
Fusing Heterogeneous Factors with Triaffine Mechanism
for Nested Named Entity Recognition

Anonymous ACL submission

Abstract

Nested entities are observed in many domains001
due to their compositionality, which cannot be002
easily recognized by the widely-used sequence003
labeling framework. A natural solution is to004
treat the task as a span classification problem.005
To learn better span representation and increase006
classification performance, it is crucial to effec-007
tively integrate heterogeneous factors including008
inside tokens, boundaries, labels, and related009
spans which could be contributing to nested en-010
tities recognition. To fuse these heterogeneous011
factors, we propose a novel triaffine mecha-012
nism including triaffine attention and scoring.013
Triaffine attention uses boundaries and labels014
as queries, and uses inside tokens and related015
spans as keys and values for span representa-016
tions. Triaffine scoring interacts with bound-017
aries and span representations for classification.018
Experiments show that our proposed method019
achieves the state-of-the-art F1 scores on four020
nested NER datasets: ACE2004, ACE2005,021
GENIA, and KBP2017.022

1 Introduction023

Named entity recognition (NER) is a fundamental024

natural language processing task that extracts enti-025

ties from texts. Flat NER has been well studied and026

is usually viewed as a sequence labeling problem027

(Lample et al., 2016). However, nested entities also028

widely exist in real-world applications due to their029

multi-granularity semantic meaning (Alex et al.,030

2007; Yuan et al., 2020), which cannot be solved031

by the sequence labeling framework since tokens032

have multiple labels (Finkel and Manning, 2009).033

Various paradigms for nested NER have been034

proposed in recent years. A representative direc-035

tion is the span-based approach that learns deep036

representation for every possible span and then037

classifies it to the corresponding type (Zheng et al.,038

2019; Xia et al., 2019; Wadden et al., 2019; Tan039

et al., 2020; Wang et al., 2020; Yu et al., 2020).040

By leveraging the large-scale pretrained language041

a defective NF - chi B site was completely
inactive in EBV - transformed B cells , …

protein DNA

cell typecell line

Figure 1: An example sentence with nested entities from
the GENIA dataset.

model, several works show that the simple model 042

structure for span representation and classification 043

can achieve satisfactory results (Luan et al., 2019; 044

Zhong and Chen, 2021). However, we still believe 045

that explicit modeling of some relevant features 046

will further benefit the span representation and clas- 047

sification under the complex nested setting. Taking 048

Figure 1 as an example, we claim that the following 049

factors are critical for recognizing whether a span 050

is an entity. (1) Tokens: It is obvious that tokens 051

of the given span contribute to the recognition. (2) 052

Boundaries: We emphasize boundaries (or bound- 053

ary tokens) because they are special tokens with 054

rich semantics. Works with simple structure may 055

just produce the span representation based on the 056

concatenation or biaffine transformation of bound- 057

ary representation (Yu et al., 2020; Fu et al., 2021). 058

Some other works take boundary detection as addi- 059

tional supervision for better representation learning 060

(Zheng et al., 2019; Tan et al., 2020). More im- 061

portantly, a unilateral boundary cannot determine 062

the entity type since it can exist in multiple en- 063

tities with different labels (e.g., “NF”, “B”, and 064

“cells”) under the nested setting. (3) Labels: As 065

mentioned above, tokens could belong to entities 066

with different labels. Therefore, we propose that 067

the model should learn label-aware span represen- 068

tation to take into consideration of the different 069

token contributions at the label level.1 For exam- 070

1Label is the perdition object that we cannot touch in rep-
resentation learning. Here, leveraging label information only
means we need label-aware representation learning.

