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ABSTRACT

This paper considers a learning framework for “graph-with-features” setting, where
we are given a graph and associated vector features. Examples of such settings
include citation networks and chemical molecules. The modern approach to this
task is graph neural networks (GNNs). However, due to the nature of GNN ar-
chitectures, GNNs have several limitations, such as homophilous bias and limited
expressive power. Instead of overcoming these limitations, we consider an alterna-
tive approach to GNNs. Our approach is to obtain a vector representation capturing
both features and graph topology. We then apply standard vector-based learning
methods to this vector. For this approach, we propose a simple transformation of
features, which we call ResTran. We provide theoretical justifications for ResTran
from the effective resistance, k-means, and spectral clustering viewpoints. We
empirically demonstrate that ResTran is more robust to homophilous bias than
established GNN methods.

1 INTRODUCTION

This paper considers a machine learning framework for “graph-with-features” setting. A dataset for
this setting consists of a graph and a feature associated with each vertex. The task is to classify vertices
or graphs using the features and the graph. The examples of such task include citation network (Kipf
& Welling, 2016a), molecules (Wieder et al., 2020; Guo et al., 2021), and drug discoveries (Stokes
et al., 2020; Gaudelet et al., 2021). The modern approach to this task is graph neural networks
(GNNs) (Gori et al., 2005; Kipf & Welling, 2016a; Veličković et al., 2018; Xu et al., 2019). GNNs
propagate features over the graph to build expressive latent embeddings; the embeddings are then
consumed in downstream classification models. However, the GNN layers have some common
problems due to the nature of its architecture, such as limited expressive power Xu et al. (2019) and
over-squashing Di Giovanni et al. (2023); Topping et al. (2021), and homophilous bias, i.e., a bias
towards homophilous information and not effective in learning heterophilous information Hoang &
Maehara (2019); Zheng et al. (2022)). Moreover, this phenomenon worsens if we stack GNN layers
(known as the “over-smoothing problem” Li et al. (2018); Oono & Suzuki (2019)).

In this paper, for the graph with features problem, we take a simple alternative approach to the GNNs;
our approach is to obtain a vector representation for the features and graph. Then, we apply standard
vector-based learning methods to this vector representation, such as established neural network
(NN) based models like variational autoencoder or even support vector machines (SVMs). For this
approach, we propose a Resistance Transformation (abbreviated as ResTran), a simple transformation
of feature vectors to incorporate graph structural information. We provide theoretical justification of
ResTran from a connection between k-means and spectral clustering for a vertex classification task.
We also discuss why ResTran may preserve the homophilous and heterophilous information better
than established GNNs, which is one of the GNN limitations. We numerically show that ResTran is
more robust to the homophilous bias than established GNNs in the semi-supervised learning (SSL)
tasks. For graph classification tasks, our experiments confirm that ResTran shows similar performance
as an established GNN model. All proofs are in the Appendix.

2 PRELIMINARIES

This section sets up the definition and reviews some foundations of graph learning.
∗Correspondence: ssaito@cs.ucl.ac.uk
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Algorithm 1 Spectral Clustering
Input: Unnormalized/Normalized Graph Laplacians L and the number of clusters k

Obtain the first k eigenvectors of L, denoted by Ψk := (ψ1, . . . , ψk)
Obtain the non-overlapping k sets by treating each of the n rows in Ψk as a point in Rk, and run
k-means with k clusters

Output: The non-overlapping k sets V1, . . . , Vk

2.1 GRAPH NOTATIONS AND VERTEX CLASSIFICATION PROBLEMS

Graph Notations. A graph G = (V,E) is a pair of sets consisting of the vertices V and the edges
E. Throughout this paper, we use n := |V | and m := |E|. An edge connects two distinct vertices.
We assume that our graph is undirected. We represent a graph by an adjacency matrix A∈Rn×n; the
ij-th element and ji-th element of A are the weight of the edge between i and j, and aij=aji:=0
if there is no edge between i and j. A degree di for a vertex i is defined as di:=

∑
j aij . We define

the degree matrix D, a diagonal matrix whose diagonal elements are Dii:=di. We define the graph
Laplacian as L:=D −A and a normalized graph Laplacian as LN :=D+1/2LD+1/2, where + is the
pseudoinverse. Note that these Laplacians are positive semi-definite (PSD) matrices. We use 1∈Rn

for the all one vector and ei∈Rn for the i-th coordinate vector. See (Bapat, 2010) for details.
Graph-with-features Problem vs. Featureless Problem. This paper considers a vertex classification
task. This task is classifying vertices of the graph into k classes. For this task, we consider two
settings. i) Graph-With-Features Problem. This problem assumes that the i-th vertex is associated
with f dimensional features xi∈Rf . We define a feature matrix as X:=(x1, . . . ,xn). A popular
technique for this is a GNN. ii) Featureless Problem. This problem only considers the topology of
the graph. There are various methods specifically for this, such as spectral clustering. We can also
apply the graph-with-features methods to this featureless setting. A common technique to do so is by
setting X=I , where I is an identity matrix (Kipf & Welling, 2016a).
2.2 COORDINATE, LAPLACIAN COORDINATE, AND EFFECTIVE RESISTANCE

Coordinate. We define a coordinate spanning set induced from a symmetric PSD matrix M as
VM := {vi:=M+1/2ei: i=1, . . . , n}. This coordinate spanning set is a coordinate in the discrete
Hilbert space naturally defined for M . See Appendix D for details.
Effective Resistance. The effective resistance is an example where the coordinate spanning set by
Laplacian (Laplacian Coordinate) plays a role. We define an energy SG(x) for a potential x and
effective resistance rG(i, j) between vertices i and j as

SG(x) := x⊤Lx, rG(i, j) := (min
x

{SG(x) : xi − xj = 1})−1, (1)

where ⊤ is transpose. Using the Laplacian coordinate vi,vj ∈ VL, the rG(i, j) can be rewritten as

rG(i, j) = ∥vi − vj∥22, where vi,vj ∈ VL, (2)

where ∥ · ∥2 is the 2-norm. Recall that vi=L
+1/2ei and vj=L

+1/2ej by the definition above. In
the following, we abbreviate effective resistance as resistance. Note that rG(i, j) can be seen as a
distance between vi,vj∈VL. For more details, see (Doyle & Snell, 1984; Klein & Randić, 1993).
2.3 k-MEANS AND SPECTRAL CLUSTERING

This paper is built on k-means algorithm, which considers to partition the data points into {Cj}kj=1.
The standard k-means is to minimize the following objective function.

J ({Cj}kj=1) :=
∑
j∈[k]

∑
i∈Cj

∥xi −mj∥22, mj :=
∑
i∈Cj

xi/|Cj | (3)

Minimizing J ({Cj}kj=1) is NP-hard (Mahajan et al., 2012). The approximated discrete solution is
obtained by EM-type algorithms (Bishop, 2007).

Our discussion is also built on spectral clustering, which uses the k smallest eigenvectors of the
graph Laplacian, summarized as Alg 1. Spectral clustering is theoretically connected to the balanced
graph cuts; see Appendix C or von Luxburg (2007).

3 PROPOSED METHOD: RESTRAN

This section presents our learning framework for the graph-with-features setting. We propose a vector
representation of the graph-with-features, which we call ResTran. We then apply vector-based ML
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Algorithm 2 Proposed Practical Framework for SSL via ResTran and Krylov Subspace Method
Input: Graph G = (V,E), Features X , Training and Test Indices Tr, Te, Krylov Subspace Dim r

Obtain the approximated ResTran X̃G (Eq. (5)) by applying Krylov subspace method, i.e.,
X̃G = KRYLOVSUBSPACEMETHOD(L,X, r)

Obtain the model by applying any vector ML method to the training data whose indices are Tr as
MODEL = ANYVECTORMLMETHOD({(X̃G)·i, yi}i∈Tr)

Obtain the predicted label ŷ by applying MODEL to the test data whose indices are Te as
ŷ = MODEL({(X̃G)·i}i∈Te)

Output: The predicted label ŷ

methods to this vector, e.g., SVM and the standard NN methods. In Sec. 5, we later justify ResTran
from the spectral connection and resistance view and also explore characteristics of ResTran.

For our framework, we use the shifted graph Laplacian, as done in (Herbster & Pontil, 2006), as

L−1
b := L+ + bJG, where b > 0, (JG)ij :=

{
1 (i and j are in the same component)
0 (otherwise),

. (4)

Note that from the definition JG = 11⊤ if the graph is connected, i.e., contains only one component.
Note also that Lb is invertible since Lb is symmetric positive definite (PD) as we see later in Prop. 9.

Proposed Framework via ResTran. Below we propose our framework. The overall strategy is to i)
have a vector representation of graph-with-features ii) apply a vector based ML method. For i), using
the coordinate VLb

, we propose our Resistance Transformation (ResTran for abbreviation) XG as

XG := (xG,1, . . . ,xG,n), where xG,i := Xv′
i, v

′
i ∈ VLb

. (5)

Recall that v′
i=L

−1/2
b ei by definition of VLb

in Sec. 2.2. Note that xi, xG,i∈Rf and X , XG ∈ Rn×f .
For ii), we then use any vector based ML methods for XG, such as SVM and NN-based methods.

Practical Implementation via Krylov Subspace Method. If we naively compute L−1/2
b and then

multiplyX to obtain ResTran Eq. (5), it costs prohibitiveO(n3) complexity due to the computation of
L
−1/2
b . Instead of this naive computing, we consider to approximate XG. For this purpose, we apply

the Krylov subspace method, by which we can approximate a solution of linear algebraic problems.
The Krylov subspace method reduces the computational complexity from O(n3) to O(rfm), where
r is the dimension of the Krylov subspace. The dimension r is typically small, say r<100. The
Krylov subspace method approximates XG by considering L and X at the same time. The overall
proposed framework is summarized in Alg. 2. Note that Alg. 2 can be interpreted as SSL even though
we apply supervised methods because we first observe X and G to obtain XG. This is same as GNNs,
where we observe X and G before we learn. Alg. 2 naturally generalizes to the unsupervised setting.

