretical foundation ensures that our framework is applicable to all NP decision
problems, regardless of their specific structure or variable types. In this sense, our approach is
problem-agnostic, enabling effective training on a wide range of NP decision problems.

Furthermore, our approach can facilitate vast NP-hard CO problems by pre-training on their decision
versions, which are typically NPC. Most CO problems can be converted into their decision versions
by adding a target value. In our approach, we can pre-train the models on the decision versions of
these CO problems to learn effective representations. These representations can be applied not only
to the decision versions but also to the optimization versions of these problems (original problems).

Overall, ConRep4CO can serve as a unified pre-training paradigm for a broad range of CO problems.
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Table 7: Details of generated GDP datasets.
Dataset Description Parameters Notes

k-Clique

The k-Clique dataset consists of graph instances of the k-Clique
problem, which involves determining whether a given graph con-
tains a clique of size k. A clique is a subset of vertices in which
every pair of vertices is connected by an edge. The goal is to
identify whether such a fully connected subset of k vertices ex-
ists within the graph. Instances are built on randomly generated
Erdős-Rényi graphs. Parameters include number of vertices v,
edge probabilities p, and clique size k.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is selected
based on [5], ensuring that
the expected number of k-
cliques in the generated
graph is equal to 1.

k-Domset

The k-Domset dataset consists of graph instances of the k-
Dominating Set problem, which involves determining whether a
given graph contains a dominating set of size k. A dominating set
is a subset of vertices such that every vertex in the graph is either
in the subset or adjacent to at least one vertex in the subset. The
goal is to identify whether such a subset of k vertices exists that
can ‘dominate’ the entire graph, ensuring that all other vertices
are either in the subset or connected to it. Instances are built
on randomly generated Erdős-Rényi graphs. Parameters include
number of vertices v, edge probabilities p, and dominating set
size k.

General: p = 1−
(
1−

(
v
k

)−1/(v−k)
)1/k

,
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(2, 3),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is selected
based on [52], ensuring that
the expected number of k-
dominating sets in the gen-
erated graph is equal to 1.

k-Vercov

The k-Vercov dataset consists of graph instances of the k-Vertex
Cover problem, which involves determining whether a given
graph contains a vertex cover of size k. A vertex cover is a subset
of vertices such that every edge in the graph is incident to at
least one vertex in the subset. The goal is to identify whether a
subset of k vertices exists that can ‘cover’ all the edges in the
graph, ensuring that each edge is connected to at least one vertex
in the subset. Instances are built on randomly generated Erdős-
Rényi graphs. Parameters include number of vertices v, edge
probabilities p, and vertex set size k.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 5),
Medium dataset: v ∼ Uniform(10, 20), k ∼ Uniform(6, 8),
Hard dataset: v ∼ Uniform(15, 25), k ∼ Uniform(9, 10).

The parameter p is selected
based on the relationship
between k-Clique and k-
Vercov, ensuring that the ex-
pected size of the minimum
vertex cover in the generated
graph is k.

k-Color

The k-Color dataset consists of graph instances of the k-Coloring
problem, which involves determining whether a given graph can
be colored with k colors such that no two adjacent vertices share
the same color. A valid coloring assigns one of k different colors
to each vertex, ensuring that vertices connected by an edge have
different colors. The goal is to identify whether such a coloring
scheme exists for the graph using at most k colors. Instances
are built on randomly generated Erdős-Rényi graphs. Parameters
include number of vertices v, edge probabilities p, and number
of colors k.

General: p =
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is selected
based on the relationship be-
tween k-Clique and k-Color,
ensuring that the expected
minimum number of colors
for the generated graph is k.

k-Indeset

The k-Indset dataset consists of graph instances of the k-
Independent Set problem, which involves determining whether a
given graph contains an independent set of size k. An independent
set is a subset of vertices in which no two vertices are adjacent,
meaning there are no edges connecting any pair of vertices in the
subset. The goal is to identify whether such a subset of k vertices
exists within the graph, ensuring that the selected vertices are
mutually non-adjacent. Instances are built on randomly generated
Erdős-Rényi graphs. Parameters include number of vertices v,
edge probabilities p, and independent set size k.

General: p = 1−
(
v
k

)−1/(v2),
Easy dataset: v ∼ Uniform(5, 15), k ∼ Uniform(3, 4),
Medium dataset: v ∼ Uniform(15, 20), k ∼ Uniform(3, 5),
Hard dataset: v ∼ Uniform(20, 25), k ∼ Uniform(4, 6).

The parameter p is selected
based on the relationship be-
tween k-Clique and k-Indset,
ensuring that the expected
number of k-independent
sets in the generated graph
is equal to 1.

Matching

The Matching dataset consists of graph instances of the Perfect
Matching problem, which involves determining whether a given
graph contains a perfect matching. A perfect matching is a subset
of edges in which every vertex in the graph is incident to exactly
one edge in the subset. In other words, the graph’s vertices can
be paired off so that no vertex is left unpaired and no two edges
share a vertex. The goal is to identify whether such a perfect
matching exists within the graph, ensuring that all vertices are
perfectly matched. Instances are built on randomly generated
Erdős-Rényi graphs. Parameters include number of vertices v
and edge probabilities p.

General: p = ln(v)/v,
Easy dataset: v ∼ Uniform(6, 16), should be an even number,
Medium dataset: v ∼ Uniform(16, 24), should be an even number,
Hard dataset: v ∼ Uniform(24, 30), should be an even number.

The selected parameter p is
a sharp threshold for graph
connectivity based on [12],
ensuring that the generated
graph is neither too dense nor
too sparse.

Automorph

The Automorph dataset consists of graph instances of the Graph
Automorphism problem, which involves determining whether a
given graph has a non-trivial automorphism. An automorphism is
a mapping of the graph’s vertices to itself such that the structure
of the graph is preserved, meaning that the adjacency relation-
ships between vertices remain unchanged. The goal is to identify
whether there exists a way to rearrange the vertices of the graph
such that it appears identical to its original form. Instances are
built on randomly generated Erdős-Rényi graphs. Parameters
include number of vertices v and edge probabilities p.

General: p = ln(v)/v,
Easy dataset: v ∼ Uniform(4, 8),
Medium dataset: v ∼ Uniform(8, 10),
Hard dataset: v ∼ Uniform(10, 12).

The selected parameter p is
a sharp threshold for graph
connectivity based on [12],
ensuring that the generated
graph is neither too dense nor
too sparse.

C MORE DETAILS ON DATASETS

In this section, we provide more details on the utilized datasets in our main paper, including the
parameters of GDP instances and the statistics of SAT instances.

C.1 GDP INSTANCES

To ensure the generation of high-quality GDP instances that accurately capture the inherent character-
istics of each problem, we carefully select the graph distributions and parameters used for instance
generation. Some parameters refer to [31]. Table 7 provides a detailed overview of the specific GDP
datasets employed in the main paper.

Note that six of the seven GDPs are NP-complete, while the Perfect Matching problem is a P problem.
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Table 8: SAT dataset statistics. # Variables refers to average number of variables, # Clauses denoted
average number of clauses, Mod. (LCG) represents average modularity of LCG graphs, and Mod.
(VCG) represents average modularity of VCG graphs.

