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Abstract

Logical reasoning is a fundamental task in natu-
ral language processing that presents significant
challenges to Large Language Models (LLMs).
While symbolic representations such as first-
order logic (FOL) are well suited for logical
reasoning, translating natural language (NL)
into FOL often results in errors that are under-
explored. We address this by categorizing the
FOL translation errors in LLMs for deductive
reasoning task and propose methods to im-
prove translation quality, specifically for small
(7B) language models. We introduce PROOF-
FOL, a high-quality FOL-annotated subset of
ProofWriter dataset created using GPT-40. The
models fine-tuned on this silver standard data
outperform large (70B) language models. Addi-
tionally, for better data utilisation in data-scarce
settings, we present an incremental framework
that combines data augmentation with a novel
symbolic translation verification. Augmenta-
tion generates additional training data by split-
ting (premises, conclusion) pairs, which when
used for fine-tuning results in improved per-
formance over the model fine-tuned on the
original data. Our investigation of the trans-
lation errors leads to generation of a perturba-
tion dataset consisting of simulated NL-to-FOL
translation errors and their corresponding cor-
rections, which is used to train a verifier to iden-
tify and correct potential syntactic and semantic
FOL translation errors. Our approach lever-
ages limited human-annotated data, achieving
state-of-the-art results on the ProofWriter and
ProntoQA datasets. !

1 Introduction

Recent state-of-the-art methods for logical reason-
ing from natural language (NL) descriptions op-
erate via translation (Pan et al., 2023; Ye et al.,
2024; Olausson et al., 2023). In these methods,

"The code for fine-tuning, augmentation and verification,
and PROOFFOL dataset are attached with the submission.

a large language model (LLM) is tasked to trans-
late statements from NL to first-order logic (FOL),
which is then sent for execution to external Sat-
isfiability modulo theories (SMT) solvers such as
73 (De Moura and Bjgrner, 2008) and Prover9 (Mc-
Cune, 2005). Recent work (Yang et al., 2024)
has highlighted the systematic errors that even the
most advanced LLMs (such as GPT-4) make dur-
ing translation of a single NL statement into its
corresponding FOL. Realistic logical reasoning sce-
narios are significantly more demanding, as they
involves multiple premise statements followed by a
conclusion to be verified. These scenarios require
consistent NL-to-FOL translations (e.g., in predi-
cate naming or the translation of logical operators)
across multiple statements. However, very little is
explored on the pattern of syntactic and semantic
errors LLMs make in such translation scenarios.
Existing approaches to reducing NL-to-FOL
translation errors have limited impact. They rely
on the LLM’s ability to understand and self-correct
the translation inaccuracies based solely on the er-
ror message from the external SMT solver (Pan
et al., 2023). However, the ability to comprehend
such error messages is often restricted to larger-
scale models (e.g., 175B), and is generally un-
available in smaller LLMs (e.g., 7B, 13B). Fur-
thermore, while syntactic translation mistakes (e.g.,
misplaced operator: P\ — @), or missing quan-
tifiers: P(x) — Q(x)) result in runtime errors
detected by the tools, many semantic errors (e.g.,
use of incorrect quantifiers: All men are mortal.
Jz(Man(x) — Mortal(x)) ) bypass SMT tools
without triggering any runtime error. This lim-
itation hinders such approaches from correcting
less trivial errors. A straightforward solution to
reduce errors is to fine-tune smaller models on a
large-scale NL-to-FOL translation data. However,
existing datasets offer very little support, with FO-
LIO (Han et al., 2022) as the only FOL-specific
human-annotated dataset containing around 1k ex-
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Figure 1: Training Pipelines. Generation: Natural Lan-
guage (NL) statements are translated into First-Order
Logic (FOL) statements using a generator (G). These
FOL statements are filtered and pre-processed to extract
a refined subset (ProofFOL), which is used to fine-tune
a smaller language model (L). Augmentation: The NL-
FOL pairs are iteratively expanded to generate a larger
dataset. For each NL-FOL pair (P), data is incrementally
split and expanded. This augmented dataset is utilized
to train another smaller language model (I). Verification:
Errors observed in the FOL statements and predicates
are used to create a perturbation datasets. These datasets
are leveraged to train two types of verifiers: an FOL Ver-
ifier (VF) for correcting FOL statement errors, and a
Predicate Verifier (VP) for handling predicate-specific
issues.

amples of NL (premises, conclusion) and their FOL
translations. MALLS (Yang et al., 2024), another
synthetic dataset, contains 28k pair of single state-
ments and FOL translations. Even with access to
larger-scale fine-tuning data, a correction mecha-
nism for smaller models remains essential to catch
both syntactic and semantic errors on-the-fly during
inference.

In this paper, we propose methods to reduce NL-
to-FOL translation errors. First, we address the
lack of fine-tuning data by using GPT-40 to create
PROOFFOL, a dataset of 10,424 (premises, con-
clusion) pairs (extracted from ProofWriter (Tafjord
et al., 2020)) and their FOL translations. These
translations are validated using Prover9 to ensure
correctness and passed through multiple formatting
checks. Models fine-tuned on PROOFFOL, such as
LLaMA-2 13B (Touvron et al., 2023) and Mistral

7B (Jiang et al., 2023), outperform larger base-
lines such as LLaMA-2 70B and Mixtral 8 x 7B
in translation quality and logical reasoning tasks
on ProofWriter and ProntoQA (Saparov and He,
2022).

Second, to effectively utilize the scarce but high-
quality human-generated data (i.e., FOLIO), we
propose a set of incremental techniques. Specifi-
cally, to increase the number of training instances,
we split each record into multiple datapoints in an
incremental fashion and then train the model to
produce the predicates, and to generate the FOL
for each premise and conclusion statement one-by-
one. This approach improves predictive accuracy
on FOLIO by 41%. Finally, to enable fine-grained
correction of semantic and syntactic errors during
inference, we train separate models (i.e., T5 (Raf-
fel et al., 2020)) to verify predicates and FOLs
on-the-fly, and apply necessary corrections when
needed. Using simulated errors from perturbed
FOLIO ground truths, these models either verify
correctness or provide corrections, yielding an addi-
tional 17% improvement on FOLIO. This process
is detailed in Figure 1.

Our findings highlight that data is crucial for sur-
passing the current performance limits of several
LLMs, particularly when employing more acces-
sible models for logical reasoning tasks. Our data
generation pipeline allows us to create PROOFFOL,
the largest FOL-annotated logical reasoning dataset
to this date. Our incremental training presents an
effective data augmentation method particularly
useful for data scarce conditions, while the verifier
mechanism and corresponding training protocol of-
fers a promising pathway to verify correctness of
symbolic forms generated by LLMs at inference
time.