Coordinate Interpretation of ResTran. We first remark that L−1/2
b = (v′

1, . . . ,v
′
n), L

−1/2
b is

symmetric, and XG=XL
−1/2
b . The X⊤

G can be seen as retaking basis of X⊤ by VLb
if we see L−1/2

b
in row-wise. Moreover, by comparing the original X=(Xe1, . . . , Xen), the XG can be seen as
retaking ei to v′

i to indicate i-th vertex if we see L−1/2
b in column-wise.

Comparison with GNNs. This approach is simpler than existing GNN approaches. The recent
GNNs often involve complicated graph designs in layers of NN or pre/post-processing. However, our
framework is simple since we transform X to XG and then apply any vector-based methods.

4 CHARACTERISTICS OF RESTRAN

This section discusses the characteristics of ResTran. We first explore theoretical properties of the
Laplacian coordinate VLb

. We then interpret these results to explain characteristics of ResTran.
Theoretical Properties of VLb

. We start with defining extended resistance as

r′G,b(i, j) := ∥v′
i − v′

j∥22, v′
i,v

′
j ∈ VLb

(6)

Recall that v′
i = L

−1/2
b ei. The following can be claimed.

Proposition 1. If two vertices i, j in the same component Gs, r′G,b(i, j) = rGs
(i, j).

Prop. 1 means that even if we use VLb
instead of VL, the resistance, the distance between coordinates

(Eq. (2)), is preserved within the connected component. For inter-component, the parameter b controls
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the connectivity among the components. If two vertices are in different components, it is natural
to think that they are apart. However, in the graph-with-features setting, even if two vertices are in
different components, the two vertices often belong to the same cluster; therefore, these are not apart
so much. We parameterize this intuition by b; by taking larger b, we weigh more on the disconnected
observation. Taking b large enough for two vertices i, ℓ in the different components, we can make
r′G,b(i, ℓ) greater than any resistances within the component as follows.

Proposition 2. If b >
√
2n1/λK+1, r′G,b(i, ℓ) > r′G,b(i, j) for i, j ∈ Vs and ℓ ∈ Vt where s ̸= t.

Using these theoretical properties, we observe the following characteristics of the ResTran.
ResTran from a Resistance View. From Prop. 1 and Prop. 2, we observe that VLb

serves as a
coordinate offering an extended resistance. Our ResTran may be viewed as the basis transformation
from ei to v′

i. This is why we call our transformation Eq. (5) as a “resistance” transformation.
ResTran Capturing a Mix of Homophilous and Heterophilous Information. Our ResTran can be
seen as favoring the homophilous assumption but, at the same time, not ignoring the heterophilous
assumption, while GNNs are biased toward homophily. Recall that the homophilous information
is contained in the space spanned by ψi for the smaller eigenvalues λi while the heterophilous
information is in the space spanned by ψj for larger eigenvalues λj (Rohe et al., 2011). Simple
GNNs are effective at homophilous data but not at heterophilous data (Luan et al., 2022). Loosely
speaking, this happens because each layer of GNNs multiplies the adjacency matrix A to the next
layer, often several times (see Appendix A for details). Stacking the layers enlarges the low-frequency
components, which leads to a bias towards homophily. On the other hand, ResTran “balances”
homophily and heterophily. Observe that we can see that L−1/2

b is “spectral reordering” of the graph
Laplacian L (see Prop. 9 for details); the largest eigenvalues of L−1/2

b are the smallest eigenvalues
of L, and the order is reversed. Recall that ResTran multiplies L−1/2

b to X once. Thus, the space
containing the homophilous information is amplified by large λ−1/2

i . At the same time, we do not
ignore the heterophilous space, but this is amplified by small λ−1/2

j since λj is large.

5 JUSTIFICATION OF RESTRAN FROM A k-MEANS PERSPECTIVE

This section justifies our ResTran XG. Our justification is inspired by (Dhillon et al., 2004), where a
feature map is justified to use for spectral clustering applied to vector data. For this purpose, Dhillon
et al. (2004) use the following steps: i) modify the k-mean objectives to incorporate a vector
transformed by a feature map and ii) show a connection from this modified k-means objective to
spectral clustering. Here, we aim to establish a similar connection for ResTran. For this purpose,
following i), we use XG in the k-means objective Eq. (3) as

JG({Vi}ki=1) :=
∑
j∈[k]

∑
i∈Vj

∥xG,i −mG,j∥22, mG,j :=
∑
ℓ∈Vj

xG,ℓ/|Vj |. (7)

This objective is a replacement of the standard k-means Eq. (3) from xi to xG,i. Following ii), we
establish connections from this k-means objective to spectral clustering as follows.

• Sec. 5.1 shows that in the featureless setting where X = I , conducting k-means on v′
i =

L
−1/2
b ei is equivalent to spectral clustering.

• Sec. 5.2 shows that conducting k-means on xG,i can be seen as a natural generalization of
the spectral clustering through the k-means discussion.

With these connections, we say that ResTran is justified in the same sense as the feature map for
spectral clustering as done by (Dhillon et al., 2004) discussed in Sec. C.3.

5.1 JUSTIFICATION FOR FEATURELESS SETTING: REVISITING THE SPECTRAL CONNECTION

This section justifies Eq. (7) for the featureless setting, where we use X=I . Therefore, for featureless
setting, XG=(v′

1, . . . ,v
′
n) from the definition of XG Eq. (5). Using this XG, we can rewrite Eq. (7)

and further expand using Frobenius norm ∥ · ∥Fro and indicator matrix ZR (Eq. (23)) as

JR({Vj}kj=1) :=
∑
j∈[k]

∑
i∈Vj

∥v′
i −mj∥22, mj :=

∑
i∈Vj

v′
i/|Vj |,v′

i ∈ VLb
(8)

= ∥L−1/2
b − ZRZ

⊤
RL

−1/2
b ∥2Fro. (∵ mj = (L

−1/2
b ZRZ

⊤
R )·i if i ∈ Cj), (9)
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Table 1: Classification accuracies (%) for SSL tasks on homophilous data.
Type cora citeseer pubmed photo computer

GCN GNN 79.9 ± 0.9 67.4 ± 1.1 83.8 ± 0.4 83.1 ± 1.2 80.4 ± 0.4
GAT GNN 74.9 ± 4.2 67.6 ± 0.1 82.8 ± 0.2 87.7 ± 1.3 80.3 ± 1.2
SGC GNN 79.3 ± 1.7 70.2 ± 0.8 67.9 ± 1.8 80.1 ± 2.9 81.4 ± 2.0

ResTran + LP Non-NN 30.6 ± 0.6 20.6 ± 4.6 39.5 ± 1.4 25.3 ± 0.2 37.5 ± 2.2
ResTran + SVM Non-NN 49.1 ± 5.7 45.5 ± 6.7 76.5 ± 2.2 24.3 ± 2.7 43.8 ± 3.4

ResTran + VAT NN 77.6 ± 2.5 68.7 ± 1.1 82.8 ± 0.7 86.3 ± 0.8 78.1 ± 2.4
ResTran + AVAE NN 78.2 ± 1.8 71.7 ± 1.0 83.9 ± 0.7 86.8 ± 1.5 81.6 ± 0.9

where ZR ∈ Rn×k is the indicator matrix whose ij-th element is 1/
√
Vj if i ∈ Vj otherwise 0. With

Eq. (9), we may obtain the relaxed solution of k-means by relaxing ZR into real values. We first
claim that the objective Eq. (8) grounds on the extended resistance (Eq. (6)) as follows.
Proposition 3. JR({Vj}kj=1) =

∑
j∈[k]

∑
i,ℓ∈Vj

r′G,b(i, ℓ)/|Vj |

This proposition means that the k-means objective using v′
i (Eq. (8)) can be seen as the sum of the

extended resistances. Since Prop. 3 itself seems a natural objective for graph clustering, our k-means
Eq. (8) also may be seen as a natural objective. We also show that minimizing JR({Vj}kj=1) (Eq. (8)
and its equivalence Prop. 3) has a theoretical connection to spectral clustering as follows;
Theorem 4. If we relax ZR into real values and n1b>λ−1

K+1, we have

argminZR
{RCut({Vj}kj=1) s.t. Z

⊤
RZR = I} = argminZR

{JR({Vj}kj=1) s.t. Z
⊤
RZR = I} (10)

This theorem means that that ratio cut and k-means using v′
i are theoretically equivalent if we relax

ZR. By this theorem, Eq. (8), featureless version of Eq. (7) using the common featureless technique
X = I , are theoretically justified in a sense of k-means.

Remark that Thm. 4 revisits the established spectral connections between k-means and spectral
clustering, such as (Zha et al., 2001; Dhillon et al., 2004). (See Appendix C.3 for details.) However,
the previous connections only hold for the vector data and a feature map, not for the discrete graph
data like Thm. 4. For more details on how the previous connection and Thm. 4 differ, see Appendix H.

5.2 JUSTIFICATION FOR THE GRAPH-WITH-FEATURES SETTING: A k-MEANS VIEW

This section justifies the k-means objective for the graph-with-features setting Eq. (7). This section
shows that Eq. (7) is a “natural extension” of spectral clustering through Eq.(8). We first recall that
the common technique (see, e.g., Kipf & Welling (2016a;b)) to apply a graph-with-features method
to featureless setting is substituting X = I . Thus, it is natural to think in a “reverse way”; in order
to generalize the featureless methods to graph with the features method, we replace I to the feature
vector X . Since Eq. (9) is for a featureless setting, we now explicitly write I as

JR({Vi}ki=1) = ∥L−1/2
b I − ZRZ

⊤
RL

−1/2
b I∥2Fro. (11)

Looking at Eq. (11), this can be thought as a featureless setting of the following objective function;

J ′
G({Vi}ki=1) := ∥L−1/2

b X⊤ − ZRZ
⊤
RL

−1/2
b X⊤∥2Fro. (12)

Using mG,j in Eq. (7), we further rewrite Eq. (12) as

J ′
G({Vi}ki=1) =

∑
j∈[k]

∑
i∈Vj

∥xG,i −mG,j∥22 = JG({Vi}ki=1), (13)

by which we show that JG({Vi}ki=1) Eq. (7) and J ′
G({Vi}ki=1) Eq.(12) are equal.

