Strategies for Improving NL-to-FOL Translation with LLMs: Data Generation, Incremental Fine-Tuning, and Verification

Anonymous ACL submission

Abstract

Logical reasoning is a fundamental task in natural language processing that presents significant challenges to Large Language Models (LLMs). While symbolic representations such as first-004 order logic (FOL) are well suited for logical reasoning, translating natural language (NL) into FOL often results in errors that are underexplored. We address this by categorizing the FOL translation errors in LLMs for deductive reasoning task and propose methods to improve translation quality, specifically for small (7B) language models. We introduce PROOF-012 FOL, a high-quality FOL-annotated subset of ProofWriter dataset created using GPT-40. The 014 models fine-tuned on this silver standard data 016 outperform large (70B) language models. Additionally, for better data utilisation in data-scarce 017 settings, we present an incremental framework that combines data augmentation with a novel symbolic translation verification. Augmentation generates additional training data by splitting (premises, conclusion) pairs, which when used for fine-tuning results in improved performance over the model fine-tuned on the original data. Our investigation of the trans-026 lation errors leads to generation of a perturbation dataset consisting of simulated NL-to-FOL 027 translation errors and their corresponding corrections, which is used to train a verifier to identify and correct potential syntactic and semantic FOL translation errors. Our approach leverages limited human-annotated data, achieving state-of-the-art results on the ProofWriter and ProntoQA datasets.¹

1 Introduction

Recent state-of-the-art methods for logical reasoning from natural language (NL) descriptions operate via translation (Pan et al., 2023; Ye et al., 2024; Olausson et al., 2023). In these methods, a large language model (LLM) is tasked to translate statements from NL to first-order logic (FOL), which is then sent for execution to external Satisfiability modulo theories (SMT) solvers such as Z3 (De Moura and Bjørner, 2008) and Prover9 (Mc-Cune, 2005). Recent work (Yang et al., 2024) has highlighted the systematic errors that even the most advanced LLMs (such as GPT-4) make during translation of a *single* NL statement into its corresponding FOL. Realistic logical reasoning scenarios are significantly more demanding, as they involves multiple premise statements followed by a conclusion to be verified. These scenarios require consistent NL-to-FOL translations (e.g., in predicate naming or the translation of logical operators) across multiple statements. However, very little is explored on the pattern of syntactic and semantic errors LLMs make in such translation scenarios.

040

041

042

045

046

047

048

051

052

054

060

061

062

063

064

065

066

067

068

069

070

071

072

074

075

076

077

079

Existing approaches to reducing NL-to-FOL translation errors have limited impact. They rely on the LLM's ability to understand and self-correct the translation inaccuracies based solely on the error message from the external SMT solver (Pan et al., 2023). However, the ability to comprehend such error messages is often restricted to largerscale models (e.g., 175B), and is generally unavailable in smaller LLMs (e.g., 7B, 13B). Furthermore, while syntactic translation mistakes (e.g., misplaced operator: $P \land \rightarrow Q$, or missing quan*tifiers:* $P(x) \rightarrow Q(x)$ result in runtime errors detected by the tools, many semantic errors (e.g., use of incorrect quantifiers: All men are mortal. $\exists x(Man(x) \rightarrow Mortal(x)))$ bypass SMT tools without triggering any runtime error. This limitation hinders such approaches from correcting less trivial errors. A straightforward solution to reduce errors is to fine-tune smaller models on a large-scale NL-to-FOL translation data. However, existing datasets offer very little support, with FO-LIO (Han et al., 2022) as the only FOL-specific human-annotated dataset containing around 1k ex-

¹The code for fine-tuning, augmentation and verification, and PROOFFOL dataset are attached with the submission.

Figure 1: Training Pipelines. Generation: Natural Language (NL) statements are translated into First-Order Logic (FOL) statements using a generator (G). These FOL statements are filtered and pre-processed to extract a refined subset (ProofFOL), which is used to fine-tune a smaller language model (L). Augmentation: The NL-FOL pairs are iteratively expanded to generate a larger dataset. For each NL-FOL pair (P), data is incrementally split and expanded. This augmented dataset is utilized to train another smaller language model (I). Verification: Errors observed in the FOL statements and predicates are used to create a perturbation datasets. These datasets are leveraged to train two types of verifiers: an FOL Verifier (VF) for correcting FOL statement errors, and a Predicate Verifier (VP) for handling predicate-specific issues.

amples of NL (premises, conclusion) and their FOL translations. MALLS (Yang et al., 2024), another synthetic dataset, contains 28k pair of single statements and FOL translations. Even with access to larger-scale fine-tuning data, a correction mechanism for smaller models remains essential to catch both syntactic and semantic errors on-the-fly during inference.

In this paper, we propose methods to reduce NLto-FOL translation errors. First, we address the lack of fine-tuning data by using GPT-40 to create PROOFFOL, a dataset of 10, 424 (premises, conclusion) pairs (extracted from ProofWriter (Tafjord et al., 2020)) and their FOL translations. These translations are validated using Prover9 to ensure correctness and passed through multiple formatting checks. Models fine-tuned on PROOFFOL, such as LLaMA-2 13B (Touvron et al., 2023) and Mistral 7B (Jiang et al., 2023), outperform larger baselines such as LLaMA-2 70B and Mixtral $8 \times 7B$ in translation quality and logical reasoning tasks on ProofWriter and ProntoQA (Saparov and He, 2022).

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

140

141

142

143

144

145

146

147

148

Second, to effectively utilize the scarce but highquality human-generated data (i.e., FOLIO), we propose a set of incremental techniques. Specifically, to increase the number of training instances, we split each record into multiple datapoints in an incremental fashion and then train the model to produce the predicates, and to generate the FOL for each premise and conclusion statement one-byone. This approach improves predictive accuracy on FOLIO by 41%. Finally, to enable fine-grained correction of semantic and syntactic errors during inference, we train separate models (i.e., T5 (Raffel et al., 2020)) to verify predicates and FOLs on-the-fly, and apply necessary corrections when needed. Using simulated errors from perturbed FOLIO ground truths, these models either verify correctness or provide corrections, yielding an additional 17% improvement on FOLIO. This process is detailed in Figure 1.

Our findings highlight that data is crucial for surpassing the current performance limits of several LLMs, particularly when employing more accessible models for logical reasoning tasks. Our data generation pipeline allows us to create PROOFFOL, the largest FOL-annotated logical reasoning dataset to this date. Our incremental training presents an effective data augmentation method particularly useful for data scarce conditions, while the verifier mechanism and corresponding training protocol offers a promising pathway to verify correctness of symbolic forms generated by LLMs at inference time.