2 Related Work

LLM for symbolic translation The use of for-
mal language translations by LLMs was initially
attempted by Nye et al. (2021), with an intent to
emphasize the importance of dual process theory
for logical reasoning tasks. Following this, the pro-
cess of reasoning was offloaded to theorem provers
and LLMs served as systems to generate symbolic
translations (Pan et al., 2023; Ye et al., 2024; Olaus-
son et al., 2023). The available research in this
method majorly differs in variation of formal lan-
guage (used by different theorem provers) and veri-
fication process to handle translation errors. These



methods make use of expensive and ambiguous”

GPT models, restricting the symbolic framework
to non-critical domains. Corresponding to the work
in formal logic, Yang et al. (2024) applied super-
vised finetuning to LLaMA model to improve the
natural language to first-order logic translations
at a sentence level. Our research shifts the focus
to building a complete translation system that can
handle multiple statements. In addition to this, we
perform a systematic analysis of translation errors
which enabled us to build a verification mechanism.

Symbolic Decoding with LLMs The choice of
decoding strategies can improve text generation,
specifically in LLMs where the output follows
a structured format. In neuro-symbolic models,
neuro-logic decoding (Lu et al., 2020, 2021) ap-
plies symbolic constraints. Interactive theorem
provers were also used alongside LLMs to en-
sure a constrained generation of the reasoning path
(Poesia et al., 2023). Other techniques like con-
trastive step-wise decoding helped with improv-
ing the probability of a correct reasoning path (Su
et al., 2023). The success of these symbolic de-
coding strategies motivates our research to apply
verification during the inference stage.

Deductive reasoning benchmarks Deductive
logical reasoning requires logical derivation of con-
clusion using a set of premises. Benchmarks such
as ProofWriter (Tafjord et al., 2020) and ProntoQA
(Saparov and He, 2022) highlight multi-hop rea-
soning paths, but limit their use in tasks requiring
formal rigor 3. To address this, we build an FOL
dataset to adapt Proof Writer for formal reasoning
tasks, enhancing its ability to handle structured, in-
terpretable logical inferences and enabling access
to verification and theorem proving. The capability
of this dataset when compared to existing bench-
marks is detailed in Appendix B.

FOLIO (Han et al., 2022), with human-annotated
FOL sentences, offers a semantically complex de-
ductive task but is limited by its small size, lim-
iting its use for developing or improving formal
language translation models. We present data aug-
mentation technique to overcome this issue. To
the best of our knowledge, our work is the first at
using the incremental setting (augmentation), and

2We refer to ambiguity in the data used to train the GPT
model.

3Although ProofWriter dataset is generated using logic
programs, the original logical forms of ProofWriter data and
framework used for conversion to natural language are not
released with their data and therefore not available.

verification in the context of logical reasoning with
NL.

3 NL-to-FOL Translation Errors

First-order logic (FOL) is a logical framework us-
ing variables, functions, and quantifiers, often ap-
plied in natural language reasoning. Large Lan-
guage Models (LLMs) have demonstrated varying
success in translating natural language into formal
representations. Among these formalism, NL-to-
FOL translation presents unique challenges involv-
ing syntactic and semantic interpretations. We at-
tempt to categorize these syntactic and semantic
errors as a foundation for our data perturbation
protocol to train FOL verifiers (presented shortly).

Syntactic errors arise from deviations in gram-
matical rules during translation. For example, the
rule “every free variable assigned to a predicate
must have a quantifier” applied to the statement
“Green people are blue” requires requires a quan-
tifier ‘Y’ for the variable x. Missing quantifiers
or operators can cause parsing errors, detected by
tools like Prover9, which provides feedback on
syntax issues. Common categories include:

* Farsing errors: Missing/invalid operators or
parentheses.

* Type errors: Missing quantifiers or sentence-
level discrepancies.

e Token errors: Use of invalid tokens (e.g., $).

Semantic errors are harder to detect as they con-
form to formal structure but misrepresent mean-
ing. For example, the statement “All rabbits
have fur” translated to the FOL Jz(Rabbit(x) —
Have(x, fur)) incorrectly quantifies the statement.
Key categories include:

* Sense errors: General inaccuracies in NL-to-
FOL mapping.

* Arities errors: Predicate mismatches in argu-
ment count.

These errors are further analyzed in detail (see Ap-
pendix H).

4 Incremental Fine-Tuning and
Verification

4.1 Data Generation and Fine-tuning

The alignment of a language model to follow in-
structions for a specific task can be accomplished
by fine-tuning on substantial data. The task of for-
mal translations require first-order logic of their



natural language counterparts. Ideally, this task is
at a passage level rather than sentence level, which
makes it challenging for a language model to fol-
low a required format. To overcome this, we need
sufficient passage level translations, which are time-
consuming to generate through human annotations.
We introduce a streamlined process for generat-
ing this FOL data and ensuring correctness of the
format, grammar, and order of the translations.

Data Generation For the data generation pro-
cess, we pick ProofWriter which comes with large
number of training records, each consisting of mul-
tipe premises and a conclusion, and variations in
depth of reasoning. The format of the FOLs is
set to be consistent with the “Prover9" theorem
prover, which has a human understandable, formal
language syntax.* The fixed format of demonstra-
tions is adapted from Pan et al. (2023), where we
generate predicates followed by first-order logic
statements for each sentence. We standardize the
formal language to Prover9 and apply it consis-
tently across all datasets.

At a glance, the output from the GPT model has
formatting issues, such as assigning numbers to
each generation, explaining the task before gener-
ation, and solving for conclusion after producing
translations. These issues are parsed using pat-
tern matching to obtain the maximum number of
translations. After the parsing stage, the syntax
check is done by Prover9, where the tool can pro-
vide unique feedback for each form of syntax error.
When analysing these errors, we observed grammar
rules that can be fixed in the tool to include unicode
decoding, allow unordered quantifiers and support
negation of a full formula. This addition of gram-
mar rules minimized the penalization for transla-
tions. The semantic errors were identified by com-
paring the ground truth label from Proof Writer with
Prover9-generated output based on FOLs. This sys-
tematic pipeline enabled the retention of 70% of the
silver-standard data. We name this dataset PROOF-
FOL, comprising 10,424 NL-FOL passage-level
pairs of NL-FOL translations.

Supervised Fine-tuning (SFT) Each input =
to the SFT is a set of premise statements P, (=

*Given the requisite for diversity in syntax and semantic,
we first chose a few combinations of demonstrations, and ran a
small scale experiment through GPT-40 for each combination.
We then selected the most optimal demonstrations with the
least format and translation issues in the resulting generated
FOL data. We report these final demonstrations in Appendix
C.

{P1, Pa,...,P,}), a conclusion C,, and an in-
struction (I) represented as [P, Cy, I]. In order
to avoid over-fitting the model to certain spurious
patterns in GPT-4o0 translations, we include human-
generated dataset (FOLIO) in the mix. We create
a set of models built on the full dataset, provid-
ing a perspective for model behaviour with size of
the dataset. Since this SFT model employs both
existing and synthetic data, it imposes a dilemma
of the effect of gold-standard data on the results
when compared to the generated silver-standard.
To validate the reliability of our generated data,
we fine-tune the model on a subset of the dataset
and examine how increasing the data size impacts
logical reasoning tasks. For a given input z, the out-
put of SFT models are predicates of  (denoted as
Pred,), and FOLs of its premises and conclusion,
[Predy, FOLp,, FOLc,].