What does the equivalence between JG({Vi}ki=1) and J ′
G({Vi}ki=1) mean? We begin with

J ′
G({Vi}ki=1). The objective J ′

G({Vi}ki=1) can be seen as a generalization of JR({Vi}ki=1) (Eq.(8))
from featureless to graph-with-features setting. Recall that from Thm. 4, the featureless JR({Vi}ki=1)
is equivalent to the standard spectral clustering. Thus, by stretching this idea from the featureless to the
graph-with-features, J ′

G({Vi}ki=1) can be seen as a natural extension of spectral clustering to graph-
with-features setting through a k-means perspective. Hence, since J ′

G({Vi}ki=1) = JG({Vi}ki=1),
we may say that the k-means JG({Vi}ki=1) we initially discuss in Eq. (7) can be seen as a natural
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Table 2: Classification accuracies (%) for SSL tasks on heterophilous data.
Type Texas Cornell Wisconsin chameleon squirrel actor

GCN GNN 50.9 ± 4.2 37.4 ± 9.3 46.3 ± 4.9 32.7 ± 2.0 23.5 ± 1.1 25.9 ± 0.9
GAT GNN 50.3 ± 3.3 44.9 ± 4.9 44.0 ± 4.8 32.8 ± 1.8 23.4 ± 1.3 26.4 ± 0.9
SGC GNN 44.6 ± 5.0 42.3 ± 5.3 44.6 ± 5.0 31.8 ± 1.8 23.5 ± 0.8 26.0 ± 0.8

ResTran + LP Non-NN 46.3 ± 17.3 42.2 ± 20.6 37.3 ± 12.6 20.3 ± 0.8 20.0 ± 0.3 22.3 ± 2.8
ResTran + SVM Non-NN 48.8 ± 14.1 45.7 ± 16.8 47.8 ± 9.6 33.6 ± 5.8 31.9 ± 0.9 29.4 ± 0.9

ResTran + VAT NN 55.9 ± 5.1 49.0 ± 3.8 51.2 ± 5.0 34.0 ± 1.4 27.7 ± 3.5 27.8 ± 1.2
ResTran + AVAE NN 51.4 ± 3.7 48.2 ± 3.7 50.0 ± 2.1 40.7 ± 1.4 32.4 ± 0.8 29.5 ± 1.3

Table 3: Classification accuracies (%) for graph classification tasks.
Type MUTAG ENZYMES NCI1 PROTEINS BZR

GIN GNN 89.4±5.3 46.3±3.6 78.5±0.7 76.8±5.5 88.8±4.1

ResTran + MLP NN 89.5±3.7 45.7±4.0 77.5±2.4 78.4±3.7 89.8±3.2

“extended” spectral clustering for graph-with-features, seen through a k-means lens. Thus, we now
establish a connection from k-means to the “extended” spectral connection using the common tech-
nique from the featureless to graph-with-features. In this sense, we may justify using XG, similarly
to (Dhillon et al., 2004). See Appendix J for more formulation. Finally, Thm. 4 also offers insights
into the graph-with-features setting. From Thm. 4, we see that the basis v′

i has a graph structural
information through spectral clustering. Thus, we can say that the ResTran xG,i captures more graph
structure than xi since ResTran replaces the basis from ei to v′

i.

6 EXPERIMENTS

This section numerically demonstrates the performance of ResTran. The purpose of our experiments
is to evaluate if our ResTran XG improves the existing GNN methods. Various sophistication can be
involved for both ResTran and the comparison methods. To focus on evaluating our ResTran, we want
to exclude the effects of sophistication as much as possible. Thus, our experiments only used simple
and established methods for both ResTran and the comparison. We used Alg. 2 for ResTran. We
evaluated ResTran and existing methods by accuracy. We evaluated ResTran on the three tasks, node
classifications for i) SSL tasks using homophilous and heterophilous dataset ii) graph classifications
tasks. More details of the experiments are described in Appendix I, where we also compare ResTran
with the graph-only or feature-only representation.

For the SSL tasks, we used established simple GNN models as a baseline, GCN (Kipf & Welling,
2016a), GAT (Veličković et al., 2018), as well as SGC (Wu et al., 2019), which is a simplified
GCN. For ResTran, we apply both non-NN vector-based models and NN-based models. For non-NN
models, we apply label propagation (LP) (Zhou et al., 2003) and SVM (Cortes & Vapnik, 1995) with
the Gaussian kernel forXG. For NN models, we use two early and simple models, VAT (Miyato et al.,
2018) and AVAE (Maaløe et al., 2016) to XG. We only use FC layers and ReLU as an activation
function for NN models, which are simple and established NN components. We ran our experiments
on homophilous and heterophilous datasets. We conducted our experiments with the split where we
know 5% labels, we use 25% for validation, and the rest for the test. We conducted our experiments
on 10 random splittings and reported the average. The results are summarized in Table 1 and 2.
On homophilous datasets, we observe comparable performances among GNNs and ResTran + NN
models. On heterophilous datasets, we observe the performance improvement from GNNs to ResTran,
sometimes even with SVM. This means that our ResTran is more robust to homophily bias. This
robustness is expected from the construction of ResTran since, unlike GNNs, XG preserves not only
homophilous information but also heterophilous information as seen in Sec. 4.

For the graph classification tasks, we use molecule data since they have graphs and features. We
compare with an established model, GIN (Xu et al., 2019). We used the same NN architecture for
both methods, i.e., GIN + MLP layers for GIN and the same MLP for ResTran. We conduct 10-fold
cross-validation. Remark that we do not observe any vertices from the graphs in the test set while
training. Table 3 shows almost similar results for both. Despite these similar results, this work’s
limitations and future direction are that we are unsure how much ResTran has expressive power, as
done in (Xu et al., 2019). We conjecture that the expressive power of ResTran is less than the 2-WL
test. Thus, we speculate that we need a different setup for triangle counting problems.
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A RELATED WORK

This section provides related work to the resistance transformation and its application to learning
problems.

Spectral Connection. Our justification relies on the connection between spectral clustering, effective
resistance and k-means. The spectral clustering using ratio and normalized cut has been extensively
studied (Fiedler, 1975; Shi & Malik, 1997). The Laplacian coordinate and effective resistance are
used for the various learning problem such as clustering Fouss et al. (2007); Saito & Herbster (2023);
Yen et al. (2008; 2005) and online learning Herbster & Pontil (2006); Herbster et al. (2005). The
connection between normalized cut and weighted kernel k-means has been developed, such as Bach
& Jordan (2003); Dhillon et al. (2004); Saito (2022). The connection between ratio cut, effective
resistance, and k-means are loosely studied Saerens et al. (2004); Zha et al. (2001). However, these
studies do not give the “exact” connection between ratio cut and spectral clustering like Thm. 4.
Also, the previous studies do not give the Resistance Transformation interpretation. We discuss more
details in Appendix H.

GNNs. Since our ResTran aims to address the graph with feature problem, one popular approach to
this problem is GNN. The GNN is firstly proposed as a neural network applied to the graph structural
data (Gori et al., 2005; Scarselli et al., 2008). The GCN (Kipf & Welling, 2016a) and GAT (Veličković
et al., 2018) are established methods. The recent advancements include (Gasteiger et al., 2020;
Hamilton et al., 2017; Pei et al., 2020; Xie et al., 2016) to name a few; see (Wu et al., 2020) for more
comprehensive survey. The closest approach in the sense of formulation to our ResTran is SGC Wu
et al. (2019). The SGC aims to simplify ℓ layers of GCN. The SGC is formulated as

ŷ = softmax(ÃℓX⊤Θ), where Ã := (D + I)−1/2(A+ I)(D + I)−1/2, Θ := Θ(1) . . .Θ(ℓ),
(14)

where Θ(i) is a i-th layer of a fully-connected (FC) layer. This approach is close to ours for
the following reason. If we apply ℓ layers of FC to ours, and then this can be written as
ŷ=softmax(X⊤

GΘ) = softmax(L
−1/2
b X⊤Θ). The SGC is close since, in this setting, the dif-

ference is Ã and L−1/2
b . However, our approach is not limited to this formulation, but we can apply

any building blocks, especially, activate functions such as ReLU. There have been some follow-ups
on this simple approach (Chen et al., 2020; Salha et al., 2019; 2021; Zhu & Koniusz, 2021). Another
relevant approach is PinvGCN Alfke & Stoll (2021). For a dense graph aiming for faster GCN,
PinvGCN reconstructs three graphs by heuristic approximation of L+, runs GCN for each graph, and
then combines the results. While these studies heuristically simplify the GCN in some similar manner,
we provide a theoretical justification on Resistance Transformation in Sec. 5. Also, again our ResTran
is not limited to simplified GCN models. In addition to various models of GNNs, transformers using
the eigenvectors of Laplacian as positional encoding are considered (Dwivedi et al., 2023; Wang et al.,
2022). Also, Convolutional GNNs also exploit spectral properties such as Bruna et al. (2014); Henaff
et al. (2015). The polynomial approximation strategy is a standard practice to obtain the spectra
of graph Laplacian, such as (Defferrard et al., 2016; Kipf & Welling, 2016a). Moreover, Krylov
subspace method is used for the better approximation for the convolutional GNNs (Luan et al., 2019).
However, these studies are on specific GNNs while ours can be applied to any vector based model.

Some common problems to GNN are reported: limited expressive power Xu et al. (2019) and
over-squashing (Di Giovanni et al., 2023; Topping et al., 2021; Black et al., 2023). The most
relevant problem to this study is the “low-frequency bias” of GNNs, where GNNs tend to learn only
homophilous information (Chang et al., 2021; Du et al., 2022; Hoang & Maehara, 2019; Hoang
et al., 2020; Zheng et al., 2022; Luan et al., 2022; Platonov et al., 2023). Some recent GNN models
mitigate this bias by designing complicated layers, such as (Azabou et al., 2023; Pei et al., 2020; Luan
et al., 2021; Bonchi et al., 2023). This phenomenon gets worse if we stack the GNN layers, which is
known as “over-smoothing” (Li et al., 2018; Oono & Suzuki, 2019). By construction, our Resistance
Transformation are expected to represent not only homophilous information but also heterophilous
information.