2 Related Work

LLM for symbolic translation The use of formal language translations by LLMs was initially attempted by Nye et al. (2021), with an intent to emphasize the importance of dual process theory for logical reasoning tasks. Following this, the process of reasoning was offloaded to theorem provers and LLMs served as systems to generate symbolic translations (Pan et al., 2023; Ye et al., 2024; Olausson et al., 2023). The available research in this method majorly differs in variation of formal language (used by different theorem provers) and verification process to handle translation errors. These

195

methods make use of expensive and ambiguous² 149 GPT models, restricting the symbolic framework 150 to non-critical domains. Corresponding to the work 151 in formal logic, Yang et al. (2024) applied super-152 vised finetuning to LLaMA model to improve the 153 natural language to first-order logic translations 154 at a sentence level. Our research shifts the focus 155 to building a complete translation system that can 156 handle multiple statements. In addition to this, we perform a systematic analysis of translation errors 158 which enabled us to build a verification mechanism.

Symbolic Decoding with LLMs The choice of 160 decoding strategies can improve text generation, 161 specifically in LLMs where the output follows 162 a structured format. In neuro-symbolic models, 163 neuro-logic decoding (Lu et al., 2020, 2021) ap-164 plies symbolic constraints. Interactive theorem 165 provers were also used alongside LLMs to en-166 sure a constrained generation of the reasoning path (Poesia et al., 2023). Other techniques like contrastive step-wise decoding helped with improving the probability of a correct reasoning path (Su 170 et al., 2023). The success of these symbolic de-171 coding strategies motivates our research to apply 172 verification during the inference stage. 173

Deductive reasoning benchmarks Deductive logical reasoning requires logical derivation of conclusion using a set of premises. Benchmarks such as ProofWriter (Tafjord et al., 2020) and ProntoQA (Saparov and He, 2022) highlight multi-hop reasoning paths, but limit their use in tasks requiring formal rigor ³. To address this, we build an FOL dataset to adapt ProofWriter for formal reasoning tasks, enhancing its ability to handle structured, interpretable logical inferences and enabling access to verification and theorem proving. The capability of this dataset when compared to existing benchmarks is detailed in Appendix B.

174

175

176

177

178

179

180

181

187

188

189

190

192

193

194

FOLIO (Han et al., 2022), with human-annotated FOL sentences, offers a semantically complex deductive task but is limited by its small size, limiting its use for developing or improving formal language translation models. We present data augmentation technique to overcome this issue. To the best of our knowledge, our work is the first at using the incremental setting (augmentation), and verification in the context of logical reasoning with NL.

3 NL-to-FOL Translation Errors

First-order logic (FOL) is a logical framework using variables, functions, and quantifiers, often applied in natural language reasoning. Large Language Models (LLMs) have demonstrated varying success in translating natural language into formal representations. Among these formalism, NL-to-FOL translation presents unique challenges involving syntactic and semantic interpretations. We attempt to categorize these syntactic and semantic errors as a foundation for our data perturbation protocol to train FOL verifiers (presented shortly).

Syntactic errors arise from deviations in grammatical rules during translation. For example, the rule "every free variable assigned to a predicate must have a quantifier" applied to the statement "Green people are blue" requires requires a quantifier ' \forall ' for the variable x. Missing quantifiers or operators can cause parsing errors, detected by tools like Prover9, which provides feedback on syntax issues. Common categories include:

- *Parsing errors:* Missing/invalid operators or parentheses.
- *Type errors:* Missing quantifiers or sentence-level discrepancies.
- *Token errors*: Use of invalid tokens (e.g., \$).

Semantic errors are harder to detect as they conform to formal structure but misrepresent meaning. For example, the statement "All rabbits have fur" translated to the FOL $\exists x (\text{Rabbit}(x) \rightarrow$ Have(x, fur)) incorrectly quantifies the statement. Key categories include:

- *Sense errors:* General inaccuracies in NL-to-FOL mapping.
- *Arities errors:* Predicate mismatches in argument count.

These errors are further analyzed in detail (see Appendix H).

4 Incremental Fine-Tuning and Verification

4.1 Data Generation and Fine-tuning

The alignment of a language model to follow instructions for a specific task can be accomplished by fine-tuning on substantial data. The task of formal translations require first-order logic of their

²We refer to ambiguity in the data used to train the GPT model.

³Although ProofWriter dataset is generated using logic programs, the original logical forms of ProofWriter data and framework used for conversion to natural language are not released with their data and therefore not available.

242natural language counterparts. Ideally, this task is243at a passage level rather than sentence level, which244makes it challenging for a language model to fol-245low a required format. To overcome this, we need246sufficient passage level translations, which are time-247consuming to generate through human annotations.248We introduce a streamlined process for generat-249ing this FOL data and ensuring correctness of the250format, grammar, and order of the translations.

253

257

263

265

266

269

270

271

273

274

277

278

281

Data Generation For the data generation process, we pick ProofWriter which comes with large number of training records, each consisting of multipe premises and a conclusion, and variations in depth of reasoning. The format of the FOLs is set to be consistent with the "Prover9" theorem prover, which has a human understandable, formal language syntax.⁴ The fixed format of demonstrations is adapted from Pan et al. (2023), where we generate predicates followed by first-order logic statements for each sentence. We standardize the formal language to Prover9 and apply it consistently across all datasets.

At a glance, the output from the GPT model has formatting issues, such as assigning numbers to each generation, explaining the task before generation, and solving for conclusion after producing translations. These issues are parsed using pattern matching to obtain the maximum number of translations. After the parsing stage, the syntax check is done by Prover9, where the tool can provide unique feedback for each form of syntax error. When analysing these errors, we observed grammar rules that can be fixed in the tool to include unicode decoding, allow unordered quantifiers and support negation of a full formula. This addition of grammar rules minimized the penalization for translations. The semantic errors were identified by comparing the ground truth label from ProofWriter with Prover9-generated output based on FOLs. This systematic pipeline enabled the retention of 70% of the silver-standard data. We name this dataset PROOF-FOL, comprising 10, 424 NL-FOL passage-level pairs of NL-FOL translations.

Supervised Fine-tuning (SFT) Each input x to the SFT is a set of premise statements $P_x(=$

 $\{P_1, P_2, \ldots, P_n\}$), a conclusion C_x , and an instruction (I) represented as $[P_x, C_x, I]$. In order to avoid over-fitting the model to certain spurious patterns in GPT-40 translations, we include humangenerated dataset (FOLIO) in the mix. We create a set of models built on the full dataset, providing a perspective for model behaviour with size of the dataset. Since this SFT model employs both existing and synthetic data, it imposes a dilemma of the effect of gold-standard data on the results when compared to the generated silver-standard. To validate the reliability of our generated data, we fine-tune the model on a subset of the dataset and examine how increasing the data size impacts logical reasoning tasks. For a given input x, the output of SFT models are predicates of x (denoted as $Pred_x$), and FOLs of its premises and conclusion, $[Pred_x, FOL_{P_x}, FOL_{C_x}].$

287

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

4.2 Incremental Techniques

The SFT method described in the previous section uses the FOLIO dataset as just a small component of the overall approach. With high number of records associated with PROOFFOL, we can assume that the in-distribution dataset will show a major improvement when compared to FOLIO. To enhance the performance of FOLIO dataset (and in general any similar data-scarce scenario), we introduce 'Incremental Techniques' for maximizing the use of limited data. These techniques encompass data augmentation, incremental fine-tuning and inference, and incremental verification of predicates and FOLs, creating a comprehensive setup for FOL generation. We further expand this method to a smaller subset of PROOFFOL to simulate data scarce environment.