4.2 Incremental Techniques

The SFT method described in the previous sec-
tion uses the FOLIO dataset as just a small com-
ponent of the overall approach. With high number
of records associated with PROOFFOL, we can as-
sume that the in-distribution dataset will show a
major improvement when compared to FOLIO. To
enhance the performance of FOLIO dataset (and
in general any similar data-scarce scenario), we in-
troduce ‘Incremental Techniques’ for maximizing
the use of limited data. These techniques encom-
pass data augmentation, incremental fine-tuning
and inference, and incremental verification of pred-
icates and FOLs, creating a comprehensive setup
for FOL generation. We further expand this method
to a smaller subset of PROOFFOL to simulate data
scarce environment.

4.2.1 Data Augmentation

Supervised Fine-tuning a decoder model is techni-
cally an unannotated form of training as the super-
vised part of the fine-tuning refers to the label that
is passed with the input. During a vanilla SFT pro-
cess, we pass the whole output along with the input,
and the model performs inference as a text com-
pletion task. This motivates our data augmentation
method, where the model examines smaller part
of the output rather than training on the whole out-
put at a time. The FOL translation is one such task
where the output sequence is lengthy and the model
can deviate from generating the correct syntax.

To initiate the data augmentation process, we
split the output of the original record to repre-



sent incremental data, where the first output is
[Pred,]|, the second output is [Pred,, FOLp,],
and so on till we reach the full output
[Predy, FOLp, ..., FOLp,, FOLc,]. This splits
a single record into n + 2 records, where n is
the number of premises and ‘42’ is for predicate
and conclusion generation. The input remains the
same for all the records. This data augmentation
increases the dataset size to about 7x and 20x for
FOLIO and ProofWriter, respectively. With this
enhanced data, we train a set of SFT models for
FOL translation tasks.

4.2.2 Inference

The SFT for augmented data is performed using
two instructions, indicating two types of tasks. The
first instruction is “Generate predicates for the
given natural language sentences.” to generate the
predicates, and the second is “Given a premise
and conclusion, generate the first order logic form
of the premises and conclusion.” to generate the
FOL statements. At inference, we provide the
model with the instruction to generate the pred-
icates. These predicates, along with the input, are
then passed to the model to infer the FOL state-
ments. We categorize FOL inference into two
forms.

¢ Vanilla Inference: In vanilla inference, the
model is provided with the natural language
statements and is asked to generate the pred-
icates and the FOL translations for the com-
plete input.

* Incremental Inference: In incremental in-
ference, we first generate the predicates,
and then limit the generation to a single
FOL translation at a time by setting a low
maximum_new_token parameter. For every
FOL generation, we pass the previously gen-
erated values as input. For example, if we
are generating F'OLp,, the input would be
[P, Cy, Pred,, FOLp,, FOLp,].

4.2.3 Verification and Correction

Since the incremental inference allows individual
predicate and FOL generation, we train two veri-
fiers; predicate and FOL, to detect and correct the
potential errors. The term ‘verifier’ refers to both
the verification and correction processes.

¢ Predicate Verifier The Predicate verifier
takes the [P, Cy, Pred,], as the input, and

evaluates the predicted predicate Pred,. If
the verifier considers Pred,, correct, the out-
put is just ‘correct’, otherwise the verifier
will generate the corrected predicates set. To
achieve this outcome, the verifier is trained
on the perturbed predicates of the training
dataset used for SFT. The perturbations for
predicates are created based on the semantic
errors related to predicates. Few perturbations
used are; omitting predicate, omitting vari-
able, adding variable, and adding duplicate
predicate.

* FOL Verifier The FOL verifier takes
[Predny, FOLNL,NL] as the input, where
FOLny represents predicted FOL form of a
single premise (P;) or conclusion (C}) state-
ment (represented as NL). The verifier evalu-
ates 'O Ly as ‘correct’ or will generate a cor-
rected FOL. Similar to predicate verifier, we
used the original SFT training set and applied
perturbations to train this Verifier model. The
perturbations used in this method are crafted
based on the common syntax and semantic
errors in translations (Section 3). Few pertur-
bation used in this verifier are; changing quan-
tifier position, omitting a quantifier, omitting
parenthesis, tweaking negations, and replac-
ing operators.

In addition to these perturbation instances, we
incorporate real errors from the SFT training data.
Specifically, we run the inference of the training
data on the SFT model and collect the predicate
and FOL, which do not match the ground truth, as
errors. We add these errors to the fully-controlled
created perturbations to form the ‘incorrect verifier
training instances’. Finally, in order to verify ‘cor-
rect’ predictions, we take the predicate and FOL
values from the ground-truth and label them as ‘cor-
rect’. We generate the perturbation dataset from
a seed of 1k examples of FOLIO and similarly
for ProofWriter. For detail statistics on the size
of the resulting perturbation datasets, please see
Appendix J.

Inspired by Han et al. (2023), after the creation
of the training data for the two verifiers, we fine-
tune a T5-Large (Raffel et al., 2020) model to work
as the verifier. We train two separate models for
the Predicate and FOL verification on each dataset.
During incremental inference, the verifier is incor-
porated into the decoding phase, as shown in Fig
2.
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Figure 2: The overall flow of the incremental generation and verification at inference time. Here P;s and C denote
Premises and Conclusion. For predicate and FOL generation, the output is run through the corresponding verifier.

5 Experimental Setup

PROOFFOL Data Generation. We used
ProofWriter Open World Assumption (OWA)
training data with depth 5 and generated 15, 000
FOL records via gpt4-o. Regex parsing was
applied to extract clean FOL statements, filtering
incomplete or excessive text. The FOL statements
are then passed to the Prover9 tool to perform
deductive reasoning, where the tool returns
‘True’, ‘False’, ‘Unknown’, or ‘None’ for errors.
Mismatches with ground truth were removed. See
Appendix A for details of prompt templates and
statistics.

Vanilla SFT. We fine-tuned LLaMA-2 (13B) and
Mistral (7B) on ProofWriter, FOLIO, and Pron-
toQA using 3-epoch supervised fine-tuning (SFT)
with LoRA (Hu et al., 2022) and 8-bit quantization
for inference. Models were evaluated in two modes:
NL-based (Standard) and FOL-based, leveraging
Prover9. The initial baselines use in-context learn-
ing (ICL) for standard and FOL generation. The
few-shot examples for standard generation are ran-
domly sampled from the training data, ensuring
a balanced output distribution. ProntoQA served
as an out-of-distribution (OOD) benchmark with
ProofWriter demonstrations during inference. Ap-
pendix C provides details on few-shot templates.

Incremental SFT. Incremental SFT is performed
on LLaMA-2 13B model following the same train-
ing process as vanilla SFT, with adjustments for
inference to reduce token generation time. Data
augmentation increased data size of FOLIO (1,000
to ~ 7000 records) and ProofWriter (1,000 to ~
20000 records). Fine-tuning was also performed on
original datasets for baseline comparisons. Dataset
statistics are in Appendix L.