Dataset
Easy Medium Hard

# Variables # Clauses Mod. (LCG) Mod. (VCG) # Variables # Clauses Mod. (LCG) Mod. (VCG) # Variables # Clauses Mod. (LCG) Mod. (VCG)

k-Clique 35.69 613.25 0.49 0.46 70.86 2298.03 0.49 0.48 114.49 5670.10 0.50 0.49
k-Domset 40.73 345.75 0.53 0.47 89.70 1708.06 0.51 0.49 137.32 4025.85 0.51 0.49
k-Vercov 46.33 498.06 0.52 0.48 108.19 2681.55 0.51 0.49 192.57 8409.32 0.51 0.50
k-Color 33.91 112.64 0.69 0.65 69.92 321.25 0.71 0.68 112.16 719.32 0.69 0.66
k-Indset 38.38 702.92 0.49 0.46 72.55 2388.22 0.49 0.48 113.12 5549.79 0.50 0.49
Matching 27.48 95.03 0.69 0.59 30.92 107.67 0.70 0.61 45.48 169.49 0.72 0.64
Automorph 56.76 943.54 0.51 0.47 82.74 1856.26 0.51 0.48 121.56 3612.56 0.51 0.49

C.2 SAT INSTANCES

After generating the seven GDP datasets, the corresponding seven SAT datasets are generated by
transforming the GDP datasets, utilizing the python toolkit CNFGen [30]. We also compute the
statistics of those SAT datasets to provide comprehensive information on datasets. The dataset
statistics are shown in Table 8.

Moreover, to evaluate the effectiveness of the learned representations on unseen SAT instances, we
synthetically generate four more SAT datasets, including two random problems and two pseudo-
industrial problems. Specifically, for random problems, we generate the SR dataset with the SR
generator in NeuroSAT [42], and the 3-SAT dataset with the 3-SAT generator in CNFGen [30]. For
pseudo-industrial problems, we generate the CA dataset via the Community Attachment model [16],
and the PS dataset by the Popularity-Similarity model [17]. The generation process of the four
datasets follows [31], where the dataset descriptions and statistics can also be found.

The ground truth of satisfiability and satisfying assignments are calculated by calling the state-of-the-
art modern SAT solver CaDiCaL [13], and the truth labels for unsat core variables are generated by
invoking the proof checker DRAT-trim [51].

D DETAILS ON MODEL ARCHITECTURE

D.1 BASIC ARCHITECTURE IMPLEMENTATION

Graph Model. Each graph model is designed to address a specific type of GDP, and all models
maintain a consistent architecture. To illustrate this, we focus on problem Pn and its corresponding
graph model Mn. The graph model Mn takes graphs in the set Gn as input and processes them
through the Representation Extractor. The input graph primarily consists of edge information, which
is often a critical aspect of GDPs. For the initial vertex features, we introduce a d-dimensional
embedding for all vertices, represented as h(0)

n .

For the Representation Extractor, we adopt the vanilla Graph Convolutional Network (GCN) [28],
which is widely used as a backbone for node embeddings in graph-based tasks. Assume there are k
layers, the embedding extraction at the i-th layer of the network is expressed as:

H(i)
n = ReLU(D̃− 1

2 ÃD̃− 1
2H(i−1)

n W(i−1)
n ), i = 1, 2, . . . , k, (3)

where H denotes the node embedding matrix, with each row corresponding to a node embedding. The
matrix Ã = A+ I is the adjacency matrix augmented with self-loops through the identity matrix I.
D̃ii =

∑
j Ãij is the degree matrix, and W is the learnable weight matrix. Following the extraction

of node features, we apply average pooling to the node embedding matrix H
(k)
n to aggregate the

node-level information into a single representation for the entire graph instance, denoted as rn. This
aggregation is computed as follows:

rn =

∑
v∈V h

(k)
n,v

|V|
, (4)

where V represents the set of vertices in the input graph, |V| denotes the total number of vertices, and
h
(k)
n,v is the extracted embedding for node v. rn serves as the instance-level feature representation,

and is subsequently fed into the Output Module, which is implemented as an MLP to produce the
final decision for the instance.
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SAT Model. Apart from the graph models, the SAT model Msat processes the constructed SAT
graphs via its own Representation Extractor. For illustration, we consider the LCG representation.
For the initial node features, we define two distinct d-dimensional embeddings: h(0)

l for all literal
nodes and h

(0)
c for all clause nodes.

The architecture of the Representation Extractor is inspired by NeuroSAT [42]. For notational clarity,
we assume that the extractor consists of k layers, with both literal and clause node embeddings being
iteratively aggregated and updated at each layer. At the i-th layer, the updates for the literal and
clause node embeddings are formulated as follows:

h
(i)
l = LayerNormLSTM

(
SUM
c∈N (l)

(
MLP

(
hi−1
c

))
,h

(i−1)
l ,h

(i−1)
¬l

)
, (5)

h(i)
c = LayerNormLSTM

(
SUM
l∈N (c)

(
MLP

(
hi−1
l

))
,h(i−1)

c

)
, (6)

where l and c represent an arbitrary literal node and clause node, respectively, N (·) refers to the set
of neighboring nodes. The summation operator (SUM) serves as the aggregation function, while
LayerNormLSTM [1] is employed as the update function.

Similar to the graph models, the instance-level representation rsat derives by averaging the literal
node embeddings after the k-th layer. The instance-level representation, along with the literal-level
embeddings, is passed to the Output Module, which is also implemented as an MLP, to generate the
final task-specific decisions or predictions.

D.2 INITIAL VERTEX FEATURES

As illustrated in the main paper, the input graphs primarily provide edge information instead of
vertex features. Therefore, we should devise initial vertex features for the models. In this section, we
introduce the definition of initial vertex features for the graph and SAT models.

Graph Model Vertex Feature. We begin by generating a normalized, learnable d-dimensional
vector, which serves as the initial embedding shared across all vertices. For GDP datasets that do
not require additional problem-specific information, such as Matching and Automorph, this initial
embedding is directly used as the vertex feature for all vertices. In contrast, for GDP datasets where
the parameter k plays a critical role in defining the instance characteristics, such as k-Clique and
k-Vercov, we first embed k into a d-dimensional vector. The initial vertex embedding is then fused
with the k embedding through an MLP to generate the final initial vertex features.

SAT Model Vertex Feature. For the SAT model, we generate initial vertex features based on the
type of SAT graph representation, whether it is a Literal-Clause Graph (LCG) or a Variable-Clause
Graph (VCG). In the case of the LCG graph, we initialize a normalized, learnable d-dimensional
vector for all literal nodes and a separate normalized, learnable d-dimensional vector for all clause
nodes. Similarly, for the VCG graph, we generate a normalized, learnable d-dimensional vector for
all variable nodes and another for all clause nodes.

D.3 MORE BACKBONES

To demonstrate that the performance improvement brought about by our ConRep4CO is consistent,
and independent with specialized model architectures, we conduct experiments on more backbones.

Graph Model Backbone. For the graph model, we employ an additional mainstream network
architecture for node embedding, GraphSAGE [19], which is widely recognized for its ability to
generate inductive representations of graph nodes by aggregating information from a node’s local
neighborhood. The update rule for the i-th layer of GraphSAGE is defined as follows:

n(i)
u = AGG

(
ReLU

(
Q(i)h(i)

v + q(i) | v ∈ N(u)
))

, (7)

h(i+1)
u = ReLU

(
W(i) CONCAT

(
h(i)
u ,n(i)

u

))
, (8)
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where hu denotes the embedding for vertex u, N(u) refers to the neighbors of vertex u, Q,q,W are
trainable parameters, and AGG is the aggregation function. In our implementation, AGG is defined
as the mean function, which computes the element-wise average of the neighbor embeddings.