SSLs. Since this work is related to semi-supervised learning problem, this section reviews the SSl
studies in detail. The SSL over graph is extensively studied (Blum et al., 2004; Zhou et al., 2003;
Zhu et al., 2003). Unlike GNNs, these only uses the graph topology. The Planetoid (Yang et al.,
2016) is an SSL method which incorporates features and the topology at the same time, while the
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most of the GNN models are known to outperform Planetoid. The SSL models are also discussed
for the vector dataset. The early models include SVM-based one (Joachims, 1999), and early NN
models (Ranzato & Szummer, 2008; Weston et al., 2008). Also, we apply a kernel function to the
vector to form a graph and apply the graph-based SSL models. The one of the early established deep
neural network based SSL method is variational autoencoder (VAE) (Kingma et al., 2014), which is
simplified by the follow-up study called Auxiliary VAE (AVAE) (Maaløe et al., 2016). Since then,
there have been various improvements including (Laine & Aila, 2017; Miyato et al., 2018; Yang et al.,
2022). However, none of these aim to incorporate the graph and features. Instead, we can apply these
methods to our XG, unless the models are not designed to some specific tasks, e.g., images (Berthelot
et al., 2019; Kurakin et al., 2020; Sohn et al., 2020; Zhang et al., 2021).

B NOTE ON KRYLOV SUBSPACE METHOD

This section breifly explains the Krylov subspace method and its advantages over some natural ideas.

B.1 KRYLOV SUBSPACE METHOD

In this section, the Krylov subspace method is an established way to approximate the solution of the
linear algebraic solutions. In this case, we consider to approximate f(A)b for the matrix A ∈ Rn×n

and for a vector b ∈ Rn.

The r-th Krylov subsupace Kr for the matrix A ∈ Rn×n and for a vector b ∈ Rn is defined as

Kr(A,b) := span{b, Ab, A2b, . . . , Ar−1b}. (15)

The Krylov subspace method approximates f(A)b into this Krylov subspace Kr(A,b). To obtain
this approximation, the common way is Arnoldi process. The Arnoldi process at i-th iteration obtains
Qi ∈ Rn×i and Hi ∈ Ri×i as

AQi = QiHi + hi+1,iqi+1e
⊤
i ,where Qi := [q1 . . . ,qi],q1 := b/∥b∥22. (16)

Note that Qi has orthonormal columns and Hi is upper Hessenberg matrix. Then, Krylov subspace
based method approximates

f(A)b ≈ Qrf(Hr)Q
⊤
r b = ∥b∥2Qrf(Hr)e1. (17)

This process overall takes O(rm) time complexity. Typically, r is chosen small, say r < 100.
See Higham (2008) for more details.

B.2 ADVANTAGES OF KRYLOV SUBSPACE METHOD

This section discusses the advantages of the Krylov subspace method over some natural ideas.

One natural idea to approximate L−1/2
b X is to approximate L−1/2

b using polynomial function. This
technique is commonly used, even in the GNN research area, such as Kipf & Welling (2016a). For
example, we first expand L−1/2

b as

L
−1/2
b = a0I + a1Lb + a2L

2
b + . . . , (18)

and then approximate in some order, say,

L
−1/2
b ≈ a0I + a1Lb. (19)

While this is straightforwardly understandable, the Krylov subspace method approximates L−1/2
b X

better as follows. While this polynomial approximation only uses L when approximation, the Krylov
subspace method approximates LX using both L and X as seen in Appendix B.1. Hence, the Krylov
subspace approximates L−1/2

b using more information than a polynomial approximation.

The other natural idea is to reduce the dimension, such as principal component analysis (PCA). We
consider to eigendecompose the graph Laplacian as

L = ΨΛΨ⊤, (20)
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where Ψ := (ψ1, . . . ,ψn) and Λ := diag(λ1, . . . , λn), where ψi is the i-th eigenvector and λi is
the i-the eigenvalue. Then, we compose Λr′ := diag(λ1, . . . , λr′ , 0, . . . , 0). The value r′ is again
typically small compared to n. Then, we approximate L+1/2 as

L+1/2 ≈ ΨΛ+1/2
r Ψ⊤. (21)

This approximation can be conducted much faster than obtaining naively L+1/2.

While dimensional reduction is the standard way to make pseudoinverse faster, the Krylov subspace
method provides a better approximation in the following sense. Firstly, as the polynomial approxima-
tion, the Krylov subspace approximates L−1/2

b X with more information. Secondly, as discussed in 4
and as seen in the experimental result as 6, ResTran also works for heterophilous datasets. However,
from the construction of the eigendecomposition, the reduction cut down the high-frequency informa-
tion corresponding to the heterophilous information. Therefore, the dimensional reduction throws
away the information that ResTran is good at dealing with.

C EXTENDED PRELIMINARIES

This section provides extended preliniaries.

C.1 THE STANDARD k-MEANS AND WEIGHTED KERNEL k-MEANS

Since this paper is built on the k-means formulation, we briefly review this topic. Consider to partition
the data points into {Cj}kj=1. The standard k-means is to minimize the following objective function.
The standard k-means in Eq. (3) is generalized to the weighted and kernel setting. Let ϕ be a feature
map. We define the weighted kernel k-means objective as

Jϕ({Cj}kj=1) :=
∑
j∈[k]

∑
i∈Cj

w(xi)∥ϕ(xi)−mϕ,j∥22,mϕ,j :=
∑
ℓ∈Cj

w(xℓ)ϕ(xℓ)/
∑
ℓ∈Cj

w(xℓ). (22)

where w(xi) is a weight at xi and mϕ,j serves as a weighted mean of the cluster Cj .

C.2 GRAPH CUT AND SPECTRAL CLUSTERING

Consider partitioning a graph G into two vertices sets V1∪V2=V , V1∩V2=∅. For this partitioning,
we define two objective functions to minimize, normalized cut and ratio cut, as

NCut(V1, V2) :=
∑

i∈V1,j∈V2

aij

(
1

vol(V1)
+

1

vol(V2)

)
,RCut(V1, V2) :=

∑
i∈V1,j∈V2

aij

(
1

|V1|
+

1

|V2|

)
,

where vol(V ):=
∑

i∈V di. We extend these to partition V into k subsets Vi(i= 1,. . . , k) where Vi
∩Vj=∅ if i̸=j and ∪k

i=1Vi=V . For this k-way partitioning, we extend the cut objective functions as

kNCut({Vi}ki=1) :=
∑

i∈[k] NCut(Vi, V \Vi), kRCut({Vi}ki=1) :=
∑

i∈[k] RCut(Vi, V \Vi),

where [k]:={1,. . ., k}. Minimizing these cut objectives is a discrete optimization and known as
NP-hard (von Luxburg, 2007). Thus, we consider to relax these problems as follows. We introduce
an indicator matrix Z∈{0, 1}N×k and its variants for normalized cut ZN and for ratio cut ZR as

zij :=

{
1 (i ∈ Vj)

0 (otherwise),
ZN := D1/2Z(Z⊤DZ)−1/2, ZR := Z(Z⊤Z)−1/2. (23)

Note that Z⊤
NZN=I and Z⊤

RZR=I . Note also that (zN )ij =
√
di/vol(Vj) and (zR)ij =

√
1/|Vj |

if i ∈ Vj otherwise 0. Using these indicator matrices, we can see the following.
Proposition 5 (classical, e.g., Yu & Shi (2003)). Let λi and λN,i be the i-th eigenvalues L and LN

respectively. Ratio and normalized cuts are rewritten using a trace operator tr. Moreover, relaxing
ZR and ZN into real values, minimizing cut is equivalent to eigenproblem of L and LN . Formally,

kNCut({Vi}ki=1) = tr(Z⊤
NLNZN ), kRCut({Vi}ki=1) = tr(Z⊤

RLZR) (24)

min{tr(Z⊤
NLNZN ) s.t. Z⊤

RZR = I} =
∑

i∈[k] λN,i,min{tr(Z⊤
RLZR) s.t. Z

⊤
NZN = I} =

∑
i∈[k] λi.

From Prop. 5, relaxing ZN and ZR into real values, minimizing cut objectives become eigenproblems
of LN and L, which is not NP-hard. Solving these eigenproblems is called spectral clustering.
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C.3 SPECTRAL CONNECTION: WEIGHTED KERNEL k-MEANS TO SPECTRAL CLUSTERING

The spectral clustering discussed above is applied to a given graph. By using feature maps, we may
apply spectral clustering to given vector data. (Dhillon et al., 2004) provides one justification for the
use of feature maps are through the connection between k-means and spectral clustering viewpoint.
Since our work is inspired by this justification, we review this topic.

We assume vector data X = (x1, . . . ,xn). A common practice to apply spectral clustering to X is to
use a feature map. Namely, we apply spectral clustering on a graph obtained as aij :=⟨ϕ(xi), ϕ(xj)⟩.
Note that we choose ϕ so that aij ≥ 0, for all i, j ∈ [n]. The question is, how may the use of feature
maps be justified? Justification can be done by many ways. We review an established justification
by (Dhillon et al., 2004), which develops the following strategy.

1. Using vectors transformed by a feature map ϕ(xi) to the weighted kernel k-means.
2. Showing a connection from this weighted kernel k-means to the spectral clustering.

By this, we can ground the use of a feature map to spectral clustering through k-means lens. (Dhillon
et al., 2004) shows the following claim.
Proposition 6 ((Dhillon et al., 2004)). Informal. Consider a graph aij=⟨ϕ(xi),ϕ(xj)⟩ and its degree
di. We apply spectral clustering to this graph A. We substitute a weight w(xi)=1/di to the weighted
kernel k-means Jϕ({Vj}kj=1) Eq. (22). Then, in a “relaxed sense,” we obtain

minJϕ({Vj}kj=1) = min kNCut({Vi}ki=1) (25)

By this connection, we may say that the spectral clustering for vector data via kernel is justified from
a weighted kernel k-means view. Note that we observe this connection only for the normalized cut.
For more details including the formal statement of Prop. 6, see (Dhillon et al., 2004) and Appendix H.