Verifier Training. We trained four T5-large
verifiers on perturbed datasets for FOLIO and
ProofWriter. The perturbations were applied on

their respective training data and vary with the com-
plexity of the FOL statements. The TS5 models were
trained for 10 epochs using AdamW (Loshchilov
and Hutter, 2019) and a learning rate of 5 x e .
Once trained, the verifiers could run in synchronous
(online) or asynchronous (offline) mode. While the
online mode corrects errors at each step of infer-
ence, before moving to next step (i.e., correction at
time step ¢ impacts step ¢ 4+ 1 during generation),
the offline mode applies corrections on the fully
generated predicate and FOLs as a post-processing
step (i.e., correction at time step ¢ does not have
any consequential effect on ¢ + 1). For time over-
head of incremental decoding and verification, see
Table 2.

6 Results and Discussion

6.1 Main Results

Table 1 presents results on logical reasoning dataset
using in-context learning (ICL) and supervised
fine-tuning (SFT), comparing performance across
model sizes. LLaMA-2 70B and Mixtral 8 x 7B
serve as baselines for LLaMA-2 13B and Mistral
7B, respectively.

Standard experiment reports free-form reason-
ing, where the LLM is given a question (premises
and a conclusion) and is tasked to produce a di-
rect response. Few-shot ICL results vary across
datasets, with Mistral and Mixtral outperform-
ing other models. LLaMA-2 13B fine-tuned on
PROOFFOL achieves notable improvements for
ProofWriter but shows limited gains for FOLIO
and ProntoQA. Mistral models perform better after
fine-tuning, particularly with smaller datasets.

FOL experiments show correlation of perfor-
mance with model size, where, for few-shot ICL,
LLaMA-2 70B and Mixtral perform consistently
better than their smaller versions. ProofWriter
achieves 86% accuracy with LLaMA-2 13B model,
fine-tuned on PROOFFOL, which is a significant



Type Model Standard FOL
LLaMA-270B  41.83 7833

LLaMA-2 13B 44.16  24.66

5 1 SO i 78 4967 6650
5 Mixtral 8 x 7B 45.83  85.00
s w000 LLaMAZ2T3B 6416 53.50
£ o Mistral 7B 7033 98.17
1000y LLaMA-2T3B 8566 8633

Mistral 7B 6950  97.83

LLaMA 70B 5060  38.80

LLaMA-2 13B  47.19 114

o [CL neshot yival 7B 5060  10.80
¢ Mixtral 8 x 7B 5840  13.00
£ sop LLAMA2T3B 5540 5320
& SFT Mistral 7B 60.00  78.60
o0 LLaMA2T3B 5320 4780

Mistral 7B 7040  85.40

LLaMA-270B 5074  34.97

LLaMA-213B  43.84  24.13

ICL n-shot i iral 7B 5123 3596

9 Mixtral 8 x 7B 57.14  42.36
S w00 LLaMA2T3B 4089 2611
SFT Mistral 7B 67.98  26.11
oo LLaMA2T3B 4089 3448

Mistral 7B 66.01 2759

Table 1: Comparison of models’ deductive reasoning
accuracy under Standard and FOL-based output pre-
diction. Here ICL denotes “in-context learning" with
n-shots (details of shots in appendix), and SFT denotes
“supervised fine-tuning" (on 5k or 10k training data sub-
set from PROOFFOL). Accuracy metrics in bold signify
notably high performance within the same benchmark,
while underline indicates best results under Standard
and FOL for ICL and SFT.

gain in performance when compared to ICL. Mis-
tral fine-tuned models are the state-of-the-art in
FOL generation for ProofWriter datasets, where the
model produces 0 syntax errors after fine-tuning.
ProntoQA, an altered form of ProofWriter, shows
similar trends in performance gain with our fine-
tuned models. Mistral 7B fine-tuned on PROOF-
FOL data outperforms all the ProntoQA baselines.
For ProntoQA, there is an observed negative effect
of overfitting, when LLaMA-2 is trained on larger
dataset (increasing training data from 5k to 10k),
but we don’t notice this for Mistral. We speculate
this might be reflective of difference in model size
and how it impacts potential training memorization
(i.e., overfitting) for larger models.

FOLIO, as expected, is a challenging dataset
with complex language and structure. Mixtral
model achieves the highest few-shot accuracy at
42%. Fine-tuned LLaMA-2 13b improves from
24% to 34%, and is on-par with a much larger
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Figure 3: Error distribution of LLaMA-2 70B (top) and
13B (bottom) post fine-tuning on PROOFFOL.

LLaMA-2 70B. Syntax and semantic error metrics
are detailed in Appendix G.

Error Distribution We provide an error distri-
bution of models on NL-to-FOL translation er-
rors. The results for LLaMA-2 70B with ICL
and LLaMA-2 13B after fine-tuning is provided
in Fig 3. ProofWriter and ProntoQA show decline
in errors, whereas FOLIO stays equivalent to the
LLaMA-2 70B ICL model. This plot indicates that
a model significantly smaller in size can achieve
better generation over a larger model when fine-
tuned with relevant data.

6.2 Incremental Results

Incremental techniques are performed on ground
truth FOLIO and a subset of PROOFFOL dataset.
The intention behind the incremental technique is
to show that the data augmentation method im-
proves the translations over the original dataset.
In Table 2, we focus on the shift in performance
between LLaMA-2 13B model fine-tuned on the
original 1000 records and augmented 1000 x n
records, where n represents the scale at which the
data grows after augmentation. Both FOLIO and
ProofWriter have low performance in FOL gener-
ation when trained with a small dataset, but FO-
LIO improves steadily with incremental techniques.
This pushes us to use a verifier to further the per-
formance. With the predicates corrected during
generation and FOLs corrected after inference, this
verifier based incremental setting achieves 37% us-
ing Offline verifier, which outperforms LLaMA-2
70B ICL accuracy 34.97% (Table 1). ProofWriter,
when trained incrementally, provides varied results
with different inferences. The verifier inference



Models Inference FOLIO ProofWriter
ICL Baseline Vanilla 24.13 24.66

SFT Vanilla (1k) Vanilla 22.66 (01:55) 24.50 (03:36)
SFT Incremental (1k¥) Incremental 32.02 (02:58) 27.16 (02:42)
SFT Incremental (1k*)  +Verifier (On-Off) 37.44 (03:05) 29.05 (03:10)

SFT Incremental (1k*)  +Verifier (On-On) 29.56 (03:27) 32.50 (03:31)

Table 2: Comparison of LLaMA-2 13B models on FO-
LIO and ProofWriter with various training and inference
protocols. 1k" is the incremental SFT data that expands
to 7k (FOLIO) and 20k (ProofWriter) data points for
training. Inference time for SFT models for each record
is reported as average (MM:SS). Vanilla: Predicates and
FOLs are generated in one pass. Incremental: Pred-
icates are generated in one pass and then fed into the
next step along with premises and conclusions to gen-
erate FOLs one by one. +Verifier (On-Off): Predicate
verifiers are called during inference (Online) while FOL
verifiers are called once all FOLs are generated (Offline).
+Verifier (On-On): Both verifiers are used online.

model achieves 29% an 32% accuracy when com-
pared to the SFT model on original dataset, 24%.
It can be noted that the performance of the FOLIO
model is lower when the FOL verifier is online,
since any error from the verifier is passed on to the
next generation and can cause a domino effect. The
change in inference times between incremental and
verifier settings is minimal. >

6.3 Ablation Studies

The incremental methods follows certain rules of
finetuning and generation. Our model uses two
instructions for predicate and FOL generation. We
performed an ablation study on using different vari-
ation of incremental training and inference for FO-
LIO dataset. The type of ablations and their per-
formances are given in Table 3. These were per-
formed before training the verifier module. In place
of the verifier, we initially used Prover9 to check
for syntax and any invalid generation followed a
sampling by the LLM, and the first error free FOL
was selected. This method proved ineffective as the
sampling method was time-consuming. The results
in the table are after the tool verification, except for
the Check model, where we use LLM as a verifier.

