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Abstract

Logical reasoning is a fundamental task in natu-001
ral language processing that presents significant002
challenges to Large Language Models (LLMs).003
While symbolic representations such as first-004
order logic (FOL) are well suited for logical005
reasoning, translating natural language (NL)006
into FOL often results in errors that are under-007
explored. We address this by categorizing the008
FOL translation errors in LLMs for deductive009
reasoning task and propose methods to im-010
prove translation quality, specifically for small011
(7B) language models. We introduce PROOF-012
FOL, a high-quality FOL-annotated subset of013
ProofWriter dataset created using GPT-4o. The014
models fine-tuned on this silver standard data015
outperform large (70B) language models. Addi-016
tionally, for better data utilisation in data-scarce017
settings, we present an incremental framework018
that combines data augmentation with a novel019
symbolic translation verification. Augmenta-020
tion generates additional training data by split-021
ting (premises, conclusion) pairs, which when022
used for fine-tuning results in improved per-023
formance over the model fine-tuned on the024
original data. Our investigation of the trans-025
lation errors leads to generation of a perturba-026
tion dataset consisting of simulated NL-to-FOL027
translation errors and their corresponding cor-028
rections, which is used to train a verifier to iden-029
tify and correct potential syntactic and semantic030
FOL translation errors. Our approach lever-031
ages limited human-annotated data, achieving032
state-of-the-art results on the ProofWriter and033
ProntoQA datasets. 1034

1 Introduction035

Recent state-of-the-art methods for logical reason-036

ing from natural language (NL) descriptions op-037

erate via translation (Pan et al., 2023; Ye et al.,038

2024; Olausson et al., 2023). In these methods,039

1The code for fine-tuning, augmentation and verification,
and PROOFFOL dataset are attached with the submission.

a large language model (LLM) is tasked to trans- 040

late statements from NL to first-order logic (FOL), 041

which is then sent for execution to external Sat- 042

isfiability modulo theories (SMT) solvers such as 043

Z3 (De Moura and Bjørner, 2008) and Prover9 (Mc- 044

Cune, 2005). Recent work (Yang et al., 2024) 045

has highlighted the systematic errors that even the 046

most advanced LLMs (such as GPT-4) make dur- 047

ing translation of a single NL statement into its 048

corresponding FOL. Realistic logical reasoning sce- 049

narios are significantly more demanding, as they 050

involves multiple premise statements followed by a 051

conclusion to be verified. These scenarios require 052

consistent NL-to-FOL translations (e.g., in predi- 053

cate naming or the translation of logical operators) 054

across multiple statements. However, very little is 055

explored on the pattern of syntactic and semantic 056

errors LLMs make in such translation scenarios. 057

Existing approaches to reducing NL-to-FOL 058

translation errors have limited impact. They rely 059

on the LLM’s ability to understand and self-correct 060

the translation inaccuracies based solely on the er- 061

ror message from the external SMT solver (Pan 062

et al., 2023). However, the ability to comprehend 063

such error messages is often restricted to larger- 064

scale models (e.g., 175B), and is generally un- 065

available in smaller LLMs (e.g., 7B, 13B). Fur- 066

thermore, while syntactic translation mistakes (e.g., 067

misplaced operator: P∧ → Q, or missing quan- 068

tifiers: P (x) → Q(x)) result in runtime errors 069

detected by the tools, many semantic errors (e.g., 070

use of incorrect quantifiers: All men are mortal. 071

∃x(Man(x) → Mortal(x)) ) bypass SMT tools 072

without triggering any runtime error. This lim- 073

itation hinders such approaches from correcting 074

less trivial errors. A straightforward solution to 075

reduce errors is to fine-tune smaller models on a 076

large-scale NL-to-FOL translation data. However, 077

existing datasets offer very little support, with FO- 078

LIO (Han et al., 2022) as the only FOL-specific 079

human-annotated dataset containing around 1k ex- 080
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Figure 1: Training Pipelines. Generation: Natural Lan-
guage (NL) statements are translated into First-Order
Logic (FOL) statements using a generator (G). These
FOL statements are filtered and pre-processed to extract
a refined subset (ProofFOL), which is used to fine-tune
a smaller language model (L). Augmentation: The NL-
FOL pairs are iteratively expanded to generate a larger
dataset. For each NL-FOL pair (P), data is incrementally
split and expanded. This augmented dataset is utilized
to train another smaller language model (I). Verification:
Errors observed in the FOL statements and predicates
are used to create a perturbation datasets. These datasets
are leveraged to train two types of verifiers: an FOL Ver-
ifier (VF) for correcting FOL statement errors, and a
Predicate Verifier (VP) for handling predicate-specific
issues.

amples of NL (premises, conclusion) and their FOL081

translations. MALLS (Yang et al., 2024), another082

synthetic dataset, contains 28k pair of single state-083

ments and FOL translations. Even with access to084

larger-scale fine-tuning data, a correction mecha-085

nism for smaller models remains essential to catch086

both syntactic and semantic errors on-the-fly during087

inference.088

In this paper, we propose methods to reduce NL-089

to-FOL translation errors. First, we address the090

lack of fine-tuning data by using GPT-4o to create091

PROOFFOL, a dataset of 10, 424 (premises, con-092

clusion) pairs (extracted from ProofWriter (Tafjord093

et al., 2020)) and their FOL translations. These094

translations are validated using Prover9 to ensure095

correctness and passed through multiple formatting096

checks. Models fine-tuned on PROOFFOL, such as097

LLaMA-2 13B (Touvron et al., 2023) and Mistral098

7B (Jiang et al., 2023), outperform larger base- 099

lines such as LLaMA-2 70B and Mixtral 8 × 7B 100

in translation quality and logical reasoning tasks 101

on ProofWriter and ProntoQA (Saparov and He, 102

2022). 103

Second, to effectively utilize the scarce but high- 104

quality human-generated data (i.e., FOLIO), we 105

propose a set of incremental techniques. Specifi- 106

cally, to increase the number of training instances, 107

we split each record into multiple datapoints in an 108

incremental fashion and then train the model to 109

produce the predicates, and to generate the FOL 110

for each premise and conclusion statement one-by- 111

one. This approach improves predictive accuracy 112

on FOLIO by 41%. Finally, to enable fine-grained 113

correction of semantic and syntactic errors during 114

inference, we train separate models (i.e., T5 (Raf- 115

fel et al., 2020)) to verify predicates and FOLs 116

on-the-fly, and apply necessary corrections when 117

needed. Using simulated errors from perturbed 118

FOLIO ground truths, these models either verify 119

correctness or provide corrections, yielding an addi- 120

tional 17% improvement on FOLIO. This process 121

is detailed in Figure 1. 122

Our findings highlight that data is crucial for sur- 123

passing the current performance limits of several 124

LLMs, particularly when employing more acces- 125

sible models for logical reasoning tasks. Our data 126

generation pipeline allows us to create PROOFFOL, 127

the largest FOL-annotated logical reasoning dataset 128

to this date. Our incremental training presents an 129

effective data augmentation method particularly 130

useful for data scarce conditions, while the verifier 131

mechanism and corresponding training protocol of- 132

fers a promising pathway to verify correctness of 133

symbolic forms generated by LLMs at inference 134

time. 135

2 Related Work 136

LLM for symbolic translation The use of for- 137

mal language translations by LLMs was initially 138

attempted by Nye et al. (2021), with an intent to 139

emphasize the importance of dual process theory 140

for logical reasoning tasks. Following this, the pro- 141

cess of reasoning was offloaded to theorem provers 142

and LLMs served as systems to generate symbolic 143

translations (Pan et al., 2023; Ye et al., 2024; Olaus- 144

son et al., 2023). The available research in this 145

method majorly differs in variation of formal lan- 146

guage (used by different theorem provers) and veri- 147

fication process to handle translation errors. These 148
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methods make use of expensive and ambiguous2149