4.2.1 Data Augmentation

Supervised Fine-tuning a decoder model is technically an unannotated form of training as the *supervised* part of the fine-tuning refers to the label that is passed with the input. During a vanilla SFT process, we pass the whole output along with the input, and the model performs inference as a text completion task. This motivates our data augmentation method, where the model examines smaller part of the output rather than training on the whole output at a time. The FOL translation is one such task where the output sequence is lengthy and the model can deviate from generating the correct syntax.

To initiate the data augmentation process, we split the output of the original record to repre-

⁴Given the requisite for diversity in syntax and semantic, we first chose a few combinations of demonstrations, and ran a small scale experiment through GPT-40 for each combination. We then selected the most optimal demonstrations with the least format and translation issues in the resulting generated FOL data. We report these final demonstrations in Appendix C.

sent incremental data, where the first output is 337 $[Pred_x]$, the second output is $[Pred_x, FOL_{P_1}]$, 338 and so on till we reach the full output $[Pred_x, FOL_{P_1}..., FOL_{P_n}, FOL_{C_r}]$. This splits a single record into n + 2 records, where n is 341 the number of premises and +2' is for predicate 342 and conclusion generation. The input remains the same for all the records. This data augmentation increases the dataset size to about $7 \times$ and $20 \times$ for FOLIO and ProofWriter, respectively. With this enhanced data, we train a set of SFT models for 347 FOL translation tasks.

4.2.2 Inference

351

359

361

362

363

364

365

370

373

375

376

378

384

The SFT for augmented data is performed using two instructions, indicating two types of tasks. The first instruction is "Generate predicates for the given natural language sentences." to generate the predicates, and the second is "Given a premise and conclusion, generate the first order logic form of the premises and conclusion." to generate the FOL statements. At inference, we provide the model with the instruction to generate the predicates. These predicates, along with the input, are then passed to the model to infer the FOL statements. We categorize FOL inference into two forms.

- Vanilla Inference: In vanilla inference, the model is provided with the natural language statements and is asked to generate the predicates and the FOL translations for the complete input.
- Incremental Inference: In incremental inference, we first generate the predicates, and then limit the generation to a single FOL translation at a time by setting a low maximum_new_token parameter. For every FOL generation, we pass the previously generated values as input. For example, if we are generating FOL_{P_3} , the input would be $[P_x, C_x, Pred_x, FOL_{P_1}, FOL_{P_2}].$

4.2.3 Verification and Correction

Since the incremental inference allows individual predicate and FOL generation, we train two verifiers; predicate and FOL, to detect and correct the potential errors. The term 'verifier' refers to both the verification and correction processes.

• **Predicate Verifier** The Predicate verifier takes the $[P_x, C_x, Pred_x]$, as the input, and

evaluates the predicted predicate $Pred_x$. If the verifier considers $Pred_x$ correct, the output is just 'correct', otherwise the verifier will generate the corrected predicates set. To achieve this outcome, the verifier is trained on the perturbed predicates of the training dataset used for SFT. The perturbations for predicates are created based on the semantic errors related to predicates. Few perturbations used are; omitting predicate, omitting variable, adding variable, and adding duplicate predicate.

385

386

387

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

• FOL Verifier The FOL verifier takes $[Pred_{NL}, FOL_{NL}, NL]$ as the input, where FOL_{NL} represents predicted FOL form of a single premise (P_i) or conclusion (C_x) statement (represented as NL). The verifier evaluates FOL_{NL} as 'correct' or will generate a corrected FOL. Similar to predicate verifier, we used the original SFT training set and applied perturbations to train this Verifier model. The perturbations used in this method are crafted based on the common syntax and semantic errors in translations (Section 3). Few perturbation used in this verifier are; changing quantifier position, omitting a quantifier, omitting parenthesis, tweaking negations, and replacing operators.

In addition to these perturbation instances, we incorporate real errors from the SFT training data. Specifically, we run the inference of the training data on the SFT model and collect the predicate and FOL, which do not match the ground truth, as errors. We add these errors to the fully-controlled created perturbations to form the 'incorrect verifier training instances'. Finally, in order to verify 'correct' predictions, we take the predicate and FOL values from the ground-truth and label them as 'correct'. We generate the perturbation dataset from a seed of 1k examples of FOLIO and similarly for ProofWriter. For detail statistics on the size of the resulting perturbation datasets, please see Appendix J.

Inspired by Han et al. (2023), after the creation of the training data for the two verifiers, we finetune a T5-Large (Raffel et al., 2020) model to work as the verifier. We train two separate models for the Predicate and FOL verification on each dataset. During incremental inference, the verifier is incorporated into the decoding phase, as shown in Fig 2.

Figure 2: The overall flow of the incremental generation and verification at inference time. Here P_i s and C denote Premises and Conclusion. For predicate and FOL generation, the output is run through the corresponding verifier.

5 Experimental Setup

436

437

438

439

440

441

442

443

444

445

446

447

448

PROOFFOL Data Generation. We used
ProofWriter Open World Assumption (OWA)
training data with depth 5 and generated 15,000
FOL records via gpt4-o. Regex parsing was
applied to extract clean FOL statements, filtering
incomplete or excessive text. The FOL statements
are then passed to the Prover9 tool to perform
deductive reasoning, where the tool returns
'True', 'False', 'Unknown', or 'None' for errors.
Mismatches with ground truth were removed. See
Appendix A for details of prompt templates and
statistics.