1

ple, “NF” may contribute more to “protein” type071

when classifying the span “NF - chi B”, as well072

as “chi B” and “site” contribute more to “DNA”073

type when classifying the span “NF - chi B site”.074

(4) Related spans: Interactions among spans are075

important in nested entities (Luo and Zhao, 2020;076

Wang et al., 2020; Fu et al., 2021). The insider and077

outsider entities may hint at each other’s types. For078

example, entities inside “EBV-transformed B cells”079

have more possibilities to be cell-related entities.080

Interactions can also help the non-entity span like081

“transformed B cells” to validate its partialness by082

looking at outer entity “EBV - transformed B cells”.083

Although some of the factors may be explored in084

previous works, to the best of our knowledge, it is085

the first work to fuse all these heterogeneous factors086

into a unified network. As the traditional additive,087

multiplicative attention, or biaffine transformation088

cannot interact with such multiple heterogeneous089

factors simultaneously, we propose a novel triaffine090

mechanism as the tensor multiplication with three091

rank-1 tensors (vectors) and a rank-3 tensor, which092

makes it possible to jointly consider high-order in-093

teractions among multiple factors. Specifically, our094

method follows the pipeline of span representation095

learning and classification. At the stage of span rep-096

resentation learning, we apply the triaffine attention097

to aggregate the label-wise span representations by098

considering boundaries and labels as queries as099

well as inside tokens as keys and values. Then, a100

similar triaffine attention is applied to produce the101

label-wise cross-span representations by querying102

boundaries and labels with related spans. At the103

stage of span classification, we fuse the span repre-104

sentations and boundaries for label-wise classifica-105

tion with a triaffine score function. In practice, we106

add an auxiliary object function to classify spans107

without the cross-span interaction, which benefits108

learning robust span representation and can be used109

as a span filter to speed up both training and infer-110

ence without performance degradation.111

We conduct experiments on four nested NER112

datasets: ACE2004, ACE2005, GENIA, and113

KBP2017. Our model achieves 88.56, 88.83, 81.23,114

and 87.27 scores in terms of F1, respectively, out-115

performing state-of-the-art methods. Ablation stud-116

ies show the effectiveness of each factor and the117

superiority of the triaffine mechanism. We will118

release our codes and models for further research.119

Our contributions are summarized as:120

• We propose that heterogeneous factors (i.e.,121

tokens, boundaries, labels, related spans) 122

should be taken into consideration in the span- 123

based methods for nested NER. 124

• We propose a span-based method with a novel 125

triaffine mechanism including triaffine atten- 126

tion and scoring to fuse the above-mentioned 127

heterogeneous factors for span representations 128

and classification. 129

• Experiments show that our proposed method 130

performs better than existing span-based 131

methods and achieves state-of-the-arts perfor- 132

mances on four nested NER datasets. 133

2 Related Work 134

2.1 Nested NER 135

Nested NER approaches do not have a unified 136

paradigm. Here we mainly focus on span-based 137

methods since they are close to our work. 138

The span-based methods are one of the most 139

mainstream ways for the nested NER. With the de- 140

velopment of pre-training, it is easy to obtain the 141

span representation by the concatenation of bound- 142

ary representation (Luan et al., 2019; Zhong and 143

Chen, 2021) or the aggregated representation of 144

tokens (Zheng et al., 2019; Wadden et al., 2019), 145

and then follow a linear layer (Xia et al., 2019) or 146

biaffine transformation (Yu et al., 2020) for clas- 147

sification. Several works improve the span-based 148

methods with additional features or supervision. 149

Zheng et al. (2019); Tan et al. (2020) point out the 150

importance of boundaries and therefore introduce 151

the boundary detection task. Wang et al. (2020) 152

propose Pyramid to allow interactions between 153

spans from different layers. Fu et al. (2021) adopt 154

TreeCRF to model interactions between nested 155

spans. Compared with previous methods, our 156

method can jointly fuse multiple heterogeneous 157

factors with the proposed triaffine mechanism. 158

Other methods for nested NER vary greatly. Ear- 159

lier research on nested NER is rule-based (Zhang 160

et al., 2004). Lu and Roth (2015); Katiyar and 161

Cardie (2018); Wang and Lu (2018) leverage the 162

hypergraph to represent all possible nested struc- 163

tures, which needs to be carefully designed to 164

avoid spurious structures and structural ambigui- 165

ties. Wang et al. (2018); Fisher and Vlachos (2019) 166

predict the transition actions to construct nested 167

entities. Lin et al. (2019) propose an anchor-based 168

method to recognize entities. There are other works 169

that recognize entities in a generative fashion (Yan 170

2

et al., 2021; Shen et al., 2021; Tan et al., 2021).171

Generally, it is not a unified framework for nested172

NER, and we model it with a span-based method173

since it is most straightforward.174

2.2 Affine Transformations in NLP175

Dozat and Manning (2017) introduce the biaffine176

transformation in the dependency parsing task for177

arc classification. Later, it is widely used in many178

tasks that need to model bilateral representations179

(Li et al., 2019; Yu et al., 2020). The triaffine180

transformation is further introduced to extend bi-181

affine transformation for high-order interaction in182

the field of dependency parsing (Wang et al., 2019;183

Zhang et al., 2020) and semantic role labeling184

(Li et al., 2020b). There are two key differences185

between our triaffine transformation and theirs.186

Firstly, they only model the homogeneous features187

such as three tokens, but our triaffine transforma-188

tion can model heterogeneous factors. Secondly,189

they usually leverage triaffine transformation to ob-190

tain log potentials for CRFs, but we apply it for191

span representation and classification.192

3 Approach193

Figure 2 shows an overview of our method. We will194

first introduce the triaffine transformations, which195

lie in the heart of our model to fuse heterogeneous196

factors. Then, we will introduce our model based197

on the proposed triaffine transformations.198

3.1 Deep Triaffine Transformation199

We define the deep triaffine transformation with200

vectors u,v,w ∈ Rd and a tensor W ∈ Rd+1 ×201

Rd × Rd+1 which outputs a scalar by applying202

distinct MLP transformations on input vectors and203

calculating tensor vector multiplications.204

u′ =

[
MLP(u)

1

]
,v′ =

[
MLP(v)

1

]
(1)205

w′ =MLP(w) (2)206

TriAff(u,v,w,W) =W ×1 u
′ ×2 w

′ ×3 v
′

(3)
207

where ×n is the mode-n tensor vector multiplica-208

tion. A constant 1 is concatenated with inputs to209

retain the biaffine transformation. The tensor W is210

initialized using N (0, σ2). In our approach, we use211

boundary representations as u and v. Inside tokens212

or span representations are used as w. We denote213

the tensors in the triaffine attention as {Wr} and tri- 214

affine scoring as {Vr}, which decouples attention 215

weights and scores for different labels. 216

3.2 Text Encoding 217

We follow Shen et al. (2021) and Tan et al. (2021) 218

to encode the text. For text X = [x1, x2, ..., xN] 219

with N tokens, we first generate the contextual 220

embedding xc
i with the pre-trained language model, 221

xc
1,x

c
2, ...,x

c
N = PLM(x1, x2, ..., xN) (4) 222

Then, we concatenate xc
i with word embedding xw

i , 223

part-of-speech embedding xp
i and character embed- 224

ding xch
i , and feed the concatenated embedding 225

xi into a BiLSTM (Hochreiter and Schmidhuber, 226

1997) to obtain the token representations {hi}. 227

3.3 Triaffine Attention for Span 228

Representations 229

To fuse heterogeneous factors for better span repre- 230

sentation, we propose a triaffine attention mech- 231

anism shown in Figure 3a. To interact tokens 232

with labels and boundaries, we learn the label-wise 233

span representation hi,j,r with the triaffine atten- 234

tion αi,j,k,r for the span (i, j): 235

si,j,k,r = TriAff(hi,hj ,hk,Wr) (5) 236

αi,j,k,r =
exp(si,j,k,r)∑j

k′=i exp(si,j,k′,r)
(6) 237

hi,j,r =

j∑
k=i

αi,j,k,rMLP(hk) (7) 238

Boundary representations (hi, hj) and the label- 239

wise parameters (Wr) can be viewed as attention 240

queries, and tokens (hk) can be viewed as keys 241

and values. Compared with the general attention 242

framework (additive or multiplicative attention), 243

our triaffine attention permits all high-order inter- 244

actions between heterogeneous queries and keys. 245

3.4 Triaffine Attention for Cross-span 246

Representations 247

Motivated by the span-level interactions in the 248

nested setting, we fuse related spans informa- 249

tion into cross-span representations. We view 250

the boundaries of the span and labels as attention 251

queries, related spans (containing the span itself) 252

as attention keys and values to obtain cross-span 253

representations. Similar to the Equation 7, we ob- 254

tain label-wise cross-span representations hc
i,j,r for 255

3

Filter out

Span
classification

Cross-span
rep.

Enum.
span rep.

promoter

chloramphenicol

acetyltransferase

constructs

IL-2 1

2

3

4

5

1,3
3

1

1,4
4

1

2,5
5

2

…

1,4
4

1

2,5
5

2

…

Texts
Token
rep.

Auxiliary
Task

Figure 2: The architecture of our method. Green cubes indicate triaffine attention. Blue cubes indicate triaffine
scoring. Orange arrows mean boundary information. Blue arrows mean inside tokens or related spans information.
For each span, we have head and tail representations in yellow and label-wise span representations in different
colors. The grey color indicates None class.

ℎ!

ℎ"

…
ℎ!!,$!,%
…

𝒲%

𝒱%

𝑞!$&%

𝑡!$&%

𝛽!$&%
softmax

(a) Triaffine Attention (b) Triaffine Scoring

1,4⊗

1

2

3

4

5

𝒱%

ℎ!

ℎ"

ℎ",!,$%

(c) Decomposition of Triaffine Scoring

𝑝",!,$% 𝑝",!,$%
𝒲!

Token
rep.

Attention Span
rep.

Head Boundary

Tail Boundary

Span
rep.