GPT models, restricting the symbolic framework150

to non-critical domains. Corresponding to the work151

in formal logic, Yang et al. (2024) applied super-152

vised finetuning to LLaMA model to improve the153

natural language to first-order logic translations154

at a sentence level. Our research shifts the focus155

to building a complete translation system that can156

handle multiple statements. In addition to this, we157

perform a systematic analysis of translation errors158

which enabled us to build a verification mechanism.159

Symbolic Decoding with LLMs The choice of160

decoding strategies can improve text generation,161

specifically in LLMs where the output follows162

a structured format. In neuro-symbolic models,163

neuro-logic decoding (Lu et al., 2020, 2021) ap-164

plies symbolic constraints. Interactive theorem165

provers were also used alongside LLMs to en-166

sure a constrained generation of the reasoning path167

(Poesia et al., 2023). Other techniques like con-168

trastive step-wise decoding helped with improv-169

ing the probability of a correct reasoning path (Su170

et al., 2023). The success of these symbolic de-171

coding strategies motivates our research to apply172

verification during the inference stage.173

Deductive reasoning benchmarks Deductive174

logical reasoning requires logical derivation of con-175

clusion using a set of premises. Benchmarks such176

as ProofWriter (Tafjord et al., 2020) and ProntoQA177

(Saparov and He, 2022) highlight multi-hop rea-178

soning paths, but limit their use in tasks requiring179

formal rigor 3. To address this, we build an FOL180

dataset to adapt ProofWriter for formal reasoning181

tasks, enhancing its ability to handle structured, in-182

terpretable logical inferences and enabling access183

to verification and theorem proving. The capability184

of this dataset when compared to existing bench-185

marks is detailed in Appendix B.186

FOLIO (Han et al., 2022), with human-annotated187

FOL sentences, offers a semantically complex de-188

ductive task but is limited by its small size, lim-189

iting its use for developing or improving formal190

language translation models. We present data aug-191

mentation technique to overcome this issue. To192

the best of our knowledge, our work is the first at193

using the incremental setting (augmentation), and194

2We refer to ambiguity in the data used to train the GPT
model.

3Although ProofWriter dataset is generated using logic
programs, the original logical forms of ProofWriter data and
framework used for conversion to natural language are not
released with their data and therefore not available.

verification in the context of logical reasoning with 195

NL. 196

3 NL-to-FOL Translation Errors 197

First-order logic (FOL) is a logical framework us- 198

ing variables, functions, and quantifiers, often ap- 199

plied in natural language reasoning. Large Lan- 200

guage Models (LLMs) have demonstrated varying 201

success in translating natural language into formal 202

representations. Among these formalism, NL-to- 203

FOL translation presents unique challenges involv- 204

ing syntactic and semantic interpretations. We at- 205

tempt to categorize these syntactic and semantic 206

errors as a foundation for our data perturbation 207

protocol to train FOL verifiers (presented shortly). 208

Syntactic errors arise from deviations in gram- 209

matical rules during translation. For example, the 210

rule “every free variable assigned to a predicate 211

must have a quantifier” applied to the statement 212

“Green people are blue” requires requires a quan- 213

tifier ‘∀’ for the variable x. Missing quantifiers 214

or operators can cause parsing errors, detected by 215

tools like Prover9, which provides feedback on 216

syntax issues. Common categories include: 217

• Parsing errors: Missing/invalid operators or 218

parentheses. 219

• Type errors: Missing quantifiers or sentence- 220

level discrepancies. 221

• Token errors: Use of invalid tokens (e.g., $). 222

Semantic errors are harder to detect as they con- 223

form to formal structure but misrepresent mean- 224

ing. For example, the statement “All rabbits 225

have fur” translated to the FOL ∃x(Rabbit(x) → 226

Have(x, fur)) incorrectly quantifies the statement. 227

Key categories include: 228

• Sense errors: General inaccuracies in NL-to- 229

FOL mapping. 230

• Arities errors: Predicate mismatches in argu- 231

ment count. 232

These errors are further analyzed in detail (see Ap- 233

pendix H). 234

4 Incremental Fine-Tuning and 235

Verification 236

4.1 Data Generation and Fine-tuning 237

The alignment of a language model to follow in- 238

structions for a specific task can be accomplished 239

by fine-tuning on substantial data. The task of for- 240

mal translations require first-order logic of their 241
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natural language counterparts. Ideally, this task is242

at a passage level rather than sentence level, which243

makes it challenging for a language model to fol-244

low a required format. To overcome this, we need245

sufficient passage level translations, which are time-246

consuming to generate through human annotations.247

We introduce a streamlined process for generat-248

ing this FOL data and ensuring correctness of the249

format, grammar, and order of the translations.250

Data Generation For the data generation pro-251

cess, we pick ProofWriter which comes with large252

number of training records, each consisting of mul-253

tipe premises and a conclusion, and variations in254

depth of reasoning. The format of the FOLs is255

set to be consistent with the “Prover9" theorem256

prover, which has a human understandable, formal257

language syntax.4 The fixed format of demonstra-258

tions is adapted from Pan et al. (2023), where we259

generate predicates followed by first-order logic260

statements for each sentence. We standardize the261

formal language to Prover9 and apply it consis-262

tently across all datasets.263

At a glance, the output from the GPT model has264

formatting issues, such as assigning numbers to265

each generation, explaining the task before gener-266

ation, and solving for conclusion after producing267

translations. These issues are parsed using pat-268

tern matching to obtain the maximum number of269

translations. After the parsing stage, the syntax270

check is done by Prover9, where the tool can pro-271

vide unique feedback for each form of syntax error.272

When analysing these errors, we observed grammar273

rules that can be fixed in the tool to include unicode274

decoding, allow unordered quantifiers and support275

negation of a full formula. This addition of gram-276

mar rules minimized the penalization for transla-277

tions. The semantic errors were identified by com-278

paring the ground truth label from ProofWriter with279

Prover9-generated output based on FOLs. This sys-280

tematic pipeline enabled the retention of 70% of the281

silver-standard data. We name this dataset PROOF-282

FOL, comprising 10, 424 NL-FOL passage-level283

pairs of NL-FOL translations.284

Supervised Fine-tuning (SFT) Each input x285

to the SFT is a set of premise statements Px(=286

4Given the requisite for diversity in syntax and semantic,
we first chose a few combinations of demonstrations, and ran a
small scale experiment through GPT-4o for each combination.
We then selected the most optimal demonstrations with the
least format and translation issues in the resulting generated
FOL data. We report these final demonstrations in Appendix
C.