In addition, we implement two more advanced GNN backbones for our graph models, PGN [47] and
GraphGPS [39]. Please refer to the corresponding papers for details on the architectures of these two
backbones.

SAT Model Backbone. For the SAT model, we incorporate a GCN architecture specifically tailored
for SAT graphs as an additional backbone. The node updates at the i-th layer are defined as follows:

h
(i)
l = MLP

(
SUM
c∈N (l)

(
MLP

(
hi−1
c

))
,h

(i−1)
l ,h

(i−1)
¬l

)
, (9)

h(i)
c = MLP

(
SUM
l∈N (c)

(
MLP

(
hi−1
l

))
,h(i−1)

c

)
, (10)

where l and c represent an arbitrary literal node and clause node, respectively. The aggregation of
neighboring node information is performed using the summation operator (SUM), which serves as
the aggregation function. The updates for both literal and clause nodes are computed using an MLP.

Furthermore, we extend the backbone to VCG graph modeling, where all literal nodes are replaced
by variable nodes, and each literal and its negation are merged into a single variable node. The node
updates at the i-th layer of the VGC-based GCN are formulated as:

h(i)
v = MLP

(
SUM
c∈N (v)

(
MLP

(
hi−1
c

))
,h(i−1)

v

)
, (11)

h(i)
c = MLP

(
SUM
v∈N (c)

(
MLP

(
hi−1
v

))
,h(i−1)

c

)
, (12)

where v and c represent an arbitrary variable node and clause node, respectively.

D.4 CASE STUDY ON MODEL OUTUT

In this section, we illustrate the model outputs for specific GDP and corresponding SAT problems for
better understanding.

In the context of GDP, the model’s output is typically binary, represented as 0 or 1, at the instance
level. For instance, in the case of the k-Clique problem, the input consists of a graph, and the output
indicates whether the graph contains a clique of size k. Specifically, if a k-Clique is present, the
output is 1; otherwise, it is 0.

Similarly, for the corresponding SAT problem, the output denotes the satisfiability of the formula. If
the formula is satisfiable, the output is 1; if not, it is 0. The satisfiability result is directly linked to the
solution of the original GDP problem. For example, a satisfiable formula indicates the existence of a
k-Clique in the original graph.

However, the framework is not restricted to this specific task alone. By making appropriate modifica-
tions to the architecture of the output module, the models can be adapted to solve other related tasks,
including both SAT-based and GDP-based tasks.

E LOSS FUNCTION FOR SAT-BASED TASKS

For the unsat core variable prediction task, we manually generate labels for the datasets, and adopt a
binary cross-entropy loss on the label and the prediction.

For the satisfying assignment prediction task, we employ an unsupervised loss function as defined in
[33]:

Vc(x) = 1−
∏
i∈c+

(1− xi)
∏
i∈c−

xi, Lϕ(x) = − log

∏
c∈ϕ

Vc(x)

 = −
∑
c∈ϕ

log (Vc(x)) (13)
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Table 9: Parameters used for training.
Parameter Value Description

lr 1e-04 Learning rate.
lr step size 50 Learning rate step size.

lr factor 0.5 Learning rate factor.
lr patience 10 Learning rate patience.
clip norm 1.0 Clipping norm.

weight decay 1e-08 L2 regularzation weight.
sat model gnn layer 32 Iteration number of GNN layers in SAT model.

graph model gnn layer 12 Iteration number of GNN layers in graph model.
mlp layer 2 Number of Linear layers in an MLP.

τ 0.1 (easy) / 0.5 (medium) Temperature scalar in the contrastive loss.
β 0.5∼1.0 Weight of the decision loss during training.

where ϕ refers to the CNF formula, x is the predicted assignment consisting of binary values (0 or
1) for variables, c denotes an arbitrary clause. The sets c+ and c− comprise the variables present in
clause c in positive and negative forms, respectively. It is important to note that the loss function
achieves its minimum value only when the predicted assignment x corresponds to a satisfying
assignment. Minimizing this loss can effectively aid in constructing a possible satisfying assignment.

F MORE EXPERIMENTAL RESULTS

F.1 TRAINING PARAMETERS

For reproducibility, we present some important parameters used for training in Table 9. More details
can be found in our source code, which will be released once the paper is accepted.

F.2 COMPUTATIONAL COST

All training and inference tasks were conducted on a single NVIDIA H100 GPU with 80GB of
memory.

The pre-training process for the SAT model and the graph models with ConRep4CO totally takes
approximately 40 hours, with convergence typically occurring around the 20th epoch. Each epoch
requires roughly 2 hours. Following the pre-training phase, fine-tuning takes an additional 5 to 6
hours for each model to achieve optimal performance. In comparison, training the baseline SAT
model takes about 45 hours, with convergence reached by the 30th epoch, and each epoch requiring
approximately 1.5 hours. Notably, pre-training with ConRep4CO demonstrates a faster convergence
rate, leading to a shorter training time. Moreover, training the baseline graph model independently
each requires around 15 hours, with convergence occurring around the 60th epoch, and each epoch
taking between 12 to 18 minutes.

Overall, the computational cost of training with ConRep4CO is comparable to that of the conventional
training approach, with no significant increase in computational burden.

F.3 FURTHER EVALUATION ON SAT MODEL

For the SAT model, we also assess its effectiveness on the satisfiability prediction task. The baseline
SAT model is trained concurrently on seven GDP datasets, utilizing standard supervised learning.

We assess the satisfiability prediction accuracy of the SAT model using instances transformed from
seven distinct GDPs. The baseline model is denoted as SAT Model. The training of the baseline
model capitalizes on the relatively coherent graph representations of the SAT instances. Our proposed
approach, denoted as SAT Model+ConRep4CO, initializes model parameters with a pre-trained
checkpoint from ConRep4CO, trained on the seven GDP datasets. The model is then fine-tuned on
the instances transformed from all seven GDPs simultaneously. Table 10 shows the results, where our
approach consistently outperforms the baseline model on most datasets, with particularly notable
improvements on more challenging datasets. The results demonstrate the effectiveness of leveraging
the inherent connections between different CO problems. By drawing on the common underlying
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Table 10: Experimental results across various model backbones with confidence intervals (α = 0.05).
The table presents the satisfiability prediction accuracy of the SAT models. ‘SAT Back.’ refers to
SAT model backbone, and ‘Graph Back.’ denotes graph model backbone.