Span
score

Span
score

Head Boundary

Tail Boundary

Attention

Score

Figure 3: Visualization of triaffine attention, triaffine scoring, and the decomposition of triaffine scoring.

the span (i, j) based on triaffine attention βi,j,g,r.256

qi,j,g,r = TriAff(hi,hj ,hig ,jg ,r,Wr) (8)257

βi,j,g,r =
exp(qi,j,g,r)∑
g′ exp(qi,j,g′,r)

(9)258

hc
i,j,r =

∑
g

βi,j,g,rMLP(hig ,jg ,r) (10)259

where {(ig, jg)} are the related spans. One can260

treat all enumerated spans as related spans, and we261

will introduce how we select them in Section 3.6.262

3.5 Triaffine Scoring for Span Classification263

To classify the entity type of the span, we calcu-264

late label-wise scores based on cross-span repre-265

sentations. Since boundary information has been266

proved effective in previous works (Yu et al., 2020;267

Fu et al., 2021), we leverage the boundaries in-268

formation and cross-span representations for span269

classification via triaffine scoring. Specifically, we270

estimate the log probabilities pci,j,r of the span (i, j)271

for label r using boundaries hi,hj and cross-span272

representations hc
i,j,r.273

pci,j,r = TriAff(hi,hj ,h
c
i,j,r,Vr) (11)274

Since hc
i,j,r are composed by hig ,jg ,r, we can de- 275

compose Equation 11 into: 276

ti,j,g,r = TriAff(hi,hj ,hig ,jg ,r,Vr) (12) 277

pci,j,r =
∑
g

βi,j,g,rti,j,g,r (13) 278

Figure 3b and 3c show the mechanism of triaffine 279

scoring and the decomposition. We also apply the 280

similar decomposition functions in the auxiliary 281

span classification task, which applies the triaffine 282

scoring on boundary representations and intermedi- 283

ate span representations hi,j,r to estimate log prob- 284

abilities pi,j,r as intermediate predictions. 285

3.6 Training and Inference 286

In practice, it is expensive and non-informative 287

to consider interactions between all spans. There- 288

fore, we propose an auxiliary task to classify spans 289

with intermediate span representations. Then, we 290

can rank all spans based on the maximum of log 291

probabilities (except None) from the intermedi- 292

ate predictions pi,j = maxRr=1 pi,j,r, and retain 293

top-m spans {(il, jl)}ml=1 as candidates. We cal- 294

culate cross-span representations hc
il,jl,r

for re- 295

4

tained spans by considering the full interactions296

among them, and estimate the classification logits297

pcil,jl,r. Thus, we have two groups of predictions298

in our model {pi,j,r}1≤i≤j≤N and {pcil,jl,r}1≤l≤m.299

{pi,j,r} are calculated for every possible span, and300

{pcil,jl,r} are calculated only on top-m spans.301

In the training phase, we jointly minimize two302

groups of cross-entropy losses:303

Laux =− 2

N(N + 1)

∑
i,j

log
exp(pi,j,rij)∑
r exp(pi,j,r)

(14)

304

Lmain =− 1

m

∑
1≤l≤m

log
exp(pcil,jl,ril,jl

)∑
r exp(p

c
il,jl,r

)
(15)305

L =µauxLaux + Lmain (16)306

where rij is the label of span (i, j).307

In both the training and inference phase, {pi,j,r}308

are used to select spans with high possibilities309

based on the supervision from Laux. We infer-310

ence the labels of selected spans using {pcil,jl,r} by311

assigning label r̃il,jl = argr max pcil,jl,r, and we312

assign None class for others.313

4 Experiments314

4.1 Datasets315

We conduct our experiments on the ACE20042,316

ACE20053 (Doddington et al., 2004), GENIA (Kim317

et al., 2003) and KBP20174 (Ji et al., 2017) datasets.318

To fairly compare with previous works, we follow319

the same dataset split with Lu and Roth (2015) for320

ACE2004 and ACE2005 datasets and use the split321

from Lin et al. (2019) for GENIA and KBP2017322

datasets. The statistics of all datasets are listed in323

Table 1. Following previous work, we measure the324

results using span-level precision, recall, and F1325

scores.326

4.2 Implementation Details327

We use BERT-large-cased (Devlin et al.,328

2019) and albert-xxlarge-v2 (Lan et al.,329

2020) as the contextual embedding, fastText330

(Bojanowski et al., 2017) as the word embedding331

in ACE2004, ACE2005 and KBP2017 dataset.332

We use BioBERT-v1.1 (Lee et al., 2020) and333

2https://catalog.ldc.upenn.edu/
LDC2005T09

3https://catalog.ldc.upenn.edu/
LDC2006T06

4https://catalog.ldc.upenn.edu/
LDC2019T12

BioWordVec (Zhang et al., 2019) as the contex- 334

tual and word embedding in the GENIA dataset 335

respectively. We truncate the input texts with con- 336

text at length 192. The part-of-speech embeddings 337

are initialized with dimension 50. The char embed- 338

dings are generated by a one-layer BiLSTM with 339

hidden size 50. The two-layers BiLSTM with a hid- 340

den size of 1,024 is used for the token representa- 341

tions. For triaffine transformations, we use d = 256 342

for the ACE2004, ACE2005, and KBP2017 dataset, 343

and d = 320 for the GENIA dataset, respectively. 344

We set µaux to 1.0, and select m = 30 in both train- 345

ing and inference. We use AdamW (Loshchilov 346

and Hutter, 2019) to optimize our models with a 347

linear learning rate decay. Detailed training param- 348

eters are presented in Appendix A. 349

4.3 Baselines 350

DYGIE (Luan et al., 2019) uses multi-task learning 351

to extract entities, relations, and coreferences. 352

MGNER (Xia et al., 2019) uses a detector to find 353

span candidates and a classifier for categorization. 354

BENSC (Tan et al., 2020) trains the boundary de- 355

tection and span classification tasks jointly. 356

TreeCRF (Fu et al., 2021) views entities as nodes 357

in a constituency tree and decodes them with a 358

Masked Inside algorithm. 359

Biaffine (Yu et al., 2020) classifies spans by a bi- 360

affine function between boundary representations. 361

Pyramid (Wang et al., 2020) designs pyramid layer 362

and inverse pyramid layer to decode nested entities. 363

We also report the results of models with other 364

paradigms, including hypergraph-based methods 365

(Wang and Lu, 2018), transition-based methods 366

(Fisher and Vlachos, 2019), generative methods 367

(Yan et al., 2021; Tan et al., 2021; Shen et al., 2021), 368

and so on. We do not compare to BERT-MRC (Li 369

et al., 2020a) since they use additional resources 370

as queries. DYGIE++ (Wadden et al., 2019) and 371

PURE (Zhong and Chen, 2021) use different splits 372

of the ACE datasets which are not comparable. 373

4.4 Results 374

We compare our method with baseline methods in 375

Table 2 for the ACE2004, ACE2005, and GENIA 376

datasets and Table 3 for the KBP2017 dataset, re- 377

spectively. With BERT as the encoder, our model 378

achieves 87.40, 86.82, 81.23, and 85.05 scores in 379

terms of F1, outperforming all other span-based 380

methods such as BENSC, Pyramid, TreeCRF, and 381

Biaffine (+0.70 on ACE2004, +1.42 on ACE2005, 382

+0.73 on GENIA). Compared with methods in other 383

5

https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2005T09
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2006T06
https://catalog.ldc.upenn.edu/LDC2019T12
https://catalog.ldc.upenn.edu/LDC2019T12

ACE2004 ACE2005 GENIA KBP2017
Train Dev Test Train Dev Test Train Test Train Dev Test

sentences 6,200 745 812 7,194 969 1,047 16,692 1,854 10,546 545 4,267
entities 22,204 2,514 3,035 24,411 3,200 2,993 50,509 5,506 31,236 1,879 12,601
nested entities 10,149 1,092 1,417 9,389 1,112 1,118 9,064 1,199 8,773 605 3,707
max entity count 28 22 20 27 23 17 25 14 58 15 21

Table 1: Statistics of nested NER datasets ACE2004, ACE2005, GENIA, and KBP2017.