Vanilla SFT. We fine-tuned LLaMA-2 (13B) and 449 Mistral (7B) on ProofWriter, FOLIO, and Pron-450 toQA using 3-epoch supervised fine-tuning (SFT) 451 with LoRA (Hu et al., 2022) and 8-bit quantization 452 for inference. Models were evaluated in two modes: 453 NL-based (Standard) and FOL-based, leveraging 454 Prover9. The initial baselines use in-context learn-455 ing (ICL) for standard and FOL generation. The 456 few-shot examples for standard generation are ran-457 domly sampled from the training data, ensuring 458 a balanced output distribution. ProntoQA served 459 as an out-of-distribution (OOD) benchmark with 460 ProofWriter demonstrations during inference. Ap-461 pendix C provides details on few-shot templates. 462

Incremental SFT. Incremental SFT is performed 463 on LLaMA-2 13B model following the same train-464 ing process as vanilla SFT, with adjustments for 465 inference to reduce token generation time. Data 466 augmentation increased data size of FOLIO (1,000 467 to \sim 7000 records) and ProofWriter (1,000 to \sim 468 20000 records). Fine-tuning was also performed on 469 original datasets for baseline comparisons. Dataset 470 statistics are in Appendix I. 471

472 Verifier Training. We trained four T5-large
473 verifiers on perturbed datasets for FOLIO and
474 ProofWriter. The perturbations were applied on

their respective training data and vary with the complexity of the FOL statements. The T5 models were trained for 10 epochs using AdamW (Loshchilov and Hutter, 2019) and a learning rate of $5 \times e^{-5}$. Once trained, the verifiers could run in synchronous (online) or asynchronous (offline) mode. While the online mode corrects errors at each step of inference, before moving to next step (i.e., correction at time step t impacts step t + 1 during generation), the offline mode applies corrections on the fully generated predicate and FOLs as a post-processing step (i.e., correction at time step t does not have any consequential effect on t + 1). For time overhead of incremental decoding and verification, see Table 2. 475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

6 Results and Discussion

6.1 Main Results

Table 1 presents results on logical reasoning dataset using in-context learning (ICL) and supervised fine-tuning (SFT), comparing performance across model sizes. LLaMA-2 70B and Mixtral $8 \times 7B$ serve as baselines for LLaMA-2 13B and Mistral 7B, respectively.

Standard experiment reports free-form reasoning, where the LLM is given a question (premises and a conclusion) and is tasked to produce a direct response. Few-shot ICL results vary across datasets, with Mistral and Mixtral outperforming other models. LLaMA-2 13B fine-tuned on PROOFFOL achieves notable improvements for ProofWriter but shows limited gains for FOLIO and ProntoQA. Mistral models perform better after fine-tuning, particularly with smaller datasets.

FOL experiments show correlation of performance with model size, where, for few-shot ICL, LLaMA-2 70B and Mixtral perform consistently better than their smaller versions. ProofWriter achieves 86% accuracy with LLaMA-2 13B model, fine-tuned on PROOFFOL, which is a significant

	Туре	•	Model	Standard	FOL
			LLaMA-2 70B	41.83	78.33
	ICI		LLaMA-2 13B	44.16	24.66
ter	ICL	n-snot	Mistral 7B	<u>49.67</u>	66.50
Wri			Mixtral $8 \times 7B$	45.83	<u>85.00</u>
fo		5000	LLaMA-2 13B	64.16	53.50
Prc	SET	5000	Mistral 7B	70.33	<u>98.17</u>
	31.1.	10000	LLaMA-2 13B	<u>85.66</u>	86.33
		10000	Mistral 7B	69.50	97.83
			LLaMA 70B	50.60	<u>38.80</u>
	ICI	n-shot	LLaMA-2 13B	47.19	11.4
A	ICL		Mistral 7B	50.60	10.80
Q			Mixtral $8 \times 7B$	<u>58.40</u>	13.00
ont	SFT	5000 10000	LLaMA-2 13B	55.40	53.20
Ъ			Mistral 7B	60.00	78.60
	31.1.		LLaMA-2 13B	53.20	47.80
			Mistral 7B	<u>70.40</u>	<u>85.40</u>
		n-shot	LLaMA-2 70B	50.74	34.97
	ICI		LLaMA-2 13B	43.84	24.13
FOLIO	ICL		Mistral 7B	51.23	35.96
			Mixtral $8 \times 7B$	<u>57.14</u>	<u>42.36</u>
	CET	5000	LLaMA-2 13B	40.89	26.11
			Mistral 7B	<u>67.98</u>	26.11
	91.1.	10000	LLaMA-2 13B	40.89	34.48
			Mistral 7B	66.01	27.59

Table 1: Comparison of models' deductive reasoning accuracy under Standard and FOL-based output prediction. Here ICL denotes "in-context learning" with n-shots (details of shots in appendix), and SFT denotes "supervised fine-tuning" (on 5k or 10k training data subset from PROOFFOL). Accuracy metrics in **bold** signify notably high performance within the same benchmark, while <u>underline</u> indicates best results under Standard and FOL for ICL and SFT.

gain in performance when compared to ICL. Mis-514 tral fine-tuned models are the state-of-the-art in 515 FOL generation for ProofWriter datasets, where the 516 model produces 0 syntax errors after fine-tuning. ProntoQA, an altered form of ProofWriter, shows 518 similar trends in performance gain with our fine-519 tuned models. Mistral 7B fine-tuned on PROOF-FOL data outperforms all the ProntoQA baselines. For ProntoQA, there is an observed negative effect 522 of overfitting, when LLaMA-2 is trained on larger dataset (increasing training data from 5k to 10k), but we don't notice this for Mistral. We speculate 526 this might be reflective of difference in model size and how it impacts potential training memorization 527 (i.e., overfitting) for larger models. 528

529

533

FOLIO, as expected, is a challenging dataset with complex language and structure. Mixtral model achieves the highest few-shot accuracy at 42%. Fine-tuned LLaMA-2 13b improves from 24% to 34%, and is on-par with a much larger

Figure 3: Error distribution of LLaMA-2 70B (top) and 13B (bottom) post fine-tuning on PROOFFOL.

LLaMA-2 70B. Syntax and semantic error metrics are detailed in Appendix G.

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

567

Error Distribution We provide an error distribution of models on NL-to-FOL translation errors. The results for LLaMA-2 70B with ICL and LLaMA-2 13B after fine-tuning is provided in Fig 3. ProofWriter and ProntoQA show decline in errors, whereas FOLIO stays equivalent to the LLaMA-2 70B ICL model. This plot indicates that a model significantly smaller in size can achieve better generation over a larger model when fine-tuned with relevant data.