SAT Backbone Graph Backbone Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+NeuroSAT GCN
Easy

SAT Model 95.9±0.4 99.1±0.2 99.8±0.1 97.4±0.4 95.4±0.2 99.5±0.1 99.9±0.1 98.1
SAT Model+ConRep4CO 98.9±0.2 99.6±0.1 99.9±0.1 98.8±0.3 98.9±0.4 99.9±0.1 99.9±0.1 99.4

Medium
SAT Model 87.6±0.5 98.7±0.3 99.1±0.2 81.7±0.4 88.7±0.6 99.7±0.1 98.8±0.2 93.5
SAT Model+ConRep4CO 92.3±0.4 99.1±0.1 99.6±0.2 94.6±0.4 93.0±0.5 99.9±0.1 99.9±0.1 96.9

LCG+GCN GCN
Easy

SAT Model 76.3±0.4 79.0±0.3 89.0±0.2 86.8±0.3 78.0±0.5 80.1±0.2 61.6±0.4 78.7
SAT Model+ConRep4CO 82.7±0.3 93.2±0.2 95.3±0.1 93.7±0.2 82.0±0.4 96.7±0.1 68.9±0.3 87.5

Medium
SAT Model 72.4±0.5 65.2±0.4 83.6±0.3 85.8±0.4 72.1±0.3 83.5±0.2 66.8±0.5 75.6
SAT Model+ConRep4CO 75.2±0.4 95.3±0.1 97.9±0.1 88.7±0.3 74.8±0.5 99.4±0.1 78.4±0.2 87.1

VCG+GCN GCN
Easy

SAT Model 51.1±0.5 84.0±0.3 91.9±0.2 82.8±0.4 49.1±0.4 81.3±0.3 56.8±0.5 71.0
SAT Model+ConRep4CO 80.9±0.4 95.9±0.1 99.3±0.1 94.7±0.2 79.5±0.3 99.3±0.1 74.4±0.4 89.1

Medium
SAT Model 66.9±0.4 94.6±0.2 95.0±0.2 86.0±0.3 67.7±0.5 98.8±0.1 64.2±0.4 81.9
SAT Model+ConRep4CO 74.8±0.5 98.8±0.1 99.5±0.1 89.8±0.4 74.5±0.4 99.4±0.1 73.4±0.3 87.2

LCG+NeuroSAT GraphSAGE
Easy

SAT Model 95.9±0.2 99.1±0.1 99.8±0.1 97.4±0.3 95.4±0.4 99.5±0.1 99.9±0.1 98.1
SAT Model+ConRep4CO 99.0±0.1 99.6±0.1 99.9±0.1 98.8±0.2 99.1±0.2 99.9±0.1 99.9±0.1 99.5

Medium
SAT Model 87.6±0.4 98.7±0.1 99.1±0.2 81.7±0.5 88.7±0.3 99.7±0.1 98.8±0.2 93.5
SAT Model+ConRep4CO 92.5±0.3 99.1±0.1 99.6±0.1 95.3±0.4 93.5±0.5 99.9±0.1 99.7±0.1 97.1

LCG+NeuroSAT PGN
Easy

SAT Model 95.9±0.2 99.1±0.1 99.8±0.1 97.4±0.3 95.4±0.4 99.5±0.1 99.9±0.1 98.1
SAT Model+ConRep4CO 98.9±0.1 99.6±0.1 99.8±0.1 98.8±0.2 99.1±0.2 99.9±0.1 99.9±0.1 99.4

Medium
SAT Model 87.6±0.4 98.7±0.1 99.1±0.2 81.7±0.5 88.7±0.3 99.7±0.1 98.8±0.2 93.5
SAT Model+ConRep4CO 90.5±0.5 99.0±0.1 99.5±0.1 94.1±0.3 91.4±0.4 99.9±0.1 99.7±0.1 96.3

LCG+NeuroSAT GraphGPS
Easy

SAT Model 95.9±0.2 99.1±0.1 99.8±0.1 97.4±0.3 95.4±0.4 99.5±0.1 99.9±0.1 98.1
SAT Model+ConRep4CO 98.6±0.2 99.6±0.1 99.9±0.1 98.5±0.2 98.7±0.3 99.8±0.1 99.9±0.1 99.3

Medium
SAT Model 87.6±0.4 98.7±0.1 99.1±0.2 81.7±0.5 88.7±0.3 99.7±0.1 98.8±0.2 93.5
SAT Model+ConRep4CO 91.4±0.4 99.0±0.1 99.6±0.1 93.9±0.4 92.2±0.5 99.7±0.1 99.6±0.2 96.5

Table 11: Generalization performance across various model backbones on the hard datasets with
confidence intervals (α = 0.05). The table presents the satisfiability prediction accuracy of the
SAT models. ‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph model
backbone. The terms ‘Easy’ and ‘Medium’ in parentheses indicate the difficulty level of the datasets
used for training. The ‘Overall’ column represents the average accuracy across all datasets.

SAT Backbone Graph Backbone Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+NeuroSAT GCN

SAT Model (Easy) 47.5±0.4 50.5±0.1 50.0±0.1 58.8±0.2 47.3±0.6 99.5±0.1 72.9±0.6 60.9
SAT Model+ConRep4CO (Easy) 66.2±0.5 50.6±0.1 50.0±0.1 60.0±0.4 66.5±0.6 99.8±0.1 79.0±0.3 67.4
SAT Model (Medium) 69.2±0.3 96.4±0.2 85.2±0.7 67.9±0.3 69.4±0.6 99.6±0.1 99.0 ±0.1 83.8
SAT Model+ConRep4CO (Medium) 82.7±0.4 97.2±0.2 93.6±0.5 74.5±0.2 83.6±0.4 99.7±0.1 99.1±0.1 90.1

LCG+GCN GCN

SAT Model (Easy) 50.0±0.0 50.0±0.0 50.0±0.0 45.9±0.3 50.0±0.0 53.9±0.4 50.0±0.0 50.0
SAT Model+ConRep4CO (Easy) 50.0±0.0 59.2±0.2 50.0±0.0 50.0±0.3 50.0±0.0 59.1±0.3 51.3±0.2 52.8
SAT Model (Medium) 50.0±0.0 50.0±0.0 50.0±0.0 49.4±0.4 50.0±0.0 47.0±0.5 50.0±0.0 49.5
SAT Model+ConRep4CO (Medium) 50.0±0.0 50.0±0.0 50.0±0.0 52.6±0.3 50.0±0.0 49.9±0.4 50.0±0.0 50.4

VCG+GCN GCN

SAT Model (Easy) 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0
SAT Model+ConRep4CO (Easy) 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0

SAT Model (Medium) 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0 50.0
SAT Model+ConRep4CO (Medium) 50.0±0.0 50.0±0.0 50.0±0.0 50.3±0.2 50.0±0.0 50.0±0.0 50.0±0.0 50.0

LCG+NeuroSAT GraphSAGE

SAT Model (Easy) 47.5±0.4 50.5±0.3 50.0±0.0 58.8±0.5 47.3±0.4 99.5±0.1 72.9±0.6 60.9
SAT Model+ConRep4CO (Easy) 59.6±0.3 50.5±0.2 50.0±0.0 61.5±0.4 58.7±0.5 99.6±0.1 82.1±0.4 66.0
SAT Model (Medium) 69.2±0.5 96.4±0.2 85.2±0.4 67.9±0.6 69.4±0.5 99.6±0.1 99.0±0.2 83.8
SAT Model+ConRep4CO (Medium) 79.3±0.4 97.3±0.1 89.1±0.3 73.1±0.5 79.3±0.4 99.6±0.1 99.6±0.1 88.2