Model + Encoder ACE2004 ACE2005 GENIA
P R F1 P R F1 P R F1

Span-based Methods
DYGIE (Luan et al., 2019) + LSTM - - 84.7 - - 82.9 - - 76.2
MGNER (Xia et al., 2019) + ELMo 81.7 77.4 79.5 79.0 77.3 78.2 - - -
BENSC (Tan et al., 2020) 85.8 84.8 85.3 83.8 83.9 83.9 79.2 77.4 78.3
TreeCRF (Fu et al., 2021) 86.7 86.5 86.6 84.5 86.4 85.4 78.2 78.2 78.2
Biaffine (Yu et al., 2020) 87.3 86.0 86.7 85.2 85.6 85.4 81.8 79.3 80.5
Pyramid (Wang et al., 2020) 86.08 86.48 86.28 83.95 85.39 84.66 79.45 78.94 79.19
Pyramid (Wang et al., 2020) + ALBERT 87.71 87.78 87.74 85.30 87.40 86.34 80.33 78.31 79.31

Others
SH (Wang and Lu, 2018) + LSTM 78.0 72.4 75.1 76.8 72.3 74.5 77.0 73.3 75.1
ARN (Lin et al., 2019) + LSTM 76.2 73.6 74.9 75.8 73.9 74.8 - - -
BiFlag (Luo and Zhao, 2020) + LSTM - - - 75.0 75.2 75.1 77.4 74.6 76.0
Merge Label (Fisher and Vlachos, 2019) - - - 82.7 82.1 82.4 - - -
Seq2seq (Straková et al., 2019) - - 84.40 - - 84.33 - - 78.31
Second-best (Shibuya and Hovy, 2020) 85.94 85.69 85.82 83.83 84.87 84.34 77.81 76.94 77.36
BartNER (Yan et al., 2021) + BART 87.27 86.41 86.84 83.16 86.38 84.74 78.87 79.60 79.23
Sequence to Set (Tan et al., 2021) 88.46 86.10 87.26 87.48 86.63 87.05 82.31 78.66 80.44
Locate and Label (Shen et al., 2021) 87.44 87.38 87.41 86.09 87.27 86.67 80.19 80.89 80.54

Triaffine (Ours) 87.13 87.68 87.40 86.70 86.94 86.82 80.42 82.06 81.23
Triaffine (Ours) + ALBERT 88.88 88.24 88.56 87.39 90.31 88.83 - - -

Table 2: Results on the ACE2004, ACE2005, and GENIA datasets. BERT is the default encoder if not specified.

Model + Encoder KBP2017
P R F1

ARN + LSTM 77.7 71.8 74.6
BiFlag + LSTM 77.1 74.3 75.6
Sequence to Set 84.91 83.04 83.96
Locate and Label 85.46 82.67 84.05

Triaffine (Ours) 86.50 83.65 85.05
Triaffine (Ours) + ALBERT 89.42 85.22 87.27

Table 3: Results on the KBP2017 dataset. BERT is the
default encoder if not specified.

paradigms, our model also achieves the state-of-the-384

art results on the GENIA (+0.69 vs. Locate and385

Label) and KBP2017 dataset (+1.00 vs. Locate386

and Label) and shows comparable performances387

on ACE2004 (-0.01 vs. Locate and Label) and388

ACE2005 (-0.23 vs. Sequence to Set). With a389

stronger encoder ALBERT, our model achieves390

88.56, 88.83, and 87.27 scores in terms of F1 on391

ACE2004, ACE2005, and KBP2017 respectively,392

which exceeds all existing baselines including the393

Pyramid model with ALBERT (+0.82 on ACE2004,394

+2.49 on ACE2005) and the previous state-of-the- 395

art method on KBP2017 dataset (+3.22 vs. Locate 396

and Label). 397

4.5 Ablation Study 398

Considering we leverage multiple factors in mul- 399

tiple parts of the model, we design the following 400

ablation settings to validate the effectiveness of 401

each factor and the proposed triaffine mechanism. 402

(a) To show the effectiveness of triaffine mecha- 403

nism, we use a baseline biaffine model with the 404

combination of boundary representations: 405

pi,j,r =

[
hi

1

]T

Vr

[
hj

1

]
(17) 406

(b) To show the effectiveness of boundaries in scor- 407

ing, we remove boundaries factor from scoring: 408

409

pi,j,r = Vrhi,j,r + br (18) 410

(c) To show the effectiveness of labels in represen- 411

tation, we remove label factor in attention: 412

si,j,k,r = TriAff(hi,hj ,hk,W) (19) 413

6

Setting Datasets
Span Representation Span Classification ACE2004 GENIA

Setting Label Boundary Function Boundary Attention Cross Function F1

(a) × × ×
√

× × bi. 86.71 78.97
(b)

√ √
tri. ×

√
× lin. 87.36 80.50

(c) ×
√

tri.
√ √

× tri. 87.17 80.49
(d)

√
× lin.

√ √
× tri. 87.14 80.50

(e)
√ √

lin.
√ √

× tri. 87.35 80.63
(f)

√ √
tri.

√ √
× lin. 87.49 80.70

(g)
√ √

tri.
√ √

× tri. 87.54 80.84
(h)

√ √
tri.

√ √ √
tri. 87.82 81.23

Table 4: Ablation tests on ACE2004 and GENIA datasets. Cross means using cross attention for span classification.
Lin. means linear transformation, bi. means biaffine transformation, and tri. means triaffine transformation.