C.4 HOMOPHILY, HETEROPHILY, AND EIGENSPACE OF LAPLACIAN

A graph dataset may be classified into two notions. The homophily assumption is that adjacent vertices
are more likely to be in the same group. The heterophily assumption is that vertices are collected in
diverse groups, i.e., the contrary to homophily assumption. From the cut definition, spectral clustering
assumes homophily. Recall that the spectral clustering looks at the eigenspace associated with smaller
eigenvalues (i.e., low-frequencies) of L. Thus, we may see that this eigenspace contains homophilous
information. Also, we may say that the eigenspace for larger eigenvalues (i.e., high-frequencies) of
L captures heterophilous information. In the following, we say “low-frequency” for homophily or
”high-frequency” for heterophily. See (Hoang & Maehara, 2019; Luan et al., 2022) for details.

D MORE DETAILS OF THE COORDINATE AND EFFECTIVE RESISTANCE

This section discuss the detials of the Coordinate and effective resistance, introduced in Sec. 2.2.

A symmetric PSD matrix M induces a semi-inner product as ⟨x,y⟩M := x⊤My, where ⊤ denotes
transposition. This inner product induces a semi-norm, as

∥x∥M := ⟨x,x⟩M = ∥M1/2x∥2. (26)

The reproduced kernel associated with the above semi-inner product is M+, where + denotes the
pseudoinverse. We define the coordinate spanning set

VM,⟨·,·⟩M := {vi :=M+ei : i = 1, . . . , n} (27)

and let HM,⟨·,·⟩M := span(VM,⟨·,·⟩M ). This HM,⟨·,·⟩M is a Hilbert space induced by inner product
⟨·, ·⟩M .

The set V acts as “coordinates” for H, that is, if w ∈ H we have wi=e⊤i M
+Mw=⟨ei,M+ei⟩M .

Note that the vectors {v1, . . . ,vn} are not necessarily orthonormal. We also remark that this
coordinate property is simply the reproducing kernel property for kernel M+ (Aronszajn, 1950). If
we measure this space over the plain dot product ⟨·, ·⟩2, the coordinate is instead

VM,⟨·,·⟩2 := {vi :=M+1/2ei : i = 1, . . . , n}, (28)

since ∥M+ei∥M = ∥M+1/2ei∥2. In the main text, for brevity, we use VM :=VM,⟨·,·⟩2 and
HM :=HM,⟨·,·⟩2 . For more details, see Herbster & Pontil (2006).
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As discussed in Sec. 2.2, this coordinate spanning set using graph Laplacian (Laplacian Coordinate)
plays a role. For the definition of the coordinate, we obtain the Laplacian coordinate by putting
M = L. Note that the graph Laplacian is symmetric PSD. Now, we see that using v′′

i ∈ VL,⟨·,·⟩L and
vi ∈ VL, we have

rG(i, j) = ∥v′′
i − v′′

j ∥2L = ∥vi − vj∥22. (29)

This relationship is how the effective resistance and the Laplacian coordinate are related.

E PROOFS FOR SECTION 5

This section provides the proofs for the claims in Sec. 5.

E.1 PRELIMINARY SETUPS

This section set ups some preliminary facts.

Without loss of generality, we can reorder G as G = G1 ∪ . . . ∪GK and |G1| ≤ . . . ≤ |GK |. For
the visual aid of JG, we can write JG as

JG =



|G1| ... |GK |
1 1

|G1|
1 1

...
. . .

1 1

|GK |
1 1


, (30)

Let 1Gj
is all one vector for Gj , i.e., (1Gj

)i = 1 if j ∈ VGj
otherwise 0. Then we have

(1G1
· · ·1GK

)(1G1
· · ·1GK

)⊤ = JG. (31)

We also introduce the bound of resistance by the eigenvalue as follows.

Lemma 7 (Chandra et al. (1996)). For any i, j ∈ V , we have

rG(i, j) ≤
2

λ2
(32)

Lemma 8 (Herbster & Pontil (2006)).

max
i

∥L+1/2ei∥22 ≤ max
i,j

rG(i, j) (33)

By combining these two lemmas, we obtain

max
i

∥L+1/2ei∥22 ≤ 2

λ2
(34)

E.2 PSEUDOINVERSE OF GRAPH LAPLACIAN

In the following, we assume that we have K connected components. We write Gi:=(Vi, Ei) for
i=1, . . . ,K, andG=G1∪. . .∪GK . We write as ni:=|Vi|. Whiteout loss of generality, we can assume
that n1≤. . .≤nK . Denote 1Gj by all one vector for Gj , i.e., (1Gj )i=1 if j∈VGj otherwise 0. Note
that

∑
j∈[K] 1Gj

=1 and (JG)i·=1Gs if i∈Vs. Note also that 1Gj are eigenvectors of L. Using this
notation, we have properties of VLb

as follows.
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Proposition 9. Suppose that a graph G has K connected components. Let (λi, ψi) be the i-th
eigenpair of L. If n1b>λ−1

K+1, the i-th eigenpair (λ′i, ψ
′
i) of L−1/2

b is

(λ′i,ψ
′
i) =


(
λ
−1/2
n+1−i,ψn+1−i

)
for i = 1, . . . , n−K,(

(ni−(n−K)b)
1/2,1Gni−(n−K)

)
for i = n−K + 1, . . . , n.

Corollary 10. L−1/2
b ei = (L+1/2 +

√
bJ

1/2
G )ei, where J1/2

G =
∑K

i (n
−1/2
i 1Gi

1⊤
Gi
)

This proposition shows that L and L−1/2
b share eigenvectors and that L−1/2

b is PD since λ′i > 0 for
all i.

E.3 PROOF FOR PROP. 9 AND COR. 10

We conduct eigendecomposition on L, and obtain eigenpairs as (λk, ψk). We define a matrix U and
diagonal matrix Λ as

Ψ := (ψ1, ψ2, . . . , ψn),Λkk := λk. (35)

We remark that the psuedoinverse of Λ can be written as

Λii = 0, for i = 1, . . . ,K (36)

Λ
+1/2
ii = 1/λ

1/2
i , for i ≥ K + 1. (37)

Now we define an n× n matrix Λb which has only one element, as

(Λb)ii = 1/nGj
b for i ∈ VGj

(38)

We can then write as

L
−1/2
b = ΨΛ+1/2Ψ⊤ +

√
bJG

= ΨΛ+Ψ⊤ +ΨΛ
+1/2
b Ψ⊤

= Ψ(Λ+1/2 + Λ
+1/2
b )Ψ⊤. (39)

Thus, for ℓ > K, the eigenvector associated with λ−1/2
ℓ is ψi. From Eq. (38), for ℓ ≤ K the

eigenvalue associated with ψℓ is
√
nGℓ

b, where |G1| ≤ . . . ≤ |Gℓ| ≤ . . . ≤ |GK |. If nG1b > λ−1
2 ,

nGib is the largest K eigenvalues. This concludes the proof for Prop. 9.

Eq. (39) yields the Cor. 10.

Finally, by generalizing the fact that the square root of the all one matrix can be written as (11⊤)1/2 =
11⊤/

√
n, we have

J
1/2
G =



|G1| ... |GK |
1/
√
n1 1/

√
n1

|G1|
1/
√
n1 1/

√
n1

...
. . .

1/
√
nK 1/

√
nK

|GK |
1/
√
nK 1/

√
nK


(40)

From the proof of Prop. 9, we immediately have the following corollary.
Corollary 11. Let (λω, ψω) be the ω-th eigenpair of L. Suppose that a graph G is connected. If
nb > λ−1

2 , i-th eigenpair (λ+i , ψ+
i ) of L−1

b are

(λ+i , ψ
+
i ) =

(
λ−1
n+1−i, ψn+1−i

)
for i = 1, . . . , n− 1,

(
nb,1/

√
n
)
for i = n
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E.4 PROOF FOR PROPOSITION 1

Using Cor. 10, we obtain

∥v′
i − v′

j∥22 = ∥(vi + b1⊤1ei)− (vj − b1⊤1ei)∥22 = ∥vi − vj∥22 (41)
Using the fact of Eq. (2), we conclude the proof.

E.5 PROOF FOR PROPOSITION 2

Without loss of generality, we write as

rG(i, j) =

∥∥∥∥∥∥
 L

+1/2
Gs

+
√
bnGs

1Gs

0
0

 ei −

 0

L
+1/2
Gt

+ b
√
bnGt

1Gt

0

 ej

∥∥∥∥∥∥
2

2

(42)

=

∥∥∥∥∥∥
 √

bnGs
1Gs√

bnGt
1Gt

0

 (ei − ej)−

 L
+1/2
Gs

L
+1/2
Gt

0

 (ej − ei)

∥∥∥∥∥∥
2

2

(43)

≥


∥∥∥∥∥∥
 √

bnGs1Gs√
bnGt

1Gt

0

 (ei − ej)

∥∥∥∥∥∥
2

−

∥∥∥∥∥∥
 L

+1/2
Gs

L
+1/2
Gt

0

 (ej − ei)

∥∥∥∥∥∥
2


2

(∵ Triangle Inequality)

(44)

=

(
(bnGs + bnGt)

1/2 −

∥∥∥∥∥
(

L
+1/2
Gs

(eGs)i

L
+1/2
Gt

(eGt
)j

)∥∥∥∥∥
)2

(45)

(46)
We now show that the first term is strictly larger than the second term. The first term is bounded as

bnGs
+ bnGt

≥ 2bnG1
, (47)

and ∥∥∥∥∥
(

L
+1/2
Gs

(eGs
)i

L
+1/2
Gt

(eGt)j

)∥∥∥∥∥ = (∥L+1/2
Gs

(eGs
)i∥22 + ∥L+1/2

Gt
(eGt

)j∥22)1/2 (48)

≤ (max
i,j

rGs
(i, j) + max

i,j
rGt

(i, j))1/2 (49)

≤ (2/λK+1 + 2/λK+1)
1/2 (50)

= 2λ
1/2
K+1 (51)

Therefore, due to the assumption that b > (1 +
√
2)2/nG1

λK+1, we have

(bnGs
+ bnGt

)1/2 ≥

∥∥∥∥∥
(

L
+1/2
Gs

(eGs
)i

L
+1/2
Gt

(eGt
)j

)∥∥∥∥∥ (52)

