

000 CONREP4CO: CONTRASTIVE REPRESENTATION 001 LEARNING OF COMBINATORIAL OPTIMIZATION IN- 002 STANCES ACROSS TYPES 003 004

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Considerable efforts have been devoted to machine learning (ML) for combinatorial
014 optimization (CO) problems, especially on graphs. Compared to the active and
015 well-established research for representation learning of text and vision, etc., it
016 remains under-studied for the representation learning of CO problems, especially
017 across different types. In this paper, we try to fill this gap (especially for NP-
018 complete (NPC) problems, as they, in fact, can be reduced to one another). Our
019 so-called ConRep4CO framework, performs contrastive learning by first transform-
020 ing CO instances in various original forms into the form of Boolean satisfiability
021 (SAT). This scheme is readily doable, especially for NPC problems, including
022 those practical graph decision problems (GDPs) which are inherently related to
023 their NP-hard optimization versions. Specifically, each positive pair of instances
024 for contrasting consists of an instance in its original form and its corresponding
025 transformed SAT form, while the negative samples are other instances not in cor-
026 respondence. Extensive experiments on seven GDPs (most of which are NPC)
027 show that ConRep4CO significantly improves the representation quality and gen-
028 eralizability to problem scale. Furthermore, we conduct extensive experiments
029 on NP-hard optimization versions of the GDPs, including MVC, MIS, MC and
030 MDS. The results show that introducing ConRep4CO can yield performance im-
031 provements of **61.27%, 32.20%, 36.46%, and 45.29%** in objective value gaps
032 compared to problem-specific baselines, highlighting the potential of ConRep4CO
033 as a unified pre-training paradigm for CO problems.

034 1 INTRODUCTION

035 Combinatorial optimization (CO) has been attracting wide interest for its practical importance from
036 logistics [41] to finance [36]. Compared with the vector or matrix-like data, e.g., image, text, and the
037 associated short-range tasks, e.g., classification and regression, the CO problems are inherently more
038 challenging due to their discrete and non-convex nature with complex constraints, which often leads
039 to NP-complete (NPC) or even NP-hard complexity [26].

040 Despite the recent extensive research on machine learning (ML) for CO [3; 15], there still exist many
041 limitations: compared to the well-developed learning approaches for representation of text [35] and
042 vision [50], the tailored representation learning framework for CO problems remain under-explored.
043 In fact, existing ML4CO literature in technique is mainly tailored to a single problem type, e.g.,
044 TSP [43], which may become a bottleneck for their ability in the sense of not leveraging the potential
045 cross-domain learning. This gap is especially pronounced with the fast development of multi-modality
046 joint representation learning out of the CO area, e.g. CLIP [38] for both text and image.

047 In this paper, we try to fill the above gap by advancing the pre-training representation learning
048 paradigm for CO problems, particularly by selecting various NPC problems, mainly including the
049 so-called graph decision problems (GDPs), as pre-training tasks¹. The hope is that the model trained
050 jointly on various problem types will exhibit better expressiveness and generalization ability. To

052 ¹GDPs are the decision versions of general NP-hard CO problems, such as the k -independent set problem
053 corresponding to the maximum independent set (MIS) problem, and encapsulate the core challenges of CO.
From the 21 NP-complete problems identified by [26], 10 are GDPs, highlighting their fundamental importance.

054 achieve our objective, we particularly leverage an important fact: NPC problems can be reduced to
 055 one another, and can all be transformed into Boolean satisfiability (SAT), making SAT a common
 056 form to bridge different original forms. This also suggests that they inherently share a latent structure
 057 worth being exploited for effective representations and ultimately for the goal of high-quality problem
 058 solving. Furthermore, there is a strong connection between GDPs and their optimization versions,
 059 which are more practical in real-world applications. Most CO problems can be converted into their
 060 decision versions by adding a target value. Prior results [25] have also established polynomial-time
 061 equivalences between decision and optimization for key CO problems. We select GDPs as pretraining
 062 tasks to learn representations, maintaining the potential to leverage the learned representations to
 063 enhance general CO problem-solving beyond GDPs.

064 Specifically, we develop a contrastive pre-training learning paradigm, ConRep4CO, tailored to CO
 065 problems beyond the vanilla version for images [9]. The pre-training is performed by contrasting
 066 problem instances, where the positive sample is defined as a pair of a vanilla GDP instance with its
 067 corresponding SAT form, while the negative sample is a pair that is not in correspondence. Also, a
 068 decision loss is applied to guide each model to effectively learn the feature representations of the
 069 respective instances and capture the unique characteristics of its assigned problem domain. Extensive
 070 experiments are conducted to evaluate the effectiveness of the ConRep4CO paradigm, comprising
 071 two parts: **1) representation evaluation**, and **2) enhancement of CO problem-solving**. For 1),
 072 since there is no universal metric for CO representation evaluation, in the context of our discussion,
 073 we use the accuracy of solving GDPs as a measure. We first assess the representation quality and
 074 generalizability to problem scale by solving GDPs on both pre-training identical distribution and more
 075 difficult instances. We also evaluate the cross-domain generalizability by the solving performance on
 076 unseen GDP domains. For 2), we incorporate ConRep4CO into the training of problem-specific neural
 077 solvers for minimum vertex cover (MVC), maximum independent set (MIS), maximum clique (MC),
 078 and minimum dominating set (MDS). The neural solvers enhanced by ConRep4CO consistently show
 079 significant performance improvements, demonstrating the practical applicability of ConRep4CO
 080 beyond GDPs. **The highlights of the paper are as follows.**

081 1) We try to advance the frontier of representation learning, beyond the classic instance forms, e.g.,
 082 text/vision, by proposing ConRep4CO, a novel contrastive pre-training paradigm to learn general
 083 representations across different CO problems with complex discrete constraints and variables.

084 2) We leverage the SAT form to build the positive/negative pairs for our carefully designed contrastive
 085 learning scheme, based on the fact that GDPs (i.e., NPC problems) can be reduced into the SAT form.
 086 A merit is that our contrastive approach is augmentation-free, as CO instance augmentation itself is a
 087 notoriously challenging task due to unique problem structures. This is in contrast to the trivial image
 088 augmentation as done in contrast to vision problems, which, in fact, is also a bottleneck for directly
 089 reusing the contrastive learning approaches in vision to combinatorial tasks.

090 3) Our method learns the representation across different types beyond a single type. Such a unified
 091 paradigm facilitates representation learning through knowledge transfer among problem domains and
 092 mutual enhancement. Extensive experiments show that ConRep4CO not only improves representation
 093 quality but also significantly enhances problem-solving for various CO problems.

094 2 RELATED WORK

095 **Machine Learning for CO.** The application of machine learning to graph-based CO problems has a
 096 rich history, with recent research demonstrating substantial advancements in this domain [27; 3; 32].
 097 Most ML-based approaches for CO follow a two-stage framework: (1) *Graph representation learning*,
 098 where graph instances are embedded into low-dimensional vector spaces through graph neural
 099 networks (GNNs) [20; 6; 8]; and (2) *The utilization of these learned representations to solve CO*
 100 *problems* [24; 37; 40]. Our ConRep4CO paradigm focuses on enhancing the first stage by proposing
 101 a more general training approach. While previous work has largely focused on designing network
 102 architectures [28; 19; 46], our approach emphasizes the development of a training paradigm that
 103 leverages information from multiple problem types. There are also recent works on training with
 104 different types of CO, e.g., GOAL [10], UniCO [34] and MAB-MTL [49]. However, these works are
 105 orthogonal to ours as they directly follow the multi-task paradigm without contrastive pre-training.

106 **Graph Contrastive Learning.** Many graph contrastive frameworks rely on graph augmentations,
 107 which can be broadly categorized into two types: (1) *structural perturbations*, such as node dropping,
 108 edge sampling, and graph diffusion [11; 23]; and (2) *feature perturbations*, such as adding noise

108 to node features [21]. These augmentation strategies have demonstrated effectiveness across a
 109 range of tasks, from graph-level representations [21; 55] to node-level representations [48; 45]. Our
 110 ConRep4CO paradigm moves beyond traditional graph augmentations by contrasting graph instances
 111 across multiple problem types. Instead of solely relying on structural and feature perturbations,
 112 ConRep4CO leverages the inherent characteristics of different CO problems, enabling the model to
 113 capture higher-level characteristics. Note that our approach is augmentation-free. We believe this
 114 is a nice property as graph augmentation² itself is a notoriously complex problem and much more
 115 complex than that on image data, as done in the vanilla contrastive paradigm SimCLR [9], where
 116 the augmented positive samples are generated by adding perturbations on the image e.g., cropping,
 117 translating, warping etc.

3 METHODOLOGY

120 We present details of our **Contrastive Representation alignment and learning for Combinatorial**
 121 **Optimization (ConRep4CO)** paradigm. We start by introducing the preliminary background on
 122 representations of graph decision problems and SAT in Sec. 3.1. Then, we elaborate on our approach
 123 to aligning multiple problem types in Sec. 3.2. Finally, we introduce the overall pipeline and
 124 implementation of our ConRep4CO, as well as some important training details in Sec. 3.3.

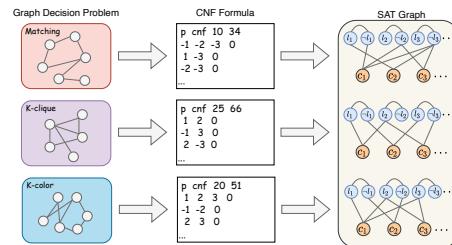
3.1 PRELIMINARIES

125 **Graph decision problem (GDP).** As a fundamental computational challenge, its goal is to determine
 126 the existence of specific properties within a given graph. These properties can vary, from identifying
 127 whether a graph contains a particular substructure, e.g. a clique or cycle, to assessing whether it meets
 128 conditions like connectivity or planarity. Graph decision problems are typically the decision versions
 129 of general NP-hard CO problems, e.g., the k -independent set problem corresponding to the maximum
 130 independent set problem, and the k -vertex cover problem corresponding to the minimum vertex cover
 131 problem, making them essential in the context of NPC problems. In particular, ML-based models can
 132 be effectively utilized to address GDPs. The objective is to learn a representation of a specific GDP
 133 type and use it to predict decisions based on the input graph. These representations can be understood
 134 as mappings that translate the structural properties of the input graphs into corresponding decisions,
 135 thereby capturing the underlying patterns required for decision-making in GDPs.

136 **SAT problem.** A Boolean formula in propositional logic consists of Boolean variables connected
 137 by logical operators “and” (\wedge), “or” (\vee), and “not” (\neg). A literal, denoted as l_i , is defined as either
 138 a variable or its negation, and a clause c_j is represented as a disjunction of n literals, $\bigvee_{i=1}^n l_i$. A
 139 Boolean formula is in Conjunctive Normal Form (CNF) if it is expressed as a conjunction of clauses
 140 $\bigwedge_{j=1}^m c_j$. Given a CNF formula, the Boolean Satisfiability Problem (SAT) aims to determine whether
 141 there exists an assignment π of Boolean values to its variables under which the formula evaluates to
 142 true. If such an assignment π exists, the formula is called satisfiable, where π is called a satisfying
 143 assignment; otherwise, it is unsatisfiable. Graph representations play an important role in analyzing
 144 SAT formulas, with four common primary forms [4]: the literal-clause graph (LCG), literal-incidence
 145 graph (LIG), variable-clause graph (VCG), and variable-incidence graph (VIG). The LCG is a
 146 bipartite graph consisting of two types of nodes— literals and clauses— where an edge between a
 147 literal and a clause signifies the occurrence of that literal in the clause. LIG, in contrast, consists
 148 solely of literal nodes, with edges representing the co-occurrence of two literals within the same
 149 clause. VCG and VIG are derived from LCG and LIG by merging each literal with its negation.

3.2 MODAL ALIGNMENT

150
 151 We aim to enhance the learned representations of graph instances across a diverse
 152 range of GDPs by incorporating and syn-
 153thesizing information from multiple GDP
 154 types. Specifically, we conceptualize each
 155 GDP type as a distinct problem modality.
 156 By adopting this multi-modal perspective,
 157 we explore the potential for cross-modal
 158 information-passing schemes. Note that



158 Figure 1: Transformation process from various GDP
 159 instances to the unified LCG representation of SAT.
 160

161 ²The CO instance can often be represented as a certain graph, e.g., a bipartite graph in [14].

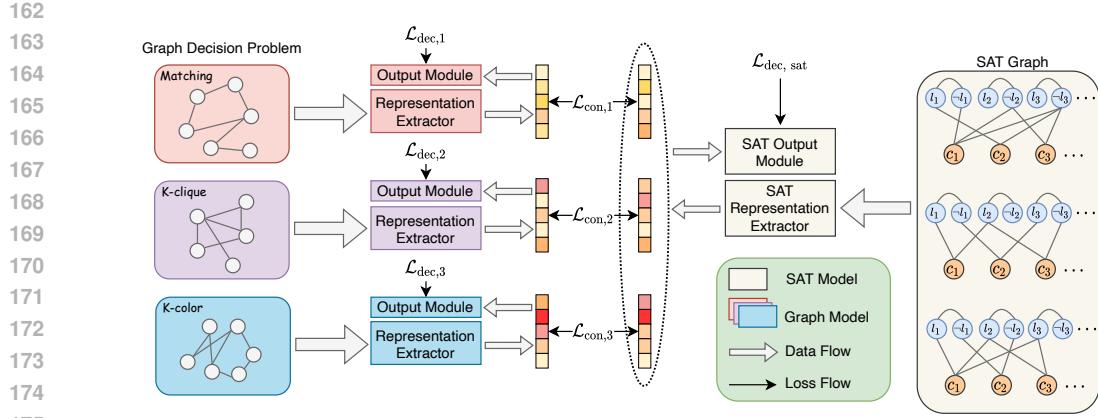


Figure 2: Overview of ConRep4CO with the proposed contrastive learning scheme. Given instances from multiple GDP types and their corresponding SAT graphs, a graph model is trained for each GDP type alongside a SAT model. Each model is composed of a Representation Extractor and an Output Module. The input graphs are processed by the Representation Extractor to generate instance-level representations, which are subsequently fed into the Output Module to produce the final decisions for each instance. The decision loss is applied individually to each model, while the contrastive loss is applied to each graph model. All contrastive losses are applied to the SAT model.

the term ‘modality’ is not strictly defined. We hope to express that the problems represent different forms of a higher-level underlying difficulty and share a common underlying structure.

Significant challenges arise due to the inherent disparities and structural gaps between different GDP types, often exhibiting varying graph topologies and problem characteristics. To fill this gap, we propose introducing SAT as a unified intermediary modality. The core concept involves transforming each GDP instance into its corresponding CNF formula, effectively converting it into a SAT instance. Once transformed, we construct a SAT-based graph representation for each instance, ensuring that all GDP instances, regardless of their original modalities, are standardized into an equivalent SAT graph representation. This transformation allows for uniform modeling across disparate problem types. Fig. 1 clarifies our approach to modal transformation.

After this transformation, we leverage contrastive learning to align the different modalities. Specifically, each GDP instance and its corresponding SAT instance form a positive pair to train both the SAT and graph models, while SAT instances derived from other GDP instances within the same GDP type serve as negative samples for the graph model. Similarly, other GDP instances within the same type serve as negative samples for the SAT model. Fig. 3 illustrates the contrastive learning process. The SAT modality, in turn, aligns with all other modalities. The goal is to facilitate information transfer across GDP modalities while preserving the distinct characteristics of each problem type.

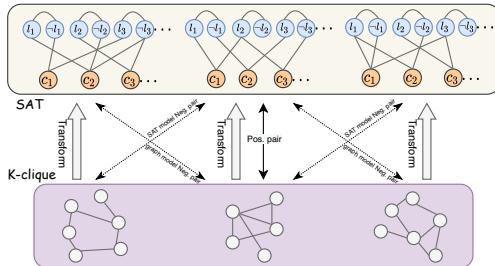


Figure 3: An example of the contrastive learning process, where ‘Pos. pair’ and ‘Neg. pair’ refer to positive and negative pairs, respectively. A similar process applies to other modalities with SAT.

3.3 CONREP4CO PARADIGM

3.3.1 OVERVIEW

In this section, we provide a detailed introduction to ConRep4CO. Fig. 2 exhibits an overview.

Consider n types of GDPs, denoted as $\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_n$, along with n corresponding graph sets $\mathbf{G}_1, \mathbf{G}_2, \dots, \mathbf{G}_n$. For simplicity, assume that each graph set \mathbf{G}_i contains m graphs, i.e., $\mathbf{G}_i = \{\mathcal{G}_i^1, \mathcal{G}_i^2, \dots, \mathcal{G}_i^m\}$, for $i = 1, 2, \dots, n$. The objective is to solve problem \mathcal{P}_i on graphs in \mathbf{G}_i . In total, there are $m \times n$ instances, denoted by $I_i^j = (\mathcal{P}_i, \mathcal{G}_i^j)$, where $i = 1, 2, \dots, n$ and $j = 1, 2, \dots, m$.