(d) To show the effectiveness of boundaries in repre-414

sentation, we remove boundaries factor in attention:415

416

si,j,k,r = sk,r = qr · hk (20)417

(e) To show the effectiveness of the triaffine mech-418

anism in representations, we replace triaffine atten-419

tion with linear attention:420

si,j,k,r = Wr(hi ∥ hj ∥ hk) + cr (21)421

(f) To show the effectiveness of triaffine scoring,422

we replace triaffine scoring to linear scoring:423

pi,j,r = Vr(hi ∥ hj ∥ hi,j,r) + br (22)424

(g) To show the effectiveness of cross-span interac-425

tions, we use our partial model with intermediate426

predictions (model (a)-(g) use pi,j,r).427

(h) Our full model (i.e, use pcil,jl,r as predictions).428

Table 4 shows the results of ablation stud-429

ies on ACE2004 and GENIA datasets. We use430

BERT-large-cased as the backbone encoder431

on ACE2004 and BioBERT-v1.1 on GENIA, re-432

spectively. By comparing (a) with (g), we observe433

significant performances drop (-0.87 on ACE2004, -434

1.87 on GENIA), which indicates that our proposed435

triaffine mechanism with multiple heterogeneous436

factors performs better than the biaffine baseline.437

Comparing (b) with (g), we find that the bound-438

ary information contributes to span classification.439

Comparing (c) and (d) with (g) supports that either440

label or boundary in the triaffine attention improves441

the performance. The setting (g) performs better442

than (e) and (f), which shows the superiority of443

the triaffine transformation over the linear func-444

tion. We observe that (h) performs better than (g)445

(+0.28 on ACE2004, +0.39 on GENIA), proving446

the strength of triaffine attention with interactions447

among related spans. The above studies support448

Figure 4: Comparison between triaffine and biaffine
models on GENIA with different lengths of entities.
Entity counts are in the parentheses.

that our proposed triaffine mechanism with asso- 449

ciated heterogeneous factors is effective for span 450

representation and classification. 451

4.6 Discussion 452

We compare the F1 scores of GENIA between tri- 453

affine model (g) and biaffine model (a) grouped 454

by entity lengths in Figure 4. In all columns, the 455

F1 score of our method is better than the baseline. 456

Furthermore, the right columns show that the F1 457

score of the baseline gradually decreases with the 458

incremental entity lengths. However, our method 459

based on the triaffine mechanism with heteroge- 460

neous factors takes advantage of the interaction 461

from boundaries and related spans, which keeps 462

consistent results and outperforms the baseline. 463

The results grouped by flat or nested entities 464

are shown in Table 6. Our method has consistent 465

improvements than the baseline, especially for the 466

nested setting. Based on the above observations, 467

our method is good at solving long entities that are 468

more likely to be nested, which supports our model 469

is built upon the characteristics of nested NER. 470

At the stage of cross-span interactions, we only 471

select top-m spans in practice. In Figure 5, we ana- 472

lyze the number m in two aspects. Firstly, we check 473

7

pi,j,r pci,j,r
Span Type Probability Rank Type Probability

... [Cisco]ORG’s been slammed, but once [they]ORG’re exposed to [the rest of [the trading population]PER]PER ...

Cisco ORG 1.00 1 ORG 1.00
they ORG 1.00 2 ORG 1.00
the rest of the trading population PER 1.00 3 PER 1.00
the trading population GPE 0.50 4 PER 0.68
population None 1.00 5 None 1.00

... simian virus 40 enhancer activity was blocked by the [MnlI-AluI fragment]DNA in [HeLa cells]cl but not in [B cells]ct.

HeLa cells cell line 0.99 1 cell line 0.99
B cells cell type 0.97 2 cell type 0.88
MnlI-AluI fragment DNA 0.96 3 DNA 0.95
simian virus 40 enhancer DNA 0.90 4 DNA 0.89
MnlI-AluI protein 0.43 5 None 0.41
40 enhancer None 0.99 6 None 1.00

Table 5: Case study on ACE2004 and GENIA dataset. Colored brackets indicate the boundaries and semantic types
of entities in true labels. “cl” and “ct” is the abbreviation of cell line and cell type, respectively.

ACE2004 GENIA
Flat Nested Flat Nested

(1,422) (1,092) (4,307) (1,199)

(a) 88.51 84.19 80.09 74.23
(h) 89.54 85.45 82.18 77.24
∆ +1.03 +1.26 +2.09 + 3.01

Table 6: Comparison between triaffine and biaffine mod-
els on ACE2004 and GENIA grouped by flat or nested
entities. Entity counts are in the parentheses.

the recall of entity spans. We observe that tak-474

ing top-30 spans achieves a recall of 99.89, which475

means it covers almost all entities. As the max-476

imum number of entities is 25, we believe it is477

enough to select top-30 spans. Secondly, we check478

the model performance. With top-30 spans, the479

model achieves 81.23 scores in terms of F1 and480

there is no obvious performance improvement with481

more candidates. Based on two above observations,482

we choose m = 30, which can well balance the483

performance and efficiency.484

Finally, we test the efficiency of the decompo-485

sition. Compared with the naive triaffine scoring486

that takes 638.1ms (509.4ms in GPU + 128.7ms487

in CPU), the decomposed triaffine scoring takes488

432.7ms (330.5ms in GPU + 102.2ms in CPU) for489

10 iterations, which leads to approximately 32%490

speedup (details are shown in Appendix B).491

4.7 Case Study492

To analyze the effect of fusing information from493

related spans with the cross-span interaction, we494

show two examples from ACE2004 and GENIA495

datasets in Table 5. In the first example, the model496

Figure 5: Recall for entity spans and F1 scores with
different numbers of candidate spans in GENIA dataset.

first predicts “the trading population” as “GPE”, 497

however, it revises to “PER” correctly by consider- 498

ing span interactions with the outer span “the rest 499

of the trading population”. In the second exam- 500

ple, it first predicts “MnlI-AluI” as “protein”. By 501

interacting with surrounding entities “MnlI-AluI 502

fragment”, the model corrects its label to None. 503

5 Conclusion 504

In this paper, we propose a span-based method 505

for nested NER. Heterogeneous factors includ- 506

ing tokens, boundaries, labels, and related spans 507

are introduced to improve span classification with 508

a novel triaffine mechanism. Experiments show 509

our method outperforms all span-based methods 510

and achieves state-of-the-art performance on four 511

nested NER datasets. Ablation studies show the in- 512

troduced heterogeneous factors and triaffine mech- 513

anism are helpful for nested setting. Despite that 514

large-scale pretrained language models have shown 515

consistent improvement over many NLP tasks, we 516

argue that the well-designed features and model 517

structures are still useful for complex tasks like 518

nested NER. Furthermore, although we only verify 519

our triaffine mechanism in nested NER, we believe 520

it can also be useful in tasks requiring high order 521

interactions like parsing and semantic role labeling. 522

8

References523

Beatrice Alex, Barry Haddow, and Claire Grover. 2007.524
Recognising nested named entities in biomedical text.525
In Biological, translational, and clinical language526
processing, pages 65–72.527

Piotr Bojanowski, Edouard Grave, Armand Joulin, and528
Tomas Mikolov. 2017. Enriching word vectors with529
subword information. Transactions of the Associa-530
tion for Computational Linguistics, 5:135–146.531