{P1, P2, . . . , Pn}), a conclusion Cx, and an in- 287

struction (I) represented as [Px, Cx, I]. In order 288

to avoid over-fitting the model to certain spurious 289

patterns in GPT-4o translations, we include human- 290

generated dataset (FOLIO) in the mix. We create 291

a set of models built on the full dataset, provid- 292

ing a perspective for model behaviour with size of 293

the dataset. Since this SFT model employs both 294

existing and synthetic data, it imposes a dilemma 295

of the effect of gold-standard data on the results 296

when compared to the generated silver-standard. 297

To validate the reliability of our generated data, 298

we fine-tune the model on a subset of the dataset 299

and examine how increasing the data size impacts 300

logical reasoning tasks. For a given input x, the out- 301

put of SFT models are predicates of x (denoted as 302

Predx), and FOLs of its premises and conclusion, 303

[Predx, FOLPx , FOLCx ]. 304

4.2 Incremental Techniques 305

The SFT method described in the previous sec- 306

tion uses the FOLIO dataset as just a small com- 307

ponent of the overall approach. With high number 308

of records associated with PROOFFOL, we can as- 309

sume that the in-distribution dataset will show a 310

major improvement when compared to FOLIO. To 311

enhance the performance of FOLIO dataset (and 312

in general any similar data-scarce scenario), we in- 313

troduce ‘Incremental Techniques’ for maximizing 314

the use of limited data. These techniques encom- 315

pass data augmentation, incremental fine-tuning 316

and inference, and incremental verification of pred- 317

icates and FOLs, creating a comprehensive setup 318

for FOL generation. We further expand this method 319

to a smaller subset of PROOFFOL to simulate data 320

scarce environment. 321

4.2.1 Data Augmentation 322

Supervised Fine-tuning a decoder model is techni- 323

cally an unannotated form of training as the super- 324

vised part of the fine-tuning refers to the label that 325

is passed with the input. During a vanilla SFT pro- 326

cess, we pass the whole output along with the input, 327

and the model performs inference as a text com- 328

pletion task. This motivates our data augmentation 329

method, where the model examines smaller part 330

of the output rather than training on the whole out- 331

put at a time. The FOL translation is one such task 332

where the output sequence is lengthy and the model 333

can deviate from generating the correct syntax. 334

To initiate the data augmentation process, we 335

split the output of the original record to repre- 336
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sent incremental data, where the first output is337

[Predx], the second output is [Predx, FOLP1 ],338

and so on till we reach the full output339

[Predx, FOLP1 ..., FOLPn , FOLCx ]. This splits340

a single record into n + 2 records, where n is341

the number of premises and ‘+2’ is for predicate342

and conclusion generation. The input remains the343

same for all the records. This data augmentation344

increases the dataset size to about 7× and 20× for345

FOLIO and ProofWriter, respectively. With this346

enhanced data, we train a set of SFT models for347

FOL translation tasks.348

4.2.2 Inference349

The SFT for augmented data is performed using350

two instructions, indicating two types of tasks. The351

first instruction is “Generate predicates for the352

given natural language sentences." to generate the353

predicates, and the second is “Given a premise354

and conclusion, generate the first order logic form355

of the premises and conclusion." to generate the356

FOL statements. At inference, we provide the357

model with the instruction to generate the pred-358

icates. These predicates, along with the input, are359

then passed to the model to infer the FOL state-360

ments. We categorize FOL inference into two361

forms.362

• Vanilla Inference: In vanilla inference, the363

model is provided with the natural language364

statements and is asked to generate the pred-365

icates and the FOL translations for the com-366

plete input.367

• Incremental Inference: In incremental in-368

ference, we first generate the predicates,369

and then limit the generation to a single370

FOL translation at a time by setting a low371

maximum_new_token parameter. For every372

FOL generation, we pass the previously gen-373

erated values as input. For example, if we374

are generating FOLP3 , the input would be375

[Px, Cx, P redx, FOLP1 , FOLP2 ].376

4.2.3 Verification and Correction377

Since the incremental inference allows individual378

predicate and FOL generation, we train two veri-379

fiers; predicate and FOL, to detect and correct the380

potential errors. The term ‘verifier’ refers to both381

the verification and correction processes.382

• Predicate Verifier The Predicate verifier383

takes the [Px, Cx, P redx], as the input, and384

evaluates the predicted predicate Predx. If 385

the verifier considers Predx correct, the out- 386

put is just ‘correct’, otherwise the verifier 387

will generate the corrected predicates set. To 388

achieve this outcome, the verifier is trained 389

on the perturbed predicates of the training 390

dataset used for SFT. The perturbations for 391

predicates are created based on the semantic 392

errors related to predicates. Few perturbations 393

used are; omitting predicate, omitting vari- 394

able, adding variable, and adding duplicate 395

predicate. 396

• FOL Verifier The FOL verifier takes 397

[PredNL, FOLNL,NL] as the input, where 398

FOLNL represents predicted FOL form of a 399

single premise (Pi) or conclusion (Cx) state- 400

ment (represented as NL). The verifier evalu- 401

ates FOLNL as ‘correct’ or will generate a cor- 402

rected FOL. Similar to predicate verifier, we 403

used the original SFT training set and applied 404

perturbations to train this Verifier model. The 405

perturbations used in this method are crafted 406

based on the common syntax and semantic 407

errors in translations (Section 3). Few pertur- 408

bation used in this verifier are; changing quan- 409

tifier position, omitting a quantifier, omitting 410

parenthesis, tweaking negations, and replac- 411

ing operators. 412

In addition to these perturbation instances, we 413

incorporate real errors from the SFT training data. 414

Specifically, we run the inference of the training 415

data on the SFT model and collect the predicate 416

and FOL, which do not match the ground truth, as 417

errors. We add these errors to the fully-controlled 418

created perturbations to form the ‘incorrect verifier 419

training instances’. Finally, in order to verify ‘cor- 420

rect’ predictions, we take the predicate and FOL 421

values from the ground-truth and label them as ‘cor- 422

rect’. We generate the perturbation dataset from 423

a seed of 1k examples of FOLIO and similarly 424

for ProofWriter. For detail statistics on the size 425

of the resulting perturbation datasets, please see 426

Appendix J. 427

Inspired by Han et al. (2023), after the creation 428

of the training data for the two verifiers, we fine- 429

tune a T5-Large (Raffel et al., 2020) model to work 430

as the verifier. We train two separate models for 431

the Predicate and FOL verification on each dataset. 432

During incremental inference, the verifier is incor- 433

porated into the decoding phase, as shown in Fig 434

2. 435
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Figure 2: The overall flow of the incremental generation and verification at inference time. Here Pis and C denote
Premises and Conclusion. For predicate and FOL generation, the output is run through the corresponding verifier.