216 We first transform each of the $m \times n$ GDP instances into CNF, thereby generating their corresponding
 217 SAT graphs, i.e., $(\mathcal{P}_i, \mathcal{G}_i^j) \rightarrow \mathcal{B}_i^j$, where \mathcal{B}_i^j is the constructed SAT graph.
 218

219 Then, we develop n distinct graph models, $\mathbb{M}_1, \dots, \mathbb{M}_n$, each for one GDP type, and one unified SAT
 220 model \mathbb{M}_{sat} to address the problem space. Both the graph models and the SAT model are structured
 221 around two key components: the **Representation Extractor** and the **Output Module**. The Represen-
 222 tation Extractor, implemented as a GNN-based network, is responsible for learning and extracting
 223 representations from the input graph instances, whether derived from GDP or SAT transformations.
 224 The Output Module, implemented as an MLP, then utilizes these learned representations to produce
 225 task-specific outputs, thereby enabling the resolution of the given problem.
 226

226 In training, we jointly train the $(n + 1)$ models corresponding to the n GDP modalities along with
 227 the SAT modality. The supervision is derived from two parts: the decision loss and the contrastive
 228 loss. The decision loss is applied independently to each model, guiding the encoder to learn domain-
 229 specific feature representations. Meanwhile, contrastive loss is employed to facilitate feature fusion
 230 and message passing across different modalities, enabling the models to leverage complementary
 231 information from other problem domains. For training sample and label preparation, one cost
 232 comes from generating the corresponding SAT form for each instance, which requires a polynomial
 233 complexity. While this cost is negligible for computing labels for the training instances.
 234

234 3.3.2 LOSS FUNCTION

236 We introduce the definition and computation of the two key loss functions used in ConRep4CO.
 237

238 **Decision Loss \mathcal{L}_{dec} .** It is defined as a binary cross-entropy loss, which can be computed by:
 239

$$240 \mathcal{L}_{dec} = \sum_{i \in \text{Batch}} \left\{ -d_i^{\text{gt}} \log(d_i^{\text{out}}) - (1 - d_i^{\text{gt}}) \log(1 - d_i^{\text{out}}) \right\}, \quad (1)$$

242 where d^{out} denotes the output decision of the models, and d^{gt} refers to the ground truth label. For
 243 each model, the decision loss is independently computed and applied.
 244

245 **Contrastive Loss \mathcal{L}_{con} .** Here we adopt the classic contrastive objective as widely used in litera-
 246 ture [9; 22; 44], to facilitate the alignment between the GDP and SAT modalities. Taking \mathcal{P}_n and the
 247 SAT modality as an example, \mathcal{L}_{con} is formulated as:
 248

$$249 \mathcal{L}_{con,n} = \sum_{i=1}^N \left\{ -\log \frac{\exp(sim(\hat{\mathbf{r}}_n^i, \hat{\mathbf{r}}_{sat}^i)/\tau)}{\sum_{j=1}^N \mathbb{I}_{j \neq i} \exp(sim(\hat{\mathbf{r}}_n^i, \hat{\mathbf{r}}_{sat}^j)/\tau)} - \log \frac{\exp(sim(\hat{\mathbf{r}}_n^i, \hat{\mathbf{r}}_{sat}^i)/\tau)}{\sum_{j=1}^N \mathbb{I}_{j \neq i} \exp(sim(\hat{\mathbf{r}}_n^j, \hat{\mathbf{r}}_{sat}^i)/\tau)} \right\} \quad (2)$$

251 where N represents the number of instance pairs in a batch, $\hat{\mathbf{r}}_n^i$ denotes the normalized representation
 252 of the i -th instance in the \mathcal{P}_n modality, and $\hat{\mathbf{r}}_{sat}^i$ denotes the normalized representation of the
 253 corresponding instance in the SAT modality, derived from the i -th instance of the \mathcal{P}_n modality. The
 254 parameter τ is the temperature scalar, and \mathbb{I} is an indicator function. The function $sim(\cdot, \cdot)$ measures
 255 the cosine similarity between two representations, defined as $sim(\mathbf{r}_i, \mathbf{r}_j) = \frac{\mathbf{r}_i^\top \mathbf{r}_j}{\|\mathbf{r}_i\| \|\mathbf{r}_j\|}$.
 256

257 Each GDP modality is trained using the contrastive loss with the SAT modality, allowing independent
 258 optimization for each GDP model. In parallel, the SAT model is optimized using the average
 259 contrastive losses computed across all GDP modalities, ensuring effective alignment.
 260

261 3.3.3 TRAINING DETAILS

263 We adopt a warm start strategy to ensure the models learn robust representations. During the initial
 264 training phase, only the decision loss is utilized, while the contrastive loss is temporarily disabled.
 265 This phase allows the models to focus on learning meaningful task-specific representations based
 266 solely on the decision outcomes. Our insight is to provide a stable foundation for representation
 267 learning before introducing the more complex cross-modal alignment enforced by contrastive loss.
 268

269 After the warm start phase, we introduce the contrastive loss alongside the decision loss. To balance
 the influence of these two losses, we introduce a parameter β , which controls the relative weight of
 the decision loss during the joint training phase.
 270

270
271
272
273
274Table 1: GDP solving accuracy (%) with confidence intervals ($\alpha = 0.05$) of the graph models trained on an identical distribution, measuring the quality of learned representations. ‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph model backbone. The ‘Overall’ column represents the average accuracy across all datasets.

SAT Back.	Graph Back.	Difficulty	Model	<i>k</i> -Clique	<i>k</i> -Domset	<i>k</i> -Vercov	<i>k</i> -Color	<i>k</i> -Indset	Matching	Automorph	Overall
LCG+NeuroSAT	GCN	Easy	Graph Model	77.0±0.2	58.5±0.3	60.3±0.6	86.1±0.2	62.7±0.4	71.2±0.2	63.6±0.4	68.5
			Graph Model+ConRep4CO	79.3±0.3	62.0±0.1	67.3±0.2	90.2±0.1	67.5±0.5	71.7±0.3	65.4±0.3	71.9
		Medium	Graph Model	63.2±0.5	62.2±0.2	59.9±0.4	79.6±0.2	61.1±0.2	70.6±0.5	63.3±0.4	65.7
			Graph Model+ConRep4CO	71.3±0.5	64.6±0.2	63.3±0.3	82.2±0.2	64.0±0.1	72.8±0.4	65.7±0.4	69.1
LCG+GCN	GCN	Easy	Graph Model	77.0±0.3	58.5±0.2	60.3±0.4	86.1±0.2	62.7±0.3	71.2±0.2	63.6±0.3	68.5
			Graph Model+ConRep4CO	79.3±0.2	61.1±0.3	65.0±0.3	89.6±0.1	67.7±0.4	71.1±0.3	64.6±0.2	71.2
		Medium	Graph Model	63.2±0.4	62.2±0.2	59.9±0.3	79.6±0.3	61.1±0.2	70.6±0.4	63.3±0.3	65.7
			Graph Model+ConRep4CO	71.5±0.3	65.4±0.4	63.4±0.2	81.7±0.2	64.0±0.3	72.3±0.3	64.4±0.4	69.0
VCG+GCN	GCN	Easy	Graph Model	77.0±0.3	58.5±0.2	60.3±0.4	86.1±0.2	62.7±0.3	71.2±0.2	63.6±0.3	68.5
			Graph Model+ConRep4CO	78.0±0.4	60.6±0.3	62.9±0.3	88.8±0.1	66.3±0.2	71.1±0.3	64.2±0.2	70.3
		Medium	Graph Model	63.2±0.4	62.2±0.2	59.9±0.3	79.6±0.3	61.1±0.2	70.6±0.4	63.3±0.3	65.7
			Graph Model+ConRep4CO	70.8±0.3	64.2±0.4	63.0±0.2	80.4±0.2	62.1±0.3	71.8±0.3	64.0±0.4	68.0
LCG+NeuroSAT	GraphSAGE	Easy	Graph Model	57.9±0.5	50.0±0.3	50.7±0.4	61.8±0.2	52.2±0.3	58.2±0.3	53.8±0.4	54.9
			Graph Model+ConRep4CO	79.7±0.2	63.2±0.3	70.8±0.3	93.3±0.1	75.3±0.4	71.0±0.2	63.9±0.3	73.9
		Medium	Graph Model	52.8±0.4	56.5±0.2	56.0±0.3	55.2±0.3	50.0±0.4	58.2±0.3	54.8±0.2	54.8
			Graph Model+ConRep4CO	72.8±0.3	64.1±0.4	66.7±0.2	85.9±0.2	70.1±0.3	71.7±0.4	64.8±0.3	70.9
LCG+NeuroSAT	PGN	Easy	Graph Model	76.2±0.3	58.4±0.2	66.4±0.4	91.6±0.1	67.9±0.3	68.7±0.2	61.7±0.3	70.1
			Graph Model+ConRep4CO	77.3±0.2	61.9±0.3	69.7±0.3	93.7±0.2	71.6±0.4	70.3±0.3	61.7±0.2	72.3
		Medium	Graph Model	72.4±0.4	62.8±0.3	64.7±0.2	83.0±0.3	68.1±0.2	58.8±0.4	50.4±0.3	65.7
			Graph Model+ConRep4CO	72.0±0.3	63.3±0.4	66.0±0.3	86.4±0.2	67.2±0.3	70.8±0.3	63.3±0.4	69.9
LCG+NeuroSAT	GraphGPS	Easy	Graph Model	82.4±0.2	77.2±0.3	85.5±0.1	89.9±0.2	76.4±0.3	69.4±0.4	67.4±0.2	78.3
			Graph Model+ConRep4CO	83.9±0.3	77.4±0.2	88.5±0.2	90.6±0.1	78.4±0.4	76.3±0.3	66.4±0.3	80.2
		Medium	Graph Model	70.7±0.4	62.5±0.3	66.8±0.2	84.9±0.3	61.8±0.2	69.4±0.3	62.6±0.4	68.2
			Graph Model+ConRep4CO	71.7±0.3	72.9±0.4	81.8±0.3	85.6±0.2	73.0±0.3	57.2±0.4	63.2±0.3	72.2

3.3.4 INCORPORATING CONREP4CO INTO PROBLEM-SPECIFIC NEURAL SOLVERS

Despite selecting GDPs as the pre-training tasks, ConRep4CO is not restricted to only GDP solving in practical applications. ConRep4CO can be incorporated into problem-specific neural solvers to enhance the learned representation and ultimately improve problem-solving. Suppose one has pre-trained a SAT model (and graph models) using ConRep4CO. The following steps can be taken:

- 1) Convert the decision version instances of the neural solver’s corresponding problem domain into CNFs. This can typically be implemented through off-the-shelf tools, such as CNFGen [30], and requires polynomial complexity, which is negligible for computing labels for the training instances.
- 2) Use the loss function defined in Sec. 3.3.2 to perform contrastive learning between the neural solver model and the pre-trained SAT model. The neural solver’s architecture may need minor adjustments, such as adding an output module, while the parameters of the SAT model are fixed, as the pre-trained SAT model already contains unified representations for various problems.
- 3) Fine-tune the neural solver in the original problem domain to adapt the learned representations.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. To evaluate the broad applicability of our approach, we select seven GDPs: *k*-Clique, *k*-Dominating Set (*k*-Domset), *k*-Vertex Cover (*k*-Vercov), *k*-Coloring (*k*-Color), *k*-Independent Set (*k*-Indset), Perfect Matching (Matching), and Graph Automorphism (Automorph). For each problem, we randomly generate graph instances that adhere to a distribution specific to the problem. To ensure a comprehensive and rigorous evaluation, we create datasets with varying levels of difficulty, categorized as easy, medium, and hard, based on the size and distribution of the generated graphs. For each easy and medium dataset, we generate 160,000 instances for training, 20,000 instances for validation, and 20,000 instances for testing. For each hard dataset, we only produce 20,000 instances for testing to evaluate the generalizability of the learned representations. Additionally, we ensure an equal distribution of labels, with 50% of instances labeled as satisfiable (1) and 50% as unsatisfiable (0) across the training, validation, and test sets. The graph instances were transformed into CNF using generators from CNFGen [30]. Furthermore, we evaluate the effectiveness of ConRep4CO in enhancing CO problem-solving on four practical CO problems: minimum vertex cover (MVC), maximum independent set (MIS), maximum clique (MC), and minimum dominating set (MDS). For MVC, we follow the setting in [54], using Erdős–Rényi (ER) graphs with three scales, containing approximately 50 to 100, 100 to 200, and 400 to 500 vertices, respectively. For MIS, MC, and MDS, we follow the setting in [56], using RB graphs [53] for MIS and MC, and BA graphs [2] for

324
325
326
327
328
329Table 2: GDP solving accuracy (%) with confidence intervals ($\alpha = 0.05$) of the graph models on the hard datasets, measuring the generalizability of learned representations. ‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph model backbone. The terms ‘Easy’ and ‘Medium’ in parentheses indicate the difficulty level of the datasets used for training. The ‘Overall’ column represents the average accuracy across all datasets.

SAT Back.	Graph Back.	Model	k -Clique	k -Domset	k -Vercov	k -Color	k -Indset	Matching	Automorph	Overall
LCG+NeuroSAT	GCN	Graph Model (Easy)	54.5 \pm 0.2	50.0 \pm 0.1	50.0 \pm 0.1	54.6 \pm 0.4	50.5\pm0.2	66.4 \pm 0.3	63.1 \pm 0.1	55.6
		Graph Model+ConRep4CO (Easy)	57.1\pm0.1	50.1\pm0.1	50.0 \pm 0.1	60.5\pm0.3	50.3 \pm 0.2	67.9\pm0.4	63.6\pm0.2	57.1
		Graph Model (Medium)	57.1 \pm 0.1	56.2 \pm 0.1	50.0 \pm 0.1	63.7 \pm 0.5	53.1 \pm 0.5	68.3 \pm 0.3	63.2 \pm 0.2	58.8
		Graph Model+ConRep4CO (Medium)	57.8\pm0.2	56.5\pm0.1	57.7\pm0.3	67.6\pm0.5	56.5\pm0.4	70.0\pm0.2	65.3\pm0.2	61.6
LCG+GCN	GCN	Graph Model (Easy)	54.5\pm0.3	50.0 \pm 0.0	50.0 \pm 0.0	54.6 \pm 0.4	50.5\pm0.2	66.4 \pm 0.3	63.1 \pm 0.4	55.6
		Graph Model+ConRep4CO (Easy)	52.5 \pm 0.4	50.0 \pm 0.0	53.9\pm0.3	55.7\pm0.2	49.9 \pm 0.3	68.6\pm0.2	63.1 \pm 0.3	56.2
		Graph Model (Medium)	57.1 \pm 0.2	56.2 \pm 0.3	50.0 \pm 0.0	63.7 \pm 0.3	53.1 \pm 0.4	68.3 \pm 0.4	63.2 \pm 0.2	58.8
		Graph Model+ConRep4CO (Medium)	57.9\pm0.3	58.9\pm0.2	57.4\pm0.4	65.6\pm0.3	55.2\pm0.3	71.2\pm0.3	64.5\pm0.4	61.5
VCG+GCN	GCN	Graph Model (Easy)	54.5\pm0.3	50.0 \pm 0.0	50.0 \pm 0.0	54.6 \pm 0.4	50.5\pm0.2	66.4 \pm 0.3	63.1 \pm 0.4	55.6
		Graph Model+ConRep4CO (Easy)	53.1 \pm 0.2	50.0 \pm 0.0	50.0 \pm 0.0	55.4\pm0.3	49.6 \pm 0.4	68.4\pm0.4	63.4\pm0.3	55.7
		Graph Model (Medium)	57.1 \pm 0.2	56.2 \pm 0.3	50.0 \pm 0.0	63.7 \pm 0.3	53.1 \pm 0.4	68.3 \pm 0.4	63.2 \pm 0.2	58.8
		Graph Model+ConRep4CO (Medium)	57.7\pm0.4	60.5\pm0.3	57.7\pm0.3	64.8\pm0.2	53.6\pm0.3	69.0\pm0.3	64.3\pm0.3	61.1
LCG+NeuroSAT	GraphSAGE	Graph Model (Easy)	50.9 \pm 0.4	50.3 \pm 0.3	48.1 \pm 0.2	50.8 \pm 0.3	50.5 \pm 0.2	57.8 \pm 0.4	55.7 \pm 0.3	52.0
		Graph Model+ConRep4CO (Easy)	52.9\pm0.3	59.9\pm0.4	55.9\pm0.4	60.2\pm0.2	58.5\pm0.3	67.9\pm0.3	62.1\pm0.4	59.6
		Graph Model (Medium)	50.9 \pm 0.4	57.3 \pm 0.2	54.7 \pm 0.3	50.2 \pm 0.4	48.9 \pm 0.3	58.4 \pm 0.3	55.8 \pm 0.2	53.7
		Graph Model+ConRep4CO (Medium)	59.7\pm0.3	59.5\pm0.3	60.3\pm0.2	70.2\pm0.4	56.4\pm0.4	68.4\pm0.2	64.2\pm0.3	62.7
LCG+NeuroSAT	PGN	Graph Model (Easy)	54.2 \pm 0.3	59.3 \pm 0.2	59.5 \pm 0.4	63.1 \pm 0.3	54.9 \pm 0.2	66.3 \pm 0.4	60.3 \pm 0.3	59.7
		Graph Model+ConRep4CO (Easy)	54.6\pm0.2	59.8\pm0.3	59.9\pm0.3	63.3\pm0.4	55.1\pm0.3	66.7\pm0.3	61.0\pm0.4	60.1
		Graph Model (Medium)	60.4 \pm 0.4	58.6 \pm 0.3	59.7 \pm 0.2	69.1 \pm 0.3	55.9 \pm 0.4	67.1 \pm 0.2	63.5\pm0.3	62.0
		Graph Model+ConRep4CO (Medium)	61.2\pm0.3	58.9\pm0.4	60.7\pm0.3	69.7\pm0.2	58.1\pm0.3	67.5\pm0.3	63.3 \pm 0.2	62.8
LCG+NeuroSAT	GraphGPS	Graph Model (Easy)	59.6\pm0.2	50.0 \pm 0.0	49.9 \pm 0.1	50.0 \pm 0.0	53.5 \pm 0.3	68.0\pm0.4	57.6 \pm 0.3	55.5
		Graph Model+ConRep4CO (Easy)	59.3 \pm 0.3	50.7\pm0.1	60.9\pm0.4	59.6\pm0.3	53.5 \pm 0.4	58.9 \pm 0.3	59.5\pm0.4	57.5
LCG+NeuroSAT	GraphGPS	Graph Model (Medium)	63.2 \pm 0.3	55.2 \pm 0.4	56.8 \pm 0.2	68.3 \pm 0.4	63.0 \pm 0.3	63.9\pm0.3	58.3 \pm 0.4	61.2
		Graph Model+ConRep4CO (Medium)	63.8\pm0.4	60.8\pm0.3	77.9\pm0.3	68.9\pm0.3	65.7\pm0.4	60.1 \pm 0.2	61.4\pm0.3	65.5