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and532
Kristina Toutanova. 2019. BERT: Pre-training of533
deep bidirectional transformers for language under-534
standing. In Proceedings of the 2019 Conference of535
the North American Chapter of the Association for536
Computational Linguistics: Human Language Tech-537
nologies, Volume 1 (Long and Short Papers), pages538
4171–4186, Minneapolis, Minnesota. Association for539
Computational Linguistics.540

George R Doddington, Alexis Mitchell, Mark A Przy-541
bocki, Lance A Ramshaw, Stephanie M Strassel, and542
Ralph M Weischedel. 2004. The automatic content543
extraction (ace) program-tasks, data, and evaluation.544
In Lrec, volume 2, pages 837–840. Lisbon.545

Timothy Dozat and Christopher D. Manning. 2017.546
Deep biaffine attention for neural dependency pars-547
ing. In 5th International Conference on Learning548
Representations, ICLR 2017, Toulon, France, April549
24-26, 2017, Conference Track Proceedings.550

Jenny Rose Finkel and Christopher D Manning. 2009.551
Nested named entity recognition. In Proceedings of552
the 2009 conference on empirical methods in natural553
language processing, pages 141–150.554

Joseph Fisher and Andreas Vlachos. 2019. Merge and555
label: A novel neural network architecture for nested556
NER. In Proceedings of the 57th Annual Meeting of557
the Association for Computational Linguistics, pages558
5840–5850, Florence, Italy. Association for Compu-559
tational Linguistics.560

Yao Fu, Chuanqi Tan, Mosha Chen, Songfang Huang,561
and Fei Huang. 2021. Nested named entity recogni-562
tion with partially-observed treecrfs. In Proceedings563
of the AAAI Conference on Artificial Intelligence,564
volume 35, pages 12839–12847.565

Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long566
short-term memory. Neural computation, 9(8):1735–567
1780.568

Heng Ji, Xiaoman Pan, Boliang Zhang, Joel Nothman,569
James Mayfield, Paul McNamee, and Cash Costello.570
2017. Overview of tac-kbp2017 13 languages entity571
discovery and linking. Theory and Applications of572
Categories.573

Arzoo Katiyar and Claire Cardie. 2018. Nested named574
entity recognition revisited. In Proceedings of the575
2018 Conference of the North American Chapter of576

the Association for Computational Linguistics: Hu- 577
man Language Technologies, Volume 1 (Long Pa- 578
pers), pages 861–871. 579

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun’ichi 580
Tsujii. 2003. Genia corpus—a semantically anno- 581
tated corpus for bio-textmining. Bioinformatics, 582
19(suppl_1):i180–i182. 583

Guillaume Lample, Miguel Ballesteros, Sandeep Sub- 584
ramanian, Kazuya Kawakami, and Chris Dyer. 2016. 585
Neural architectures for named entity recognition. 586
In Proceedings of the 2016 Conference of the North 587
American Chapter of the Association for Computa- 588
tional Linguistics: Human Language Technologies, 589
pages 260–270, San Diego, California. Association 590
for Computational Linguistics. 591

Zhenzhong Lan, Mingda Chen, Sebastian Goodman, 592
Kevin Gimpel, Piyush Sharma, and Radu Soricut. 593
2020. ALBERT: A lite BERT for self-supervised 594
learning of language representations. In 8th Inter- 595
national Conference on Learning Representations, 596
ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 597
2020. 598

Jinhyuk Lee, Wonjin Yoon, Sungdong Kim, Donghyeon 599
Kim, Sunkyu Kim, Chan Ho So, and Jaewoo Kang. 600
2020. Biobert: a pre-trained biomedical language 601
representation model for biomedical text mining. 602
Bioinformatics, 36(4):1234–1240. 603

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong 604
Han, Fei Wu, and Jiwei Li. 2020a. A unified MRC 605
framework for named entity recognition. In Proceed- 606
ings of the 58th Annual Meeting of the Association 607
for Computational Linguistics, pages 5849–5859, On- 608
line. Association for Computational Linguistics. 609

Zuchao Li, Shexia He, Hai Zhao, Yiqing Zhang, Zhu- 610
osheng Zhang, Xi Zhou, and Xiang Zhou. 2019. De- 611
pendency or span, end-to-end uniform semantic role 612
labeling. In Proceedings of the AAAI Conference on 613
Artificial Intelligence, volume 33, pages 6730–6737. 614

Zuchao Li, Hai Zhao, Rui Wang, and Kevin Parnow. 615
2020b. High-order semantic role labeling. In Find- 616
ings of the Association for Computational Linguistics: 617
EMNLP 2020, pages 1134–1151, Online. Association 618
for Computational Linguistics. 619

Hongyu Lin, Yaojie Lu, Xianpei Han, and Le Sun. 2019. 620
Sequence-to-nuggets: Nested entity mention detec- 621
tion via anchor-region networks. In Proceedings of 622
the 57th Annual Meeting of the Association for Com- 623
putational Linguistics, pages 5182–5192, Florence, 624
Italy. Association for Computational Linguistics. 625

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 626
weight decay regularization. In 7th International 627
Conference on Learning Representations, ICLR 2019, 628
New Orleans, LA, USA, May 6-9, 2019. 629

Wei Lu and Dan Roth. 2015. Joint mention extrac- 630
tion and classification with mention hypergraphs. In 631
Proceedings of the 2015 Conference on Empirical 632

9

https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/P19-1585
https://doi.org/10.18653/v1/N16-1030
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.acl-main.519
https://doi.org/10.18653/v1/2020.findings-emnlp.102
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511
https://doi.org/10.18653/v1/P19-1511

Methods in Natural Language Processing, pages 857–633
867.634

Yi Luan, Dave Wadden, Luheng He, Amy Shah, Mari635
Ostendorf, and Hannaneh Hajishirzi. 2019. A general636
framework for information extraction using dynamic637
span graphs. In Proceedings of the 2019 Conference638
of the North American Chapter of the Association for639
Computational Linguistics: Human Language Tech-640
nologies, Volume 1 (Long and Short Papers), pages641
3036–3046, Minneapolis, Minnesota. Association for642
Computational Linguistics.643

Ying Luo and Hai Zhao. 2020. Bipartite flat-graph644
network for nested named entity recognition. In Pro-645
ceedings of the 58th Annual Meeting of the Asso-646
ciation for Computational Linguistics, pages 6408–647
6418, Online. Association for Computational Lin-648
guistics.649

Yongliang Shen, Xinyin Ma, Zeqi Tan, Shuai Zhang,650
Wen Wang, and Weiming Lu. 2021. Locate and label:651
A two-stage identifier for nested named entity recog-652
nition. In Proceedings of the 59th Annual Meeting of653
the Association for Computational Linguistics.654

Takashi Shibuya and Eduard Hovy. 2020. Nested named655
entity recognition via second-best sequence learning656
and decoding. Transactions of the Association for657
Computational Linguistics, 8:605–620.658