Mixed is the current method of incremental train-
ing and inference, where we use different instruc-
tions for predicate and FOL generation. Single
method uses only one instruction;‘Complete the
generation’. This performs equivalent to the Mixed,
but results in additional syntax errors, presumably

SFor ProofWriter, adaptive token sizing reduces inference
time by adjusting token size based on sentence length.

Instruction Accuracy Syntax errors

Mixed 35.46 64

Single 35.47 70
Ordered 32.02 63

Unique 21.18 80

Check 27.09 108

Table 3: Comparison of Incremental Methods with In-
struction Fine-tuning. Each method represents the type
of instruction used for fine-tuning and inference. The
syntax errors are out of 203 test records in FOLIO.

because of the vague instruction. Ordered uses dif-
ferent instructions for each FOL generation. The in-
structions carry information about the sentence that
is required to be translated. This method helped
keep the syntax errors low, but lowered the over-
all performance. Instead of passing the previously
generated FOL to the next generation, we applied
Unique, where the statements are split and passed
one at a time with the predicate values. This per-
forms poorly and does not include passage level
translations. In Check, we use the perturbation
dataset with specific instructions along with the
training dataset for fine-tuning. We instruct the
model to identify and correct the errors at infer-
ence. This method relies on the language model to
perform a new task with limited data and proves to
be ineffective.

7 Conclusion

Formal language translation systems for logical rea-
soning task worked effectively in the era of LLMs,
with persisting translation errors. In this paper, we
provided an understanding of general translation
errors by LLMs, when used as NL-to-FOL trans-
lation systems. We highlighted the importance
of first-order logic (FOL) ground truth data and
present a pipeline to generate high quality FOLs for
ProofWriter dataset, introducing an FOL-annotated
data called PROOFFOL. Using PROOFFOL, we
fine-tuned a set of smaller language models and
showed an increase in performance over larger
LMs. Additionally, the issue of data scarcity is
addressed via proposing incremental techniques,
which cover data augmentation, inference veri-
fication, and correction. Our experiments on 3
benchmarks highlight the potential of our proposed
framework.



8 Limitation

The incremental setup proposed in our method de-
pends on the quality of the data. While FOLIO
is highly effective, it may occasionally introduce
some noise. The silver data generated using GPT-
4, though processed with care, may contain minor
inconsistencies, as detailed in Appendix D. Ad-
ditionally, using models like GPT-4 can present
challenges in reproducing the exact dataset for fu-
ture reference. To address this, we have provided
all necessary prompts to facilitate consistent gener-
ation of similar datasets.

The baselines for the provided datasets are run
similarly to the existing work, though we acknowl-
edge that exact comparisons are not possible due
to the use of different models and some challenges
with reproducibility. As a result, we consider out-
puts from larger models as the baseline, following a
similar methodology. We also present results from
larger proprietary models in Appendix F; however,
due to limited information on their training process,
we treat these comparisons as supplementary rather
than definitive.

We would also like to acknowledge that incre-
mental methods may result in longer inference
times for the Llama model; however, from our
previous experiments on vanilla SFT, we noticed
that inference times vary depending on the models
used.
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A Data Generation

The data pipeline applied for generating ProofFOL
is detailed in Fig 4. The train data is 15000 data
points with depth-5 from ProofWriter dataset. The
15k records are sampled randomly ensuring a fair
distribution of the labels; True, False, and Uncer-
tain. The LLM here is GPT40 with a output to-
ken length of 1000 for each generation. We use
url = /vl/chat/completions format for batch
generations of GPT4o. The logical solver is Prover
9, a theorem prover suitable to run in python en-
vironment with nltk library, that uses CNF conver-
sions, quantifier operations, and skolemization to
transform the clauses into a tree format. Parsing
errors by Prover 9 occur when the FOL formula
cannot be converted to a tree structure because it
does not follow specific grammar rules. After filter
and parsing stages, we get 10424 records with FOL
statements. Syntax errors are the errors thrown by
the tool and semantic errors are measured by com-
paring the ground truth label with the solver output.

Textual Data
Categorized
by Labels

Data with
First-order
Logic

Data Total Train Syntax Errors Output Mismatch Final Train

ProofWriter 15,000 3881 695 10,424

Figure 4: Overview of the Data Generation Pipeline and
Key Statistics

B Dataset Comparison

The ProofFFOL dataset consists of around 10, 000
NL-FOL translation data-points, consisting of
premises and conclusions. This makes it the largest
existing FOL dataset designed for logical reasoning
tasks. Specifically, in the context of deductive rea-
soning tasks (Luo et al., 2023), current datasets of-
ten present natural language statements with either
a conclusion that must be logically deduced from
the premise or multiple-choice options evaluating
the logical relevance of a reading comprehension
passage (Liu et al., 2020). We focus on single-
answer questions that enable rule-based deduction.
Such rule-based deduction facilitates application in
formal settings.

ProofFOL distinguishes itself from other
datasets in terms of data size, the availability of
a comprehensive training set, formal translations,
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https://aclanthology.org/2024.acl-long.375
https://aclanthology.org/2024.acl-long.375
https://aclanthology.org/2024.acl-long.375

FOLIO LogiQA | ProntoQA ProofWriter | ProofFOL
Large Dataset X
Training Set X
FOL translati X X
Rule-Based Generation

Table 4: Comparison of Deductive Reasoning Datasets
with Our Dataset, Proof FOL. A large dataset is defined
as having over 5,000 records. The training set indicates
the availability of data for fine-tuning. Ground truth
FOL translations refer to provided First-Order Logic
expressions. Rule-based generation denotes the ability
to derive solutions systematically using predefined rules
without external intervention.

and its ability to support rule-based derivations.
Figure 4 highlights these variations across the pri-
mary logical deductive reasoning datasets.

C Few Shot Examples

In this section, the few-shot format used for all the
in-context learning tasks are presented.