Table 3: GDP solving accuracy (%) with confidence intervals ($\alpha = 0.05$) of the graph models on Easy datasets. The ‘Overall’ column represents the average accuracy across all datasets.

Model	k -Clique	k -Domset	k -Vercov	k -Color	k -Indset	Matching	Automorph	Overall
Graph Model	76.2 \pm 0.2	58.4 \pm 0.4	66.4 \pm 0.2	91.6 \pm 0.5	67.9 \pm 0.3	68.7 \pm 0.3	61.7 \pm 0.2	70.1
Graph Model-Unseen	76.9\pm0.3	61.0\pm0.1	70.1\pm0.2	93.4\pm0.4	68.6\pm0.3	69.7\pm0.1	61.7 \pm 0.2	71.6

MDS, generating two scales of datasets with approximately 200 to 300 and 800 to 1200 vertices, respectively. Please refer to Appendix C for more details about the dataset description and statistics.

Graph/SAT Model Backbones. We implement multiple GNN backbones for the Representation Extractor in both graph and SAT models. For the graph models, we adopt two widely used backbones, GCN [28] and GraphSAGE [19], and two advanced backbones with stronger representational capacity, PGN [47] and GraphGPS [39]. For the SAT model, we implement NeuroSAT and a GCN architecture specifically tailored for SAT graphs. Moreover, we employ both LCG and VCG as SAT graph representations. Please refer to Appendix D for more details.

Tasks. The evaluation tasks can be divided into two parts: **1) Representation evaluation**, measured by the performance of graph models on the GDP-solving task, focusing on how the learned representations can accurately determine the solution for each specific problem type. The GDP-solving performance on more difficult instances and unseen GDP domains is used to assess both the in-domain (problem scale) and cross-domain generalizability of the learned representations. **2) Enhancement of CO problem-solving**, measured by the performance on four CO problems—MVC, MIS, MC, and MDS—when incorporating ConRep4CO into problem-specific neural solvers, as described in Sec. 3.3.4. In our experiments, we also observe that the representations learned by the SAT model have also been enhanced and show potential for use in downstream SAT tasks. Detailed experiments related to the SAT model can be found in Appendix F.3 and F.4.

Baselines. For **1) representation evaluation**, to ensure a fair comparison, we establish baselines for the graph models trained by ConRep4CO by keeping the architectures identical while modifying only the training procedures. Each baseline graph model is trained independently on its corresponding dataset. For **2) enhancement of CO problem-solving**, OptGNN and GCNN from [54] are used as baseline neural solvers for MVC, while GFlowNet from [56] serves as the baseline neural solver for MIS, MC, and MDS. These models are trained using the methods described in their respective papers and compared to those incorporating ConRep4CO as outlined in Sec. 3.3.4.

378
 379 Table 4: Performance on MVC. ‘OBJ’ refers to the average objective value, where lower is better for
 380 MVC. ‘Optimal’ represents the best-known solution obtained using Gurobi [18].

Graph	Optimal	OptGNN		OptGNN+ConRep4CO		gain	GCNN		GCNN+ConRep4CO		gain
		OBJ	gap _{abs}	OBJ	gap _{abs}		OBJ	gap _{abs}	OBJ	gap _{abs}	
ER(50,100)	54.62	55.87	1.25	54.70	0.08	93.60%	55.34	0.72	55.17	0.55	23.61%
ER(100,200)	122.79	126.04	3.25	124.37	1.58	51.40%	128.29	5.50	126.75	3.96	28.00%
ER(400,500)	417.42	420.51	3.09	419.31	1.89	38.83%	443.43	26.01	436.77	19.35	25.61%
avg. gain	-	-	-	-	-	61.27%	-	-	-	-	25.74%

386 4.2 REPRESENTATION EVALUATION

388 4.2.1 REPRESENTATION QUALITY EVALUATION

389 We evaluate the quality of the learned representations by comparing the accuracy of graph models in
 390 solving seven GDPs. The baseline model is referred to as **Graph Model**, which is trained indepen-
 391 dently on its corresponding dataset. Our proposed approach, denoted **Graph Model+ConRep4CO**,
 392 initializes the model parameters with a pre-trained checkpoint from ConRep4CO trained on the seven
 393 GDP datasets and is then fine-tuned individually. Table 1 presents the results for six combina-
 394 tions of SAT and graph backbones, evaluating the performance of both models trained and tested on
 395 datasets with identical distributions, including the easy and medium difficulty datasets. The proposed
 396 approach consistently outperforms the baseline model across most GDP tasks, at both difficulty
 397 levels, and for all six backbone combinations. These findings indicate that integrating ConRep4CO
 398 substantially enhances the quality of the learned representations, enabling more effective capture of
 399 the underlying features and characteristics of GDPs. Consequently, the enhanced representations lead
 400 to improved accuracy in solving GDPs. Notably, when employing the GraphSAGE backbone, our
 401 approach demonstrates a particularly significant performance improvement over the baseline.

402 4.2.2 IN-DOMAIN GENERALIZABILITY EVALUATION

403 To assess the in-domain generalization capabilities of the learned representations, particularly in
 404 relation to problem scale, we evaluate their performance on previously unseen hard GDP datasets,
 405 which consist of problem instances with increased scale and complexity. Table 2 presents the results
 406 for six combinations of SAT and graph backbones, with graph models trained on the easy and medium
 407 datasets and tested on the hard datasets. The results clearly demonstrate that the representations
 408 learned by ConRep4CO show improved performance across most GDP tasks, both difficulty levels,
 409 and all six backbone combinations. This indicates that ConRep4CO also improves generalizability to
 410 more challenging and complex problem instances that were previously unseen. The improvement
 411 likely stems from the information transfer between various GDPs during pre-training, allowing the
 412 model to learn shared, more general, and high-level representations. This generality is applicable to
 413 problem scale, further reinforcing the robustness of the learned representations.

414 4.2.3 CROSS-DOMAIN GENERALIZABILITY EVALUATION

415 To further evaluate cross-domain generalizability, particularly the ability to generalize to unseen
 416 problem domains during pre-training, we select 6 out of 7 GDPs as pre-training domains, with
 417 the remaining GDP serving as the generalizing domain. After pre-training, we define a new graph
 418 model for the generalizing domain, align it with the pre-trained SAT model from the pre-training
 419 domains, and fine-tune it on 20,000 instances from the generalizing domain. The graph model for
 420 the generalizing domain is referred to as **Graph Model-Unseen**. We conduct experiments on all
 421 combinations of pre-training domains and report the GDP-solving accuracy for the generalizing
 422 domain in Table 3. Note that each number in the second row corresponds to a complete independent
 423 experiment, where the dataset indicated in the header is the generalizing domain, and the remaining
 424 six GDPs serve as pre-training domains. The results demonstrate that ConRep4CO enables the graph
 425 model to learn better representations for an unseen GDP domain with minimal data, outperforming
 426 the baseline. This indicates that ConRep4CO not only enhances representation quality for specific
 427 tasks but also improves representation learning for problem domains that are completely unseen. The
 428 improvement is likely due to the unified SAT model capturing shared features among pre-training
 429 domains, allowing it to learn a general GDP representation applicable to unseen GDPs. Aligning with
 430 the SAT model helps the graph model learn new GDP representations more effectively and efficiently.

431 The results also reveal that it is not necessary to include all GDP domains during pre-training when
 432 scaling to a large number of GDPs. Aligning with the pre-trained SAT model allows for effective
 433 transfer to new GDPs with minimal data, showing the practical applicability of ConRep4CO.

432

433
434
435
Table 5: Performance on MIS, MC, and MDS. ‘OBJ’ refers to the average objective value, where
higher is better for MIS and MC, and lower is better for MDS. ‘Optimal’ denotes the best-known
solution, obtained using KAMIS [29] for MIS and Gurobi [18] for MC and MDS.

Problem Type	Graph	Optimal	GFlowNet		GFlowNet+ConRep4CO		gain	avg. gain
			OBJ	gap _{abs}	OBJ	gap _{abs}		
MIS↑	RB(200,300)	20.10	19.18	0.92	19.56	0.54	41.30%	
	RB(800,1200)	43.15	37.48	5.67	38.79	4.36	23.10%	32.20%
MC↑	RB(200,300)	19.05	16.24	2.81	17.47	1.58	43.77%	
	RB(800,1200)	33.89	31.42	2.47	32.14	1.75	29.15%	36.46%
MDS↓	BA(200,300)	27.89	28.61	0.72	28.19	0.30	58.33%	
	BA(800,1200)	103.80	110.28	6.48	108.19	4.39	32.25%	45.29%

442

443
444
445
Table 6: Ablation study on cross-domain information transfer. The table presents GDP-solving
accuracy (%) with confidence intervals ($\alpha = 0.05$). ‘Graph Model+ConRep4CO+Single Domain’
refers to the ablated method by disabling cross-domain information transfer.

Difficulty	Model	k-Clique	k-Domset	k-Vercov	k-Color	k-Indset	Matching	Automorph	Overall
Easy	Graph Model+ConRep4CO+Single Domain	78.4±0.4	61.7±0.1	67.1±0.1	89.9±0.2	65.6±0.4	71.5±0.2	65.3±0.2	71.4
	Graph Model+ConRep4CO	79.3±0.3	62.0±0.1	67.3±0.2	90.2±0.1	67.5±0.5	71.7±0.3	65.4±0.3	71.9
Medium	Graph Model+ConRep4CO+Single Domain	70.9±0.3	64.0±0.1	62.9±0.1	81.0±0.3	59.9±0.4	72.5±0.2	64.3±0.4	67.9
	Graph Model+ConRep4CO	71.3±0.5	64.6±0.2	63.3±0.3	82.2±0.2	64.0±0.1	72.8±0.4	65.7±0.4	69.1

449

450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
This research follows the ICLR Code of Ethics and ensures that no ethical concerns are overlooked.
The study does not involve human subjects or sensitive personal data. All datasets used are either
synthetic or publicly available, and the methods for data generation and transformation are transparent
and reproducible. We have tried to minimize bias in our experiments and ensure that the results
do not perpetuate unfair outcomes. Additionally, the authors declare no conflicts of interest or
financial sponsorships that could have influenced the research. Our work is committed to contributing
positively to the field of combinatorial optimization.495
496
REPRODUCIBILITY STATEMENT
497498
499
500
501
We prioritize reproducibility and have taken steps to ensure that our experiments can be independently
replicated. Detailed descriptions of the datasets are provided in Appendix C. Additionally, the detailed
network architectures are outlined in Appendix D. Once accepted, we will release the source code for
our experiments to facilitate further validation and experimentation by the community.502
503
REFERENCES
504505
506
[1] JL Ba. Layer normalization. *arXiv preprint arXiv:1607.06450*, 2016.
507
[2] Albert-László Barabási and Réka Albert. Emergence of scaling in random networks. *science*,
286(5439):509–512, 1999.
508
[3] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial
509 optimization: a methodological tour d’horizon. *European Journal of Operational Research*,
510 290(2):405–421, 2021.
511
[4] Armin Biere, Marijn Heule, and Hans van Maaren. *Handbook of satisfiability*, volume 185.
512
IOS press, 2009.
513
[5] Béla Bollobás and Paul Erdős. Cliques in random graphs. In *Mathematical Proceedings of the
514 Cambridge Philosophical Society*, volume 80, pp. 419–427. Cambridge University Press, 1976.
515
[6] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehensive survey of
516 graph embedding: Problems, techniques, and applications. *IEEE transactions on knowledge
517 and data engineering*, 30(9):1616–1637, 2018.
518
[7] Junyang Cai, Taoan Huang, and Bistra Dilkina. Multi-task representation learning for mixed
519 integer linear programming. *arXiv preprint arXiv:2412.14409*, 2024.
520
[8] Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. Graph representation learning:
521 a survey. *APSIPA Transactions on Signal and Information Processing*, 9:e15, 2020.
522
[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework
523 for contrastive learning of visual representations. In *International conference on machine
524 learning*, pp. 1597–1607. PMLR, 2020.
525
[10] Darko Drakulic, Sofia Michel, and Jean-Marc Andreoli. Goal: A generalist combinatorial opti-
526 mization agent learner. In *The Thirteenth International Conference on Learning Representations*,
527 2024.
528
[11] Haonan Duan, Pashootan Vaezipoor, Max B Paulus, Yangjun Ruan, and Chris Maddison. Aug-
529 ment with care: Contrastive learning for combinatorial problems. In *International Conference
530 on Machine Learning*, pp. 5627–5642. PMLR, 2022.
531
[12] Paul Erdos, Alfréd Rényi, et al. On the evolution of random graphs. *Publ. math. inst. hung.
532 acad. sci*, 5(1):17–60, 1960.
533
[13] ABKFM Fleury and Maximilian Heisinger. Cadical, kissat, paracooba, plingeling and treen-
534 geling entering the sat competition 2020. *SAT COMPETITION*, 2020:50, 2020.
535

540 [14] Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact
 541 combinatorial optimization with graph convolutional neural networks. *Advances in neural*
 542 *information processing systems*, 32, 2019.

543 [15] Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier
 544 Chételat, Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M Kazachkov,
 545 et al. The machine learning for combinatorial optimization competition (ml4co): Results and
 546 insights. In *NeurIPS 2021 competitions and demonstrations track*, pp. 220–231. PMLR, 2022.

547 [16] Jesús Giráldez-Cru and Jordi Levy. A modularity-based random sat instances generator. 2015.

548 [17] Jesús Giráldez-Cru and Jordi Levy. Locality in random sat instances. International Joint
 549 Conferences on Artificial Intelligence, 2017.

550 [18] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL <https://www.gurobi.com>.

551 [19] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
 552 graphs. *Advances in neural information processing systems*, 30, 2017.

553 [20] William L Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
 554 and applications. *arXiv preprint arXiv:1709.05584*, 2017.

555 [21] Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning
 556 on graphs. In *International conference on machine learning*, pp. 4116–4126. PMLR, 2020.