6.2 Incremental Results

Incremental techniques are performed on ground truth FOLIO and a subset of PROOFFOL dataset. The intention behind the incremental technique is to show that the data augmentation method improves the translations over the original dataset. In Table 2, we focus on the shift in performance between LLaMA-2 13B model fine-tuned on the original 1000 records and augmented $1000 \times n$ records, where n represents the scale at which the data grows after augmentation. Both FOLIO and ProofWriter have low performance in FOL generation when trained with a small dataset, but FO-LIO improves steadily with incremental techniques. This pushes us to use a verifier to further the performance. With the predicates corrected during generation and FOLs corrected after inference, this verifier based incremental setting achieves 37% using Offline verifier, which outperforms LLaMA-2 70B ICL accuracy 34.97% (Table 1). ProofWriter, when trained incrementally, provides varied results with different inferences. The verifier inference

Models	Inference	FOLIO	ProofWriter
ICL Baseline	Vanilla	24.13	24.66
SFT Vanilla $(1k)$ SFT Incremental $(1k^*)$ SFT Incremental $(1k^*)$ SFT Incremental $(1k^*)$	Vanilla Incremental +Verifier (On-Off) +Verifier (On-On)	22.66 (01:55) 32.02 (02:58) <u>37.44</u> (03:05) 29.56 (03:27)	24.50 (03:36) 27.16 (02:42) 29.05 (03:10) <u>32.50</u> (03:31)

Table 2: Comparison of LLaMA-2 13B models on FO-LIO and ProofWriter with various training and inference protocols. $1k^*$ is the incremental SFT data that expands to 7k (FOLIO) and 20k (ProofWriter) data points for training. Inference time for SFT models for each record is reported as average (MM:SS). **Vanilla**: Predicates and FOLs are generated in one pass. **Incremental**: Predicates are generated in one pass and then fed into the next step along with premises and conclusions to generate FOLs one by one. **+Verifier (On-Off)**: Predicate verifiers are called during inference (Online) while FOL verifiers are called once all FOLs are generated (Offline). **+Verifier (On-On)**: Both verifiers are used online.

model achieves 29% an 32% accuracy when compared to the SFT model on original dataset, 24%. It can be noted that the performance of the FOLIO model is lower when the FOL verifier is online, since any error from the verifier is passed on to the next generation and can cause a domino effect. The change in inference times between incremental and verifier settings is minimal. ⁵

6.3 Ablation Studies

The incremental methods follows certain rules of finetuning and generation. Our model uses two instructions for predicate and FOL generation. We performed an ablation study on using different variation of incremental training and inference for FO-LIO dataset. The type of ablations and their performances are given in Table 3. These were performed before training the verifier module. In place of the verifier, we initially used Prover9 to check for syntax and any invalid generation followed a sampling by the LLM, and the first error free FOL was selected. This method proved ineffective as the sampling method was time-consuming. The results in the table are after the tool verification, except for the *Check* model, where we use LLM as a verifier.

Mixed is the current method of incremental training and inference, where we use different instructions for predicate and FOL generation. *Single* method uses only one instruction; 'Complete the generation'. This performs equivalent to the *Mixed*, but results in additional syntax errors, presumably

Instruction	Accuracy	Syntax errors
Mixed	35.46	64
Single	35.47	70
Ordered	32.02	63
Unique	21.18	80
Check	27.09	108

Table 3: Comparison of Incremental Methods with Instruction Fine-tuning. Each method represents the type of instruction used for fine-tuning and inference. The syntax errors are out of 203 test records in FOLIO.

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

because of the vague instruction. Ordered uses different instructions for each FOL generation. The instructions carry information about the sentence that is required to be translated. This method helped keep the syntax errors low, but lowered the overall performance. Instead of passing the previously generated FOL to the next generation, we applied Unique, where the statements are split and passed one at a time with the predicate values. This performs poorly and does not include passage level translations. In Check, we use the perturbation dataset with specific instructions along with the training dataset for fine-tuning. We instruct the model to identify and correct the errors at inference. This method relies on the language model to perform a new task with limited data and proves to be ineffective.

7 Conclusion

Formal language translation systems for logical reasoning task worked effectively in the era of LLMs, with persisting translation errors. In this paper, we provided an understanding of general translation errors by LLMs, when used as NL-to-FOL translation systems. We highlighted the importance of first-order logic (FOL) ground truth data and present a pipeline to generate high quality FOLs for ProofWriter dataset, introducing an FOL-annotated data called PROOFFOL. Using PROOFFOL, we fine-tuned a set of smaller language models and showed an increase in performance over larger LMs. Additionally, the issue of data scarcity is addressed via proposing incremental techniques, which cover data augmentation, inference verification, and correction. Our experiments on 3 benchmarks highlight the potential of our proposed framework.

583

584

589

594

595

596

597

570

571

⁵For ProofWriter, adaptive token sizing reduces inference time by adjusting token size based on sentence length.

637

641

657

671

672

673 674

675

676

677

678

679

680

8 Limitation

The incremental setup proposed in our method depends on the quality of the data. While FOLIO is highly effective, it may occasionally introduce some noise. The silver data generated using GPT-4, though processed with care, may contain minor inconsistencies, as detailed in Appendix D. Additionally, using models like GPT-4 can present challenges in reproducing the exact dataset for future reference. To address this, we have provided all necessary prompts to facilitate consistent generation of similar datasets.

The baselines for the provided datasets are run similarly to the existing work, though we acknowledge that exact comparisons are not possible due to the use of different models and some challenges with reproducibility. As a result, we consider outputs from larger models as the baseline, following a similar methodology. We also present results from larger proprietary models in Appendix F; however, due to limited information on their training process, we treat these comparisons as supplementary rather than definitive.

We would also like to acknowledge that incremental methods may result in longer inference times for the Llama model; however, from our previous experiments on vanilla SFT, we noticed that inference times vary depending on the models used.

References

- Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient smt solver. In *International conference on Tools and Algorithms for the Construction and Analysis of Systems*, pages 337–340. Springer.
- Jiuzhou Han, Nigel Collier, Wray Buntine, and Ehsan Shareghi. 2023. Pive: Prompting with iterative verification improving graph-based generative capability of llms. *arXiv preprint arXiv:2305.12392*.
- Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Luke Benson, Lucy Sun, Ekaterina Zubova, Yujie Qiao, Matthew Burtell, et al. 2022. Folio: Natural language reasoning with firstorder logic. *arXiv preprint arXiv:2209.00840*.
- Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. 2022. LoRA: Low-rank adaptation of large language models. In *International Conference on Learning Representations*.
- Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego

de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. 2023. Mistral 7b. *arXiv preprint arXiv:2310.06825*.