Few-shot for Data-augmentation The Fig 5
shows the format of the few-shot example for data
generation. We tried this with 2 examples for 50
unique training data points, but it did not generate
better translation results. Instead, we ensured that
all operators are covered in this example, specif-
ically negation. We first generate predicates as-
sociated with the sentence. This is followed by
FOL generation. Each FOL generation comes with
the natural language statement and this format is
adapted from (Pan et al. 2023). We use the same
format of generation for all of our experiments with
the exception of Predicates description, as this part
is harder to verify. The description is removed from
ProofFOL.

* Standard generation: For standard generation,
we randomly sample examples from the train-
ing set. We use 5-shot for FOLIO and 4-shot
for ProofWriter and ProntoQA as shown in
Fig 6 and Fig 7

* FOL generation: For FOL generation, we par-
tially use examples from (Pan et al. 2023)
and sample the rest from the training set. The
FOL syntax is fixed to represent Prover9 for-
mat. We use 3-shot for FOLIO and 2-shot for
ProofWriter and ProntoQA as shown in Fig 8
and Fig 9

D Human evaluation of Proof FOL

The ProofFOL dataset is a silver-standard dataset.
To ensure the accuracy of the data, we conducted
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You are an expert who works with theorem provers. Given
some context and a question, generate the predicates and the
first-order logic formula for contexts and question. Here is an
example.

Context:

Anne is quiet. Erin is furry. Erin is green. Fiona is furry. Fiona is
quiet. Fiona is red. Fiona is rough. Fiona is white. Harry is furry.
Harry is quiet. Harry is white. Young people are furry. If Anne is
quiet then Anne is red. Young, green people are rough. If someone
is green then they are white. If someone is furry and quiet then they
are white. If someone is young and white then they are rough. All
red people are young.

Question:

Anne is white.

###

Predicates:

Quiet(x) ::: x is quiet

Furry(x) ::: x is furry

Green(x) ::: x is green

Red(x) ::: x is red

Rough(x) ::: x is rough

White(x) ::: X is white

Young(x) ::: X is young

Premises:

Quite(Anne) ::: Anne is quiet.

Furry(Erin) ::: Erin is furry.

Green(Erin) ::: Erin is green.

Furry(Fiona) ::: Fiona is furry.

Quite(Fiona) ::: Fiona is quiet.

Red(Fiona) ::: Fiona is red.

Rough(Fiona) ::: Fiona is rough.

White(Fiona) ::: Fiona is white.

Furry(Harry) ::: Harry is furry.

Quite(Harry) ::: Harry is quiet.

White(Harry) ::: Harry is white.

vx (Young(x) — Furry(x)) ::: Young people are furry.

Quite(Anne) — —Red(Anne) ::: If Anne is quiet then Anne is not red.
vx (Young(x) — Rough(x)) ::: Young, green people are rough.

vx (Green(x) — Rough(x)) ::: Young, green people are rough.

vx (Green(x) — White(x)) ::: If someone is green then they are white.
vx (Furry(x) A Quite(x) — —-White(x)) ::: If someone is furry and quiet
then they are not white.

vx (Young(x) A White(x) — Rough(x)) ::: If someone is young and
white then they are rough.

vx (Red(x) — Young(x)) ::: All red people are young.

Conclusion:

White(Anne) ::: Anne is white.

<INPUT>

#

Figure 5: Few shot example with instruction for Data
Generation process

a human evaluation on a random sample of 50
records from our dataset (containing a total of
1, 018 statements) where the final outputs were cor-
rect. Out of these 1, 018 translations, we identified
only 22 errors (i.e., 2%), half of which were minor
and did not alter the meaning of the FOL state-
ments. Another extrinsic indication of data quality
is the improvement reported in Table 2 for SFT on
Sk and 10k records. Additionally, we verified other
semantic aspects, including predicate values and
variable completions, finding zero errors in predi-
cate values and only one error in variable comple-
tions. Further details on this can be found in the
Table 6.



~

@en a premise, you have to reason whether the conclusion is
True, False or Uncertain.
Context: The Metropolitan Museum of Art is a museum in NYC...
Conclusion: Mary lives in Manhattan.
Answer: Uncertain

Context: All artificial satellites are important scientific achievements...
Conclusion: All important scientific achievements are U.S. inventions.
Answer: False

FS3

FS4

FS5

<INPUT>

Answer: /
Figure 6: Standard Generation Few-shot examples for
FOLIO: For brevity, we highlighted the format and the

instructions and minimized the content in the few-shot
examples.

Given a premise, you have to reason whether the conclusion is \
True, False or Uncertain.

Context: Charlie is cold. ...

Question: Harry is not furry.

Answer: Unknown

Context: Anne is green. ...
Question: Bob is not young.
Answer: False

FS3

FS4

<INPUT>
nswer:
Figure 7: Standard Generation Few-shot examples for
ProofWriter and ProntoQA

E Datasets

We utilize three datasets in our experiments.

* ProofWriter: The training set for ProofWriter
is sampled from the depth-5 records. For test-
set, we use the one provided in (Pan et al.
2023)

ProntoQA: ProntoQA is a test dataset. We
use ProofWriter examples as training set and
test-set sample from (Pan et al. 2023)

FOLIO: FOLIO has 1001 training set records
and 203 dev set records. We use the origi-
nal training set for SFT models and dev for
evaluating the model.

Dataset ‘ Standard | FOL
ProofWriter 4 2
FOLIO 5 3
ProntoQA 4 2

Table 5: Number of Few-shot examples used for creat-
ing baselines in Table 1

12

Given some context and a question, generate the predicates
and the first-order logic formula for contexts and question.
Here are the examples.

Context:

All people who regularly drink coffee are dependent on caffeine. ...
Question:

Rina is either a person who jokes about being addicted to caffeine or
is unaware that caffeine is a drug.

###

Predicates:

Dependent(x) ::: x is a person dependent on caffeine. ...
Premises:

vx (Drinks(x) — Dependent(x)) ::: All people who regularly drink
coffee

Conclusion:

Jokes(rina) @ Unaware(rina) ::: Rina is either a person who jokes
about being addicted to caffeine or is unaware that caffeine is a
drug.

<INPUT>
H#H#

Figure 8: FOL Generation Few-shot examples for FO-
LIO

Error Types Description Number
of Errors
FOL Match Validates the correctness of a single FOL statement in 22

relation to its corresponding NL text.

Ensures that predicates are meaningful and do not include 0
any shortcuts.

Flags instances where constants take shortcuts, similar to 1
predicate validation.

Non-subject Predicates

Non-subject Constants

Table 6: Error types and descriptions for human evalua-
tion of a sample of ProofFOL dataset, specifically 1018
translations.

Dataset Original | Augmented
ProofWriter 1000 7288
FOLIO 998 20145

Table 7: Size of training datasets before and after data
augmentation

F Additional Baselines

We conducted experiments on additional propri-
etary models, and the results are presented in Ta-
ble 8. The results demonstrate that our model,
trained on Proof FOL, outperformed these closed
source models in ProofWriter, highlighting the sig-
nificance of our dataset.

G SFT Models

SFT with PROOFFOL is performed on two models;
LLaMA-2 13B and Mistral 7B. These models are
selected based on their low computational cost and
model parameters. The models are fine-tuned for 3-



Given some context and a question, generate the predicatesa\h
the first-order logic formula for contexts and question. Here is
an example.