5 Experimental Setup436

PROOFFOL Data Generation. We used437

ProofWriter Open World Assumption (OWA)438

training data with depth 5 and generated 15, 000439

FOL records via gpt4-o. Regex parsing was440

applied to extract clean FOL statements, filtering441

incomplete or excessive text. The FOL statements442

are then passed to the Prover9 tool to perform443

deductive reasoning, where the tool returns444

‘True’, ‘False’, ‘Unknown’, or ‘None’ for errors.445

Mismatches with ground truth were removed. See446

Appendix A for details of prompt templates and447

statistics.448

Vanilla SFT. We fine-tuned LLaMA-2 (13B) and449

Mistral (7B) on ProofWriter, FOLIO, and Pron-450

toQA using 3-epoch supervised fine-tuning (SFT)451

with LoRA (Hu et al., 2022) and 8-bit quantization452

for inference. Models were evaluated in two modes:453

NL-based (Standard) and FOL-based, leveraging454

Prover9. The initial baselines use in-context learn-455

ing (ICL) for standard and FOL generation. The456

few-shot examples for standard generation are ran-457

domly sampled from the training data, ensuring458

a balanced output distribution. ProntoQA served459

as an out-of-distribution (OOD) benchmark with460

ProofWriter demonstrations during inference. Ap-461

pendix C provides details on few-shot templates.462

Incremental SFT. Incremental SFT is performed463

on LLaMA-2 13B model following the same train-464

ing process as vanilla SFT, with adjustments for465

inference to reduce token generation time. Data466

augmentation increased data size of FOLIO (1,000467

to ∼ 7000 records) and ProofWriter (1,000 to ∼468

20000 records). Fine-tuning was also performed on469

original datasets for baseline comparisons. Dataset470

statistics are in Appendix I.471

Verifier Training. We trained four T5-large472

verifiers on perturbed datasets for FOLIO and473

ProofWriter. The perturbations were applied on474

their respective training data and vary with the com- 475

plexity of the FOL statements. The T5 models were 476

trained for 10 epochs using AdamW (Loshchilov 477

and Hutter, 2019) and a learning rate of 5 × e−5. 478

Once trained, the verifiers could run in synchronous 479

(online) or asynchronous (offline) mode. While the 480

online mode corrects errors at each step of infer- 481

ence, before moving to next step (i.e., correction at 482

time step t impacts step t+ 1 during generation), 483

the offline mode applies corrections on the fully 484

generated predicate and FOLs as a post-processing 485

step (i.e., correction at time step t does not have 486

any consequential effect on t+ 1). For time over- 487

head of incremental decoding and verification, see 488

Table 2. 489

6 Results and Discussion 490

6.1 Main Results 491

Table 1 presents results on logical reasoning dataset 492

using in-context learning (ICL) and supervised 493

fine-tuning (SFT), comparing performance across 494

model sizes. LLaMA-2 70B and Mixtral 8 × 7B 495

serve as baselines for LLaMA-2 13B and Mistral 496

7B, respectively. 497

Standard experiment reports free-form reason- 498

ing, where the LLM is given a question (premises 499

and a conclusion) and is tasked to produce a di- 500

rect response. Few-shot ICL results vary across 501

datasets, with Mistral and Mixtral outperform- 502

ing other models. LLaMA-2 13B fine-tuned on 503

PROOFFOL achieves notable improvements for 504

ProofWriter but shows limited gains for FOLIO 505

and ProntoQA. Mistral models perform better after 506

fine-tuning, particularly with smaller datasets. 507

FOL experiments show correlation of perfor- 508

mance with model size, where, for few-shot ICL, 509

LLaMA-2 70B and Mixtral perform consistently 510

better than their smaller versions. ProofWriter 511

achieves 86% accuracy with LLaMA-2 13B model, 512

fine-tuned on PROOFFOL, which is a significant 513
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Type Model Standard FOL
Pr

oo
fW

ri
te

r ICL n-shot

LLaMA-2 70B 41.83 78.33
LLaMA-2 13B 44.16 24.66
Mistral 7B 49.67 66.50
Mixtral 8× 7B 45.83 85.00

SFT
5000

LLaMA-2 13B 64.16 53.50
Mistral 7B 70.33 98.17

10000
LLaMA-2 13B 85.66 86.33
Mistral 7B 69.50 97.83

Pr
on

to
Q

A

ICL n-shot

LLaMA 70B 50.60 38.80
LLaMA-2 13B 47.19 11.4
Mistral 7B 50.60 10.80
Mixtral 8× 7B 58.40 13.00

SFT
5000

LLaMA-2 13B 55.40 53.20
Mistral 7B 60.00 78.60

10000
LLaMA-2 13B 53.20 47.80
Mistral 7B 70.40 85.40

FO
L

IO

ICL n-shot

LLaMA-2 70B 50.74 34.97
LLaMA-2 13B 43.84 24.13
Mistral 7B 51.23 35.96
Mixtral 8× 7B 57.14 42.36

SFT
5000

LLaMA-2 13B 40.89 26.11
Mistral 7B 67.98 26.11

10000
LLaMA-2 13B 40.89 34.48
Mistral 7B 66.01 27.59

Table 1: Comparison of models’ deductive reasoning
accuracy under Standard and FOL-based output pre-
diction. Here ICL denotes “in-context learning" with
n-shots (details of shots in appendix), and SFT denotes
“supervised fine-tuning" (on 5k or 10k training data sub-
set from PROOFFOL). Accuracy metrics in bold signify
notably high performance within the same benchmark,
while underline indicates best results under Standard
and FOL for ICL and SFT.

gain in performance when compared to ICL. Mis-514

tral fine-tuned models are the state-of-the-art in515

FOL generation for ProofWriter datasets, where the516

model produces 0 syntax errors after fine-tuning.517

ProntoQA, an altered form of ProofWriter, shows518

similar trends in performance gain with our fine-519

tuned models. Mistral 7B fine-tuned on PROOF-520

FOL data outperforms all the ProntoQA baselines.521

For ProntoQA, there is an observed negative effect522

of overfitting, when LLaMA-2 is trained on larger523

dataset (increasing training data from 5k to 10k),524

but we don’t notice this for Mistral. We speculate525

this might be reflective of difference in model size526

and how it impacts potential training memorization527

(i.e., overfitting) for larger models.528

FOLIO, as expected, is a challenging dataset529

with complex language and structure. Mixtral530

model achieves the highest few-shot accuracy at531

42%. Fine-tuned LLaMA-2 13b improves from532

24% to 34%, and is on-par with a much larger533

(a)

(b)

Figure 3: Error distribution of LLaMA-2 70B (top) and
13B (bottom) post fine-tuning on PROOFFOL.