557 [22] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 558 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 559 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

560 [23] Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching
 561 large neighborhoods for integer linear programs with contrastive learning. In *International*
 562 *Conference on Machine Learning*, pp. 13869–13890. PMLR, 2023.

563 [24] Chaitanya K Joshi, Thomas Laurent, and Xavier Bresson. An efficient graph convolutional
 564 network technique for the travelling salesman problem. *arXiv preprint arXiv:1906.01227*, 2019.

565 [25] Richard M Karp. Reducibility among combinatorial problems. In *50 Years of Integer Pro-*
 566 *gramming 1958-2008: from the Early Years to the State-of-the-Art*, pp. 219–241. Springer,
 567 2009.

568 [26] Richard M Karp. *Reducibility among combinatorial problems*. Springer, 2010.

569 [27] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial
 570 optimization algorithms over graphs. *Advances in neural information processing systems*, 30,
 571 2017.

572 [28] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
 573 networks. *arXiv preprint arXiv:1609.02907*, 2016.

574 [29] Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F Werneck.
 575 Finding near-optimal independent sets at scale. In *2016 Proceedings of the eighteenth workshop*
 576 *on algorithm engineering and experiments (ALENEX)*, pp. 138–150. SIAM, 2016.

577 [30] Massimo Lauria, Jan Elffers, Jakob Nordström, and Marc Vinyals. Cnfgen: A generator of
 578 crafted benchmarks. In *Theory and Applications of Satisfiability Testing–SAT 2017: 20th Inter-*
 579 *national Conference, Melbourne, VIC, Australia, August 28–September 1, 2017, Proceedings*
 580 20, pp. 464–473. Springer, 2017.

581 [31] Zhaoyu Li, Jinpei Guo, and Xujie Si. G4satbench: Benchmarking and advancing sat solving
 582 with graph neural networks. *arXiv preprint arXiv:2309.16941*, 2023.

583 [32] Nina Mazyavkina, Sergey Sviridov, Sergei Ivanov, and Evgeny Burnaev. Reinforcement learning
 584 for combinatorial optimization: A survey. *Computers & Operations Research*, 134:105400,
 585 2021.

594 [33] Emils Ozolins, Karlis Freivalds, Andis Draguns, Eliza Gaile, Ronalds Zakovskis, and Sergejs
 595 Kozlovics. Goal-aware neural sat solver. In *2022 International Joint Conference on Neural*
 596 *Networks (IJCNN)*, pp. 1–8. IEEE, 2022.

597
 598 [34] Wenzhen Pan, Hao Xiong, Jiale Ma, Wentao Zhao, Yang Li, and Junchi Yan. Unico: On
 599 unified combinatorial optimization via problem reduction to matrix-encoded general tsp. In
 600 *International Conference on Learning Representations*, 2025.

601
 602 [35] Rajvardhan Patil, Sorio Boit, Venkat Gudivada, and Jagadeesh Nandigam. A survey of text
 603 representation and embedding techniques in nlp. *IEEE Access*, 11:36120–36146, 2023.

604
 605 [36] Aleksandar Pekeč and Michael H Rothkopf. Combinatorial auction design. *Management*
 606 *science*, 49(11):1485–1503, 2003.

607
 608 [37] Marcelo Prates, Pedro HC Avelar, Henrique Lemos, Luis C Lamb, and Moshe Y Vardi. Learning
 609 to solve np-complete problems: A graph neural network for decision tsp. In *Proceedings of the*
 610 *AAAI Conference on Artificial Intelligence*, volume 33, pp. 4731–4738, 2019.

611
 612 [38] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 613 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 614 models from natural language supervision. In *International conference on machine learning*,
 615 pp. 8748–8763. PMLR, 2021.

616
 617 [39] Ladislav Rampášek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and
 618 Dominique Beaini. Recipe for a general, powerful, scalable graph transformer. *Advances in*
 619 *Neural Information Processing Systems*, 35:14501–14515, 2022.

620
 621 [40] Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Approximation ratios of graph neural
 622 networks for combinatorial problems. *Advances in Neural Information Processing Systems*, 32,
 623 2019.

624
 625 [41] Abdelkader Sbihi and Richard W Eglese. Combinatorial optimization and green logistics.
 626 *Annals of Operations Research*, 175:159–175, 2010.

627
 628 [42] Daniel Selsam, Matthew Lamm, Benedikt Bünz, Percy Liang, Leonardo de Moura, and David L.
 629 Dill. Learning a SAT solver from single-bit supervision. In *International Conference on*
 630 *Learning Representations*, 2019.

631
 632 [43] Yong Shi and Yuanying Zhang. The neural network methods for solving traveling salesman
 633 problem. *Procedia Computer Science*, 199:681–686, 2022.

634
 635 [44] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. In *Com-*
 636 *puter Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020,*
 637 *Proceedings, Part XI 16*, pp. 776–794. Springer, 2020.

638
 639 [45] Zekun Tong, Yuxuan Liang, Henghui Ding, Yongxing Dai, Xinke Li, and Changhu Wang.
 640 Directed graph contrastive learning. *Advances in neural information processing systems*, 34:
 641 19580–19593, 2021.

642
 643 [46] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
 644 Bengio. Graph attention networks. *arXiv preprint arXiv:1710.10903*, 2017.

645
 646 [47] Petar Veličković, Lars Buesing, Matthew Overlan, Razvan Pascanu, Oriol Vinyals, and Charles
 647 Blundell. Pointer graph networks. *Advances in Neural Information Processing Systems*, 33:
 648 2232–2244, 2020.

649
 650 [48] Sheng Wan, Yibing Zhan, Liu Liu, Baosheng Yu, Shirui Pan, and Chen Gong. Contrastive graph
 651 poisson networks: Semi-supervised learning with extremely limited labels. *Advances in Neural*
 652 *Information Processing Systems*, 34:6316–6327, 2021.

653
 654 [49] Chenguang Wang and Tianshu Yu. Efficient training of multi-task combinatorial neural solver
 655 with multi-armed bandits. *arXiv preprint arXiv:2305.06361*, 2023.

648 [50] Jiaqi Wang, Zhengliang Liu, Lin Zhao, Zihao Wu, Chong Ma, Sigang Yu, Haixing Dai, Qiushi
 649 Yang, Yiheng Liu, Songyao Zhang, et al. Review of large vision models and visual prompt
 650 engineering. *Meta-Radiology*, 1(3):100047, 2023.

651 [51] Nathan Wetzler, Marijn JH Heule, and Warren A Hunt Jr. Drat-trim: Efficient checking
 652 and trimming using expressive clausal proofs. In *International Conference on Theory and*
 653 *Applications of Satisfiability Testing*, pp. 422–429. Springer, 2014.

654 [52] Ben Wieland and Anant P Godbole. On the domination number of a random graph. *the*
 655 *electronic journal of combinatorics*, pp. R37–R37, 2001.

656 [53] Ke Xu and Wei Li. Exact phase transitions in random constraint satisfaction problems. *Journal*
 657 *of Artificial Intelligence Research*, 12:93–103, 2000.

658 [54] Morris Yau, Nikolaos Karalias, Eric Lu, Jessica Xu, and Stefanie Jegelka. Are graph neural
 659 networks optimal approximation algorithms? *Advances in Neural Information Processing*
 660 *Systems*, 37:73124–73181, 2024.

661 [55] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and Yang Shen.
 662 Graph contrastive learning with augmentations. *Advances in neural information processing*
 663 *systems*, 33:5812–5823, 2020.

664 [56] Dinghuai Zhang, Hanjun Dai, Nikolay Malkin, Aaron C Courville, Yoshua Bengio, and Ling
 665 Pan. Let the flows tell: Solving graph combinatorial problems with gflownets. *Advances in*
 666 *neural information processing systems*, 36:11952–11969, 2023.

667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 **A DISCUSSION WITH RELATED WORK**
703704 In this section, we discuss the key differences of our ConRep4CO with some prior works [10; 7]
705 proposing general representation learning methods for CO.
706707 **A.1 COMPARISON WITH [10]**
708710 **GOAL** [10] aims to develop a generalist model that uses a single backbone to represent multiple
711 CO problems. The model employs a multi-type Transformer architecture and attention blocks,
712 which suggest that different CO problems activate distinct portions of the backbone parameters.
713 Consequently, GOAL accommodates different problems by utilizing different parts of the shared
714 parameters, rather than exploiting the commonalities between different problems. Furthermore,
715 GOAL’s performance is slightly inferior to problem-specific baselines, indicating that the learned
716 representations are not enhanced for each problem.
717718 In contrast, ConRep4CO focuses on capturing the shared underlying structure across multiple CO
719 problems, seeking a higher-level, abstract representation that encapsulates the essence common
720 to different problem domains. By using SAT as a unified intermediary, ConRep4CO facilitates
721 knowledge transfer and mutual enhancement among problems, enabling insights gained from one
722 problem to improve the performance on others. Therefore, ConRep4CO outperforms baselines trained
723 on individual problems.
724725 Overall, ConRep4CO differs from GOAL in its emphasis on leveraging the shared structure of
726 multiple CO problems to improve the learned representation for individual problems, rather than
727 simply accommodating problem-specific variations within a single model.
728729 **A.2 COMPARISON WITH [7]**
730731 The MILP multi-task framework [7] focuses on learning shared representations across tasks within a
732 single problem domain. It seeks to exploit commonalities among different tasks within the MILP
733 domain. One could draw an analogy between the front-end network architecture in the framework
734 and the representation extractor in our graph model, with the task-specific layers serving as different
735 output modules. The MILP multi-task framework emphasizes improving these output modules with a
736 single representation extractor, while ConRep4CO prioritizes enhancing the representation extractor
737 by knowledge transfer and mutual enhancement across diverse problem domains. By doing so,
738 ConRep4CO learns a higher-level, abstract representation that spans various CO problems, whereas
739 the MILP framework primarily concentrates on task-specific output layers for a single problem
740 domain.
741742 To the best of our knowledge, ConRep4CO is the first framework to leverage representations across
743 different problem domains to improve representations for individual problem domains.
744745 **B DISCUSSION ON APPLICABILITY OF CONREP4CO**
746747 During the pre-training phase, our framework is designed to handle any NP problem. As long as a
748 problem can be reduced to SAT, it can be trained within our framework. We would like to clarify
749 that all NP problems can be reduced to NPC problems, which in turn can be transformed into SAT
750 problems. This theoretical foundation ensures that our framework is applicable to all NP decision
751 problems, regardless of their specific structure or variable types. In this sense, our approach is
752 problem-agnostic, enabling effective training on a wide range of NP decision problems.
753754 Furthermore, our approach can facilitate vast NP-hard CO problems by pre-training on their decision
755 versions, which are typically NPC. Most CO problems can be converted into their decision versions
756 by adding a target value. In our approach, we can pre-train the models on the decision versions of
757 these CO problems to learn effective representations. These representations can be applied not only
758 to the decision versions but also to the optimization versions of these problems (original problems).
759760 Overall, ConRep4CO can serve as a unified pre-training paradigm for a broad range of CO problems.
761

Table 7: Details of generated GDP datasets.

Dataset	Description	Parameters	Notes
k -Clique	The k -Clique dataset consists of graph instances of the k -Clique problem, which involves determining whether a given graph contains a clique of size k . A clique is a subset of vertices in which every pair of vertices is connected by an edge. The goal is to identify whether such a fully connected subset of k vertices exists within the graph. Instances are built on randomly generated Erdős-Rényi graphs. Parameters include number of vertices v , edge probabilities p , and clique size k .	General: $p = \binom{v}{k}^{-1/\binom{k}{2}}$, Easy dataset: $v \sim \text{Uniform}(5, 15)$, $k \sim \text{Uniform}(3, 4)$, Medium dataset: $v \sim \text{Uniform}(15, 20)$, $k \sim \text{Uniform}(3, 5)$, Hard dataset: $v \sim \text{Uniform}(20, 25)$, $k \sim \text{Uniform}(4, 6)$.	The parameter p is selected based on [5], ensuring that the expected number of k -cliques in the generated graph is equal to 1.
k -Domset	The k -Domset dataset consists of graph instances of the k -Dominating Set problem, which involves determining whether a given graph contains a dominating set of size k . A dominating set is a subset of vertices such that every vertex in the graph is either in the subset or adjacent to at least one vertex in the subset. The goal is to identify whether such a subset of k vertices exists that can ‘dominate’ the entire graph, ensuring that all other vertices are either in the subset or connected to it. Instances are built on randomly generated Erdős-Rényi graphs. Parameters include number of vertices v , edge probabilities p , and dominating set size k .	General: $p = 1 - \left(1 - \binom{v}{k}^{-1/(v-k)}\right)^{1/k}$, Easy dataset: $v \sim \text{Uniform}(5, 15)$, $k \sim \text{Uniform}(2, 3)$, Medium dataset: $v \sim \text{Uniform}(15, 20)$, $k \sim \text{Uniform}(3, 5)$, Hard dataset: $v \sim \text{Uniform}(20, 25)$, $k \sim \text{Uniform}(4, 6)$.	The parameter p is selected based on [52], ensuring that the expected number of k -dominating sets in the generated graph is equal to 1.
k -Vercov	The k -Vercov dataset consists of graph instances of the k -Vertex Cover problem, which involves determining whether a given graph contains a vertex cover of size k . A vertex cover is a subset of vertices such that every edge in the graph is incident to at least one vertex in the subset. The goal is to identify whether a subset of k vertices exists that can ‘cover’ all the edges in the graph, ensuring that each edge is connected to at least one vertex in the subset. Instances are built on randomly generated Erdős-Rényi graphs. Parameters include number of vertices v , edge probabilities p , and vertex set size k .	General: $p = \binom{v}{k}^{-1/\binom{v}{2}}$, Easy dataset: $v \sim \text{Uniform}(5, 15)$, $k \sim \text{Uniform}(3, 5)$, Medium dataset: $v \sim \text{Uniform}(10, 20)$, $k \sim \text{Uniform}(6, 8)$, Hard dataset: $v \sim \text{Uniform}(15, 25)$, $k \sim \text{Uniform}(9, 10)$.	The parameter p is selected based on the relationship between k -Clique and k -Vercov, ensuring that the expected size of the minimum vertex cover in the generated graph is k .
k -Color	The k -Color dataset consists of graph instances of the k -Coloring problem, which involves determining whether a given graph can be colored with k colors such that no two adjacent vertices share the same color. A valid coloring assigns one of k different colors to each vertex, ensuring that vertices connected by an edge have different colors. The goal is to identify whether such a coloring scheme exists for the graph using at most k colors. Instances are built on randomly generated Erdős-Rényi graphs. Parameters include number of vertices v , edge probabilities p , and number of colors k .	General: $p = \binom{v}{k}^{-1/\binom{v}{2}}$, Easy dataset: $v \sim \text{Uniform}(5, 15)$, $k \sim \text{Uniform}(3, 4)$, Medium dataset: $v \sim \text{Uniform}(15, 20)$, $k \sim \text{Uniform}(3, 5)$, Hard dataset: $v \sim \text{Uniform}(20, 25)$, $k \sim \text{Uniform}(4, 6)$.	The parameter p is selected based on the relationship between k -Clique and k -Color, ensuring that the expected minimum number of colors for the generated graph is k .
k -Indset	The k -Indset dataset consists of graph instances of the k -Independent Set problem, which involves determining whether a given graph contains an independent set of size k . An independent set is a subset of vertices in which no two vertices are adjacent, meaning there are no edges connecting any pair of vertices in the subset. The goal is to identify whether such a subset of k vertices exist within the graph, ensuring that the selected vertices are mutually non-adjacent. Instances are built on randomly generated Erdős-Rényi graphs. Parameters include number of vertices v , edge probabilities p , and independent set size k .	General: $p = 1 - \binom{v}{k}^{-1/\binom{v}{2}}$, Easy dataset: $v \sim \text{Uniform}(5, 15)$, $k \sim \text{Uniform}(3, 4)$, Medium dataset: $v \sim \text{Uniform}(15, 20)$, $k \sim \text{Uniform}(3, 5)$, Hard dataset: $v \sim \text{Uniform}(20, 25)$, $k \sim \text{Uniform}(4, 6)$.	The parameter p is selected based on the relationship between k -Clique and k -Indset, ensuring that the expected number of k -independent sets in the generated graph is equal to 1.
Matching	The Matching dataset consists of graph instances of the Perfect Matching problem, which involves determining whether a given graph contains a perfect matching. A perfect matching is a subset of edges in which every vertex in the graph is incident to exactly one edge in the subset. In other words, the graph’s vertices can be paired off so that no vertex is left unpaired and no two edges share a vertex. The goal is to identify whether such a perfect matching exists within the graph, ensuring that all vertices are perfectly matched. Instances are built on randomly generated Erdős-Rényi graphs. Parameters include number of vertices v and edge probabilities p .	General: $p = \ln(v)/v$, Easy dataset: $v \sim \text{Uniform}(6, 16)$, should be an even number, Medium dataset: $v \sim \text{Uniform}(16, 24)$, should be an even number, Hard dataset: $v \sim \text{Uniform}(24, 30)$, should be an even number.	The selected parameter p is a sharp threshold for graph connectivity based on [12], ensuring that the generated graph is neither too dense nor too sparse.
Automorph	The Automorph dataset consists of graph instances of the Graph Automorphism problem, which involves determining whether a given graph has a non-trivial automorphism. An automorphism is a mapping of the graph’s vertices to itself such that the structure of the graph is preserved, meaning that the adjacency relationships between vertices remain unchanged. The goal is to identify whether there exists a way to rearrange the vertices of the graph such that it appears identical to its original form. Instances are built on randomly generated Erdős-Rényi graphs. Parameters include number of vertices v and edge probabilities p .	General: $p = \ln(v)/v$, Easy dataset: $v \sim \text{Uniform}(4, 8)$, Medium dataset: $v \sim \text{Uniform}(8, 10)$, Hard dataset: $v \sim \text{Uniform}(10, 12)$.	The selected parameter p is a sharp threshold for graph connectivity based on [12], ensuring that the generated graph is neither too dense nor too sparse.