LCG+NeuroSAT PGN

SAT Model (Easy) 47.5±0.4 50.5±0.3 50.0±0.0 58.8±0.5 47.3±0.4 99.5±0.1 72.9±0.6 60.9
SAT Model+ConRep4CO (Easy) 59.7±0.3 50.7±0.2 50.0±0.0 61.4±0.4 59.6±0.5 97.9±0.2 77.2±0.5 65.2
SAT Model (Medium) 69.2±0.5 96.4±0.2 85.2±0.4 67.9±0.6 69.4±0.5 99.6±0.1 99.0±0.2 83.8
SAT Model+ConRep4CO (Medium) 78.7±0.4 97.4±0.1 90.0±0.3 73.6±0.5 79.6±0.4 99.8±0.1 99.3±0.1 88.3

LCG+NeuroSAT GraphGPS

SAT Model (Easy) 47.5±0.4 50.5±0.3 50.0±0.0 58.8±0.5 47.3±0.4 99.5±0.1 72.9±0.6 60.9
SAT Model+ConRep4CO (Easy) 50.5±0.3 50.6±0.2 50.4±0.2 59.6±0.4 50.3±0.3 99.3±0.1 76.2±0.5 62.4
SAT Model (Medium) 69.2±0.5 96.4±0.2 85.2±0.4 67.9±0.6 69.4±0.5 99.6±0.1 99.0±0.2 83.8
SAT Model+ConRep4CO (Medium) 76.0±0.4 96.9±0.2 96.1±0.3 73.8±0.5 76.0±0.4 99.4±0.1 99.3±0.1 88.2

characteristics among different problem types, our approach enhances the performance of the SAT
model, showcasing the advantages of cross-domain learning.

We also evaluate the generalization capabilities of the SAT models on instances transformed from
hard GDP datasets, with the results presented in Table 11. Our proposed approach consistently
outperforms the baseline model across most datasets, underscoring the robustness and transferability
of the representations learned through ConRep4CO, and its ability to generalize across complex,
unseen problem instances.
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(a) CL of k-Clique (b) CL of k-Domset (c) CL of k-Vercov

Figure 4: Contrastive loss w.r.t. training iterations across various datasets. CL denotes the contrastive
loss of the training process.

F.4 MORE SAT-BASED TASK RESULTS.

Furthermore, the evaluation is extended to two essential downstream tasks critical to SAT solving:
satisfying assignment prediction and unsat core variable prediction. Satisfying assignment
prediction requires the model to determine a specific variable assignment that satisfies the given SAT
instance, while unsat core variable prediction involves identifying the minimal subset of variables
that contribute to the unsatisfiability of the instance.

We evaluate the generalizability of the SAT model on the satisfying assignment prediction task
and the unsat core variable prediction task. To assess performance, we compare three different
approaches by tracking the accuracy over training iterations. For our proposed approach, referred
to as SAT Model+Contrast, we initialize the model using a pre-trained checkpoint obtained from
ConRep4CO, trained on the seven GDP datasets, and subsequently fine-tune it on individual datasets.
For comparison, we include two baseline models: SAT Model, which is initialized with a pre-trained
checkpoint trained in a conventional manner on the seven GDP datasets, and Un-Pretrained SAT
Model, which is trained from scratch. The results are shown in Fig. 5.

On the datasets encountered during pre-training, both our approach and the pre-trained baseline
significantly outperform the un-pretrained baseline. However, our approach demonstrates superior
performance by achieving faster convergence and higher final accuracy. On the unseen datasets, our
approach still outperforms the baseline models, whereas the pre-trained and un-pretrained baselines
exhibit comparable performance. These results highlight the effectiveness of ConRep4CO, which not
only improves convergence rates but also enhances the model’s ability to generalize to previously
unseen datasets, thereby demonstrating the strength of leveraging contrastive learning across multiple
problem types.

We show more results on the satisfying assignment prediction task and the unsat core variable
prediction task in Fig. 6. Our approach outperforms the baseline models with faster convergence and
higher final accuracy.

G FURTHER STUDIES

G.1 FURTHER STUDY ON CONTRASTIVE LOSS

We revise the negative sampling strategy within our contrastive learning framework to mitigate the
issue of false negative samples. Specifically, within each training batch, unsatisfiable instances are
selected as negative samples for satisfiable instances, and conversely, satisfiable instances are chosen
as negative samples for unsatisfiable instances. This adjustment ensures that false negative samples
are avoided. Consequently, we modify the contrastive loss function to reflect this change and proceed
with the training of the models. The results, as shown in Table 12, demonstrate that the models trained
with the revised contrastive loss exhibit performance comparable to that of those trained with the
original loss. We also plot the contrastive loss curves for several GDPs during the original training
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(a) Assign on 3-SAT (b) Assign on CA (c) Assign on k-Vercov (d) Assign on k-Indset

(e) Core Var on SR (f) Core Var on PS (g) Core Var on k-Color (h) Core Var on Matching

Figure 5: Model performance w.r.t. training iterations on SAT-based tasks across various datasets.
The top four graphs display the results for the satisfying assignment prediction task (Assign), while
the bottom four graphs present the results for the unsat core variable prediction task (Core Var). The
left four graphs depict the model’s performance on unseen datasets, whereas the right four graphs
illustrate the performance on datasets encountered during the pre-training phase.

Table 12: Experimental results on the modified and original contrastive loss function. The table
presents the GDP-solving accuracy (%) with confidence intervals (α = 0.05) for the graph models
and the satisfiability prediction accuracy (%) with confidence intervals (α = 0.05) for the SAT models.
‘Graph/SAT Model+ConRep4CO+Modified Loss’ denotes training with the modified contrastive loss.
‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph model backbone.

SAT Back. Graph Back. Difficulty Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+NeuroSAT GCN

Easy
Graph Model+ConRep4CO+Modified Loss 77.1±0.3 57.9±0.2 61.5±0.3 88.7±0.1 64.2±0.4 71.5±0.2 64.4±0.4 69.3
Graph Model+ConRep4CO 79.3±0.3 62.0±0.1 67.3±0.2 90.2±0.1 67.5±0.5 71.7±0.3 65.4±0.3 71.9

Medium
Graph Model+ConRep4CO+Modified Loss 70.7±0.3 63.0±0.4 61.2±0.3 79.8±0.4 58.9±0.2 72.4±0.2 63.7±0.4 67.1
Graph Model+ConRep4CO 71.3±0.5 64.6±0.2 63.3±0.3 82.2±0.2 64.0±0.1 72.8±0.4 65.7±0.4 69.1

Easy
SAT Model+ConRep4CO+Modified Loss 98.3±0.2 99.6±0.1 99.9±0.1 98.5±0.2 98.1±0.3 99.9±0.1 99.9±0.1 99.2
SAT Model+ConRep4CO 98.9±0.2 99.6±0.1 99.9±0.1 98.8±0.3 98.9±0.4 99.9±0.1 99.9±0.1 99.4

Medium
SAT Model+ConRep4CO+Modified Loss 90.7±0.5 99.1±0.1 99.5±0.1 92.3±0.4 91.7±0.4 99.9±0.1 99.9±0.1 96.0
SAT Model+ConRep4CO 92.3±0.4 99.1±0.1 99.6±0.2 94.6±0.4 93.0±0.5 99.9±0.1 99.9±0.1 96.9

Table 13: Experimental results across two graph models under different training methods. ‘Graph
Model (fully-trained)’ refers to the graph model that was trained from scratch with full training data.
‘Graph Model+ConRep4CO (fine-tuned)’ refers to the fine-tuned graph model after pre-training by
ConRep4CO on small datasets.

Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

Graph Model (fully-trained) 67.3±0.4 66.7±0.2 65.4±0.4 79.1±0.2 59.1±0.3 72.4±0.1 65.4±0.2 67.9
Graph Model+ConRep4CO (fine-tuned) 67.9±0.2 67.0±0.1 66.6±0.4 79.4±0.2 61.5±0.4 72.6±0.1 65.7±0.2 68.7

process in Fig. 4, all of which exhibit smooth trajectories. These results suggest that the influence of
false negative samples on model performance is minimal.

G.2 FURTHER STUDY ON GRAPH MODEL GENERALIZATION TO LARGE-SCALE DATA

To further assess the generalization ability of our graph models, we generate large-scale instances for
each GDP, with instance sizes ranging from 7 to 20 times larger than those used during pre-training.
We then fine-tune the pre-trained models on this large-scale data, using a subset comprising 1

8 of the
training data. We compare the performance of the fine-tuned models with those trained from scratch
with full training data, and the results are presented in Table 13, indicating that models pre-trained on
smaller instances using ConRep4CO can generalize effectively to larger instances through fine-tuning.
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(a) Assign on k-Clique (b) Assign on k-Domset (c) Assign on Matching

(d) Assign on PS (e) Assign on SR (f) Core Var on k-Domset

(g) Core Var on k-Vercov (h) Core Var on 3-SAT (i) Core Var on CA

Figure 6: Model performance w.r.t. training iterations on SAT-based tasks across various datasets.
Assign denotes the satisfying assignment prediction task, and Core Var denotes the unsat core variable
prediction task.

G.3 FURTHER STUDY ON GRAPH MODEL GENERALIZATION TO OTHER GRAPH TASKS

To further assess the generalization ability of the graph models, we conduct experiments on two
GDP-related tasks: maximum clique size prediction adapted from k-Clique problem domain and
minimum vertex number prediction for edge cover adapted from k-Vercov problem domain. We
first pre-train the models on the original problem domains and with ConRep4CO, respectively. The
pre-trained models are then fine-tuned with 1

8 of the training data. To compare the performance, we
employ the mean relative error (MRE) as the metric: MRE = 1

N

∑N
i=1 |

yi−ŷi

yi
|, where yi refers to the

ground truth, ŷi refers to the predicted value, and N refers to the sample size. Figure 7 illustrates that
the pre-trained models with ConRep4CO achieve faster convergence and superior final performance,
underscoring their enhanced generalization ability.
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(a) Max Clique Size Prediction (b) Min Vertex Num. Prediction

Figure 7: Mean relative error w.r.t. epoch on related graph tasks, including maximum clique size
prediction and minimum vertex number prediction for edge cover.

Table 14: Experimental results on perturbed instances. The table presents the GDP-solving accuracy
(%) with confidence intervals (α = 0.05) for the graph models and the satisfiability prediction
accuracy (%) with confidence intervals (α = 0.05) for the SAT models on perturbed instances. ‘SAT
Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes the graph model backbone.

SAT Back. Graph Back. Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

LCG+NeuroSAT GCN

Graph Model 65.2±0.4 51.1±0.3 53.4±0.5 61.4±0.3 53.6±0.4 58.8±0.6 37.7±0.5 54.5
Graph Model+ConRep4CO 67.8±0.3 54.7±0.2 61.8±0.4 71.9±0.3 66.4±0.2 65.6±0.1 42.1±0.4 61.5
SAT Model 97.6±0.3 92.3±0.2 98.2±0.4 93.3±0.1 97.1±0.2 85.4±0.2 92.3±0.3 93.7
SAT Model+ConRep4CO 98.3±0.2 94.0±0.3 99.7±0.2 93.9±0.3 98.4±0.4 86.1±0.1 93.9±0.4 94.9

Table 15: GDP solving accuracy (%) with confidence intervals (α = 0.05) of the graph models on
Easy datasets. The ‘Overall’ column represents the average accuracy across all datasets.

Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall

Graph Model-FullData 77.8±0.1 59.0±0.2 61.4±0.3 87.8±0.4 63.2±0.1 71.3±0.1 64.3±0.3 69.3
Graph Model+ConRep4CO 79.3±0.3 62.0±0.1 67.3±0.0 90.2±0.1 67.5±0.1 71.7±0.0 65.4±0.4 71.9

G.4 FURTHER STUDY ON MODEL SENSITIVITY

The solution to GDP is known to be sensitive to graph structures. Therefore, we aim to evaluate the
sensitivity of our model to perturbations in graph structure. To do so, we generate modified instances
by adding or removing edges from the original graphs until either the satisfiability status reverses or
the number of modified edges reaches 1

10 of the original edge count. These generated instances are
structurally similar to the original graphs but exhibit a reversed satisfiability status. We then assess
the performance of both the graph models and the SAT model on these perturbed instances. The
results, presented in Table 14, reveal that the SAT model is sensitive to changes in graph structure,
and it continues to perform well. Additionally, the graph models significantly outperform the baseline
models, as they are more closely aligned with the SAT model and demonstrate enhanced sensitivity
to structural changes.

G.5 FURTHER STUDY ON DATA VOLUME

During the pre-training phase, ConRep4CO utilizes all instances from different domains, while the
baselines only have access to the instances from their single domain. To further assess the impact of
data volume, we increase the number of training instances for baselines, and train 7 baseline graph
models with the GCN backbone separately, each on 7 × 160,000 graph instances generated from a
single problem type, denoted as Graph Model-FullData, and compare their performance with our
approach in Table 15. It proves that the improved performance is not from increased training data.

G.6 FURTHER STUDY ON MULTIPLE DOMAIN INFORMATION TRANSFER

This section investigates the impact of multi-domain information transfer on model performance.
We address two key questions: 1) What is the effect of transferring information from multiple
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Table 16: Problem domains utilized for pre-training.
Problem Ours-1 Ours-2 Ours-3 Ours-4 Ours-5 Ours-6 Ours-7
MVC k-Vercov

k-Vercov, k-Indset k-Vercov, k-Indset, k-Clique
k-Vercov, k-Indset, k-Clique, k-Domset Ours-4+Automorph Ours-5+Matching Ours-6+k-color

MIS k-Indset
MC k-Clique

k-Clique, k-Domset k-Clique, k-Domset, k-VercovMDS k-Domset

Table 17: The effect of the number of pre-training domains on downstream performance. Values in
parentheses represent the gain over baseline, calculated as in the main text.