LLaMA-2 70B. Syntax and semantic error metrics 534

are detailed in Appendix G. 535

Error Distribution We provide an error distri- 536

bution of models on NL-to-FOL translation er- 537

rors. The results for LLaMA-2 70B with ICL 538

and LLaMA-2 13B after fine-tuning is provided 539

in Fig 3. ProofWriter and ProntoQA show decline 540

in errors, whereas FOLIO stays equivalent to the 541

LLaMA-2 70B ICL model. This plot indicates that 542

a model significantly smaller in size can achieve 543

better generation over a larger model when fine- 544

tuned with relevant data. 545

6.2 Incremental Results 546

Incremental techniques are performed on ground 547

truth FOLIO and a subset of PROOFFOL dataset. 548

The intention behind the incremental technique is 549

to show that the data augmentation method im- 550

proves the translations over the original dataset. 551

In Table 2, we focus on the shift in performance 552

between LLaMA-2 13B model fine-tuned on the 553

original 1000 records and augmented 1000 × n 554

records, where n represents the scale at which the 555

data grows after augmentation. Both FOLIO and 556

ProofWriter have low performance in FOL gener- 557

ation when trained with a small dataset, but FO- 558

LIO improves steadily with incremental techniques. 559

This pushes us to use a verifier to further the per- 560

formance. With the predicates corrected during 561

generation and FOLs corrected after inference, this 562

verifier based incremental setting achieves 37% us- 563

ing Offline verifier, which outperforms LLaMA-2 564

70B ICL accuracy 34.97% (Table 1). ProofWriter, 565

when trained incrementally, provides varied results 566

with different inferences. The verifier inference 567
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Models Inference FOLIO ProofWriter

ICL Baseline Vanilla 24.13 24.66

SFT Vanilla (1k) Vanilla 22.66 (01:55) 24.50 (03:36)
SFT Incremental (1k*) Incremental 32.02 (02:58) 27.16 (02:42)
SFT Incremental (1k*) +Verifier (On-Off) 37.44 (03:05) 29.05 (03:10)
SFT Incremental (1k*) +Verifier (On-On) 29.56 (03:27) 32.50 (03:31)

Table 2: Comparison of LLaMA-2 13B models on FO-
LIO and ProofWriter with various training and inference
protocols. 1k* is the incremental SFT data that expands
to 7k (FOLIO) and 20k (ProofWriter) data points for
training. Inference time for SFT models for each record
is reported as average (MM:SS). Vanilla: Predicates and
FOLs are generated in one pass. Incremental: Pred-
icates are generated in one pass and then fed into the
next step along with premises and conclusions to gen-
erate FOLs one by one. +Verifier (On-Off): Predicate
verifiers are called during inference (Online) while FOL
verifiers are called once all FOLs are generated (Offline).
+Verifier (On-On): Both verifiers are used online.

model achieves 29% an 32% accuracy when com-568

pared to the SFT model on original dataset, 24%.569

It can be noted that the performance of the FOLIO570

model is lower when the FOL verifier is online,571

since any error from the verifier is passed on to the572

next generation and can cause a domino effect. The573

change in inference times between incremental and574

verifier settings is minimal. 5575

6.3 Ablation Studies576

The incremental methods follows certain rules of577

finetuning and generation. Our model uses two578

instructions for predicate and FOL generation. We579

performed an ablation study on using different vari-580

ation of incremental training and inference for FO-581

LIO dataset. The type of ablations and their per-582

formances are given in Table 3. These were per-583

formed before training the verifier module. In place584

of the verifier, we initially used Prover9 to check585

for syntax and any invalid generation followed a586

sampling by the LLM, and the first error free FOL587

was selected. This method proved ineffective as the588

sampling method was time-consuming. The results589

in the table are after the tool verification, except for590

the Check model, where we use LLM as a verifier.591

Mixed is the current method of incremental train-592

ing and inference, where we use different instruc-593

tions for predicate and FOL generation. Single594

method uses only one instruction;‘Complete the595

generation’. This performs equivalent to the Mixed,596

but results in additional syntax errors, presumably597

5For ProofWriter, adaptive token sizing reduces inference
time by adjusting token size based on sentence length.

Instruction Accuracy Syntax errors

Mixed 35.46 64
Single 35.47 70

Ordered 32.02 63
Unique 21.18 80
Check 27.09 108

Table 3: Comparison of Incremental Methods with In-
struction Fine-tuning. Each method represents the type
of instruction used for fine-tuning and inference. The
syntax errors are out of 203 test records in FOLIO.

because of the vague instruction. Ordered uses dif- 598

ferent instructions for each FOL generation. The in- 599

structions carry information about the sentence that 600

is required to be translated. This method helped 601

keep the syntax errors low, but lowered the over- 602

all performance. Instead of passing the previously 603

generated FOL to the next generation, we applied 604

Unique, where the statements are split and passed 605

one at a time with the predicate values. This per- 606

forms poorly and does not include passage level 607

translations. In Check, we use the perturbation 608

dataset with specific instructions along with the 609

training dataset for fine-tuning. We instruct the 610

model to identify and correct the errors at infer- 611

ence. This method relies on the language model to 612

perform a new task with limited data and proves to 613

be ineffective. 614

7 Conclusion 615

Formal language translation systems for logical rea- 616

soning task worked effectively in the era of LLMs, 617

with persisting translation errors. In this paper, we 618

provided an understanding of general translation 619

errors by LLMs, when used as NL-to-FOL trans- 620

lation systems. We highlighted the importance 621

of first-order logic (FOL) ground truth data and 622

present a pipeline to generate high quality FOLs for 623

ProofWriter dataset, introducing an FOL-annotated 624

data called PROOFFOL. Using PROOFFOL, we 625

fine-tuned a set of smaller language models and 626

showed an increase in performance over larger 627

LMs. Additionally, the issue of data scarcity is 628

addressed via proposing incremental techniques, 629

which cover data augmentation, inference veri- 630

fication, and correction. Our experiments on 3 631

benchmarks highlight the potential of our proposed 632

framework. 633
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8 Limitation634

The incremental setup proposed in our method de-635

pends on the quality of the data. While FOLIO636

is highly effective, it may occasionally introduce637

some noise. The silver data generated using GPT-638

4, though processed with care, may contain minor639

inconsistencies, as detailed in Appendix D. Ad-640

ditionally, using models like GPT-4 can present641

challenges in reproducing the exact dataset for fu-642

ture reference. To address this, we have provided643

all necessary prompts to facilitate consistent gener-644

ation of similar datasets.645

The baselines for the provided datasets are run646

similarly to the existing work, though we acknowl-647

edge that exact comparisons are not possible due648

to the use of different models and some challenges649

with reproducibility. As a result, we consider out-650

puts from larger models as the baseline, following a651

similar methodology. We also present results from652

larger proprietary models in Appendix F; however,653

due to limited information on their training process,654

we treat these comparisons as supplementary rather655

than definitive.656

We would also like to acknowledge that incre-657

mental methods may result in longer inference658

times for the Llama model; however, from our659

previous experiments on vanilla SFT, we noticed660

that inference times vary depending on the models661

used.662
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A Data Generation 776