C MORE DETAILS ON DATASETS

In this section, we provide more details on the utilized datasets in our main paper, including the parameters of GDP instances and the statistics of SAT instances.

C.1 GDP INSTANCES

To ensure the generation of high-quality GDP instances that accurately capture the inherent characteristics of each problem, we carefully select the graph distributions and parameters used for instance generation. Some parameters refer to [31]. Table 7 provides a detailed overview of the specific GDP datasets employed in the main paper.

Note that six of the seven GDPs are NP-complete, while the Perfect Matching problem is a P problem.

810
 811 Table 8: SAT dataset statistics. # Variables refers to average number of variables, # Clauses denoted
 812 average number of clauses, Mod. (LCG) represents average modularity of LCG graphs, and Mod.
 813 (VCG) represents average modularity of VCG graphs.

Dataset	Easy				Medium				Hard			
	# Variables	# Clauses	Mod. (LCG)	Mod. (VCG)	# Variables	# Clauses	Mod. (LCG)	Mod. (VCG)	# Variables	# Clauses	Mod. (LCG)	Mod. (VCG)
<i>k</i> -Clique	35.69	613.25	0.49	0.46	70.86	2298.03	0.49	0.48	114.49	5670.10	0.50	0.49
<i>k</i> -Domset	40.73	345.75	0.53	0.47	89.70	1708.06	0.51	0.49	137.32	4025.85	0.51	0.49
<i>k</i> -Vercov	46.33	498.06	0.52	0.48	108.19	2681.55	0.51	0.49	192.57	8409.32	0.51	0.50
<i>k</i> -Color	33.91	112.64	0.69	0.65	69.92	321.25	0.71	0.68	112.16	719.32	0.69	0.66
<i>k</i> -Indset	38.38	702.92	0.49	0.46	72.55	2388.22	0.49	0.48	113.12	5549.79	0.50	0.49
Matching	27.48	95.03	0.69	0.59	30.92	107.67	0.70	0.61	45.48	169.49	0.72	0.64
Automorph	56.76	943.54	0.51	0.47	82.74	1856.26	0.51	0.48	121.56	3612.56	0.51	0.49

819 820 C.2 SAT INSTANCES 821

822 After generating the seven GDP datasets, the corresponding seven SAT datasets are generated by
 823 transforming the GDP datasets, utilizing the python toolkit CNFGen [30]. We also compute the
 824 statistics of those SAT datasets to provide comprehensive information on datasets. The dataset
 825 statistics are shown in Table 8.

826 Moreover, to evaluate the effectiveness of the learned representations on unseen SAT instances, we
 827 synthetically generate four more SAT datasets, including two random problems and two pseudo-
 828 industrial problems. Specifically, for random problems, we generate the SR dataset with the SR
 829 generator in NeuroSAT [42], and the 3-SAT dataset with the 3-SAT generator in CNFGen [30]. For
 830 pseudo-industrial problems, we generate the CA dataset via the Community Attachment model [16],
 831 and the PS dataset by the Popularity-Similarity model [17]. The generation process of the four
 832 datasets follows [31], where the dataset descriptions and statistics can also be found.

833 The ground truth of satisfiability and satisfying assignments are calculated by calling the state-of-the-
 834 art modern SAT solver CaDiCaL [13], and the truth labels for unsat core variables are generated by
 835 invoking the proof checker DRAT-trim [51].

836 837 D DETAILS ON MODEL ARCHITECTURE 838

839 D.1 BASIC ARCHITECTURE IMPLEMENTATION 840

841 **Graph Model.** Each graph model is designed to address a specific type of GDP, and all models
 842 maintain a consistent architecture. To illustrate this, we focus on problem \mathcal{P}_n and its corresponding
 843 graph model \mathbb{M}_n . The graph model \mathbb{M}_n takes graphs in the set \mathbf{G}_n as input and processes them
 844 through the Representation Extractor. The input graph primarily consists of edge information, which
 845 is often a critical aspect of GDPs. For the initial vertex features, we introduce a d -dimensional
 846 embedding for all vertices, represented as $\mathbf{h}_n^{(0)}$.

847 For the Representation Extractor, we adopt the vanilla Graph Convolutional Network (GCN) [28],
 848 which is widely used as a backbone for node embeddings in graph-based tasks. Assume there are k
 849 layers, the embedding extraction at the i -th layer of the network is expressed as:

$$850 \quad \mathbf{H}_n^{(i)} = \text{ReLU}(\tilde{\mathbf{D}}^{-\frac{1}{2}} \tilde{\mathbf{A}} \tilde{\mathbf{D}}^{-\frac{1}{2}} \mathbf{H}_n^{(i-1)} \mathbf{W}_n^{(i-1)}), \quad i = 1, 2, \dots, k, \quad (3)$$

851 where \mathbf{H} denotes the node embedding matrix, with each row corresponding to a node embedding. The
 852 matrix $\tilde{\mathbf{A}} = \mathbf{A} + \mathbf{I}$ is the adjacency matrix augmented with self-loops through the identity matrix \mathbf{I} .
 853 $\tilde{\mathbf{D}}_{ii} = \sum_j \tilde{\mathbf{A}}_{ij}$ is the degree matrix, and \mathbf{W} is the learnable weight matrix. Following the extraction
 854 of node features, we apply average pooling to the node embedding matrix $\mathbf{H}_n^{(k)}$ to aggregate the
 855 node-level information into a single representation for the entire graph instance, denoted as \mathbf{r}_n . This
 856 aggregation is computed as follows:

$$857 \quad \mathbf{r}_n = \frac{\sum_{v \in \mathcal{V}} \mathbf{h}_{n,v}^{(k)}}{|\mathcal{V}|}, \quad (4)$$

858 where \mathcal{V} represents the set of vertices in the input graph, $|\mathcal{V}|$ denotes the total number of vertices, and
 859 $\mathbf{h}_{n,v}^{(k)}$ is the extracted embedding for node v . \mathbf{r}_n serves as the instance-level feature representation,
 860 and is subsequently fed into the Output Module, which is implemented as an MLP to produce the
 861 final decision for the instance.

SAT Model. Apart from the graph models, the SAT model \mathbb{M}_{sat} processes the constructed SAT graphs via its own Representation Extractor. For illustration, we consider the LCG representation. For the initial node features, we define two distinct d -dimensional embeddings: $\mathbf{h}_l^{(0)}$ for all literal nodes and $\mathbf{h}_c^{(0)}$ for all clause nodes.

The architecture of the Representation Extractor is inspired by NeuroSAT [42]. For notational clarity, we assume that the extractor consists of k layers, with both literal and clause node embeddings being iteratively aggregated and updated at each layer. At the i -th layer, the updates for the literal and clause node embeddings are formulated as follows:

$$\mathbf{h}_l^{(i)} = \text{LayerNormLSTM} \left(\text{SUM}_{c \in \mathcal{N}(l)} (\text{MLP}(\mathbf{h}_c^{i-1})), \mathbf{h}_l^{(i-1)}, \mathbf{h}_{\neg l}^{(i-1)} \right), \quad (5)$$

$$\mathbf{h}_c^{(i)} = \text{LayerNormLSTM} \left(\text{SUM}_{l \in \mathcal{N}(c)} (\text{MLP}(\mathbf{h}_l^{i-1})), \mathbf{h}_c^{(i-1)} \right), \quad (6)$$

where l and c represent an arbitrary literal node and clause node, respectively, $\mathcal{N}(\cdot)$ refers to the set of neighboring nodes. The summation operator (SUM) serves as the aggregation function, while LayerNormLSTM [1] is employed as the update function.

Similar to the graph models, the instance-level representation \mathbf{r}_{sat} derives by averaging the literal node embeddings after the k -th layer. The instance-level representation, along with the literal-level embeddings, is passed to the Output Module, which is also implemented as an MLP, to generate the final task-specific decisions or predictions.

D.2 INITIAL VERTEX FEATURES

As illustrated in the main paper, the input graphs primarily provide edge information instead of vertex features. Therefore, we should devise initial vertex features for the models. In this section, we introduce the definition of initial vertex features for the graph and SAT models.

Graph Model Vertex Feature. We begin by generating a normalized, learnable d -dimensional vector, which serves as the initial embedding shared across all vertices. For GDP datasets that do not require additional problem-specific information, such as Matching and Automorph, this initial embedding is directly used as the vertex feature for all vertices. In contrast, for GDP datasets where the parameter k plays a critical role in defining the instance characteristics, such as k -Clique and k -Vercov, we first embed k into a d -dimensional vector. The initial vertex embedding is then fused with the k embedding through an MLP to generate the final initial vertex features.

SAT Model Vertex Feature. For the SAT model, we generate initial vertex features based on the type of SAT graph representation, whether it is a Literal-Claue Graph (LCG) or a Variable-Claue Graph (VCG). In the case of the LCG graph, we initialize a normalized, learnable d -dimensional vector for all literal nodes and a separate normalized, learnable d -dimensional vector for all clause nodes. Similarly, for the VCG graph, we generate a normalized, learnable d -dimensional vector for all variable nodes and another for all clause nodes.

D.3 MORE BACKBONES

To demonstrate that the performance improvement brought about by our ConRep4CO is consistent, and independent with specialized model architectures, we conduct experiments on more backbones.

Graph Model Backbone. For the graph model, we employ an additional mainstream network architecture for node embedding, GraphSAGE [19], which is widely recognized for its ability to generate inductive representations of graph nodes by aggregating information from a node’s local neighborhood. The update rule for the i -th layer of GraphSAGE is defined as follows:

$$\mathbf{n}_u^{(i)} = \text{AGG} \left(\text{ReLU} \left(\mathbf{Q}^{(i)} \mathbf{h}_v^{(i)} + \mathbf{q}^{(i)} \mid v \in N(u) \right) \right), \quad (7)$$

$$\mathbf{h}_u^{(i+1)} = \text{ReLU} \left(\mathbf{W}^{(i)} \text{CONCAT} \left(\mathbf{h}_u^{(i)}, \mathbf{n}_u^{(i)} \right) \right), \quad (8)$$

918 where \mathbf{h}_u denotes the embedding for vertex u , $N(u)$ refers to the neighbors of vertex u , $\mathbf{Q}, \mathbf{q}, \mathbf{W}$ are
 919 trainable parameters, and AGG is the aggregation function. In our implementation, AGG is defined
 920 as the mean function, which computes the element-wise average of the neighbor embeddings.
 921

922 In addition, we implement two more advanced GNN backbones for our graph models, PGN [47] and
 923 GraphGPS [39]. Please refer to the corresponding papers for details on the architectures of these two
 924 backbones.

925 **SAT Model Backbone.** For the SAT model, we incorporate a GCN architecture specifically tailored
 926 for SAT graphs as an additional backbone. The node updates at the i -th layer are defined as follows:
 927

$$928 \mathbf{h}_l^{(i)} = \text{MLP} \left(\text{SUM}_{c \in \mathcal{N}(l)} (\text{MLP}(\mathbf{h}_c^{i-1})), \mathbf{h}_l^{(i-1)}, \mathbf{h}_{\neg l}^{(i-1)} \right), \quad (9)$$

$$930 \mathbf{h}_c^{(i)} = \text{MLP} \left(\text{SUM}_{l \in \mathcal{N}(c)} (\text{MLP}(\mathbf{h}_l^{i-1})), \mathbf{h}_c^{(i-1)} \right), \quad (10)$$

933 where l and c represent an arbitrary literal node and clause node, respectively. The aggregation of
 934 neighboring node information is performed using the summation operator (SUM), which serves as
 935 the aggregation function. The updates for both literal and clause nodes are computed using an MLP.
 936

937 Furthermore, we extend the backbone to VCG graph modeling, where all literal nodes are replaced
 938 by variable nodes, and each literal and its negation are merged into a single variable node. The node
 939 updates at the i -th layer of the VGC-based GCN are formulated as:

$$940 \mathbf{h}_v^{(i)} = \text{MLP} \left(\text{SUM}_{c \in \mathcal{N}(v)} (\text{MLP}(\mathbf{h}_c^{i-1})), \mathbf{h}_v^{(i-1)} \right), \quad (11)$$

$$942 \mathbf{h}_c^{(i)} = \text{MLP} \left(\text{SUM}_{v \in \mathcal{N}(c)} (\text{MLP}(\mathbf{h}_v^{i-1})), \mathbf{h}_c^{(i-1)} \right), \quad (12)$$

944 where v and c represent an arbitrary variable node and clause node, respectively.
 945

946 D.4 CASE STUDY ON MODEL OUTUT

948 In this section, we illustrate the model outputs for specific GDP and corresponding SAT problems for
 949 better understanding.

950 In the context of GDP, the model’s output is typically binary, represented as 0 or 1, at the instance
 951 level. For instance, in the case of the k -Clique problem, the input consists of a graph, and the output
 952 indicates whether the graph contains a clique of size k . Specifically, if a k -Clique is present, the
 953 output is 1; otherwise, it is 0.

954 Similarly, for the corresponding SAT problem, the output denotes the satisfiability of the formula. If
 955 the formula is satisfiable, the output is 1; if not, it is 0. The satisfiability result is directly linked to the
 956 solution of the original GDP problem. For example, a satisfiable formula indicates the existence of a
 957 k -Clique in the original graph.

959 However, the framework is not restricted to this specific task alone. By making appropriate modifica-
 960 tions to the architecture of the output module, the models can be adapted to solve other related tasks,
 961 including both SAT-based and GDP-based tasks.

963 E LOSS FUNCTION FOR SAT-BASED TASKS

965 For the unsat core variable prediction task, we manually generate labels for the datasets, and adopt a
 966 binary cross-entropy loss on the label and the prediction.

967 For the satisfying assignment prediction task, we employ an unsupervised loss function as defined in
 968 [33]:
 969

$$970 V_c(x) = 1 - \prod_{i \in c^+} (1 - x_i) \prod_{i \in c^-} x_i, \quad \mathcal{L}_\phi(x) = -\log \left(\prod_{c \in \phi} V_c(x) \right) = -\sum_{c \in \phi} \log (V_c(x)) \quad (13)$$

972
973
974
975
976
977
978
979
980
981
982
983
984
Table 9: Parameters used for training.

Parameter	Value	Description
lr	1e-04	Learning rate.
lr.step_size	50	Learning rate step size.
lr.factor	0.5	Learning rate factor.
lr.patience	10	Learning rate patience.
clip_norm	1.0	Clipping norm.
weight_decay	1e-08	L2 regularization weight.
sat_model_gnn_layer	32	Iteration number of GNN layers in SAT model.
graph_model_gnn_layer	12	Iteration number of GNN layers in graph model.
mlp_layer	2	Number of Linear layers in an MLP.
τ	0.1 (easy) / 0.5 (medium)	Temperature scalar in the contrastive loss.
β	0.5~1.0	Weight of the decision loss during training.