Jana Straková, Milan Straka, and Jan Hajic. 2019. Neu-659
ral architectures for nested NER through lineariza-660
tion. In Proceedings of the 57th Annual Meeting of661
the Association for Computational Linguistics, pages662
5326–5331, Florence, Italy. Association for Compu-663
tational Linguistics.664

Chuanqi Tan, Wei Qiu, Mosha Chen, Rui Wang, and665
Fei Huang. 2020. Boundary enhanced neural span666
classification for nested named entity recognition. In667
Proceedings of the AAAI Conference on Artificial668
Intelligence, volume 34, pages 9016–9023.669

Zeqi Tan, Yongliang Shen, Shuai Zhang, Weiming Lu,670
and Yueting Zhuang. 2021. A sequence-to-set net-671
work for nested named entity recognition. In Pro-672
ceedings of the 30th International Joint Conference673
on Artificial Intelligence, IJCAI-21.674

David Wadden, Ulme Wennberg, Yi Luan, and Han-675
naneh Hajishirzi. 2019. Entity, relation, and event676
extraction with contextualized span representations.677
In Proceedings of the 2019 Conference on Empirical678
Methods in Natural Language Processing and the679
9th International Joint Conference on Natural Lan-680
guage Processing (EMNLP-IJCNLP), pages 5784–681
5789, Hong Kong, China. Association for Computa-682
tional Linguistics.683

Bailin Wang and Wei Lu. 2018. Neural segmental hy-684
pergraphs for overlapping mention recognition. In685
Proceedings of the 2018 Conference on Empirical686
Methods in Natural Language Processing, pages 204–687
214, Brussels, Belgium. Association for Computa-688
tional Linguistics.689

Bailin Wang, Wei Lu, Yu Wang, and Hongxia Jin. 2018. 690
A neural transition-based model for nested mention 691
recognition. In Proceedings of the 2018 Conference 692
on Empirical Methods in Natural Language Process- 693
ing, pages 1011–1017, Brussels, Belgium. Associa- 694
tion for Computational Linguistics. 695

Jue Wang, Lidan Shou, Ke Chen, and Gang Chen. 2020. 696
Pyramid: A layered model for nested named entity 697
recognition. In Proceedings of the 58th Annual Meet- 698
ing of the Association for Computational Linguistics, 699
pages 5918–5928. 700

Xinyu Wang, Jingxian Huang, and Kewei Tu. 2019. 701
Second-order semantic dependency parsing with end- 702
to-end neural networks. In Proceedings of the 57th 703
Annual Meeting of the Association for Computational 704
Linguistics, pages 4609–4618, Florence, Italy. Asso- 705
ciation for Computational Linguistics. 706

Congying Xia, Chenwei Zhang, Tao Yang, Yaliang Li, 707
Nan Du, Xian Wu, Wei Fan, Fenglong Ma, and Philip 708
Yu. 2019. Multi-grained named entity recognition. 709
In Proceedings of the 57th Annual Meeting of the As- 710
sociation for Computational Linguistics, pages 1430– 711
1440, Florence, Italy. Association for Computational 712
Linguistics. 713

Hang Yan, Tao Gui, Junqi Dai, Qipeng Guo, Zheng 714
Zhang, and Xipeng Qiu. 2021. A unified generative 715
framework for various NER subtasks. In Proceedings 716
of the 59th Annual Meeting of the Association for 717
Computational Linguistics and the 11th International 718
Joint Conference on Natural Language Processing 719
(Volume 1: Long Papers), pages 5808–5822, Online. 720
Association for Computational Linguistics. 721

Juntao Yu, Bernd Bohnet, and Massimo Poesio. 2020. 722
Named entity recognition as dependency parsing. In 723
Proceedings of the 58th Annual Meeting of the Asso- 724
ciation for Computational Linguistics, pages 6470– 725
6476, Online. Association for Computational Lin- 726
guistics. 727

Zheng Yuan, Yuanhao Liu, Qiuyang Yin, Boyao Li, Xi- 728
aobin Feng, Guoming Zhang, and Sheng Yu. 2020. 729
Unsupervised multi-granular chinese word segmenta- 730
tion and term discovery via graph partition. Journal 731
of Biomedical Informatics, 110:103542. 732

Jie Zhang, Dan Shen, Guodong Zhou, Jian Su, and 733
Chew-Lim Tan. 2004. Enhancing hmm-based 734
biomedical named entity recognition by studying spe- 735
cial phenomena. Journal of biomedical informatics, 736
37(6):411–422. 737

Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin, 738
and Zhiyong Lu. 2019. Biowordvec, improving 739
biomedical word embeddings with subword infor- 740
mation and mesh. Scientific data, 6(1):1–9. 741

Yu Zhang, Zhenghua Li, and Min Zhang. 2020. Effi- 742
cient second-order TreeCRF for neural dependency 743
parsing. In Proceedings of the 58th Annual Meet- 744
ing of the Association for Computational Linguistics, 745

10

https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/N19-1308
https://doi.org/10.18653/v1/2020.acl-main.571
https://doi.org/10.18653/v1/2020.acl-main.571
https://doi.org/10.18653/v1/2020.acl-main.571
https://arxiv.org/abs/2105.06804
https://arxiv.org/abs/2105.06804
https://arxiv.org/abs/2105.06804
https://arxiv.org/abs/2105.06804
https://arxiv.org/abs/2105.06804
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://doi.org/10.18653/v1/P19-1527
https://arxiv.org/abs/2105.08901
https://arxiv.org/abs/2105.08901
https://arxiv.org/abs/2105.08901
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D19-1585
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1019
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/D18-1124
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1454
https://doi.org/10.18653/v1/P19-1138
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2021.acl-long.451
https://doi.org/10.18653/v1/2020.acl-main.577
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302
https://doi.org/10.18653/v1/2020.acl-main.302

pages 3295–3305, Online. Association for Computa-746
tional Linguistics.747

Changmeng Zheng, Yi Cai, Jingyun Xu, HF Leung,748
and Guandong Xu. 2019. A boundary-aware neu-749
ral model for nested named entity recognition. In750
Proceedings of the 2019 Conference on Empirical751
Methods in Natural Language Processing and the752
9th International Joint Conference on Natural Lan-753
guage Processing (EMNLP-IJCNLP). Association754
for Computational Linguistics.755

Zexuan Zhong and Danqi Chen. 2021. A frustratingly756
easy approach for entity and relation extraction. In757
North American Association for Computational Lin-758
guistics (NAACL).759

A Reproducibility Checklist760

We specific seeds of torch, torch.cuda, numpy, and761

random in Python to ensure reproducibility. We762

use a grid search to find the best hyperparameters763

depending on development set performances. We764

search contextual embedding learning rate among765

{1e-5,3e-5}. If the contextual embedding learning766

rate is 1e-5, we use static embedding learning rate767

and task learning rate as 1e-4 and 1e-5. If the768

contextual embedding learning rate is 3e-5, we use769

static embedding learning rate and task learning770

rate as 5e-4 and 3e-5. We search batch size among771

{8,48,72}. We search MLP dropout ratio among772

{0.1,0.2}. The final hyperparameters we used for773

four datasets are listed in Table 7 and Table 8.774

Parameters ACE04 ACE05 KBP17 GENIA

Epoch 50 50 50 15
PLM lr 1e-5 3e-5 1e-5 3e-5
Static emb. lr 1e-4 5e-4 1e-4 5e-4
Task lr 1e-5 3e-5 1e-5 3e-5
σ 0.01 0.01 0.01 0.01
Batch size 8 72 8 48
d 256 256 256 320
m 30 30 30 30
Adam ϵ 1e-8 1e-8 1e-8 1e-8
Warmup ratio 0.0 0.0 0.0 0.0
Emb. dropout 0.2 0.2 0.2 0.2
MLP dropout 0.1 0.1 0.1 0.2
Weight decay 0.01 0.01 0.01 0.01
Clipping grad 0.1 0.1 0.1 0.1

Table 7: Hyper-parameters for using BERT encoder.