The data pipeline applied for generating ProofFOL 777

is detailed in Fig 4. The train data is 15000 data 778

points with depth-5 from ProofWriter dataset. The 779

15k records are sampled randomly ensuring a fair 780

distribution of the labels; True, False, and Uncer- 781

tain. The LLM here is GPT4o with a output to- 782

ken length of 1000 for each generation. We use 783

url = /v1/chat/completions format for batch 784

generations of GPT4o. The logical solver is Prover 785

9, a theorem prover suitable to run in python en- 786

vironment with nltk library, that uses CNF conver- 787

sions, quantifier operations, and skolemization to 788

transform the clauses into a tree format. Parsing 789

errors by Prover 9 occur when the FOL formula 790

cannot be converted to a tree structure because it 791

does not follow specific grammar rules. After filter 792

and parsing stages, we get 10424 records with FOL 793

statements. Syntax errors are the errors thrown by 794

the tool and semantic errors are measured by com- 795

paring the ground truth label with the solver output. 796

Figure 4: Overview of the Data Generation Pipeline and
Key Statistics

797

B Dataset Comparison 798

The ProofFOL dataset consists of around 10, 000 799

NL-FOL translation data-points, consisting of 800

premises and conclusions. This makes it the largest 801

existing FOL dataset designed for logical reasoning 802

tasks. Specifically, in the context of deductive rea- 803

soning tasks (Luo et al., 2023), current datasets of- 804

ten present natural language statements with either 805

a conclusion that must be logically deduced from 806

the premise or multiple-choice options evaluating 807

the logical relevance of a reading comprehension 808

passage (Liu et al., 2020). We focus on single- 809

answer questions that enable rule-based deduction. 810

Such rule-based deduction facilitates application in 811

formal settings. 812

ProofFOL distinguishes itself from other 813

datasets in terms of data size, the availability of 814

a comprehensive training set, formal translations, 815

10
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FOLIO LogiQA ProntoQA ProofWriter ProofFOL
Large Dataset × ✓ ✓ ✓ ✓
Training Set ✓ ✓ × ✓ ✓
FOL translations ✓ × × ✓ ✓
Rule-Based Generation ✓ ~ ✓ ✓ ✓

Table 4: Comparison of Deductive Reasoning Datasets
with Our Dataset, ProofFOL. A large dataset is defined
as having over 5,000 records. The training set indicates
the availability of data for fine-tuning. Ground truth
FOL translations refer to provided First-Order Logic
expressions. Rule-based generation denotes the ability
to derive solutions systematically using predefined rules
without external intervention.

and its ability to support rule-based derivations.816

Figure 4 highlights these variations across the pri-817

mary logical deductive reasoning datasets.818

C Few Shot Examples819

In this section, the few-shot format used for all the820

in-context learning tasks are presented.821

Few-shot for Data-augmentation The Fig 5822

shows the format of the few-shot example for data823

generation. We tried this with 2 examples for 50824

unique training data points, but it did not generate825

better translation results. Instead, we ensured that826

all operators are covered in this example, specif-827

ically negation. We first generate predicates as-828

sociated with the sentence. This is followed by829

FOL generation. Each FOL generation comes with830

the natural language statement and this format is831

adapted from (Pan et al. 2023). We use the same832

format of generation for all of our experiments with833

the exception of Predicates description, as this part834

is harder to verify. The description is removed from835

ProofFOL.836

• Standard generation: For standard generation,837

we randomly sample examples from the train-838

ing set. We use 5-shot for FOLIO and 4-shot839

for ProofWriter and ProntoQA as shown in840

Fig 6 and Fig 7841

• FOL generation: For FOL generation, we par-842

tially use examples from (Pan et al. 2023)843

and sample the rest from the training set. The844

FOL syntax is fixed to represent Prover9 for-845

mat. We use 3-shot for FOLIO and 2-shot for846

ProofWriter and ProntoQA as shown in Fig 8847

and Fig 9848

D Human evaluation of ProofFOL849

The ProofFOL dataset is a silver-standard dataset.850

To ensure the accuracy of the data, we conducted851

Figure 5: Few shot example with instruction for Data
Generation process

a human evaluation on a random sample of 50 852

records from our dataset (containing a total of 853

1, 018 statements) where the final outputs were cor- 854

rect. Out of these 1, 018 translations, we identified 855

only 22 errors (i.e., 2%), half of which were minor 856

and did not alter the meaning of the FOL state- 857

ments. Another extrinsic indication of data quality 858

is the improvement reported in Table 2 for SFT on 859

5k and 10k records. Additionally, we verified other 860

semantic aspects, including predicate values and 861

variable completions, finding zero errors in predi- 862

cate values and only one error in variable comple- 863

tions. Further details on this can be found in the 864

Table 6. 865
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Figure 6: Standard Generation Few-shot examples for
FOLIO: For brevity, we highlighted the format and the
instructions and minimized the content in the few-shot
examples.

Figure 7: Standard Generation Few-shot examples for
ProofWriter and ProntoQA

E Datasets866

We utilize three datasets in our experiments.867

• ProofWriter: The training set for ProofWriter868

is sampled from the depth-5 records. For test-869

set, we use the one provided in (Pan et al.870

2023)871

• ProntoQA: ProntoQA is a test dataset. We872

use ProofWriter examples as training set and873

test-set sample from (Pan et al. 2023)874

• FOLIO: FOLIO has 1001 training set records875

and 203 dev set records. We use the origi-876

nal training set for SFT models and dev for877

evaluating the model.878

Dataset Standard FOL

ProofWriter 4 2
FOLIO 5 3

ProntoQA 4 2

Table 5: Number of Few-shot examples used for creat-
ing baselines in Table 1

Figure 8: FOL Generation Few-shot examples for FO-
LIO

Error Types Description Number
of Errors

FOL Match Validates the correctness of a single FOL statement in
relation to its corresponding NL text.

22

Non-subject Predicates Ensures that predicates are meaningful and do not include
any shortcuts.

0

Non-subject Constants Flags instances where constants take shortcuts, similar to
predicate validation.

1

Table 6: Error types and descriptions for human evalua-
tion of a sample of ProofFOL dataset, specifically 1018
translations.

Dataset Original Augmented

ProofWriter 1000 7288
FOLIO 998 20145

Table 7: Size of training datasets before and after data
augmentation

F Additional Baselines 879

We conducted experiments on additional propri- 880

etary models, and the results are presented in Ta- 881

ble 8. The results demonstrate that our model, 882

trained on ProofFOL, outperformed these closed 883

source models in ProofWriter, highlighting the sig- 884

nificance of our dataset. 885

G SFT Models 886

SFT with PROOFFOL is performed on two models; 887

LLaMA-2 13B and Mistral 7B. These models are 888

selected based on their low computational cost and 889

model parameters. The models are fine-tuned for 3- 890
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Figure 9: FOL Generation Few-shot examples for
ProofWriter and ProntoQA

Dataset Model Standard FOL
ProofWriter Llama2 70B 41.83 78.33

Mixtral 8X7B 45.83 85.00
GPT-4o mini 36.33 74.17
Gpt-3.5-turbo-instruct 52.83 90.17
Gemini Flash 54.33 89.00