985 where ϕ refers to the CNF formula, x is the predicted assignment consisting of binary values (0 or
 986 1) for variables, c denotes an arbitrary clause. The sets c^+ and c^- comprise the variables present in
 987 clause c in positive and negative forms, respectively. It is important to note that the loss function
 988 achieves its minimum value only when the predicted assignment x corresponds to a satisfying
 989 assignment. Minimizing this loss can effectively aid in constructing a possible satisfying assignment.
 990

991 F MORE EXPERIMENTAL RESULTS

992 F.1 TRAINING PARAMETERS

995 For reproducibility, we present some important parameters used for training in Table 9. More details
 996 can be found in our source code, which will be released once the paper is accepted.
 997

998 F.2 COMPUTATIONAL COST

1000 All training and inference tasks were conducted on a single NVIDIA H100 GPU with 80GB of
 1001 memory.

1002 The pre-training process for the SAT model and the graph models with ConRep4CO totally takes
 1003 approximately 40 hours, with convergence typically occurring around the 20th epoch. Each epoch
 1004 requires roughly 2 hours. Following the pre-training phase, fine-tuning takes an additional 5 to 6
 1005 hours for each model to achieve optimal performance. In comparison, training the baseline SAT
 1006 model takes about 45 hours, with convergence reached by the 30th epoch, and each epoch requiring
 1007 approximately 1.5 hours. Notably, pre-training with ConRep4CO demonstrates a faster convergence
 1008 rate, leading to a shorter training time. Moreover, training the baseline graph model independently
 1009 each requires around 15 hours, with convergence occurring around the 60th epoch, and each epoch
 1010 taking between 12 to 18 minutes.

1011 Overall, the computational cost of training with ConRep4CO is comparable to that of the conventional
 1012 training approach, with no significant increase in computational burden.
 1013

1014 F.3 FURTHER EVALUATION ON SAT MODEL

1016 For the SAT model, we also assess its effectiveness on the **satisfiability prediction** task. The baseline
 1017 SAT model is trained concurrently on seven GDP datasets, utilizing standard supervised learning.
 1018

1019 We assess the satisfiability prediction accuracy of the SAT model using instances transformed from
 1020 seven distinct GDPs. The baseline model is denoted as **SAT Model**. The training of the baseline
 1021 model capitalizes on the relatively coherent graph representations of the SAT instances. Our proposed
 1022 approach, denoted as **SAT Model+ConRep4CO**, initializes model parameters with a pre-trained
 1023 checkpoint from ConRep4CO, trained on the seven GDP datasets. The model is then fine-tuned on
 1024 the instances transformed from all seven GDPs simultaneously. Table 10 shows the results, where our
 1025 approach consistently outperforms the baseline model on most datasets, with particularly notable
 improvements on more challenging datasets. The results demonstrate the effectiveness of leveraging
 the inherent connections between different CO problems. By drawing on the common underlying

1026

1027
1028
1029
Table 10: Experimental results across various model backbones with confidence intervals ($\alpha = 0.05$).
The table presents the satisfiability prediction accuracy of the SAT models. ‘SAT Back.’ refers to
SAT model backbone, and ‘Graph Back.’ denotes graph model backbone.

SAT Backbone	Graph Backbone	Difficulty	Model	k-Clique	k-Domset	k-Vercov	k-Color	k-Indset	Matching	Automorph	Overall
LCG+NeuroSAT	GCN	Easy	SAT Model	95.9±0.4	99.1±0.2	99.8±0.1	97.4±0.4	95.4±0.2	99.5±0.1	99.9±0.1	98.1
			SAT Model+ConRep4CO	98.9±0.2	99.6±0.1	99.9±0.1	98.8±0.3	98.9±0.4	99.9±0.1	99.9±0.1	99.4
		Medium	SAT Model	87.6±0.5	98.7±0.3	99.1±0.2	81.7±0.4	88.7±0.6	99.7±0.1	98.8±0.2	93.5
	GCN	SAT Model+ConRep4CO	92.3±0.4	99.1±0.1	99.6±0.2	94.6±0.4	93.0±0.5	99.9±0.1	99.9±0.1	96.9	
		Easy	SAT Model	76.3±0.4	79.0±0.3	89.0±0.2	86.8±0.3	78.0±0.5	80.1±0.2	61.6±0.4	78.7
			SAT Model+ConRep4CO	82.7±0.3	93.2±0.2	95.3±0.1	93.7±0.2	82.0±0.4	96.7±0.1	68.9±0.3	87.5
LCG+GCN	GCN	Easy	SAT Model	72.4±0.5	65.2±0.4	83.6±0.3	85.8±0.4	72.1±0.3	83.5±0.2	66.8±0.5	75.6
			SAT Model+ConRep4CO	75.2±0.4	95.3±0.1	97.9±0.1	88.7±0.3	74.8±0.5	99.4±0.1	78.4±0.2	87.1
		Medium	SAT Model	51.1±0.5	84.0±0.3	91.9±0.2	82.8±0.4	49.1±0.4	81.3±0.3	56.8±0.5	71.0
	GCN	SAT Model+ConRep4CO	80.9±0.4	95.9±0.1	99.3±0.1	94.7±0.2	79.5±0.3	99.3±0.1	74.4±0.4	89.1	
		Easy	SAT Model	66.9±0.4	94.6±0.2	95.0±0.2	86.0±0.3	67.7±0.5	98.8±0.1	64.2±0.4	81.9
			SAT Model+ConRep4CO	74.8±0.5	98.8±0.1	99.5±0.1	89.8±0.4	74.5±0.4	99.4±0.1	73.4±0.3	87.2
VCG+GCN	GCN	Easy	SAT Model	95.1±0.2	84.0±0.3	91.9±0.2	82.8±0.4	49.1±0.4	81.3±0.3	56.8±0.5	71.0
			SAT Model+ConRep4CO	80.9±0.4	95.9±0.1	99.3±0.1	94.7±0.2	79.5±0.3	99.3±0.1	74.4±0.4	89.1
		Medium	SAT Model	66.9±0.4	94.6±0.2	95.0±0.2	86.0±0.3	67.7±0.5	98.8±0.1	64.2±0.4	81.9
	GCN	SAT Model+ConRep4CO	74.8±0.5	98.8±0.1	99.5±0.1	89.8±0.4	74.5±0.4	99.4±0.1	73.4±0.3	87.2	
		Easy	SAT Model	95.9±0.2	99.1±0.1	99.8±0.1	97.4±0.3	95.4±0.4	99.5±0.1	99.9±0.1	98.1
			SAT Model+ConRep4CO	99.0±0.1	99.6±0.1	99.9±0.1	98.8±0.2	99.1±0.2	99.9±0.1	99.9±0.1	99.5
LCG+NeuroSAT	GraphSAGE	Easy	SAT Model	87.6±0.4	98.7±0.1	99.1±0.2	81.7±0.5	88.7±0.3	99.7±0.1	98.8±0.2	93.5
			SAT Model+ConRep4CO	92.5±0.3	99.1±0.1	99.6±0.1	95.3±0.4	93.5±0.5	99.9±0.1	99.7±0.1	97.1
		Medium	SAT Model	95.9±0.2	99.1±0.1	99.8±0.1	97.4±0.3	95.4±0.4	99.5±0.1	99.9±0.1	98.1
	GraphSAGE	SAT Model+ConRep4CO	98.9±0.1	99.6±0.1	99.9±0.1	98.8±0.2	99.1±0.2	99.9±0.1	99.9±0.1	99.9±0.1	99.4
		Easy	SAT Model	87.6±0.4	98.7±0.1	99.1±0.2	81.7±0.5	88.7±0.3	99.7±0.1	98.8±0.2	93.5
			SAT Model+ConRep4CO	92.5±0.3	99.1±0.1	99.6±0.1	95.3±0.4	93.5±0.5	99.9±0.1	99.7±0.1	97.1
LCG+NeuroSAT	PGN	Easy	SAT Model	95.9±0.2	99.1±0.1	99.8±0.1	97.4±0.3	95.4±0.4	99.5±0.1	99.9±0.1	98.1
			SAT Model+ConRep4CO	98.9±0.1	99.6±0.1	99.9±0.1	98.8±0.2	99.1±0.2	99.9±0.1	99.9±0.1	99.4
		Medium	SAT Model	87.6±0.4	98.7±0.1	99.1±0.2	81.7±0.5	88.7±0.3	99.7±0.1	98.8±0.2	93.5
	PGN	SAT Model+ConRep4CO	90.5±0.5	99.0±0.1	99.5±0.1	94.1±0.3	91.4±0.4	94.7±0.4	99.9±0.1	97.7±0.1	96.3
		Easy	SAT Model	95.9±0.2	99.1±0.1	99.8±0.1	97.4±0.3	95.4±0.4	99.5±0.1	99.9±0.1	98.1
			SAT Model+ConRep4CO	98.6±0.2	99.6±0.1	99.9±0.1	98.5±0.2	98.7±0.3	99.8±0.1	99.9±0.1	99.3
LCG+NeuroSAT	GraphGPS	Easy	SAT Model	87.6±0.4	98.7±0.1	99.1±0.2	81.7±0.5	88.7±0.3	99.7±0.1	98.8±0.2	93.5
			SAT Model+ConRep4CO	91.4±0.4	99.0±0.1	99.6±0.1	93.9±0.4	92.2±0.5	99.7±0.1	99.6±0.2	96.5
		Medium	SAT Model	95.9±0.2	99.1±0.1	99.8±0.1	97.4±0.3	95.4±0.4	99.5±0.1	99.9±0.1	98.1

1046

1047

1048

1049
1050
1051
1052
1053
Table 11: Generalization performance across various model backbones on the hard datasets with
confidence intervals ($\alpha = 0.05$). The table presents the satisfiability prediction accuracy of the
SAT models. ‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph model
backbone. The terms ‘Easy’ and ‘Medium’ in parentheses indicate the difficulty level of the datasets
used for training. The ‘Overall’ column represents the average accuracy across all datasets.

SAT Backbone	Graph Backbone	Model	k-Clique	k-Domset	k-Vercov	k-Color	k-Indset	Matching	Automorph	Overall
LCG+NeuroSAT	GCN	SAT Model (Easy)	47.5±0.4	50.5±0.1	50.0±0.1	58.8±0.2	47.3±0.6	99.5±0.1	72.9±0.6	60.9
		SAT Model+ConRep4CO (Easy)	66.2±0.5	50.6±0.1	50.0±0.1	60.0±0.4	66.5±0.6	99.8±0.1	79.0±0.3	67.4
		SAT Model (Medium)	69.2±0.3	96.4±0.2	85.2±0.7	67.9±0.3	69.4±0.6	99.6±0.1	99.0±0.1	83.8
	GCN	SAT Model+ConRep4CO (Medium)	82.7±0.4	97.2±0.2	93.6±0.5	74.5±0.2	83.6±0.4	99.7±0.1	99.1±0.1	90.1
		SAT Model (Easy)	50.0±0.0	50.0±0.0	50.0±0.0	45.9±0.3	50.0±0.0	53.9±0.4	50.0±0.0	50.0
		SAT Model+ConRep4CO (Easy)	50.0±0.0	59.2±0.2	50.0±0.0	50.0±0.3	50.0±0.0	59.1±0.3	51.3±0.2	52.8
LCG+GCN	GCN	SAT Model (Medium)	50.0±0.0	50.0±0.0	50.0±0.0	49.4±0.4	50.0±0.0	47.0±0.5	50.0±0.0	49.5
		SAT Model+ConRep4CO (Medium)	50.0±0.0	50.0±0.0	50.0±0.0	52.6±0.3	50.0±0.0	49.9±0.4	50.0±0.0	50.4
		SAT Model (Easy)	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0
	GCN	SAT Model+ConRep4CO (Easy)	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0
		SAT Model (Medium)	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0±0.0	50.0
		SAT Model+ConRep4CO (Medium)	50.0±0.0	50.0±0.0	50.0±0.0	50.3±0.2	50.0±0.0	50.0±0.0	50.0±0.0	50.0
VCG+GCN	GCN	SAT Model (Easy)	47.5±0.4	50.5±0.3	50.0±0.0	58.8±0.5	47.3±0.4	99.5±0.1	72.9±0.6	60.9
		SAT Model+ConRep4CO (Easy)	59.6±0.3	50.5±0.2	50.0±0.0	61.5±0.4	58.7±0.5	99.6±0.1	82.1±0.4	66.0
		SAT Model (Medium)	69.2±0.5	96.4±0.2	85.2±0.4	67.9±0.6	69.4±0.5	99.6±0.1	99.0±0.2	83.8
	GCN	SAT Model+ConRep4CO (Medium)	79.3±0.4	97.3±0.1	89.1±0.3	73.1±0.5	79.3±0.4	99.6±0.1	99.6±0.1	88.2
		SAT Model (Easy)	47.5±0.4	50.5±0.3	50.0±0.0	58.8±0.5	47.3±0.4	99.5±0.1	72.9±0.6	60.9
		SAT Model+ConRep4CO (Easy)	59.7±0.3	50.7±0.2	50.0±0.0	61.4±0.4	59.6±0.5	99.7±0.2	77.2±0.5	65.2
LCG+NeuroSAT	PGN	SAT Model (Medium)	69.2±0.5	96.4±0.2	85.2±0.4	67.9±0.6	69.4±0.5	99.6±0.1	99.0±0.2	83.8
		SAT Model+ConRep4CO (Medium)	78.7±0.4	97.4±0.1	90.0±0.3	73.6±0.5	79.6±0.4	99.8±0.1	99.3±0.1	88.3
		SAT Model (Easy)	47.5±0.4	50.5±0.3	50.0±0.0	58.8±0.5	47.3±0.4	99.5±0.1	72.9±0.6	60.9
	PGN	SAT Model+ConRep4CO (Easy)	50.5±0.3	50.6±0.2	50.4±0.2	59.6±0.4	50.3±0.3	99.3±0.1	76.2±0.5	62.4
		SAT Model (Medium)	69.2±0.5	96.4±0.2	85.2±0.4	67.9±0.6	69.4±0.5	99.6±0.1	99.0±0.2	83.8
		SAT Model+ConRep4CO (Medium)	76.0±0.4	96.9±0.2	96.1±0.3	73.8±0.5	76.0±0.4	99.4±0.1	99.3±0.1	88.2

1073

1074
characteristics among different problem types, our approach enhances the performance of the SAT
model, showcasing the advantages of cross-domain learning.

1075

1076
1077
1078
1079
We also evaluate the generalization capabilities of the SAT models on instances transformed from
hard GDP datasets, with the results presented in Table 11. Our proposed approach consistently
outperforms the baseline model across most datasets, underscoring the robustness and transferability
of the representations learned through ConRep4CO, and its ability to generalize across complex,
unseen problem instances.

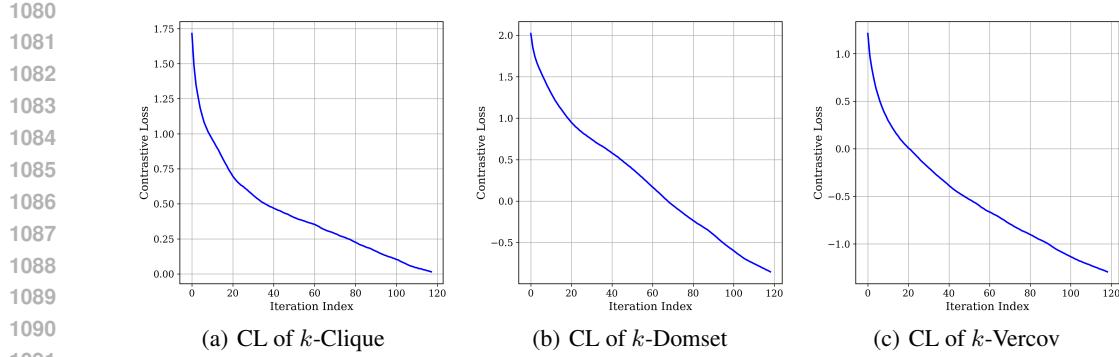


Figure 4: Contrastive loss w.r.t. training iterations across various datasets. CL denotes the contrastive loss of the training process.

F.4 MORE SAT-BASED TASK RESULTS.

Furthermore, the evaluation is extended to two essential downstream tasks critical to SAT solving: **satisfying assignment prediction** and **unsat core variable prediction**. Satisfying assignment prediction requires the model to determine a specific variable assignment that satisfies the given SAT instance, while unsat core variable prediction involves identifying the minimal subset of variables that contribute to the unsatisfiability of the instance.

We evaluate the generalizability of the SAT model on the satisfying assignment prediction task and the unsat core variable prediction task. To assess performance, we compare three different approaches by tracking the accuracy over training iterations. For our proposed approach, referred to as **SAT Model+Contrast**, we initialize the model using a pre-trained checkpoint obtained from ConRep4CO, trained on the seven GDP datasets, and subsequently fine-tune it on individual datasets. For comparison, we include two baseline models: **SAT Model**, which is initialized with a pre-trained checkpoint trained in a conventional manner on the seven GDP datasets, and **Un-Pretrained SAT Model**, which is trained from scratch. The results are shown in Fig. 5.