Context:

Anne is quiet. Erin is furry. ...

Question:

Anne is white.

##t#H

Predicates:

Quiet(x) ::: x is quiet...

Premises:

Quite(Anne) ::: Anne is quiet. ...

Conclusion:

White(Anne) ::: Anne is white.

FS2
<INPUT>
i

Figure 9: FOL Generation Few-shot examples for
ProofWriter and ProntoQA

Dataset Model Standard | FOL
ProofWriter | Llama2 70B 41.83 78.33
Mixtral 8X7B 45.83 85.00
GPT-40 mini 36.33 74.17
Gpt-3.5-turbo-instruct 52.83 90.17
Gemini Flash 54.33 89.00
ProntoQA Llama2 70B 50.74 34.97
Mixtral 8X7B 57.14 42.36
GPT-40 mini 57.40 53.80
Gpt-3.5-turbo-instruct 49.40 24.80
Gemini Flash 72.20 93.60
FOLIO Llama2 70B 50.74 34.97
Mixtral 8X7B 57.14 42.36
GPT-40 mini 40.39 45.81
Gpt-3.5-turbo-instruct 50.25 47.29
Gemini Flash 64.04 55.66

Table 8: Performance comparison across other propri-
etary baselines.

epochs with a fixed batch size and LoRA (Hu et al.,
2022). The inference is done using an 8-bit quanti-
zation with the trained LoRA adaptor. Temperature
and top_p are fixed at 0 and 1 respectively, with
a variation of maximum_new_token value based on
the dataset. ProofWriter requires larger number
of tokens at inference when compared to FOLIO
because of the size of input. Additionally, as NL-
based baseline, separate versions of models are also
fine-tuned on textual data without symbolic transla-
tions (the corresponding results are reported under
Standard). The test data used in our experiments
are taken from Pan et al. (2023) for ProofWriter
and ProntoQA. FOLIO comes with a pre-defined
dev dataset, that is used for evaluations.

Table 9 is an extension of Table 1 from the main
paper. It shows the variations in the syntax and
semantic errors with ICI and fine-tuning. There is
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Type Model Syntax Semantic

LLaMA-2 70B 44 86

s LLaMA-2 13B 314 138

g [CL n-shot vl 7B 130 71

2 Mixtral 8 x 7B 44 46
St

= so00 LaMA-213B 71 15

e SFT Mistral 7B 0 11

£ L0000 LaMA-213B 69 13

Mistral 7B 0 13

LLaMA 70B 203 103

~ LLaMA-2 13B 266 177

g [ICL n-shot yrictral 7B 420 26

< Mixtral 8 x 7B 413 22

< soo0 LLaMA-213B 108 126

E SFT Mistral 7B 26 81

~ L0000 LLaMA-213B 139 122

Mistral 7B 13 60

LLaMA-2 70B 19 113

LLaMA-2 13B 95 59

g [CL mshol il 7B 95 35

S Mixtral 8 x 7B 79 38

= so00 LaMA-213B 103 47

8 SFT Mistral 7B 64 86

L0000 LaMA-213B 88 45

Mistral 7B 48 99

Table 9: Syntax and Semantic error count for FOL gen-
eration

a constant trend of lower syntax errors with fine-
tuning the models with relevant data for both Llama
and Mistral models.

H Error Analysis

The NL-FOL translation errors can be identified
using the tool feedback or a mismatch in tool out-
put with the ground truth. We identify these issues
and categorize them into syntax and semantic er-
rors. Fig 10 shows examples of each type of error.
These are identified by manually analysing the FOL
statements in cases where there was no feedback
from the tool. The details of each error are provided
here.

* Missing quantifier: When a predicate includes
a variable, it must have either a Universal
Quantifier ‘v’ or an Existential Quantifier ‘3.
This error occurs if either quantifier is miss-
ing.

* Parenthesis error: The formula becomes in-
valid if there is an extra or a missing parenthe-
sis.

* Completion error: The FOL is either incom-
plete or contains additional text that disrupts
its logical flow.



¢ Quantifier location: Quantifiers that are either
repetitive or incorrectly positioned result in
grammatical inaccuracies in the expression.

Missing variable: When multiple quantifiers
are present, the tool fails to parse predicates
that lack free variables.

Special token: The tool does not handle spe-
cial characters in the input.

Unknown operator: The tool does not support
parsing mathematical equations.

Predicate error: These errors arise when pred-
icates are reused with different subjects, omit-
ted entirely, or conjoined inappropriately, lead-
ing to erroneous interpretations of the logical
constructs in FOL statements. Such misinter-
pretations can affect the accuracy and reliabil-
ity of responses generated by LLMs.

Incorrect quantifier: This occurs when an ex-
istential quantifier is incorrectly chosen in
situations that require a universal quantifier,
leading to a logical contradiction between the
terms. This mismatch between the chosen
quantifier and the necessary logical condition
can result in flawed reasoning and inconsis-
tencies in logical analysis.

Predicate mismatch: It occurs when LLMs
are tasked with generating predicates based
on text passages and fail to recognize syn-
onymous terms as equivalent. This results in
the tool counting synonyms as distinct tokens,
leading to discrepancies in predicate genera-
tion.

* Arities error: It occurs when predicates are
inconsistently applied with a varying number
of constants across different statements. Such
discrepancies can introduce ambiguity in logi-
cal inferences. This is a semantic error that is
captured by the tool.

Subject predicate: The logic is flawed when
a subject is used both as a predicate and a
constant in the expression.

I Data Augmentation

Data augmentation for FOL generation uses incre-
mental data assignment, where the output is di-
vided into multiple tasks, as shown in Fig 10. This
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method is applied on two datasets; ProofWriter
and FOLIO. A subset of the ProofWriter dataset
is extracted from the Proof FOL data and passed
for data augmentation, increasing the size to 20X
the original. For FOLIO, we take the full dataset
and perform augmentation, making it 7X larger.
Given the style of incremental data, we remove few
records from FOLIO dataset which do not follow
the one-to-one mapping of text and FOL. The size
stats are detailed in Table 7.

Vanilla
X  Input Output
X! Generate FOL [Pred, P,FOL, P,FOL, p,FOL (CFOL]
[Pla PZs 009 Pm
C]
Incremental
X (‘, Generate predicate [Py, P, ..., P, C] Pred
X{' Generate Premise FOL [P;, P, ..., P, C, P, oL
Pred]
X%  Generate Conclusion FOL [Py, P, ..., P,, CrOL

C, Pred, P,FOL, P,FOL, P FOL ]

Figure 10: Data augmentation: the vanilla represents
original data point. Incremental is the data that is present
after augmentation.

J Verification Perturbations

The perturbations used for training TS verifier mod-
els are designed from the errors in the previously
discussed error analysis. The perturbations are dif-
ferent for FOLIO and ProofWriter dataset, as FO-
LIO is a complex dataset with additional operators
when compared to ProofWriter. To handle the com-
plexity of FOLIO dataset, we pass the training set
data to the SFT model and match the translations
with ground truth. Any mismatch is treated as a per-
turbation. Other perturbations are based manually
included. This dataset has a portion of correct val-
ues, making it a verification and correction system.
The count of these datasets is detailed in Table 11.