ProntoQA Llama2 70B 50.74 34.97
Mixtral 8X7B 57.14 42.36
GPT-4o mini 57.40 53.80
Gpt-3.5-turbo-instruct 49.40 24.80
Gemini Flash 72.20 93.60

FOLIO Llama2 70B 50.74 34.97
Mixtral 8X7B 57.14 42.36
GPT-4o mini 40.39 45.81
Gpt-3.5-turbo-instruct 50.25 47.29
Gemini Flash 64.04 55.66

Table 8: Performance comparison across other propri-
etary baselines.

epochs with a fixed batch size and LoRA (Hu et al.,891

2022). The inference is done using an 8-bit quanti-892

zation with the trained LoRA adaptor. Temperature893

and top_p are fixed at 0 and 1 respectively, with894

a variation of maximum_new_token value based on895

the dataset. ProofWriter requires larger number896

of tokens at inference when compared to FOLIO897

because of the size of input. Additionally, as NL-898

based baseline, separate versions of models are also899

fine-tuned on textual data without symbolic transla-900

tions (the corresponding results are reported under901

Standard). The test data used in our experiments902

are taken from Pan et al. (2023) for ProofWriter903

and ProntoQA. FOLIO comes with a pre-defined904

dev dataset, that is used for evaluations.905

Table 9 is an extension of Table 1 from the main906

paper. It shows the variations in the syntax and907

semantic errors with ICl and fine-tuning. There is908

Type Model Syntax Semantic

Pr
oo

fW
ri

te
r(

60
0) ICL n-shot

LLaMA-2 70B 44 86
LLaMA-2 13B 314 138
Mistral 7B 130 71
Mixtral 8× 7B 44 46

SFT
5000

LLaMA-2 13B 71 15
Mistral 7B 0 11

10000
LLaMA-2 13B 69 13
Mistral 7B 0 13

Pr
on

to
Q

A
(5

00
) ICL n-shot

LLaMA 70B 203 103
LLaMA-2 13B 266 177
Mistral 7B 420 26
Mixtral 8× 7B 413 22

SFT
5000

LLaMA-2 13B 108 126
Mistral 7B 26 81

10000
LLaMA-2 13B 139 122
Mistral 7B 13 60

FO
L

IO
(2

03
) ICL n-shot

LLaMA-2 70B 19 113
LLaMA-2 13B 95 59
Mistral 7B 95 35
Mixtral 8× 7B 79 38

SFT
5000

LLaMA-2 13B 103 47
Mistral 7B 64 86

10000
LLaMA-2 13B 88 45
Mistral 7B 48 99

Table 9: Syntax and Semantic error count for FOL gen-
eration

a constant trend of lower syntax errors with fine- 909

tuning the models with relevant data for both Llama 910

and Mistral models. 911

H Error Analysis 912

The NL-FOL translation errors can be identified 913

using the tool feedback or a mismatch in tool out- 914

put with the ground truth. We identify these issues 915

and categorize them into syntax and semantic er- 916

rors. Fig 10 shows examples of each type of error. 917

These are identified by manually analysing the FOL 918

statements in cases where there was no feedback 919

from the tool. The details of each error are provided 920

here. 921

• Missing quantifier: When a predicate includes 922

a variable, it must have either a Universal 923

Quantifier ‘∀’ or an Existential Quantifier ‘∃’. 924

This error occurs if either quantifier is miss- 925

ing. 926

• Parenthesis error: The formula becomes in- 927

valid if there is an extra or a missing parenthe- 928

sis. 929

• Completion error: The FOL is either incom- 930

plete or contains additional text that disrupts 931

its logical flow. 932
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• Quantifier location: Quantifiers that are either933

repetitive or incorrectly positioned result in934

grammatical inaccuracies in the expression.935

• Missing variable: When multiple quantifiers936

are present, the tool fails to parse predicates937

that lack free variables.938

• Special token: The tool does not handle spe-939

cial characters in the input.940

• Unknown operator: The tool does not support941

parsing mathematical equations.942

• Predicate error: These errors arise when pred-943

icates are reused with different subjects, omit-944

ted entirely, or conjoined inappropriately, lead-945

ing to erroneous interpretations of the logical946

constructs in FOL statements. Such misinter-947

pretations can affect the accuracy and reliabil-948

ity of responses generated by LLMs.949

• Incorrect quantifier: This occurs when an ex-950

istential quantifier is incorrectly chosen in951

situations that require a universal quantifier,952

leading to a logical contradiction between the953

terms. This mismatch between the chosen954

quantifier and the necessary logical condition955

can result in flawed reasoning and inconsis-956

tencies in logical analysis.957

• Predicate mismatch: It occurs when LLMs958

are tasked with generating predicates based959

on text passages and fail to recognize syn-960

onymous terms as equivalent. This results in961

the tool counting synonyms as distinct tokens,962

leading to discrepancies in predicate genera-963

tion.964

• Arities error: It occurs when predicates are965

inconsistently applied with a varying number966

of constants across different statements. Such967

discrepancies can introduce ambiguity in logi-968

cal inferences. This is a semantic error that is969

captured by the tool.970

• Subject predicate: The logic is flawed when971

a subject is used both as a predicate and a972

constant in the expression.973

I Data Augmentation974

Data augmentation for FOL generation uses incre-975

mental data assignment, where the output is di-976

vided into multiple tasks, as shown in Fig 10. This977

method is applied on two datasets; ProofWriter 978

and FOLIO. A subset of the ProofWriter dataset 979

is extracted from the ProofFOL data and passed 980

for data augmentation, increasing the size to 20X 981

the original. For FOLIO, we take the full dataset 982

and perform augmentation, making it 7X larger. 983

Given the style of incremental data, we remove few 984

records from FOLIO dataset which do not follow 985

the one-to-one mapping of text and FOL. The size 986

stats are detailed in Table 7. 987

Figure 10: Data augmentation: the vanilla represents
original data point. Incremental is the data that is present
after augmentation.

J Verification Perturbations 988

The perturbations used for training T5 verifier mod- 989

els are designed from the errors in the previously 990

discussed error analysis. The perturbations are dif- 991

ferent for FOLIO and ProofWriter dataset, as FO- 992

LIO is a complex dataset with additional operators 993

when compared to ProofWriter. To handle the com- 994

plexity of FOLIO dataset, we pass the training set 995

data to the SFT model and match the translations 996

with ground truth. Any mismatch is treated as a per- 997

turbation. Other perturbations are based manually 998

included. This dataset has a portion of correct val- 999

ues, making it a verification and correction system. 1000

The count of these datasets is detailed in Table 11. 1001

FOLIO Perturbations The predicate perturba- 1002

tions are designed based on the commonly ob- 1003

served errors in the predicates. These are not com- 1004

plex errors, but usually a missing predicate or vari- 1005

able. Based on this, we use three types of perturba- 1006

tions. 1007
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• Omit One Predicate: We randomly omit a1008