On the datasets encountered during pre-training, both our approach and the pre-trained baseline significantly outperform the un-pretrained baseline. However, our approach demonstrates superior performance by achieving faster convergence and higher final accuracy. On the unseen datasets, our approach still outperforms the baseline models, whereas the pre-trained and un-pretrained baselines exhibit comparable performance. These results highlight the effectiveness of ConRep4CO, which not only improves convergence rates but also enhances the model’s ability to generalize to previously unseen datasets, thereby demonstrating the strength of leveraging contrastive learning across multiple problem types.

We show more results on the satisfying assignment prediction task and the unsat core variable prediction task in Fig. 6. Our approach outperforms the baseline models with faster convergence and higher final accuracy.

G FURTHER STUDIES

G.1 FURTHER STUDY ON CONTRASTIVE LOSS

We revise the negative sampling strategy within our contrastive learning framework to mitigate the issue of false negative samples. Specifically, within each training batch, unsatisfiable instances are selected as negative samples for satisfiable instances, and conversely, satisfiable instances are chosen as negative samples for unsatisfiable instances. This adjustment ensures that false negative samples are avoided. Consequently, we modify the contrastive loss function to reflect this change and proceed with the training of the models. The results, as shown in Table 12, demonstrate that the models trained with the revised contrastive loss exhibit performance comparable to that of those trained with the original loss. We also plot the contrastive loss curves for several GDPs during the original training

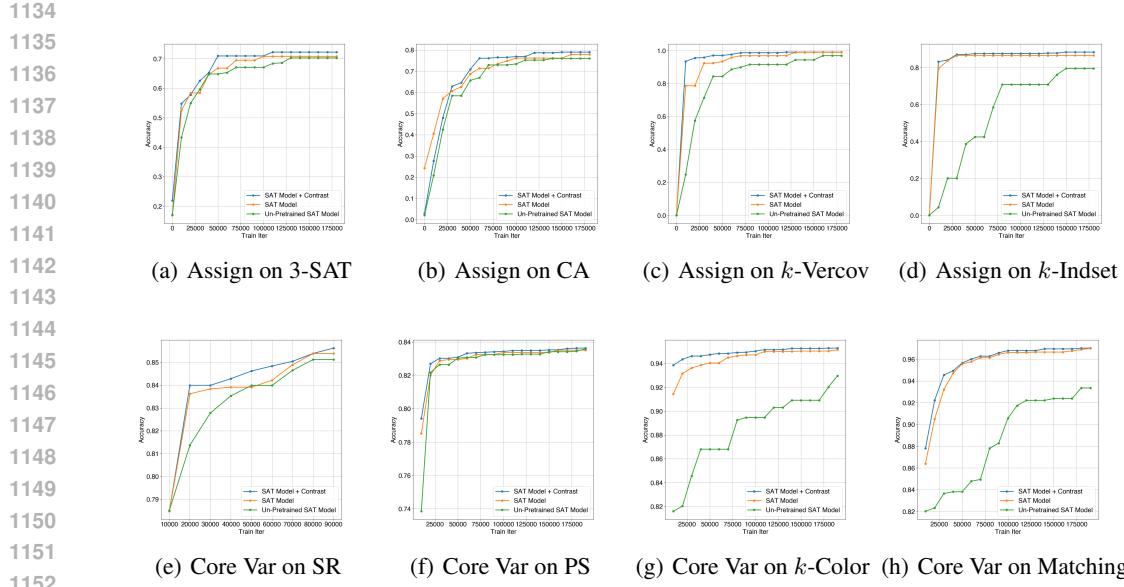


Figure 5: Model performance w.r.t. training iterations on SAT-based tasks across various datasets. The top four graphs display the results for the satisfying assignment prediction task (Assign), while the bottom four graphs present the results for the unsat core variable prediction task (Core Var). The left four graphs depict the model’s performance on unseen datasets, whereas the right four graphs illustrate the performance on datasets encountered during the pre-training phase.

Table 12: Experimental results on the modified and original contrastive loss function. The table presents the GDP-solving accuracy (%) with confidence intervals ($\alpha = 0.05$) for the graph models and the satisfiability prediction accuracy (%) with confidence intervals ($\alpha = 0.05$) for the SAT models. ‘Graph/SAT Model+ConRep4CO+Modified Loss’ denotes training with the modified contrastive loss. ‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes graph model backbone.

SAT Back.	Graph Back.	Difficulty	Model	k-Clique	k-Domset	k-Verco	k-Color	k-Indset	Matching	Automorph	Overall
LCG+NeuroSAT	GCN	Easy	Graph Model+ConRep4CO+Modified Loss	77.1 \pm 0.3	57.9 \pm 0.2	61.5 \pm 0.3	88.7 \pm 0.1	64.2 \pm 0.4	71.5 \pm 0.2	64.4 \pm 0.4	69.3
			Graph Model+ConRep4CO	79.3\pm0.3	62.0\pm0.1	67.3\pm0.2		67.5\pm0.2	71.7\pm0.3	65.4\pm0.3	71.9
		Medium	Graph Model+ConRep4CO+Modified Loss	70.7 \pm 0.3	63.0 \pm 0.4	61.2 \pm 0.3	79.8 \pm 0.4	58.9 \pm 0.2	72.4 \pm 0.2	63.7 \pm 0.4	67.1
			Graph Model+ConRep4CO	71.3\pm0.5	64.6\pm0.2	63.3\pm0.3		82.2\pm0.2	64.0\pm0.1	72.8\pm0.1	65.7\pm0.4
		Hard	SAT Model+ConRep4CO+Modified Loss	98.3 \pm 0.2	99.6 \pm 0.1	99.9 \pm 0.1	98.5 \pm 0.2	98.1 \pm 0.3	99.9 \pm 0.1	99.9 \pm 0.1	99.2
			SAT Model+ConRep4CO	98.9\pm0.2	99.6 \pm 0.1	99.9 \pm 0.1	98.8\pm0.3	98.9\pm0.4	99.9 \pm 0.1	99.9 \pm 0.1	99.4

Table 13: Experimental results across two graph models under different training methods. ‘Graph Model (fully-trained)’ refers to the graph model that was trained from scratch with full training data. ‘Graph Model+ConRep4CO (fine-tuned)’ refers to the fine-tuned graph model after pre-training by ConRep4CO on small datasets.

Model	k-Clique	k-Domset	k-Verco	k-Color	k-Indset	Matching	Automorph	Overall
Graph Model (fully-trained)	67.3 \pm 0.4	66.7 \pm 0.2	65.4 \pm 0.4	79.1 \pm 0.2	59.1 \pm 0.3	72.4 \pm 0.1	65.4 \pm 0.2	67.9
Graph Model+ConRep4CO (fine-tuned)	67.9\pm0.2	67.0\pm0.1	66.6\pm0.4	79.4\pm0.2	61.5\pm0.4	72.6\pm0.1	65.7\pm0.2	68.7

process in Fig. 4, all of which exhibit smooth trajectories. These results suggest that the influence of false negative samples on model performance is minimal.

G.2 FURTHER STUDY ON GRAPH MODEL GENERALIZATION TO LARGE-SCALE DATA

To further assess the generalization ability of our graph models, we generate large-scale instances for each GDP, with instance sizes ranging from 7 to 20 times larger than those used during pre-training. We then fine-tune the pre-trained models on this large-scale data, using a subset comprising $\frac{1}{8}$ of the training data. We compare the performance of the fine-tuned models with those trained from scratch with full training data, and the results are presented in Table 13, indicating that models pre-trained on smaller instances using ConRep4CO can generalize effectively to larger instances through fine-tuning.

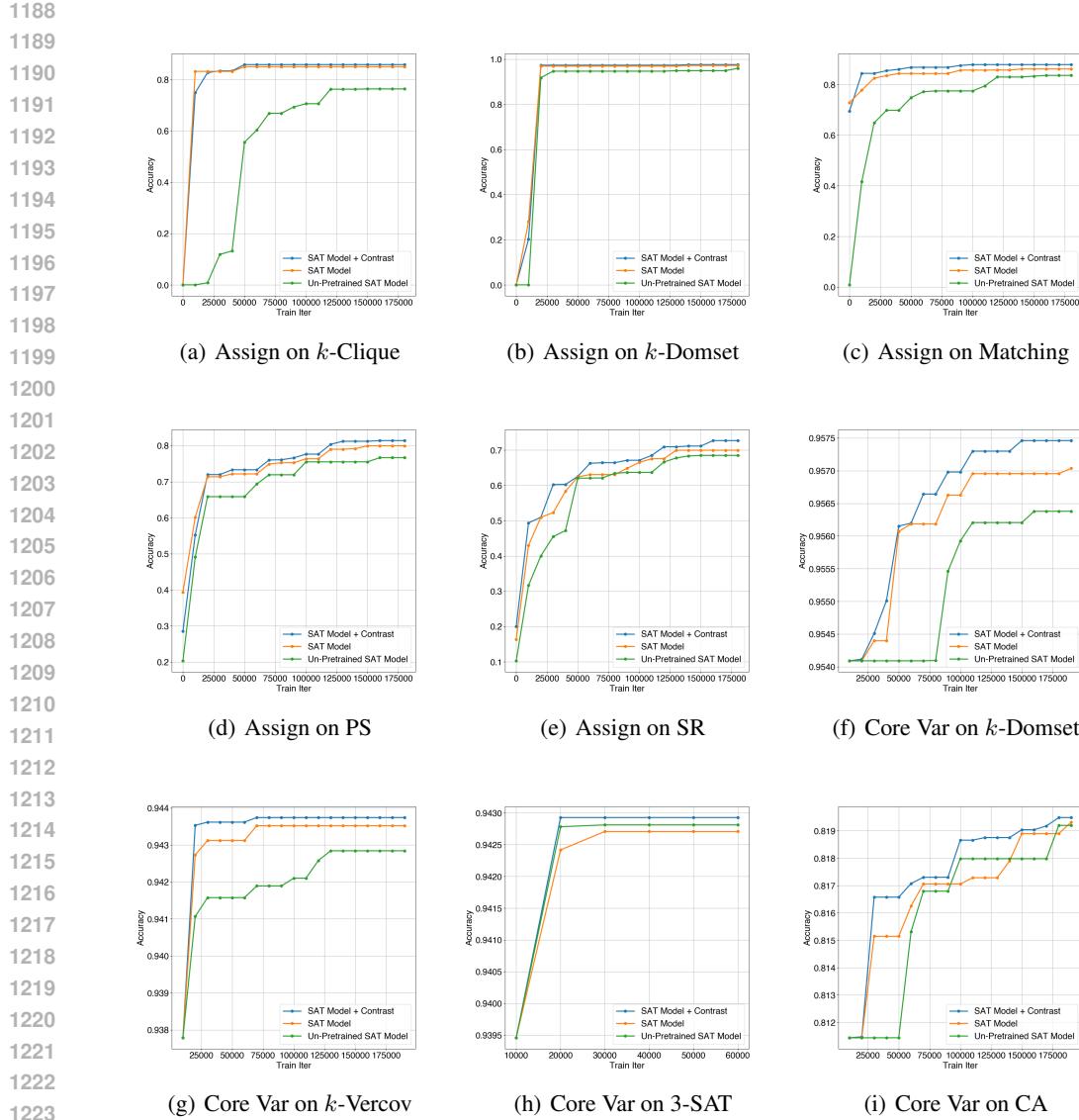


Figure 6: Model performance w.r.t. training iterations on SAT-based tasks across various datasets. Assign denotes the satisfying assignment prediction task, and Core Var denotes the unsat core variable prediction task.

G.3 FURTHER STUDY ON GRAPH MODEL GENERALIZATION TO OTHER GRAPH TASKS

To further assess the generalization ability of the graph models, we conduct experiments on two GDP-related tasks: **maximum clique size prediction** adapted from k -Clique problem domain and **minimum vertex number prediction for edge cover** adapted from k -Vercov problem domain. We first pre-train the models on the original problem domains and with ConRep4CO, respectively. The pre-trained models are then fine-tuned with $\frac{1}{8}$ of the training data. To compare the performance, we employ the mean relative error (MRE) as the metric: $MRE = \frac{1}{N} \sum_{i=1}^N |\frac{y_i - \hat{y}_i}{y_i}|$, where y_i refers to the ground truth, \hat{y}_i refers to the predicted value, and N refers to the sample size. Figure 7 illustrates that the pre-trained models with ConRep4CO achieve faster convergence and superior final performance, underscoring their enhanced generalization ability.

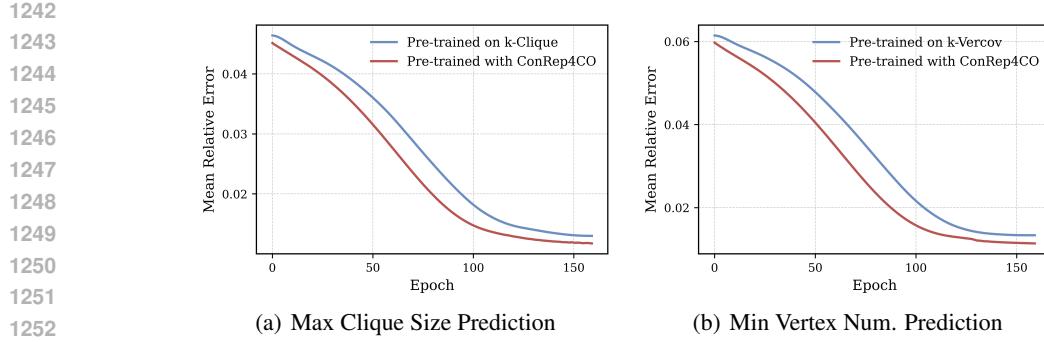


Figure 7: Mean relative error w.r.t. epoch on related graph tasks, including maximum clique size prediction and minimum vertex number prediction for edge cover.

Table 14: Experimental results on perturbed instances. The table presents the GDP-solving accuracy (%) with confidence intervals ($\alpha = 0.05$) for the graph models and the satisfiability prediction accuracy (%) with confidence intervals ($\alpha = 0.05$) for the SAT models on perturbed instances. ‘SAT Back.’ refers to SAT model backbone, and ‘Graph Back.’ denotes the graph model backbone.

SAT Back.	Graph Back.	Model	k-Clique	k-Domset	k-Vercov	k-Color	k-Indset	Matching	Automorph	Overall
LCG+NeuroSAT	GCN	Graph Model	65.2±0.4	51.1±0.3	53.4±0.5	61.4±0.3	53.6±0.4	58.8±0.6	37.7±0.5	54.5
		Graph Model+ConRep4CO	67.8±0.3	54.7±0.2	61.8±0.4	71.9±0.3	66.4±0.2	65.6±0.1	42.1±0.4	61.5
LCG+NeuroSAT	GCN	SAT Model	97.6±0.3	92.3±0.2	98.2±0.4	93.3±0.1	97.1±0.2	85.4±0.2	92.3±0.3	93.7
		SAT Model+ConRep4CO	98.3±0.2	94.0±0.3	99.7±0.2	93.9±0.3	98.4±0.4	86.1±0.1	93.9±0.4	94.9

Table 15: GDP solving accuracy (%) with confidence intervals ($\alpha = 0.05$) of the graph models on Easy datasets. The ‘Overall’ column represents the average accuracy across all datasets.

Model	k-Clique	k-Domset	k-Vercov	k-Color	k-Indset	Matching	Automorph	Overall
Graph Model-FullData	77.8±0.1	59.0±0.2	61.4±0.3	87.8±0.4	63.2±0.1	71.3±0.1	64.3±0.3	69.3
Graph Model+ConRep4CO	79.3±0.3	62.0±0.1	67.3±0.0	90.2±0.1	67.5±0.1	71.7±0.0	65.4±0.4	71.9

G.4 FURTHER STUDY ON MODEL SENSITIVITY

The solution to GDP is known to be sensitive to graph structures. Therefore, we aim to evaluate the sensitivity of our model to perturbations in graph structure. To do so, we generate modified instances by adding or removing edges from the original graphs until either the satisfiability status reverses or the number of modified edges reaches $\frac{1}{10}$ of the original edge count. These generated instances are structurally similar to the original graphs but exhibit a reversed satisfiability status. We then assess the performance of both the graph models and the SAT model on these perturbed instances. The results, presented in Table 14, reveal that the SAT model is sensitive to changes in graph structure, and it continues to perform well. Additionally, the graph models significantly outperform the baseline models, as they are more closely aligned with the SAT model and demonstrate enhanced sensitivity to structural changes.

G.5 FURTHER STUDY ON DATA VOLUME

During the pre-training phase, ConRep4CO utilizes all instances from different domains, while the baselines only have access to the instances from their single domain. To further assess the impact of data volume, we increase the number of training instances for baselines, and train 7 baseline graph models with the GCN backbone separately, each on $7 \times 160,000$ graph instances generated from a single problem type, denoted as **Graph Model-FullData**, and compare their performance with our approach in Table 15. It proves that the improved performance is not from increased training data.