Problem Graph Optimal Baseline Ours-1 Ours-2 Ours-3 Ours-4 Ours-5 Ours-6 Ours-7
MVC ER(50,100) 54.62 55.87 55.75 (9.60%) 55.39 (38.40%) 55.07 (64.00%) 54.76 (88.80%) 54.74 (90.40%) 54.68 (95.20%) 54.70 (93.60%)
MVC ER(100,200) 122.79 126.04 125.86 (5.54%) 125.10 (28.92%) 124.89 (35.38%) 124.51 (47.08%) 124.44 (49.23%) 124.39 (50.77%) 124.37 (51.40%)
MVC ER(400,500) 417.42 420.51 420.40 (3.56%) 419.86 (21.04%) 419.63 (28.48%) 419.49 (33.01%) 419.39 (36.25%) 419.33 (38.19%) 419.31 (38.83%)

MIS RB(200,300) 20.10 19.18 19.22 (4.35%) 19.47 (31.52%) 19.52 (36.96%) 19.55 (40.22%) 19.53 (38.04%) 19.57 (42.39%) 19.56 (41.30%)
MIS RB(800,1200) 43.15 37.48 37.62 (2.47%) 38.47 (17.46%) 38.66 (20.81%) 38.74 (22.22%) 38.79 (23.10%) 38.77 (22.75%) 38.79 (23.10%)

MC RB(200,300) 19.05 16.24 16.41 (6.05%) 16.90 (23.49%) 17.23 (35.23%) 17.36 (39.86%) 17.44 (42.70%) 17.47 (43.77%) 17.47 (43.77%)
MC RB(800,1200) 33.89 31.42 31.49 (2.83%) 31.75 (13.36%) 31.90 (19.43%) 32.07 (26.31%) 32.11 (27.94%) 32.12 (28.34%) 32.14 (29.15%)

MDS RB(200,300) 27.89 28.61 28.56 (6.94%) 28.42 (26.39%) 28.28 (45.83%) 28.24 (51.39%) 28.18 (59.72%) 28.18 (59.72%) 28.19 (58.33%)
MDS RB(800,1200) 103.80 110.28 110.04 (3.70%) 109.12 (17.90%) 108.68 (24.69%) 108.34 (29.94%) 108.22 (31.79%) 108.17 (32.56%) 108.19 (32.25%)

domains to downstream CO tasks? 2) How does this effect scale with the number of source
domains? This analysis aims to provide a comprehensive evaluation of our proposed cross-domain
transfer mechanism.

We design seven pre-training configurations, utilizing data from 1 to 7 distinct problem domains,
denoted as Ours-1 to Ours-7. The specific domains used in each setting are detailed in Table 16.
Each pre-trained SAT model is subsequently used to enhance problem-specific neural solvers via
contrastive learning. We employ OptGNN [54] as the baseline solver for MVC and GFlowNet [56] for
MIS, MC, and MDS. The alignment between the pre-trained SAT models and the solvers is performed
on 5,000 easy-level instances, with an additional 1,000 instances for validation. The subsequent
training procedures for the solvers remain consistent with their original implementations [54; 56].

The results are presented in Table 17. The Ours-1 configuration, which does not leverage cross-
domain information transfer, shows a modest performance gain of approximately 5%. This result
primarily reflects the benefit of the SAT transformation itself and suggests that pre-training on a
single domain provides limited representational enhancement. As the number of pre-training domains
increases, the performance gain grows in a sublinear fashion. The improvement is sharpest when
expanding from one to two domains, after which the rate of gain decelerates, converging at around five
or six domains. This saturation effect is likely attributable to diminishing returns in novel information.

G.7 EMPIRICAL COMPARISON WITH MULTI-TASK BASELINES

G.7.1 COMPARISON WITH UNICO [34]

[34] proposes a method that converts four CO problems into a general TSP formulation, then
transforms the TSP solution back to solve the original problem. The authors introduce two network
architectures, MatPOENet and MatDIFFNet, and explore training these models on a mixture of four
different problems. In contrast to our approach, [34] does not introduce innovations in the training
approach; their work is thus largely orthogonal to ours, making a perfectly matched comparison
challenging to design.

To facilitate as fair a comparison as possible with [34], we select two general TSP tasks from their
work—non-metric Asymmetric TSP (ATSP) and 2D Euclidean TSP (2DTSP)—and use MatPOENet
as the backbone model. We compare three distinct training strategies:

1) MatPOENet-Single: The model is trained on a single task.

2) MatPOENet-Mixed-Tuned: The model is first trained on a mixture of four tasks from [34]
and then fine-tuned on the single target task. To isolate the effect of the training strategy from the
influence of data volume, the amount of data used for fine-tuning is kept identical to that used for
single-task training. Thus, any performance difference can be attributed to the multi-task training
paradigm.
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Table 18: Average tour length with different training approaches. The notation ’ATSP20’ denotes
instances of ATSP with 20 nodes; other abbreviations follow the same convention.

Model ATSP20 ATSP50 ATSP100 2DTSP20 2DTSP50 2DTSP100
MatPOENet-Single 1.5784 1.5864 1.6139 3.8427 5.7345 8.0972
MatPOENet-Mixed-Tuned 1.5778 1.5870 1.6143 3.8419 5.7342 8.1007

Ours 1.5692 1.5809 1.6098 3.8368 5.7296 8.0931

3) Ours: We utilize the method from [34] to accomplish the transformation between 3SAT and the
general TSP format (Hamiltonian Cycle Problem, HCP). We then generate a dataset to align our SAT
model (pre-trained on easy-level instances from the 7 domains in the main text) with the MatPOENet
backbone through contrastive learning. This alignment dataset consists of 10,000 training pairs (HCP
instances with 20 nodes) and 1,000 validation pairs. After alignment, the model is trained using the
same procedure and data amount as the single-task setting.

The training of all MatPOENet models follows the original paper, using 10,000 randomly generated
instances per epoch for over 1,000 epochs. It is important to note that the data volume required for
alignment is quite small compared to the total training data.

In line with [34], we report the average tour length (lower is better) in Table 18. The results indicate
that the multi-task pre-training and fine-tuning strategy yields no significant performance difference
compared to single-task training, suggesting that simply mixing data from different problems does
not effectively enhance performance on individual tasks. In contrast, our method outperforms both
baseline strategies, demonstrating its ability to leverage knowledge from multiple problem domains
to learn improved representations that benefit performance on single tasks.

G.7.2 COMPARISON WITH GOAL [10]

GOAL [10] introduces a framework for multi-task learning that employs distinct input and output
adapters for different CO problems. The authors train a single model on a mixture of eight CO
problems, enabling it to solve multiple tasks without fine-tuning, albeit with performance inferior to
that of models trained on individual tasks. Similar to UniCO, the GOAL framework does not innovate
on the training approach, making direct comparison with our approach infeasible using their original
setup.

To enable a fair comparison, we select three tasks from [10]—ATSP, MVC, and MIS—and use the
GOAL framework as the backbone solver. We compare the following three training strategies:

1) GOAL-Single: The model is trained exclusively on a single task.

2) GOAL-Multi-Tuned: The model is first trained on a mixture of eight tasks from [10] (with MIS
added as a ninth task for the MIS experiments) and is subsequently fine-tuned on the single target
task. To mitigate the influence of data volume, the fine-tuning dataset is kept identical in size to
the single-task training set, ensuring that performance differences are attributable to the multi-task
training paradigm.

3) Ours: We first align our SAT model (pre-trained on easy-level instances from the 7 domains listed
in the main text) with the GOAL backbone via contrastive learning. For ATSP, the alignment data
is the dataset generated for the UniCO comparison; for MVC and MIS, we use 10,000 easy-level
k-VerCov and k-IndSet instances for training, respectively, with an additional 1,000 for validation.
After alignment, the model is trained using the same procedure and data volume as the single-task
setting.

The data volume for training GOAL is consistent with the original paper, i.e., 1 million random
instances per problem.