684

685

687

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

717

718

719

720

721

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

- Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. 2020. Logiqa: A challenge dataset for machine reading comprehension with logical reasoning. *arXiv preprint arXiv:2007.08124*.
- Ilya Loshchilov and Frank Hutter. 2019. Decoupled weight decay regularization. In 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net.
- Ximing Lu, Sean Welleck, Peter West, Liwei Jiang, Jungo Kasai, Daniel Khashabi, Ronan Le Bras, Lianhui Qin, Youngjae Yu, Rowan Zellers, et al. 2021. Neurologic a* esque decoding: Constrained text generation with lookahead heuristics. *arXiv preprint arXiv:2112.08726*.
- Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. 2020. Neurologic decoding:(un) supervised neural text generation with predicate logic constraints. *arXiv preprint arXiv:2010.12884*.
- Man Luo, Shrinidhi Kumbhar, Mihir Parmar, Neeraj Varshney, Pratyay Banerjee, Somak Aditya, Chitta Baral, et al. 2023. Towards logiglue: A brief survey and a benchmark for analyzing logical reasoning capabilities of language models. *arXiv preprint arXiv:2310.00836*.
- William McCune. 2005. Release of prover9. In *Mile high conference on quasigroups, loops and nonasso-ciative systems, Denver, Colorado.*
- Maxwell Nye, Michael Tessler, Josh Tenenbaum, and Brenden M Lake. 2021. Improving coherence and consistency in neural sequence models with dualsystem, neuro-symbolic reasoning. *Advances in Neural Information Processing Systems*, 34:25192– 25204.
- Theo X Olausson, Alex Gu, Benjamin Lipkin, Cedegao E Zhang, Armando Solar-Lezama, Joshua B Tenenbaum, and Roger Levy. 2023. Linc: A neurosymbolic approach for logical reasoning by combining language models with first-order logic provers. *arXiv preprint arXiv:2310.15164*.
- Liangming Pan, Alon Albalak, Xinyi Wang, and William Wang. 2023. Logic-LM: Empowering large language models with symbolic solvers for faithful logical reasoning. In *Findings of the Association for Computational Linguistics: EMNLP 2023*, pages 3806–3824, Singapore. Association for Computational Linguistics.
- Gabriel Poesia, Kanishk Gandhi, Eric Zelikman, and Noah D Goodman. 2023. Certified deductive reasoning with language models. *arXiv preprint arXiv:2306.04031*.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of machine learning research*, 21(140):1–67.

740

741

742 743

744

746

747

748

752

753

754

756

757

758

759

760

761

764

765

770

771

772

775

- Abulhair Saparov and He He. 2022. Language models are greedy reasoners: A systematic formal analysis of chain-of-thought. *arXiv preprint arXiv:2210.01240*.
- Ying Su, Xiaojin Fu, Mingwen Liu, and Zhijiang Guo. 2023. Are llms rigorous logical reasoner? empowering natural language proof generation with contrastive stepwise decoding. *arXiv preprint arXiv:2311.06736*.
- Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. 2020. Proofwriter: Generating implications, proofs, and abductive statements over natural language. *arXiv preprint arXiv:2012.13048*.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.
- Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi, and Faramarz Fekri. 2024. Harnessing the power of large language models for natural language to firstorder logic translation. In Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 6942– 6959, Bangkok, Thailand. Association for Computational Linguistics.
- Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2024. Satlm: Satisfiability-aided language models using declarative prompting. *Advances in Neural Information Processing Systems*, 36.

A Data Generation

The data pipeline applied for generating ProofFOL is detailed in Fig 4. The train data is 15000 data points with depth-5 from ProofWriter dataset. The 15k records are sampled randomly ensuring a fair distribution of the labels; True, False, and Uncertain. The LLM here is GPT40 with a output token length of 1000 for each generation. We use url = /v1/chat/completions format for batch generations of GPT40. The logical solver is Prover 9, a theorem prover suitable to run in python environment with nltk library, that uses CNF conversions, quantifier operations, and skolemization to transform the clauses into a tree format. Parsing errors by Prover 9 occur when the FOL formula cannot be converted to a tree structure because it does not follow specific grammar rules. After filter and parsing stages, we get 10424 records with FOL statements. Syntax errors are the errors thrown by the tool and semantic errors are measured by comparing the ground truth label with the solver output. 776

778

779

781

782

783

784

785

787

788

791

792

793

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

Figure 4: Overview of the Data Generation Pipeline and Key Statistics

B Dataset Comparison

The *ProofFOL* dataset consists of around 10,000 NL-FOL translation data-points, consisting of premises and conclusions. This makes it the largest existing FOL dataset designed for logical reasoning tasks. Specifically, in the context of deductive reasoning tasks (Luo et al., 2023), current datasets often present natural language statements with either a conclusion that must be logically deduced from the premise or multiple-choice options evaluating the logical relevance of a reading comprehension passage (Liu et al., 2020). We focus on singleanswer questions that enable rule-based deduction. Such rule-based deduction facilitates application in formal settings.

ProofFOL distinguishes itself from other datasets in terms of data size, the availability of a comprehensive training set, formal translations,

	FOLIO	LogiQA	ProntoQA	ProofWriter	ProofFOL
Large Dataset	×	<	✓	✓	✓
Training Set	 ✓ 	 ✓ 	×	<	 ✓
FOL translations	<	×	×	✓	 ✓
Rule-Based Generation	<	~	<	✓	 ✓

Table 4: Comparison of Deductive Reasoning Datasets with Our Dataset, **ProofFOL**. A large dataset is defined as having over 5,000 records. The training set indicates the availability of data for fine-tuning. Ground truth FOL translations refer to provided First-Order Logic expressions. Rule-based generation denotes the ability to derive solutions systematically using predefined rules without external intervention.

and its ability to support rule-based derivations. Figure 4 highlights these variations across the primary logical deductive reasoning datasets.

C Few Shot Examples

816

819

824

827

831

833

835

837

841

843

847

851

In this section, the few-shot format used for all the in-context learning tasks are presented.

Few-shot for Data-augmentation The Fig 5 shows the format of the few-shot example for data generation. We tried this with 2 examples for 50 unique training data points, but it did not generate better translation results. Instead, we ensured that all operators are covered in this example, specifically negation. We first generate predicates associated with the sentence. This is followed by FOL generation. Each FOL generation comes with the natural language statement and this format is adapted from (Pan et al. 2023). We use the same format of generation for all of our experiments with the exception of Predicates description, as this part is harder to verify. The description is removed from ProofFOL.

- Standard generation: For standard generation, we randomly sample examples from the training set. We use 5-shot for FOLIO and 4-shot for ProofWriter and ProntoQA as shown in Fig 6 and Fig 7
- FOL generation: For FOL generation, we partially use examples from (Pan et al. 2023) and sample the rest from the training set. The FOL syntax is fixed to represent Prover9 format. We use 3-shot for FOLIO and 2-shot for ProofWriter and ProntoQA as shown in Fig 8 and Fig 9

D Human evaluation of ProofFOL

The ProofFOL dataset is a silver-standard dataset. To ensure the accuracy of the data, we conducted

Figure 5: Few shot example with instruction for Data Generation process

a human evaluation on a random sample of 50 records from our dataset (containing a total of 1,018 statements) where the final outputs were correct. Out of these 1,018 translations, we identified only 22 errors (i.e., 2%), half of which were minor and did not alter the meaning of the FOL statements. Another extrinsic indication of data quality is the improvement reported in Table 2 for SFT on 5k and 10k records. Additionally, we verified other semantic aspects, including predicate values and variable completions, finding zero errors in predicate values and only one error in variable completions. Further details on this can be found in the Table 6.