G.6 FURTHER STUDY ON MULTIPLE DOMAIN INFORMATION TRANSFER

This section investigates the impact of multi-domain information transfer on model performance. We address two key questions: 1) **What is the effect of transferring information from multiple**

1296

1297

1298

1299

1300

1301

1302

1303

1304

Table 16: Problem domains utilized for pre-training.

Problem	Ours-1	Ours-2	Ours-3	Ours-4	Ours-5	Ours-6	Ours-7
MVC	k -Vercov	k -Vercov, k -Indset	k -Vercov, k -Indset, k -Clique				
MIS	k -Indset			k -Vercov, k -Indset, k -Clique, k -Domset	Ours-4+Automorph	Ours-5+Matching	Ours-6+ k -color
MC	k -Clique						
MDS	k -Domset	k -Clique, k -Domset	k -Clique, k -Domset, k -Vercov				

1305

1306

1307

Table 17: The effect of the number of pre-training domains on downstream performance. Values in parentheses represent the gain over baseline, calculated as in the main text.

Problem	Graph	Optimal	Baseline	Ours-1	Ours-2	Ours-3	Ours-4	Ours-5	Ours-6	Ours-7
MVC	ER(50,100)	54.62	55.87	55.75 (9.60%)	55.39 (38.40%)	55.07 (64.00%)	54.76 (88.80%)	54.74 (90.40%)	54.68 (95.20%)	54.70 (93.60%)
MVC	ER(100,200)	122.79	126.04	125.86 (5.54%)	125.10 (28.92%)	124.89 (35.38%)	124.51 (47.08%)	124.44 (49.23%)	124.39 (50.77%)	124.37 (51.40%)
MVC	ER(400,500)	417.42	420.51	420.40 (3.56%)	419.86 (21.04%)	419.63 (28.48%)	419.49 (33.01%)	419.39 (36.25%)	419.33 (38.19%)	419.31 (38.83%)
MIS	RB(200,300)	20.10	19.18	19.22 (4.35%)	19.47 (31.52%)	19.52 (36.96%)	19.55 (40.22%)	19.53 (38.04%)	19.57 (42.39%)	19.56 (41.30%)
MIS	RB(800,1200)	43.15	37.48	37.62 (2.47%)	38.47 (17.46%)	38.66 (20.81%)	38.74 (22.22%)	38.79 (23.10%)	38.77 (22.75%)	38.79 (23.10%)
MC	RB(200,300)	19.05	16.24	16.41 (6.05%)	16.90 (23.49%)	17.23 (35.23%)	17.36 (39.86%)	17.44 (42.70%)	17.47 (43.77%)	17.47 (43.77%)
MC	RB(800,1200)	33.89	31.42	31.49 (2.83%)	31.75 (13.36%)	31.90 (19.43%)	32.07 (26.31%)	32.11 (27.94%)	32.12 (28.34%)	32.14 (29.15%)
MDS	RB(200,300)	27.89	28.61	28.56 (6.94%)	28.42 (26.39%)	28.28 (45.83%)	28.24 (51.39%)	28.18 (59.72%)	28.18 (59.72%)	28.19 (58.33%)
MDS	RB(800,1200)	103.80	110.28	110.04 (3.70%)	109.12 (17.90%)	108.68 (24.69%)	108.34 (29.94%)	108.22 (31.79%)	108.17 (32.56%)	108.19 (32.25%)

1311

1312

1313

domains to downstream CO tasks? 2) How does this effect scale with the number of source domains? This analysis aims to provide a comprehensive evaluation of our proposed cross-domain transfer mechanism.

1314

1315

We design seven pre-training configurations, utilizing data from 1 to 7 distinct problem domains, denoted as **Ours-1** to **Ours-7**. The specific domains used in each setting are detailed in Table 16. Each pre-trained SAT model is subsequently used to enhance problem-specific neural solvers via contrastive learning. We employ OptGNN [54] as the baseline solver for MVC and GFlowNet [56] for MIS, MC, and MDS. The alignment between the pre-trained SAT models and the solvers is performed on 5,000 easy-level instances, with an additional 1,000 instances for validation. The subsequent training procedures for the solvers remain consistent with their original implementations [54; 56].

1316

1317

1318

1319

1320

1321

1322

The results are presented in Table 17. The **Ours-1** configuration, which does not leverage cross-domain information transfer, shows a modest performance gain of approximately 5%. This result primarily reflects the benefit of the SAT transformation itself and suggests that pre-training on a single domain provides limited representational enhancement. As the number of pre-training domains increases, the performance gain grows in a sublinear fashion. The improvement is sharpest when expanding from one to two domains, after which the rate of gain decelerates, converging at around five or six domains. This saturation effect is likely attributable to diminishing returns in novel information.

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

G.7 EMPIRICAL COMPARISON WITH MULTI-TASK BASELINES

1333

1334

G.7.1 COMPARISON WITH UNICO [34]

1335

1336

1337

1338

1339

1340

[34] proposes a method that converts four CO problems into a general TSP formulation, then transforms the TSP solution back to solve the original problem. The authors introduce two network architectures, MatPOENet and MatDIFFNet, and explore training these models on a mixture of four different problems. In contrast to our approach, [34] does not introduce innovations in the training approach; their work is thus largely orthogonal to ours, making a perfectly matched comparison challenging to design.

1341

1342

1343

1344

1345

To facilitate as fair a comparison as possible with [34], we select two general TSP tasks from their work—non-metric Asymmetric TSP (ATSP) and 2D Euclidean TSP (2DTSP)—and use MatPOENet as the backbone model. We compare three distinct training strategies:

1) **MatPOENet-Single**: The model is trained on a single task.

2) **MatPOENet-Mixed-Tuned**: The model is first trained on a mixture of four tasks from [34] and then fine-tuned on the single target task. To isolate the effect of the training strategy from the influence of data volume, the amount of data used for fine-tuning is kept identical to that used for single-task training. Thus, any performance difference can be attributed to the multi-task training paradigm.

1350
 1351 Table 18: Average tour length with different training approaches. The notation 'ATSP20' denotes
 1352 instances of ATSP with 20 nodes; other abbreviations follow the same convention.

Model	ATSP20	ATSP50	ATSP100	2DTSP20	2DTSP50	2DTSP100
MatPOENet-Single	1.5784	1.5864	1.6139	3.8427	5.7345	8.0972
MatPOENet-Mixed-Tuned	1.5778	1.5870	1.6143	3.8419	5.7342	8.1007
Ours	1.5692	1.5809	1.6098	3.8368	5.7296	8.0931

1353
 1354
 1355
 1356
 1357
 1358 3) **Ours**: We utilize the method from [34] to accomplish the transformation between 3SAT and the
 1359 general TSP format (Hamiltonian Cycle Problem, HCP). We then generate a dataset to align our SAT
 1360 model (pre-trained on easy-level instances from the 7 domains in the main text) with the MatPOENet
 1361 backbone through contrastive learning. This alignment dataset consists of 10,000 training pairs (HCP
 1362 instances with 20 nodes) and 1,000 validation pairs. After alignment, the model is trained using the
 1363 same procedure and data amount as the single-task setting.

1364
 1365 The training of all MatPOENet models follows the original paper, using 10,000 randomly generated
 1366 instances per epoch for over 1,000 epochs. It is important to note that the data volume required for
 1367 alignment is quite small compared to the total training data.

1368
 1369 In line with [34], we report the average tour length (lower is better) in Table 18. The results indicate
 1370 that the multi-task pre-training and fine-tuning strategy yields no significant performance difference
 1371 compared to single-task training, suggesting that simply mixing data from different problems does
 1372 not effectively enhance performance on individual tasks. In contrast, our method outperforms both
 1373 baseline strategies, demonstrating its ability to leverage knowledge from multiple problem domains
 1374 to learn improved representations that benefit performance on single tasks.

1375 G.7.2 COMPARISON WITH GOAL [10]

1376
 1377 GOAL [10] introduces a framework for multi-task learning that employs distinct input and output
 1378 adapters for different CO problems. The authors train a single model on a mixture of eight CO
 1379 problems, enabling it to solve multiple tasks without fine-tuning, albeit with performance inferior to
 1380 that of models trained on individual tasks. Similar to UniCO, the GOAL framework does not innovate
 1381 on the training approach, making direct comparison with our approach infeasible using their original
 1382 setup.

1383 To enable a fair comparison, we select three tasks from [10]—ATSP, MVC, and MIS—and use the
 1384 GOAL framework as the backbone solver. We compare the following three training strategies:

1385 1) **GOAL-Single**: The model is trained exclusively on a single task.

1386 2) **GOAL-Multi-Tuned**: The model is first trained on a mixture of eight tasks from [10] (with MIS
 1387 added as a ninth task for the MIS experiments) and is subsequently fine-tuned on the single target
 1388 task. To mitigate the influence of data volume, the fine-tuning dataset is kept identical in size to
 1389 the single-task training set, ensuring that performance differences are attributable to the multi-task
 1390 training paradigm.

1391 3) **Ours**: We first align our SAT model (pre-trained on easy-level instances from the 7 domains listed
 1392 in the main text) with the GOAL backbone via contrastive learning. For ATSP, the alignment data
 1393 is the dataset generated for the UniCO comparison; for MVC and MIS, we use 10,000 easy-level
 1394 k -VerCov and k -IndSet instances for training, respectively, with an additional 1,000 for validation.
 1395 After alignment, the model is trained using the same procedure and data volume as the single-task
 1396 setting.

1397 The data volume for training GOAL is consistent with the original paper, i.e., 1 million random
 1398 instances per problem.

1399
 1400 Following [10], we report the average gap (lower is better) in Table 19. The results indicate that,
 1401 similar to the UniCO findings, simply mixing training data from multiple tasks does not effectively
 1402 enhance performance on individual target tasks. In contrast, our contrastive learning-based training
 1403 strategy outperforms both baselines, demonstrating the utility of incorporating contrastive learning
 1404 into a multi-task framework.

1404

1405 Table 19: Average gap with different training approaches. The notation 'ATSP100' denotes instances
1406 of ATSP with 100 nodes; other abbreviations follow the same convention.

Model	ATSP100	MVC100	MIS100
GOAL-Single	0.32%	0.21%	0.16%
GOAL-Multi-Tuned	0.30%	0.22%	0.15%
Ours	0.25%	0.17%	0.13%

1411

1412

1413 Table 20: Performance on large-scale CO problems. Values in parentheses represent the gain over
1414 baseline, calculated as in the main text.

Problem	Graph	Optimal	Baseline	Ours-Easy	Ours-Medium	Ours-Hard
MVC	ER(600,1000)	798.54	806.81	805.36 (17.53%)	804.83 (23.94%)	803.99 (34.10%)
MVC	ER(1000,2000)	1320.78	1331.19	1329.75 (13.83%)	1328.48 (26.03%)	1327.90 (31.60%)
MVC	ER(2000,3000)	2476.30	2498.79	2496.46 (10.36%)	2493.87 (21.88%)	2492.07 (29.88%)
MIS	ER(9000,11000)	381.31	356.47	358.73 (9.10%)	360.36 (15.66%)	362.11 (22.71%)

1419

1420

1421 G.8 FURTHER STUDY ON LARGE-SCALE CO PROBLEMS

1422

1423

1424

1425

1426

To comprehensively evaluate the efficacy of our method on real-world CO problems, we conduct a series of experiments on large-scale instances. Based on our initial observation that pre-training solely on easy-level instances leads to performance gains that diminish with increasing problem scale, we further analyze this trend of gain degradation and investigate the scale of pre-training data required to effectively mitigate it.

1427

1428

1429

1430

1431

1432

1433

1434

Specifically, we select larger-scale instances of MVC, namely Erdős–Rényi (ER) graphs with 600–1000, 1000–2000, and 2000–3000 vertices, denoted as ER(600, 1000), ER(1000, 2000), and ER(2000, 3000), respectively. Additionally, we test on large-scale MIS instances represented by ER graphs with 9000–11000 vertices, i.e., ER(9000, 11000). We employ OptGNN [54] as the baseline solver for MVC and GFlowNet [56] for MIS. The training procedures for these baseline solvers are kept consistent with their respective original papers [54; 56]. For MVC, 32 test instances are used for each graph size, while 16 test instances are used for the MIS experiments. The optimal for MVC is acquired through Gurobi with a 24-hour time limit, and for MIS, it is obtained by KAMIS.

1435

1436

1437

1438

1439

1440

1441

Beyond the baseline, we evaluate three variants of our method pre-trained on data of different scales: **Ours-Easy** (the reported results in the main text), pre-trained on easy-level instances (graphs with 5–15 vertices); **Ours-Medium**, pre-trained on medium-level instances (graphs with 10–20 vertices for MVC, 15–20 vertices for MIS); and **Ours-Hard**, pre-trained on hard-level instances (graphs with 15–25 vertices for MVC, 20–25 vertices for MIS). For each variant, 5,000 instances are utilized for training, with an additional 1,000 instances for validation. The subsequent fine-tuning procedures for these variants remain identical to the baseline training.

1442

1443

1444

1445

1446

1447

1448

The results are presented in Table 20. The rate at which performance gains diminish with problem scale is significantly reduced when the pre-training scale is increased. Notably, effective mitigation does not require pre-training on graphs of massive scale (e.g., with 10,000 vertices). Pre-training on hard-level instances (comprising graphs with up to 25 vertices) alone is sufficient to stabilize the performance gains; our method still achieves over 20% gain even on the very large ER(9000, 11000) graphs. This finding robustly demonstrates the potential of our approach for enhancing real-world, large-scale CO problem-solving.

1449

1450

G.9 ABLATION STUDY ON WARM START

1451

1452

1453

1454

1455

1456

1457

During training, we incorporate a warm start phase. To better understand its contribution, we conduct an ablation study. We selected the LCG+NeuroSAT+GraphSAGE backbone and, during training on easy-level instances, omitted the warm start phase while keeping all other procedures unchanged. This variant is denoted as **w/o warm start** and is compared against the standard method (**with warm start**).

The results, presented in Table 21, show a significant performance degradation when the warm start is skipped. This decline is because applying contrastive learning from the very beginning can disrupt the

1458

1459

Table 21: Graph model performance comparison with and without warm start.

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

model’s acquisition of task-specific representations. Consequently, the information transferred during the subsequent phase may carry greater bias, which is detrimental to representation enhancement. While contrastive learning is designed to facilitate information transfer, the warm start phase ensures that the information being shared across different problems is meaningful. Therefore, the warm start plays a critical role in the effectiveness of our method.

1472

1473

1474

1475

1476

G.10 ABLATION STUDY ON TEMPERATURE SELECTION

1477

We conducted an ablation study on the temperature hyperparameter (τ) in our contrastive learning framework. Using the LCG+NeuroSAT+GraphSAGE backbone, we train models on both easy-level and medium-level instances while varying the value of τ from 0.1 to 0.8. The results are presented in Table 22 and Table 23, indicating that the specific value of τ has a limited impact on the final performance. However, it does influence the convergence rate of the contrastive learning process.

1478

1479

1480

Table 22: Performance of graph models trained using different temperature (τ). The models are trained on easy-level instances. ‘Converged Epoch’ denotes the training epoch where the contrastive loss ceases to decrease.

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

Temperature	<i>k</i> -Clique	<i>k</i> -Domset	<i>k</i> -Verco	<i>k</i> -Color	<i>k</i> -Indset	Matching	Automorph	Overall	Converged Epoch
0.1	79.7	63.2	70.8	93.3	75.3	71.0	63.9	73.9	16
0.2	79.5	63.0	70.8	93.2	75.0	70.7	63.9	73.7	18
0.3	79.6	63.2	70.7	93.2	75.2	71.1	63.7	73.8	20
0.4	79.7	63.1	70.8	93.5	75.5	71.2	63.9	74.0	19
0.5	79.7	63.1	70.6	93.1	75.4	70.9	63.9	73.8	19
0.6	79.9	63.1	70.9	93.1	75.4	71.0	64.2	73.9	20
0.7	79.7	63.2	70.9	93.3	75.4	71.0	63.8	73.9	22
0.8	79.6	63.2	70.8	93.2	75.1	71.0	63.6	73.8	24

1488

1489

1490

1491

Table 23: Performance of graph models trained using different temperature (τ). The models are trained on medium-level instances. ‘Converged Epoch’ denotes the training epoch where the contrastive loss ceases to decrease.

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

H LARGE LANGUAGE MODEL USAGE

1502

1503

In this paper, large language models (LLMs) are only used to find and correct grammatical errors.

1504

1505

1506

1507

1508

1509

1510

1511