We also have if minx ≥ max y ≥ 0, then
(x− y)2 > (minx−max y)2 (53)

since x− y > minx−max y > 0. By using these relations, we obtain

rG(i, j) ≥

(
(bnGs

+ bnGt
)1/2 −

∥∥∥∥∥
(

L
+1/2
Gs

(eGs)i

L
+1/2
Gt

(eGt
)j

)∥∥∥∥∥
)2

(54)

(55)

≥

(
(2bnG1)

1/2 − 2

λ
1/2
K+1

)2

(56)

≥ 2

λK+1
≥ rG(i, j) (57)
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F PROOF FOR PROPOSITION 3

We now start with the standard k-means objective function using the general norm ∥ · ∥ is defined as

J ({Cj}kj=1) :=
∑
j∈[k]

∑
i∈Cj

∥xi −mj∥2, mj :=
∑
i∈Cj

xi/|Cj |. (58)

For each cluster Cj of Eq. (58), we further rewrite the objective function of k-means as∑
i∈Cj

∥xi −mj∥2, mj :=
∑
i∈Cj

xi/|Cj | (59)

=
∑
i∈Cj

∥xi∥2 − 2
∑
ℓ∈Cj

⟨xi,xℓ⟩/|Cj |+
∑
ℓ∈Cj

∥xℓ∥2/|Cj |

 (60)

=
∑
i∈Cj

∥xi∥ − 2
∑

i,ℓ∈Cj

⟨xi,xℓ⟩/|Cj |+
∑

i,ℓ∈Cj

∥xℓ∥2/|Cj | (61)

=
∑

i,ℓ∈Cj

∥xi∥/|Cj | − 2
∑

i,ℓ∈Cj

⟨xi,xℓ⟩/|Cj |+
∑

i,ℓ∈Cj

∥xℓ∥2/|Cj | (62)

=
∑

i,ℓ∈Cj

(
∥xi∥ − 2⟨xi,xℓ⟩+ ∥xℓ∥2

)
/|Cj | (63)

=
∑

i,ℓ∈Cj

∥xi − xℓ∥2/|Cj | (64)

(65)

Summing up over the all cluster, we can rewrite Eq. (58) as

J ({Cj}kj=1) =
∑
j∈[k]

∑
i,ℓ∈Cj

∥xi − xℓ∥2/|Cj |. (66)

By replacing xi and xj to v′
i and v′

j , we conclude the proof.

G PROOF FOR THEOREM 4

We now rewrite Eq. (8) as

J({Vj}kj=1) =
∑

i∈Vj ,j

(∥v′
i∥22 − 2⟨v′

i,mj⟩2 + ∥mj∥22)

=
∑

v′
i∈Vj ,j

⟨v′
i,v

′
i⟩2 − 2

〈
v′
i,
∑

v′
l∈Vj

1

|Vj |
v′
l

〉
2

+

〈 ∑
v′
l∈Vj

1

|Vj |
v′
l,
∑

v′
r∈Vj

1

|Vj |
v′
r

〉
2


=
∑

i∈Vj ,j

(
(L−1

b )ii − 2
∑
l∈Vj

1

|Vj |
(L−1

b )il +
∑

l,r∈Vj

1

|Vj |2
(L−1

b )lr

)
(67)

=
∑

i∈Vj ,j

(L−1
b )ii −

∑
r,l∈Vj ,j

1

|Vj |
(L−1

b )rl (68)

= traceL−1
b − traceZRL

−1
b ZR, (69)

where ZR is an n× k matrix which serves as an indicator matrix, defined in Sec. C.3. Thus, if we
minimize Eq. (69) with respect to ZR, we maximize the second term. Assuming ZR is discrete,
Z⊤
RZR = I . If we relax ZR with this constraint, traceZRL

−1
b ZR becomes a problem to obtain top k

eigenvectors. From Prop. 9 and Cor. 11, the top k eigenvectors of L−1
b are equivalent to the smallest

k eigenvectors of L. Similarly to Sec. C.3 case, using Cor. 9, optimal solutions of k-means on HLb

and spectral clustering is given as the same set of vectors, which is the k smallest eigenvectors of L.
This completes the proof.
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H COMPARISON WITH THEOREM 4 AND WEIGHTED KERNEL k-MEANS

This section expands the explanation in the main body on the comparison between Thm. 4 and the
previous weighted kernel k-means. We recall that Thm. 4 revisits the spectral connection between
k-means and spectral clustering, extensively studied as we saw in Sec. C.3. However, the previous
connections is different than Thm. 4 in a number of sense.

H.1 FORMAL STATEMENT OF PROP. 6

We provide a formal statement of 6 and proof for Prop. 6.

Before we provide a formal statement, we need to define a “relaxed” solution of k-means. We start
with rewriting Jϕ({Cj}kj=1) as a trace maximization problem as follows.

Jϕ({Cj}kj=1) = traceWKW − traceZ⊤
MW

1/2KW 1/2ZM , (70)

where W is a diagonal matrix whose i-th element is w(xi), K is a Gram matrix, and indicator matrix
ZM :=W 1/2Z(Z⊤WZ)−1/2. We note that ZM∈Rn×k and ZMZ

⊤
M=I . See (Dhillon et al., 2004;

Saito, 2022) for the detail of this rewriting. Now, relaxing ZM , we can obtain the relaxed solution of
the weighted kernel k-means.

Now, we provide a formal statement of Prop. 6 as follows.
Proposition 12 ((Dhillon et al., 2004)). Consider a graph aij=⟨ϕ(xi),ϕ(xj)⟩ and its degree di. We
apply spectral clustering to this graph A. We substitute a weight w(xi)=1/di to the weighted kernel
k-means Jϕ({Vj}kj=1) Eq. (22). Then, if we relax ZM and ZN we obtain

min
ZM∈Rn×k

Jϕ({Vj}kj=1) = min
ZN∈Rn×k

kNCut({Vi}ki=1) (71)

In Prop. 12, we formalize the “relaxed sense” in Prop. 6.

Prop. 12 is proven as follows. Firstly, the normalized cut can be rewritten as

min kNCut({Vi}ki=1) = maxZN
{trace(Z⊤

ND
−1/2AD−1/2ZN ) s.t. Z⊤

NZN = I}. (72)

This follows since LN = I −D−1/2AD−1/2.

To minimize Eq. (70) w.r.t. ZM , we want to maximize the second term of Eq. (70). From the
definition in Prop. 12, we taking W=D−1 and K=A. Then, we see that minimizing objective
function Eq. (70) is equivalent to the normalized graph cut objective function Eq. (72). By this we
observe the connection between normalized spectral clustering and weighted kernel k-means. For
more details, see (Dhillon et al., 2004; Saito, 2022).

H.2 COMPARISON BETWEEN THM. 4 AND PROP. 12

We now discuss the Thm. 4 and the previous result Prop. 12 from Dhillon et al. (2004).

Vector vs. Discrete. The previous spectral connection is applied to vectors but not discrete graph data.
Seeing Eq. (22), the weighted kernel k-means only applies to the vector data X = (x1, . . . ,xn). We
construct a graph G whose adjacency matrix is a gram matrix, i.e., construct a graph whose weight is

aij = kij = ϕ(xi)
⊤ϕ(xj), (73)

where K is a gram matrix as defined in Sec. C.3. The weighted kernel k-means is equivalent to the
normalized cut on this graph. Thus, this previous connection assumes for the vector data. On the
other hand, our connection can be for a “given” graph data G = (V,E), and thus we do not have to
assume any vector data.

Laplacian Coordinate Insights. Ours offers the Laplacian coordinate insights; seeing the Eq. (8), if
we use v′

i to represent i-th vertex and put this vector into the standard k-means objective function,
this is equivalent to the spectral clustering. On the other hand, the weighted kernel k-means cannot
be applied to this setting; the previous connection does not incorporate our connection Thm. 4. Two
potential scenarios to reach Laplacian coordinate insights can be considered. One is a kernel mapping
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Table 4: Homophilous Dataset Summary.
Cora Citeseer Pubmed Photo Computer

|V | 2708 3327 19717 7650 13752
|E| 5429 4732 44338 119081 245861

Classes 7 6 3 8 10
Features 1433 3703 500 745 767

Table 5: Heterophilous Dataset Summary.
Texas Cornell Wisconsin chameleon squirrel actor

|V | 183 183 251 2277 5201 7600
|E| 295 309 499 31421 198493 26752

Classes 5 5 5 5 5 5
Features 1703 1703 1703 2325 2089 932

scenario. A naive application of the weighted k-means to the previous framework is to use L+ as a
kernel and ⟨·, ·⟩L as an inner product. However, this Eq. (22) is not equivalent to the discrete spectral
clustering. The other scenario is incorporating the weight to the standard setting. Recall that our
insights come from the standard k-means. Thus, if we aim the standard k-means from the weighted
kernel k-means, we compute

Jϕ({Cj}kj=1) =

k∑
j=1

∑
i∈Cj

w(xi)∥ϕ(xi)−mϕ,j∥2, mϕ,j :=
∑
ℓ∈Cj

w(xℓ)ϕ(xℓ)/
∑
ℓ∈Cj

w(xℓ) (74)

=

k∑
j=1

∑
i∈Cj

∥w1/2(xi)ϕ(xi)− w1/2(xi)mϕ,j∥2. (75)

However, this transformation does not go anywhere close to the standard k-means. To conclude, the
previous connection does not incorporate Thm. 4, and thus does not offer the Laplacian coordinate
insights.

Normalized Cut Only vs. Ratio Cut AND Normalized Cut. Finally, we would like to point out that
the previous connection can only be applied to normalized cut. The previous connection depends on
Eq. (72), which only holds for the normalized cut. If we substitute W = D−1 and A = K, Eq. (70)
becomes the top k eigenproblem of D−1/2AD−1/2. This eigenproblem is equivalent to Eq. (24).
Therefore, the previous connection can only be applied to normalized cut. On the other hand, our
connection does not depend on Eq. (24) but on Eq. (69). By Eq. (68) ours can connect to the ratio cut.
Furthermore, Thm. 4 naturally generalizes to normalized cut. Let v′′

i :=
√
div

′
i. Then, we define the

objective function and expand in a similar manner in Sec. G as

JN ({Vj}kj=1) :=

k∑
j=1

∑
i∈Vj

∥v′′
i −mj∥22, mj :=

∑
i∈Vj

v′′
i /|Vj |,v′

i ∈ VLb
(76)

= traceD1/2L−1
b D1/2 − traceZRD

1/2L−1
b D1/2ZR. (77)

Therefore, minimizing Eq. (76) subject to Z⊤
RZR = I is equivalent to top k eigenvector problem of

D1/2L−1
b D1/2. This is equivalent to the smallest k eigenvectors of D−1/2LD−1/2, by which we

show that Thm. 4 naturally generalizes the ratio cut to the normalized cut.