B The Decomposition of Triaffine Scoring775

We introduce the decomposition of triaffine scoring776

in calculating pi,j,r and pci,j,r.777

Parameters ACE04 ACE05 KBP17

Epoch 10 10 10
PLM lr 1e-5 1e-5 3e-5
Static emb. lr 1e-4 1e-4 5e-4
Task lr 1e-5 1e-5 3e-5
σ 0.01 0.01 0.01
Batch size 8 8 72
d 256 256 256
m 30 30 30
Adam ϵ 1e-8 1e-8 1e-8
Warmup ratio 0.0 0.0 0.0
Emb. dropout 0.2 0.2 0.2
MLP dropout 0.1 0.1 0.2
Weight decay 0.01 0.01 0.01
Clipping grad 0.1 0.1 0.1

Table 8: Hyper-parameters for using ALBERT encoder.

The naive calculation procedure of pi,j,r is: 778

si,j,k,r = TriAff(hi,hj ,hk,Wr) (23) 779

αi,j,k,r =
exp(si,j,k,r)∑j

k′=i exp(si,j,k′,r)
(24) 780

hi,j,r =

j∑
k=i

αi,j,k,rMLP(hk) (25) 781

pi,j,r = TriAff(hi,hj ,hi,j,r,Vr) (26) 782

For our proposed decomposition of pi,j,r, we 783

first calculate αi,j,k,r as equations 23 and 24. And 784

we calculate: 785

oi,j,k,r = TriAff(hi,hj ,hk,Vr) (27) 786

pi,j,r =

j∑
k=i

αi,j,k,roi,j,k,r (28) 787

The main difference between naive calculation and 788

decomposition calculation is between Equation 26 789

and Equation 27. 790

We suppose our batch size as B, sequence count 791

as N , output dimensions of MLP layers as d, the 792

count of spans for calculating cross span repre- 793

sentations as m, and label count as R (including 794

None class). The shapes of tensors [hi], [hj], [hk] 795

are B × N × d. The shape of tensor [hi,j,r] is 796

B ×N ×N ×R× d. 797

We benchmark the performances of Equation 26 798

and Equation 27 in PyTorch for 10 iterations. We 799

use the same hyper-parameters and devices as our 800

main experiments. We levearge opt_einsum5 to cal- 801

culate triaffine transformations in both equations. 802

Table 9 shows the time usage comparison be- 803

tween Equation 26 and Equation 27. Equation 26 804

5https://github.com/dgasmith/opt_
einsum

11

https://github.com/dgasmith/opt_einsum
https://github.com/dgasmith/opt_einsum

Method Function CPU Time GPU Time
Usage Percentage Usage Percentage

Equation 26 aten::copy_ 0.5ms 5.9% 223.7ms 74.5%
aten::bmm 0.5ms 5.0% 38.2ms 12.7%
aten::mm 1.5ms 15.7% 37.1ms 12.3%
Total 9.2ms 100.0% 300.5ms 100.0%

Equation 27 aten::copy_ 0.2ms 4.7% 62.5ms 42.9%
aten::bmm 0.4ms 10.0% 47.4ms 32.6%
aten::mm 0.3ms 6.0% 34.4ms 23.7%
Total 4.4ms 100.0% 145.6ms 100.0%

Naive aten::copy_ 7.3ms 5.7% 302.3ms 59.3%
aten::bmm 1.2ms 0.9% 109.3ms 21.5%
aten::mm 1.7ms 1.4% 74.4ms 14.6%
aten::einsum 61.8ms 48.0% 1.1ms 0.2%
aten::permute 36.7ms 28.5% 0.8ms 0.2%
aten::reshape 1.3ms 3.1% 0.5ms 0.1%
Total 128.7ms 100.0% 509.4ms 100.0%

Decompose aten::copy_ 0.7ms 0.8% 136.7ms 41.4%
aten::bmm 1.2ms 1.2% 102.6ms 31.0%
aten::mm 5.4ms 5.3% 69.0ms 20.9%
aten::einsum 32.0ms 31.3% 1.1ms 0.3%
aten::permute 15.4ms 15.1% 0.7ms 0.2%
aten::reshape 37.4ms 36.6% 0.5ms 0.2%
Total 102.2ms 100.0% 330.5ms 100.0%

Table 9: Time usage compared with naive triaffine scoring and decomposed triaffine scoring.

uses 309.7ms (300.5ms in GPU + 9.2ms in CPU)805

and Equation 27 uses 150.1ms (145.6ms in GPU806

+ 4.4ms in CPU). The larger tensor size and807

higher rank of [hi,j,r] results in slower calculations808

of aten::bmm, aten::copy_ and aten::permute in809

Equation 26. The time usage differences are clearly810

dominated by the function aten::copy_, which is811

optimized by our decomposition.812

We also compare the time usage between the813

naive triaffine scoring and the decomposed triaffine814

scoring in Table 9. The naive triaffine scoring815

takes 638.1ms (509.4ms in GPU + 128.7ms in816

CPU), and the decomposed triaffine scoring takes817

432.7ms (330.5ms in GPU + 102.2ms in CPU)818

for 10 iterations, which leads to approximately819

32% speedup. The GPU time usages are reason-820

able since they both need to calculate two triaffine821

transformations. The CPU time usages increase822

for both naive and decomposition triaffine scoring.823

Additional CPU time usages come from function824

aten::einsum, aten::permute, and aten::reshape,825

and the naive calculation increases more due to826

slower aten::einsum. Overall, the decomposition827

triaffine scoring uses less time on both GPU and828

CPU than the naive triaffine scoring.829

Futhermore, we also test the time usage of pci,j,r830

using two calculation procedures. We find using831

the decomposition triaffine scoring still has about832

6% speed up (naive:125.8ms in GPU + 15.0ms in833

CPU vs. decomposition:115.5ms in GPU + 16.8ms 834

in CPU) regardless the relatively small size of hc
i,j,r 835

(The shape of tensor [hc
i,j,r] is B ×m×R× d). 836

12