FOLIO Perturbations The predicate perturba-
tions are designed based on the commonly ob-
served errors in the predicates. These are not com-
plex errors, but usually a missing predicate or vari-
able. Based on this, we use three types of perturba-
tions.



* Omit One Predicate: We randomly omit a
predicate from all predicates.

* Omit One Variable: We choose a predicate
with the maximum number of variables and
omit the last one in the chosen predicate.

* Omit Both Variable and Predicate: We choose
a predicate with the maximum number of vari-
ables, omit the last argument in the chosen
predicate, and also randomly omit a predicate
from the rest of the predicates.

The FOL perturbations tackle the syntax errors
that are common while generating FOL for FOLIO
test data.

* Change Quantifier Position: We move the
quantifier position to different positions in a
FOL statement.

* Omit One Quantifier: We randomly omit one
quantifier from a FOL statement.

e Omit Last Bracket: We omit the last bracket
in a FOL statement.

ProofWriter Perturbations The ProofWriter
dataset has simpler, but larger number of predicates.
based on this, we design 4 types of perturbations.

* Omit one predicate: We randomly omit a pred-
icate from all predicates.

Omit or add one variable: We choose a ran-
dom predicate, and if the predicate consists
of multiple variables, we omit one, and if it
consists of only one variable, we add one.

* Add plural predicates: To handle the synony-
mous predicate issue, we randomly select a
predicate, create a plural form, and add it to
the set of predicates.

Duplicate predicate: We select a random pred-
icate and add a variable to it. This is added
back to the set of predicates.

In addition to the quantifier, FOL generations
in ProofWriter consists of three major operators;
and, imply, and negation. We include variations
in this for our perturbation data. ProofWriter can
be divided into simple FOL statements (facts) and
complex ones (rules). The simple statements usu-
ally do not contain any operators or quantifiers.
Based on this, we design 5 types of perturbations.
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* Add or omit negations: We randomly select
facts and either add a negation or remove an
existing one.

* Omit arguments from facts: We randomly se-
lect predicates from facts and omit the vari-
ables if the predicate has more than one vari-
able.

* Add or omit quantifier: We randomly select
rules and either add a quantifier or remove an
existing one.

* Swap operators: We replace ‘and’ with ‘im-
ply’ operator or vice-versa if the operator ex-
ists in the FOL statements.

* Add plural predicates: To handle the synony-
mous predicate issue, we randomly select a
predicate, create a plural form, and add it to
the set of predicates.

Incremental and Verification Ablation We
present additional ablation done on the incremental
methods and analyse their results.

* Incremental Ablation: The incremental fine-
tuning uses two instruction; generate predi-
cates and generate FOL (brief). This allows
us to perform a full scale inference rather than
an incremental one, by increasing the output
token size. We first let the model predict the
predicates and the input along with the predi-
cates is passed to the LLM for full FOL gen-
eration. Since the data in the augmented set
consist of such a case (last value in augmenta-
tion), the model is able to generate the FOL in
a flow. We performed inference in this manner
and the results are in Table 12, where vanilla*
represents the full FOL inference. The results
in ProofWriter are higher than the incremental
results, but on closer observation, we deter-
mine that the model hallucinates few cases in
the vanilla* and helps with better performance.
The incremental method allows a strict format
of generation and forces the model to gen-
erate the FOL for one statement at a time,
without adding additional values. Addition-
ally, because of this mismatch in number of
statements, we cannot use a FOL verifier on
vanilla*.



K System Requirements for

Experimentation
The Llama 2 model weights are down-
loaded from the official Llama website

https://11lama.meta.com/11lama-downloads/.
Mistral-7B (https://huggingface.co/
mistralai/Mistral-7B-v0.3) model and
Mixtral-8x7B(https://huggingface.co/
mistralai/Mixtral-8x7B-Instruct-v@.1) are
accessed via the Hugging Face interface. All
the models are gated and require access, which
is typically a safety measure and can be easily
granted. The transformer version used in our
experiments is v4.40.0 and should ideally be above
v4.28.0 or the latest version to run Llama and
Mistral models without errors. All other library
requirements will be specified in the code.

Type Example

Missing | BerkeleyCollege(z)
Quanti- AResidentialCollegeAt(z,
fier yaleUniversity)

e Parenthesis BeneficialTo(cherry, people)

‘@ error ®On(cherry, warningList))

£ — —RedFruit(cherry)
Completion Vz(Athlete(z)
error ——NeverExercises(x))

Never: does not exist a time
Quantifier | Jy(Own(emily, y)
location | ARoommate(y)) —

® Jy(Own(emily, y)

E - /\L1veIn(f;m11y, apamnent))
Missing | Vz3y(In(indonesia) A
variable | Prosecutor(x) A

SpecialCrime(y) —
InvestigatePersonally(z, i)
Special Endowment(yale, 42.3 billion)

Eg token

< Unknown | Vx(Rating(z,y) A y>4— Listed(z))
Operator
Predicate | Error: =Solid2Pointers(jack) A
errors Successful3Pointers(jack)

° True: ~GoodAt(jack, twos) A
é GoodAt(jack, threes)

“? Incorrect | Error: 3z (FleaBeetle(x) —
Quanti- —InFamily(x, chrysomelidae))
fier True: Vx (FleaBeetle(x) —

—In(x, chrysomelidaeFamily))
Predicate | Error: —High(NewHaven);
Mis- Low(towerA)
match True: —High(NewHaven);
—High(towerA)
Arities er- | Error: Sees(Tiger, Mouse);
rors Va(((Visits(x, Rabbit)) A
(Sees(Mouse))) — (Visits(Xx,
z Tiger)))
IE* True: Sees(Tiger, Mouse); Vx
< (((Visits(x, Rabbit)) A (Sees(x,
Mouse))) — (Visits(x, Tiger)))
Subject Platypus(platypus)
Predicate | A—Teeth(platypus)
AMammal(platypus)

Table 10: Common Errors in First-Order Logic: The
first block of errors are syntactic and the second are
semantic errors. This table categorizes errors by their
cause, with the underlined text highlighting the specific
cause or location of each error. For semantic errors,
there are "True’ values to make sense of the error.


https://llama.meta.com/llama-downloads/
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mistral-7B-v0.3
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1
https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1

Dataset Verifier | Correct

Training | Manual

ProofWriter | Predicate 1978

ProofWriter FOL 2375
FOLIO Predicate 1724
FOLIO FOL 2000

326 2991
1595 2358
- 3448
- 3241

Table 11: Amount of data for each type of perturbations

Inference FOLIO ProofWriter
vanilla* 31.52 64.00
Incremental  32.02 27.16
+Verifier 37.44 29.05

Table 12: Comparing two forms of inference for in-
cremental models. This inference ablation is done on

FOLIO and ProofWriter datasets.
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