I EXPERIMENTAL DETAILS

This section discusses the experimental details of the main body. For ResTran, we used b =
1/(nλK+1), that is the condition of Thm. 4. Also, we used the Krylov subspace dimension r = 20.

Datasets. For the homophilous dataset, we used the standard citation network benchmark; Cora (Mc-
Callum et al., 2000), Citeceer (Sen et al., 2008), and Pubmed (Namata et al., 2012). We also used the
two Amazom co-purchase graphs, photo and computer (McAuley et al., 2015). The homophilous
dataset statistics are summarized in Table 4 For heterophilous dataset, we used used web data,
Wisconsin, Cornell, and Texas, all of which are a part of WebKB (Craven et al., 1998). We also
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used the wikipedia dataset chameleon and squirrel (Rozemberczki et al., 2021), as well as actor (Pei
et al., 2020). The heterophilous dataset statistics are summarized in Table 4. Note that the difference
between homophilous datasets heterophilous datasets has been discussed in a variety of the literatures,
such as (Luan et al., 2022; Platonov et al., 2023).

Unsupervised Learning Setting. For the feature only and ours, we computed the edge weight with a
Gaussian kernel (κ(xi,xj)=exp(−σ∥xi − xj∥2)) for two vectors xi,xj . We used free parameter
σ∈{10−2, . . . , 103}. To gain the sparsity, we further constructed a 100-NN graph from these gram
matrices, which is a common technique. We compute the smallest k eigenvectors of unnormalized
Laplacian for all three graphs. Then, we apply the standard k-means to the smallest k eigenvectors in
order to obtain the clustering results. Since the k-means algorithm depends on the initial condition,
we repeated it 10 times and reported the average and standard errors. For Fig. 1(a), we plot the
second and third eigenvectors obtained by Matlab. Since Cora has many independent components,
the second and the third eigenvectors are not necessarily to be like Fig. 1(a). However, observations
will not change even if we take the other eigenvectors associated with eigenvalue 0.

Semi-supervised Learning Setting. For a fair comparison, we endeavored to use the same settings
for ours and comparison as much as possible. We used non-normalized features. For non-NN based
models, we again used a Gaussian Kernel and used free parameter σ∈{10−2, . . . , 103}, as done in
the unsupervised learning setting. For NN based methods, we used 2 hidden layers for both of ours
and our comparisons. For all of the settings, we used a dropout rate of 0.2. We train all models for
100 epochs using the Adam optimizer. For our ResTran, we applied various simple and established
machine learning models to XG. The model for non neural network, we used LP and SVM, as well
as an established neural network semi-supervised models, AVAE and VAT. For AVAE, the first FC
layer contains 256 hidden units, and the second FC layer contains 128 hidden units. For VAT, the
first FC layer contains 1028 hidden units, and the second FC layer contains 512 hidden units. Also,
each layer was activated by ReLU. Finally, we passed to the output layer. For AVAE, we used the
embedding dimension as 30 and the dimension of the auxiliary variable as 30. We used batch size
128. We applied the learning rate of 0.01 to Adam for AVAE. For the comparison, apart from the
setting above, we used the implementation and hyperparameters as implemented in the examples of
PYTORCH-GEOMETRIC1. Finally, remark that for citation network benchmarks, although various
studies use the public splittings in Yang et al. (2016), we avoided using these since overfitting to this
specific splitting is reported (Shchur et al., 2018).

Details of the Methods Used in the Semi-supervised Experiments. We discuss some details of the
methods we used for ResTran. Recall that our experiments only used simple and established methods
for both our proposal and the comparison since we want to exclude the effects of sophistication as
much as possible. For non-NN models, LP (Zhu et al., 2003) is one of the established model in
SSL, as we saw in Appendix A. The SVM (Cortes & Vapnik, 1995) is also an established model,
while SVM is a supervised learning model in general. However, in this context, we can interpret
the SVM as an SSL method, since, even though we only use the indices corresponding the training
set, i.e., {(XG)·i}i∈Tr, in ResTran Eq. (5), the transformation uses the whole L and X but not
{yi}i∈Te. Remark that we only use the training set {xG,i}i∈Tr to form a gram matrix and therefore
the gram matrix is the size |Tr| × |Tr| matrix. For NN models, as we discussed in Appendix A,
AVAE (Kingma et al., 2014) is a simpler version of the SSL via VAE, which is the one of the earliest
NN based SSL models. Also, VAT (Miyato et al., 2018) is the one early established NN based SSL
model using generative adversarial network behind the scene.

Details of the Methods Used in Graph Classification Experiments. As the comparison on graph
classification tasks, we used GIN. For GIN, we use two layers of FC all of whose number of
hidden units is 64, in addition to the GIN layer. We use summation pooling to aggregate the graph
information, and then apply three layers of three layers of FC, whose number of hidden units is 64,
64, and the number of the classes. For ResTran, we do the same other than the GIN layers. Each
layer for both methods was activated by ReLU. We used a dropout rate of 0.2, and a learning rate of
0.001. For GIN, we used the parameter ϵ = 0, which is often called as GIN-0.

Other Details. We did not report the computational time since it is slightly difficult to have an
apple-to-apple comparison of the computational time. The reason is that ours can exploit the pre-
computation of Krylov subspace method, while no such pre-computation can be applied to the

1https://github.com/pyg-team/pytorch_geometric/tree/master/examples
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Figure 1: Plots of the eigenvectors of the graph Laplacian L for three settings of Cora. For graph-only,
we directly use a graph. For feature-only and ResTran, we compose a graph by applying a Gaussian
kernel. We observe many overlaps of the points at the center, shown as “Many OLs.”

Table 6: Experimental results for unsupervised learning. All measures are accuracy (%). “Graph-
Only” uses only graph Laplacian. “Feature-only” uses a Gram matrix constructed only by features.
“Graph + Feature” uses a Gram matrix constructed by our proposal XG.

Cora Citeseer Pubmed Texas Cornell Wisconsin

Graph-Only 29.3 ± 0.5 23.7 ± 0.0 39.6 ± 0.0 49.6 ± 1.1 49.0 ± 5.6 45.6 ± 4.2
Feature-Only 32.6 ± 0.6 45.5 ± 0.9 45.4 ± 0.0 55.2 ± 0.5 55.2 ± 0.0 47.8 ± 0.0

Graph + Feature (Ours) 58.9 ± 4.5 48.2 ± 0.8 71.6 ± 0.6 55.5 ± 0.5 55.7 ± 0.0 48.2 ± 0.3

comparison methods. Also, our computational time depends on learning algorithms and architectures.
However, both of the ResTran and GNNs take the same complexity; the ResTran costs O(rfm),
and GNNs takes O(fmt), where r and t are constant. Our experiments were conducted on Google
Colab Pro+, Matlab, and Mac Studio with M1 Max Processor and 32GiB RAM. Regarding the
implementation, we plan to publish our code in GitHub, an online codebase repository service, in
the final version. For the implementation of the comparison methods, we used the examples of
PYTORCH-GEOMETRIC codes as discussed above.

I.1 COMPARING RESTRAN WITH GRAPH-ONLY AND FEATURE-ONLY

This experiment briefly evaluates if our ResTran for representing the graph-with-features datasets
improves the feature-only X and graph-only A. If we observe that the latent space is more separable
for ResTran XG than for graph-only and feature-only settings, we can say that ours improves the
representation. For this purpose, we compare these on the simple setting, spectral clustering. For
the feature-only and ResTran, we used the Gaussian kernel to form a graph and applied spectral
clustering. For graph-only, we used the graph Laplacian for the spectral clustering. We conducted a
simple k-means on the first k eigenvectors of the graph Laplacian, and we reported the average. We
first observe that Fig. 1 shows the plots of the second and third eigenvectors of the graph Laplacians
for graph-only, feature-only, and ResTran of Cora. We see that ResTran offers better separation than
graph-only and feature-only. The results of the unsupervised task are summarized in Table 6. In
all datasets, we see that ResTran improves both graph-only and feature-only. These results further
confirm that ResTran XG better represents the dataset than the feature only X or the graph only A.

J LEARNING IN HILBERT SPACE OF GRAPH

This section discusses the learning over the Hilbert space discussed in Appendix D. The conventional
learning frameworks assume that the features reside in the Euclidean space. However, in our setting,
the features are associated with the vertices of the graph. Thus, we assume that the feature vectors
reside not in the Euclidean space but in the space induced from the graph. This section sets up such a
learning framework.

J.1 ENERGY OVER THE HILBERT SPACE OF GRAPH

We consider to learn in the Hilbert space HL,⟨·,·⟩L , which we defined in Appendix D. This Hilbert
space is the same as the space we can define the effective resistance, as we discussed.
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We now consider to embed the feature u ∈ Rn into this space by the mapping Rn → HL,⟨·,·⟩L

u′ = L+u. (78)

We then define the energy in this Hilbert space for feature SG,H(u) as

SG,H(u) := u
′⊤Lu′ = u⊤L+u = ∥L+1/2u∥22. (79)

For f features U = (u1, . . . ,uf ) ∈ Rn× f , we define the total energy SG,H(U) as

SG,H(U) :=

f∑
i=1

SG,H(ui) = ∥L+1/2U∥2Fro. (80)

We finally remark on the shape of the feature matrices. In this section, the feature matrix U focuses
on the features, U = (u1, . . . ,uf ) and ui ∈ Rn, whereas the feature matrix we consider in the main
body focuses on the vertices, i.e., X = (x1, . . . ,xn) and xi ∈ Rf . In a rough notation, U = X⊤.