Following [10], we report the average gap (lower is better) in Table 19. The results indicate that,
similar to the UniCO findings, simply mixing training data from multiple tasks does not effectively
enhance performance on individual target tasks. In contrast, our contrastive learning-based training
strategy outperforms both baselines, demonstrating the utility of incorporating contrastive learning
into a multi-task framework.
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Table 19: Average gap with different training approaches. The notation ’ATSP100’ denotes instances
of ATSP with 100 nodes; other abbreviations follow the same convention.

Model ATSP100 MVC100 MIS100
GOAL-Single 0.32% 0.21% 0.16%
GOAL-Multi-Tuned 0.30% 0.22% 0.15%

Ours 0.25% 0.17% 0.13%

Table 20: Performance on large-scale CO problems. Values in parentheses represent the gain over
baseline, calculated as in the main text.

Problem Graph Optimal Baseline Ours-Easy Ours-Medium Ours-Hard
MVC ER(600,1000) 798.54 806.81 805.36 (17.53%) 804.83 (23.94%) 803.99 (34.10%)
MVC ER(1000,2000) 1320.78 1331.19 1329.75 (13.83%) 1328.48 (26.03%) 1327.90 (31.60%)
MVC ER(2000,3000) 2476.30 2498.79 2496.46 (10.36%) 2493.87 (21.88%) 2492.07 (29.88%)
MIS ER(9000,11000) 381.31 356.47 358.73 (9.10%) 360.36 (15.66%) 362.11 (22.71%)

G.8 FURTHER STUDY ON LARGE-SCALE CO PROBLEMS

To comprehensively evaluate the efficacy of our method on real-world CO problems, we conduct
a series of experiments on large-scale instances. Based on our initial observation that pre-training
solely on easy-level instances leads to performance gains that diminish with increasing problem
scale, we further analyze this trend of gain degradation and investigate the scale of pre-training data
required to effectively mitigate it.

Specifically, we select larger-scale instances of MVC, namely Erdős–Rényi (ER) graphs with
600–1000, 1000–2000, and 2000–3000 vertices, denoted as ER(600, 1000), ER(1000, 2000), and
ER(2000, 3000), respectively. Additionally, we test on large-scale MIS instances represented by ER
graphs with 9000–11000 vertices, i.e., ER(9000, 11000). We employ OptGNN [54] as the baseline
solver for MVC and GFlowNet [56] for MIS. The training procedures for these baseline solvers are
kept consistent with their respective original papers [54; 56]. For MVC, 32 test instances are used for
each graph size, while 16 test instances are used for the MIS experiments. The optimal for MVC is
acquired through Gurobi with a 24-hour time limit, and for MIS, it is obtained by KAMIS.

Beyond the baseline, we evaluate three variants of our method pre-trained on data of different scales:
Ours-Easy (the reported results in the main text), pre-trained on easy-level instances (graphs with
5-15 vertices); Ours-Medium, pre-trained on medium-level instances (graphs with 10-20 vertices for
MVC, 15-20 vertices for MIS); and Ours-Hard, pre-trained on hard-level instances (graphs with
15-25 vertices for MVC, 20-25 vertices for MIS). For each variant, 5,000 instances are utilized for
training, with an additional 1,000 instances for validation. The subsequent fine-tuning procedures for
these variants remain identical to the baseline training.

The results are presented in Table 20. The rate at which performance gains diminish with problem
scale is significantly reduced when the pre-training scale is increased. Notably, effective mitigation
does not require pre-training on graphs of massive scale (e.g., with 10,000 vertices). Pre-training
on hard-level instances (comprising graphs with up to 25 vertices) alone is sufficient to stabilize the
performance gains; our method still achieves over 20% gain even on the very large ER(9000, 11000)
graphs. This finding robustly demonstrates the potential of our approach for enhancing real-world,
large-scale CO problem-solving.

G.9 ABLATION STUDY ON WARM START

During training, we incorporate a warm start phase. To better understand its contribution, we conduct
an ablation study. We selected the LCG+NeuroSAT+GraphSAGE backbone and, during training on
easy-level instances, omitted the warm start phase while keeping all other procedures unchanged.
This variant is denoted as w/o warm start and is compared against the standard method (with warm
start).

The results, presented in Table 21, show a significant performance degradation when the warm start is
skipped. This decline is because applying contrastive learning from the very beginning can disrupt the
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Table 21: Graph model performance comparison with and without warm start.
Model k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall
w/o warm start 71.4 61.9 65.3 90.4 71.1 65.9 62.6 69.8
with warm start 79.7 63.2 70.8 93.3 75.3 71.0 63.9 73.9

model’s acquisition of task-specific representations. Consequently, the information transferred during
the subsequent phase may carry greater bias, which is detrimental to representation enhancement.
While contrastive learning is designed to facilitate information transfer, the warm start phase ensures
that the information being shared across different problems is meaningful. Therefore, the warm start
plays a critical role in the effectiveness of our method.

G.10 ABLATION STUDY ON TEMPERATURE SELECTION

We conducted an ablation study on the temperature hyperparameter (τ ) in our contrastive learning
framework. Using the LCG+NeuroSAT+GraphSAGE backbone, we train models on both easy-level
and medium-level instances while varying the value of τ from 0.1 to 0.8. The results are presented
in Table 22 and Table 23, indicating that the specific value of τ has a limited impact on the final
performance. However, it does influence the convergence rate of the contrastive learning process.

Table 22: Performance of graph models trained using different temperature (τ ). The models are
trained on easy-level instances. ‘Converged Epoch’ denotes the training epoch where the contrastive
loss ceases to decrease.

Temperature k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall Converged Epoch
0.1 79.7 63.2 70.8 93.3 75.3 71.0 63.9 73.9 16
0.2 79.5 63.0 70.8 93.2 75.0 70.7 63.9 73.7 18
0.3 79.6 63.2 70.7 93.2 75.2 71.1 63.7 73.8 20
0.4 79.7 63.1 70.8 93.5 75.5 71.2 63.9 74.0 19
0.5 79.7 63.1 70.6 93.1 75.4 70.9 63.9 73.8 19
0.6 79.9 63.1 70.9 93.1 75.4 71.0 64.2 73.9 20
0.7 79.7 63.2 70.9 93.3 75.4 71.0 63.8 73.9 22
0.8 79.6 63.2 70.8 93.2 75.1 71.0 63.6 73.8 24

Table 23: Performance of graph models trained using different temperature (τ ). The models are trained
on medium-level instances. ‘Converged Epoch’ denotes the training epoch where the contrastive loss
ceases to decrease.

Temperature k-Clique k-Domset k-Vercov k-Color k-Indset Matching Automorph Overall Converged Epoch
0.1 72.6 64.2 66.5 86.0 70.0 71.7 65.0 70.9 24
0.2 72.4 64.5 66.6 85.8 70.2 71.5 64.8 70.8 23
0.3 72.9 64.0 66.8 85.9 69.9 71.6 64.7 70.8 21
0.4 72.7 64.0 66.7 86.0 70.4 72.0 64.9 71.0 18
0.5 72.8 64.1 66.7 85.9 70.1 71.7 64.8 70.9 18
0.6 72.7 64.0 66.7 85.7 70.0 71.8 64.7 70.8 20
0.7 72.5 64.1 66.5 85.8 70.0 71.6 64.6 70.7 23
0.8 72.6 64.1 66.5 85.9 70.1 71.6 64.8 70.8 24

H LARGE LANGUAGE MODEL USAGE

In this paper, large language models (LLMs) are only used to find and correct grammatical errors.
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