predicate from all predicates.1009

• Omit One Variable: We choose a predicate1010

with the maximum number of variables and1011

omit the last one in the chosen predicate.1012

• Omit Both Variable and Predicate: We choose1013

a predicate with the maximum number of vari-1014

ables, omit the last argument in the chosen1015

predicate, and also randomly omit a predicate1016

from the rest of the predicates.1017

The FOL perturbations tackle the syntax errors1018

that are common while generating FOL for FOLIO1019

test data.1020

• Change Quantifier Position: We move the1021

quantifier position to different positions in a1022

FOL statement.1023

• Omit One Quantifier: We randomly omit one1024

quantifier from a FOL statement.1025

• Omit Last Bracket: We omit the last bracket1026

in a FOL statement.1027

ProofWriter Perturbations The ProofWriter1028

dataset has simpler, but larger number of predicates.1029

based on this, we design 4 types of perturbations.1030

• Omit one predicate: We randomly omit a pred-1031

icate from all predicates.1032

• Omit or add one variable: We choose a ran-1033

dom predicate, and if the predicate consists1034

of multiple variables, we omit one, and if it1035

consists of only one variable, we add one.1036

• Add plural predicates: To handle the synony-1037

mous predicate issue, we randomly select a1038

predicate, create a plural form, and add it to1039

the set of predicates.1040

• Duplicate predicate: We select a random pred-1041

icate and add a variable to it. This is added1042

back to the set of predicates.1043

In addition to the quantifier, FOL generations1044

in ProofWriter consists of three major operators;1045

and, imply, and negation. We include variations1046

in this for our perturbation data. ProofWriter can1047

be divided into simple FOL statements (facts) and1048

complex ones (rules). The simple statements usu-1049

ally do not contain any operators or quantifiers.1050

Based on this, we design 5 types of perturbations.1051

• Add or omit negations: We randomly select 1052

facts and either add a negation or remove an 1053

existing one. 1054

• Omit arguments from facts: We randomly se- 1055

lect predicates from facts and omit the vari- 1056

ables if the predicate has more than one vari- 1057

able. 1058

• Add or omit quantifier: We randomly select 1059

rules and either add a quantifier or remove an 1060

existing one. 1061

• Swap operators: We replace ‘and’ with ‘im- 1062

ply’ operator or vice-versa if the operator ex- 1063

ists in the FOL statements. 1064

• Add plural predicates: To handle the synony- 1065

mous predicate issue, we randomly select a 1066

predicate, create a plural form, and add it to 1067

the set of predicates. 1068

Incremental and Verification Ablation We 1069

present additional ablation done on the incremental 1070

methods and analyse their results. 1071

• Incremental Ablation: The incremental fine- 1072

tuning uses two instruction; generate predi- 1073

cates and generate FOL (brief). This allows 1074

us to perform a full scale inference rather than 1075

an incremental one, by increasing the output 1076

token size. We first let the model predict the 1077

predicates and the input along with the predi- 1078

cates is passed to the LLM for full FOL gen- 1079

eration. Since the data in the augmented set 1080

consist of such a case (last value in augmenta- 1081

tion), the model is able to generate the FOL in 1082

a flow. We performed inference in this manner 1083

and the results are in Table 12, where vanilla* 1084

represents the full FOL inference. The results 1085

in ProofWriter are higher than the incremental 1086

results, but on closer observation, we deter- 1087

mine that the model hallucinates few cases in 1088

the vanilla* and helps with better performance. 1089

The incremental method allows a strict format 1090

of generation and forces the model to gen- 1091

erate the FOL for one statement at a time, 1092

without adding additional values. Addition- 1093

ally, because of this mismatch in number of 1094

statements, we cannot use a FOL verifier on 1095

vanilla*. 1096
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K System Requirements for1097

Experimentation1098

The Llama 2 model weights are down-1099

loaded from the official Llama website1100

https://llama.meta.com/llama-downloads/.1101

Mistral-7B (https://huggingface.co/1102

mistralai/Mistral-7B-v0.3) model and1103

Mixtral-8x7B(https://huggingface.co/1104

mistralai/Mixtral-8x7B-Instruct-v0.1) are1105

accessed via the Hugging Face interface. All1106

the models are gated and require access, which1107

is typically a safety measure and can be easily1108

granted. The transformer version used in our1109

experiments is v4.40.0 and should ideally be above1110

v4.28.0 or the latest version to run Llama and1111

Mistral models without errors. All other library1112

requirements will be specified in the code.1113

Type Example

Pa
rs

in
g

Missing
Quanti-
fier

BerkeleyCollege(x)
∧ResidentialCollegeAt(x,
yaleUniversity)

Parenthesis
error

BeneficialTo(cherry, people)
⊕On(cherry,warningList))
→ ¬RedFruit(cherry)

Completion
error

∀x(Athlete(x)
→¬NeverExercises(x))
Never: does not exist a time

Ty
pe

Quantifier
location

∃y(Own(emily, y)
∧Roommate(y)) →
∃y(Own(emily, y)
∧LiveIn(emily, apartment))

Missing
variable

∀x∃y(In(indonesia) ∧
Prosecutor(x) ∧
SpecialCrime(y) →
InvestigatePersonally(x, y))

To
ke

n

Special
token

Endowment(yale, 42.3 billion)

Unknown
Operator

∀x(Rating(x, y) ∧ y>4→ Listed(x))

Se
ns

e

Predicate
errors

Error: ¬Solid2Pointers(jack) ∧
Successful3Pointers(jack)
True: ¬GoodAt(jack, twos) ∧
GoodAt(jack, threes)

Incorrect
Quanti-
fier

Error: ∃x (FleaBeetle(x) →
¬InFamily(x, chrysomelidae))
True: ∀x (FleaBeetle(x) →
¬In(x, chrysomelidaeFamily))

Predicate
Mis-
match

Error: ¬High(NewHaven);
Low(towerA)
True: ¬High(NewHaven);
¬High(towerA)

A
ri

tie
s

Arities er-
rors

Error: Sees(Tiger, Mouse);
∀x(((Visits(x, Rabbit)) ∧
(Sees(Mouse))) → (Visits(x,
Tiger)))
True: Sees(Tiger, Mouse); ∀x
(((Visits(x, Rabbit)) ∧ (Sees(x,
Mouse))) → (Visits(x, Tiger)))

Subject
Predicate

Platypus(platypus)
∧¬Teeth(platypus)
∧Mammal(platypus)

Table 10: Common Errors in First-Order Logic: The
first block of errors are syntactic and the second are
semantic errors. This table categorizes errors by their
cause, with the underlined text highlighting the specific
cause or location of each error. For semantic errors,
there are ’True’ values to make sense of the error.
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Dataset Verifier Correct Training Manual

ProofWriter Predicate 1978 326 2991
ProofWriter FOL 2375 1595 2358

FOLIO Predicate 1724 - 3448
FOLIO FOL 2000 - 3241

Table 11: Amount of data for each type of perturbations

Inference FOLIO ProofWriter

vanilla* 31.52 64.00
Incremental 32.02 27.16
+Verifier 37.44 29.05

Table 12: Comparing two forms of inference for in-
cremental models. This inference ablation is done on
FOLIO and ProofWriter datasets.
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