J.2 k-MEANS OVER THE HILBERT SPACE OF GRAPH

Before we discuss the k-means over this Hilbert space, we consider an “knockout” of L+1/2, which
appears in the total energy Eq. (80). Let L̄+1/2 be a knockout of a matrix L+1/2 using the true labels
y, defined as

L̄+1/2 :=

{
(L+1/2)ij if yi = yj
0 otherwise.

(81)

In the Hilbert space, we assume the following property.

Assumption 1. In the Hilbert space, ∀U ∈ HL,⟨·,·⟩L we can approximate as L+1/2U ≈ L̄+1/2U .

This approximation assumption becomes exact in the following scenario. We consider a graph G
which is a union of k graphs, and the labels are associated with each graph. In this scenario, the graph
Laplacian for this graph is a block diagonal of the graph Laplacians of each graph, and henceforth
the approximation assumption becomes exact. Thus, the assumption makes sense if we assume that
two vertices are in different clusters.

We now define a k-means function over this Hilbert space. We recall that X⊤ − ZRZ
⊤
RX

⊤ is a
difference between the data points X and mean centers ZRZ

⊤
RX

⊤. We define a k-means energy
function by measure this difference by the graph norm, i.e.,

J ′′
G({Vi}ki=1) := SG(X

⊤ − ZRZ
⊤
RX

⊤) = ∥X⊤ − ZRZ
⊤
RX

⊤∥2L+,Fro. (82)

As discussed in Sec. C.3, if we measure by the standard Frobenius norm ∥ · ∥Fro, this becomes the
standard k-means function. Under the Assumption 1, we can further approximate JG Eq. (82) by JG
Eq. (7).
Theorem 13. For the clustering result {Vi}ki=1 induced from the true labels y, if ∀U ∈ Mn

G,
∥L+1/2U⊤ − L̄+1/2U⊤∥Fro < ϵ, then ∥J ′′

G{Vi}ki=1 − JG({Vi}ki=1)∥Fro < 2ϵ.

This theorem shows that for the true clusters JG({Vi}ki=1) can be approximated by JG({Vi}ki=1)
with the twice of the error rate of the approximation of the Assumption 1. The approximated k-means
in Eq. (7) can be seen as a change of the basis. We now observe that the JG in Eq.(7) is further
rewrite with basis v′ ∈ VLb

as

JG({Vi}ki=1) =

k∑
j=1

∑
i∈Vj

∥v
′⊤
i X −m′

j∥22, m′
j :=

∑
i∈Vj

v
′⊤
i X/|Vj | (83)

The standard k-means (Eq. (3)) can be rewritten as

J ({Cj}kj=1) =

k∑
j=1

∑
xi∈Cj

∥e⊤i X −mj∥22, m =
∑
ℓ∈Cj

e⊤ℓ X/|Cj |. (84)
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Thus, comparing the approximated k-means over a graph Eq. (83) and the standard k-means Eq. (84),
the approximation can be seen a change of the basis from ei to v′

i.

We also mention that if we consider the featureless setting X = I , by Thm. 4 the approximated
k-means over a graph corresponds to the spectral clustering. Henceforth, Thm. 4 and Thm. 13 justifies
our proposed method in Sec. 3 in the following two ways; i) the natural generalization of the standard
k-means can be approximated by the Laplacian transformation (Thm. 13) ii) In the featureless setting
where X = I , this approximation corresponds to the spectral clustering (Thm. 4).

K PROOF FOR THEOREM 13

This section gives the proof for Thm. 13.

K.1 PRELIMINARY SETUP

We now start with the proof for the Lemma 16. This lemma holds not only for L+1/2, but also the
general knockout operation.

We consider a “knockout” operation for a general matrix B. Let B̄ be a “knockout” of a matrix
B ∈ Rn×n using y, defined as

B̄ :=

{
bij if yi = yj
0 otherwise.

(85)

Let Y ∈Rn×k be an one hot representation of y. Then, we have a following property for this knockout.

Proposition 14. Let B and B̄ be matrices constructed as Eq. (85) using the labels of y. If ∥B −
B̄∥Fro < ϵ, then ∥BY (Y ⊤Y )−1Y ⊤ − B̄Y (Y ⊤Y )−1Y ⊤∥Fro < ϵ.

Corollary 15. Let B and B̄ be matrices constructed as Eq. (85) using the labels of y, and U ∈
Hf

L,⟨·,·⟩L If ∥BU⊤ − B̄U⊤∥Fro < ϵ′, then ∥BY (Y ⊤Y )−1Y ⊤U − B̄Y (Y ⊤Y )−1Y ⊤U∥Fro < ϵ′.

Proofs for Prop. 14 and Cor. 15 are discussed in Sec. K.3 and Sec. K.4.

K.2 PROOF FOR THEOREM 13

We start with lemma which immediately follows from Prop. 14 and Cor. 15. We first define YR :=
Y (Y ⊤Y )−1/2 as a counterpart of ZR.

Lemma 16. If ∥L+1/2X⊤− L̄+1/2X⊤∥Fro < ϵ, then ∥L+1/2YRY
⊤
R X

⊤−YRY ⊤
R L̄

+1/2X⊤∥Fro <
ϵ.

Lemma 17. If ∥L+1/2X⊤− L̄+1/2X⊤∥Fro < ϵ, then ∥YRY ⊤
R L

+1/2X⊤−YRY ⊤
R L̄

+1/2X⊤∥Fro <
ϵ.

This lemma tells us that that L+1/2X⊤YRY
⊤
R can be approximated by L̄+1/2YRY

⊤
R by the same

error rate between L+1/2 and L̄+1/2. Using this lemma and assumption, we consider to approximate
the k-means over this Hilbert space as

SG(X
⊤ − Y (Y ⊤Y )−1Y X⊤) (86)

= ∥X⊤ − Y (Y ⊤Y )−1Y X⊤∥L+,Fro (87)

= ∥L+1/2X⊤ − L+1/2Y (Y ⊤Y )−1Y X⊤∥Fro (88)

≈ ∥L̃+1/2X⊤ − L̃+1/2Y (Y ⊤Y )−1Y X⊤∥Fro (89)

= ∥L̃+1/2X⊤ − Y (Y ⊤Y )−1Y L̃+1/2X⊤∥Fro (90)

= ∥L̃+1/2 +
√
bJ

1/2
G X⊤ − Y (Y ⊤Y )−1Y (L̃+1/2 +

√
bJ

1/2
G )X⊤∥Fro (91)

≈ ∥L+1/2 +
√
bJ

+/2
G X⊤ − Y (Y ⊤Y )−1Y (L+1/2 +

√
bJ

1/2
G )X⊤∥Fro (92)

= ∥L−1/2
b X⊤ − Y (Y ⊤Y )−1Y L

−1/2
b X⊤∥Fro (93)
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=

k∑
j=1

∑
i;yi=j

∥v
′⊤
i X −m′

j∥, m′
j :=

∑
i;yi=j

v
′⊤
i X

|yi = j|
(94)

In the approximations above, we use Assumption 1 and Lemmas. 16 and 17. The error factor of 2
occurs since we approximate the term twice, which is the proof of Thm. 13.

K.3 PROOF FOR PROPOSITION 14

We start with the discussion of the condition that ∥B − B̃∥Fro. From the condition, we can rewrite as

∥B − B̄∥Fro =

∑
i≁j

b2ij

1/2

< ϵ. (95)

We now compute

(BY (Y ⊤Y )−1Y ⊤ − B̄Y (Y ⊤Y )−1Y ⊤)ij =


1

|Vτ |
e⊤j
∑

ℓ∈Vτ
Beℓ if j /∈ Vτ where i ∈ Vτ .

0 if j ∈ Vτ where i ∈ Vτ
(96)

Note that the element does not change even if we change i within the same cluster. We then have(
1

|Vτ |
e⊤j
∑
ℓ∈Vτ

Beℓ

)2

=

(
1

|Vτ |
∑
ℓ∈Vτ

bij

)2

(97)

=
1

|Vτ |2

(∑
ℓ∈Vτ

bij

)2

(98)

<
1

|Vτ |
∑
ℓ∈Vτ

b2ij (99)

From the second line to third line, we use the following inequality;(
n∑

i=1

ai

)p

< np−1
n∑

i=1

api . (100)

From construction, we have the |Vτ | identical elements for all i ∈ Vτ . Thus, we compute

∥BY (Y ⊤Y )−1Y ⊤ − B̄Y (Y ⊤Y )−1Y ⊤∥Fro =

∑
ij

(BY (Y ⊤Y )−1Y ⊤ − B̄Y (Y ⊤Y )−1Y ⊤)2ij

1/2

(101)

=

∑
i≁j

 1

|Vτ |
e⊤j

∑
ℓ∈Vτ ;i∈Vτ

Beℓ

2


1/2

(102)

<

∑
i≁j

1

|Vτ |
∑

ℓ∈Vτ ;i∈Vτ

b2ℓj

1/2

(103)

=

∑
i≁j

b2ij

1/2

(104)

= ϵ. (105)

From the second line to third line we use Eq. (99). From the third line to fourth line we use the
fact that we have the |Vτ | identical elements for all i ∈ Vτ . From the fourth line to fifth line we use
Eq.(95).
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K.4 PROOF FOR COROLLARY 15

Similarly to Appendix K.3, from the condition, we can rewrite as

∥(B − B̄)U⊤∥Fro =

∑
i,j

(B − B̄)·iU
⊤
j·

1/2

< ϵ′. (106)

We define as

b′ij = (B − B̄)·iU
⊤
j· . (107)

We now compute

((BY (Y ⊤Y )−1Y ⊤ − B̄Y (Y ⊤Y )−1Y ⊤)U⊤)ij =
1

|Vτ |
∑
ℓ∈Vτ

(B − B̄)·ℓU
⊤
j· (108)

=
1

|Vτ |
∑
ℓ∈Vτ

b′ℓj , (109)

where i ∈ Vτ . The rest of the proof is same as Appendix K.3.

L SOCIETAL IMPACT

Lastly, we briefly remark on the societal impact. Since this is foundational work towards an alternative
learning methods for graph with features and does not target any immediate application, we cannot
foresee the shape of positive or negative societal impact which this work may have in future.
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