852

853

854

855

856

857

858

859

860

861

862

863

864

865

```
Given a premise, you have to reason whether the conclusion is

True, False or Uncertain.

Context: The Metropolitan Museum of Art is a museum in NYC...

Conclusion: Mary lives in Manhattan.

Answer: Uncertain

Context: All artificial satellites are important scientific achievements...

Conclusion: All important scientific achievements are U.S. inventions.

Answer: False

FS3

FS4

FS5

<\INPUT>

Answer:
```

Figure 6: Standard Generation Few-shot examples for FOLIO: For brevity, we highlighted the format and the instructions and minimized the content in the few-shot examples.

Figure 7: Standard Generation Few-shot examples for ProofWriter and ProntoQA

E Datasets

867

873

874

876

878

We utilize three datasets in our experiments.

- ProofWriter: The training set for ProofWriter is sampled from the depth-5 records. For testset, we use the one provided in (Pan et al. 2023)
- ProntoQA: ProntoQA is a test dataset. We use ProofWriter examples as training set and test-set sample from (Pan et al. 2023)
- FOLIO: FOLIO has 1001 training set records and 203 dev set records. We use the original training set for SFT models and dev for evaluating the model.

Dataset	Standard	FOL
ProofWriter	4	2
FOLIO	5	3
ProntoQA	4	2

Table 5: Number of Few-shot examples used for creating baselines in Table 1

(Given some context and a question, generate the predicates and the first-order logic formula for contexts and question. Here are the examples.
	Context:
	All people who regularly drink coffee are dependent on caffeine
	Rina is either a person who jokes about being addicted to caffeine or is unaware that caffeine is a drug. ###
	Predicates:
	Dependent(x) ::: x is a person dependent on caffeine
	Premises: $\forall x (Drinks(x)) \rightarrow Dependent(x)) ::: All people who regularly drink coffee$
	Conclusion:
	Jokes(rina) \oplus Unaware(rina) $:::$ Rina is either a person who jokes about being addicted to caffeine or is unaware that caffeine is a
	drug.
	F\$2
	FS3
1	/
\mathbf{X}	<input/>

Figure 8: FOL Generation Few-shot examples for FO-LIO

Error Types	Description	Number of Errors
FOL Match	Validates the correctness of a single FOL statement in relation to its corresponding NL text.	22
Non-subject Predicates	Ensures that predicates are meaningful and do not include any shortcuts.	0
Non-subject Constants	Flags instances where constants take shortcuts, similar to predicate validation.	1

Table 6: Error types and descriptions for human evaluation of a sample of ProofFOL dataset, specifically 1018 translations.

Dataset	Original	Augmented	
ProofWriter	1000	7288	
FOLIO	998	20145	

 Table 7: Size of training datasets before and after data augmentation

F Additional Baselines

We conducted experiments on additional proprietary models, and the results are presented in Table 8. The results demonstrate that our model, trained on **ProofFOL**, outperformed these closed source models in ProofWriter, highlighting the significance of our dataset. 879

880

881

882

883

884

885

886

887

888

889

890

G SFT Models

SFT with PROOFFOL is performed on two models; LLaMA-2 13B and Mistral 7B. These models are selected based on their low computational cost and model parameters. The models are fine-tuned for 3-

Figure 9: FOL Generation Few-shot examples for ProofWriter and ProntoQA

Dataset	Model	Standard	FOL
ProofWriter	Llama2 70B	41.83	78.33
	Mixtral 8X7B	45.83	85.00
	GPT-40 mini	36.33	74.17
	Gpt-3.5-turbo-instruct	52.83	90.17
	Gemini Flash	54.33	89.00
ProntoQA	Llama2 70B	50.74	34.97
	Mixtral 8X7B	57.14	42.36
	GPT-40 mini	57.40	53.80
	Gpt-3.5-turbo-instruct	49.40	24.80
	Gemini Flash	72.20	93.60
FOLIO	Llama2 70B	50.74	34.97
	Mixtral 8X7B	57.14	42.36
	GPT-40 mini	40.39	45.81
	Gpt-3.5-turbo-instruct	50.25	47.29
	Gemini Flash	64.04	55.66

Table 8: Performance comparison across other proprietary baselines.

896

897

900

901

902

903

904

905

906

907

908

epochs with a fixed batch size and LoRA (Hu et al., 2022). The inference is done using an 8-bit quantization with the trained LoRA adaptor. Temperature and top_p are fixed at 0 and 1 respectively, with a variation of maximum_new_token value based on the dataset. ProofWriter requires larger number of tokens at inference when compared to FOLIO because of the size of input. Additionally, as NL-based baseline, separate versions of models are also fine-tuned on textual data without symbolic translations (the corresponding results are reported under Standard). The test data used in our experiments are taken from Pan et al. (2023) for ProofWriter and ProntoQA. FOLIO comes with a pre-defined dev dataset, that is used for evaluations.

Table 9 is an extension of Table 1 from the main paper. It shows the variations in the syntax and semantic errors with ICl and fine-tuning. There is

	Туре	;	Model	Syntax	Semantic
			LLaMA-2 70B	44	86
6	ICI	1 4	LLaMA-2 13B	314	138
99	ICL	n-snot	Mistral 7B	130	71
iter			Mixtral $8 \times 7B$	44	46
Wr		5000	LLaMA-2 13B	71	15
of	CET	3000	Mistral 7B	0	11
Pro	311.	10000	LLaMA-2 13B	69	13
		10000	Mistral 7B	0	13
			LLaMA 70B	203	103
$\widehat{}$	ICL	n-shot	LLaMA-2 13B	266	177
200			Mistral 7B	420	26
Ă			Mixtral $8 \times 7B$	413	22
o S		5000 10000	LLaMA-2 13B	108	126
ino.	SET		Mistral 7B	26	81
Ъ	31.1.		LLaMA-2 13B	139	122
			Mistral 7B	13	60
			LLaMA-2 70B	19	113
	ICI	n-shot	LLaMA-2 13B	95	59
LIO(203)	ICL		Mistral 7B	95	35
			Mixtral $8 \times 7B$	79	38
		5000 SFT-10000	LLaMA-2 13B	103	47
EOF	SET		Mistral 7B	64	86
I	311		LLaMA-2 13B	88	45
			Mistral 7B	48	99

Table 9: Syntax and Semantic error count for FOL generation

a constant trend of lower syntax errors with finetuning the models with relevant data for both Llama and Mistral models. 909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

H Error Analysis

The NL-FOL translation errors can be identified using the tool feedback or a mismatch in tool output with the ground truth. We identify these issues and categorize them into syntax and semantic errors. Fig 10 shows examples of each type of error. These are identified by manually analysing the FOL statements in cases where there was no feedback from the tool. The details of each error are provided here.

- Missing quantifier: When a predicate includes a variable, it must have either a Universal Quantifier '∀' or an Existential Quantifier '∃'. This error occurs if either quantifier is missing.
- Parenthesis error: The formula becomes invalid if there is an extra or a missing parenthesis.
- Completion error: The FOL is either incomplete or contains additional text that disrupts its logical flow.

 Quantifier location: Quantifiers that are either repetitive or incorrectly positioned result in grammatical inaccuracies in the expression.

933

934

938

941

943

947

949

951

952

955

957

960

961

962

963

964

965

966

967

971

972

973

974

977

- Missing variable: When multiple quantifiers are present, the tool fails to parse predicates that lack free variables.
- Special token: The tool does not handle special characters in the input.
- Unknown operator: The tool does not support parsing mathematical equations.
- Predicate error: These errors arise when predicates are reused with different subjects, omitted entirely, or conjoined inappropriately, leading to erroneous interpretations of the logical constructs in FOL statements. Such misinterpretations can affect the accuracy and reliability of responses generated by LLMs.
- Incorrect quantifier: This occurs when an existential quantifier is incorrectly chosen in situations that require a universal quantifier, leading to a logical contradiction between the terms. This mismatch between the chosen quantifier and the necessary logical condition can result in flawed reasoning and inconsistencies in logical analysis.
 - Predicate mismatch: It occurs when LLMs are tasked with generating predicates based on text passages and fail to recognize synonymous terms as equivalent. This results in the tool counting synonyms as distinct tokens, leading to discrepancies in predicate generation.
 - Arities error: It occurs when predicates are inconsistently applied with a varying number of constants across different statements. Such discrepancies can introduce ambiguity in logical inferences. This is a semantic error that is captured by the tool.
 - Subject predicate: The logic is flawed when a subject is used both as a predicate and a constant in the expression.

Data Augmentation Ι

Data augmentation for FOL generation uses incre-975 mental data assignment, where the output is divided into multiple tasks, as shown in Fig 10. This

method is applied on two datasets; ProofWriter 978 and FOLIO. A subset of the ProofWriter dataset 979 is extracted from the ProofFOL data and passed 980 for data augmentation, increasing the size to 20X 981 the original. For FOLIO, we take the full dataset 982 and perform augmentation, making it 7X larger. 983 Given the style of incremental data, we remove few 984 records from FOLIO dataset which do not follow 985 the one-to-one mapping of text and FOL. The size 986 stats are detailed in Table 7. 987

Figure 10: Data augmentation: the vanilla represents original data point. Incremental is the data that is present after augmentation.

Verification Perturbations J

The perturbations used for training T5 verifier models are designed from the errors in the previously discussed error analysis. The perturbations are different for FOLIO and ProofWriter dataset, as FO-LIO is a complex dataset with additional operators when compared to ProofWriter. To handle the complexity of FOLIO dataset, we pass the training set data to the SFT model and match the translations with ground truth. Any mismatch is treated as a perturbation. Other perturbations are based manually included. This dataset has a portion of correct values, making it a verification and correction system. The count of these datasets is detailed in Table 11.

988

989

990

991

992

993

994

995

996

997

998

999

1001

1002

1003

1004

1005

1006

1007

FOLIO Perturbations The predicate perturbations are designed based on the commonly observed errors in the predicates. These are not complex errors, but usually a missing predicate or variable. Based on this, we use three types of perturbations.

1009	• Omit One Predicate: We randomly omit a predicate from all predicates.
1010	• Omit One Variable: We choose a predicate with the maximum number of variables and
1012	omit the last one in the chosen predicate.
1013	• Omit Both Variable and Predicate: We choose
1014	a predicate with the maximum number of vari-
1015	ables, omit the last argument in the chosen
1016 1017	from the rest of the predicates.
1018	The FOL perturbations tackle the syntax errors
1019	that are common while generating FOL for FOLIO
1020	test data.
1021	• Change Quantifier Position: We move the
1022	quantifier position to different positions in a
1023	FOL statement.
1024	• Omit One Quantifier: We randomly omit one
1025	quantifier from a FOL statement.
1026	• Omit Last Bracket: We omit the last bracket
1027	in a FOL statement.
1028	ProofWriter Perturbations The ProofWriter
1029	dataset has simpler, but larger number of predicates.
1030	based on this, we design 4 types of perturbations.
1031	• Omit one predicate: We randomly omit a pred-
1032	icate from all predicates.
1033	• Omit or add one variable: We choose a ran-
1034	dom predicate, and if the predicate consists
1035	of multiple variables, we omit one, and if it
1036	consists of only one variable, we add one.
1037	• Add plural predicates: To handle the synony-
1038	mous predicate issue, we randomly select a
1039 1040	the set of predicates.
1041	• Duplicate predicate: We select a random pred-
1042	icate and add a variable to it. This is added
1043	back to the set of predicates.
1044	In addition to the quantifier, FOL generations
1045	in ProofWriter consists of three major operators;
1046	and, imply, and negation. We include variations
1047	in this for our perturbation data. ProofWriter can
1048	be divided into simple FOL statements (facts) and
1049	complex ones (rules). The simple statements usu-
1050	ally do not contain any operators or quantifiers.
1051	Based on this, we design 5 types of perturbations.

• Add or omit negations: We randomly select	1052
facts and either add a negation or remove an	1053
existing one.	1054

- Omit arguments from facts: We randomly se-1055 lect predicates from facts and omit the vari-1056 ables if the predicate has more than one vari-1057 able. 1058
- Add or omit quantifier: We randomly select rules and either add a quantifier or remove an 1060 existing one. 1061

1062

1063

1064

1069

1070

1071

- Swap operators: We replace 'and' with 'imply' operator or vice-versa if the operator exists in the FOL statements.
- · Add plural predicates: To handle the synony-1065 mous predicate issue, we randomly select a 1066 predicate, create a plural form, and add it to 1067 the set of predicates.

Incremental and Verification Ablation We present additional ablation done on the incremental methods and analyse their results.

• Incremental Ablation: The incremental fine-1072 tuning uses two instruction; generate predi-1073 cates and generate FOL (brief). This allows 1074 us to perform a full scale inference rather than 1075 an incremental one, by increasing the output 1076 token size. We first let the model predict the 1077 predicates and the input along with the predicates is passed to the LLM for full FOL gen-1079 eration. Since the data in the augmented set 1080 consist of such a case (last value in augmenta-1081 tion), the model is able to generate the FOL in 1082 a flow. We performed inference in this manner 1083 and the results are in Table 12, where vanilla* 1084 represents the full FOL inference. The results 1085 in ProofWriter are higher than the incremental 1086 results, but on closer observation, we deter-1087 mine that the model hallucinates few cases in 1088 the vanilla* and helps with better performance. 1089 The incremental method allows a strict format 1090 of generation and forces the model to gen-1091 erate the FOL for one statement at a time, 1092 without adding additional values. Addition-1093 ally, because of this mismatch in number of 1094 statements, we cannot use a FOL verifier on 1095 vanilla*. 1096

K System Requirements for Experimentation

1097

1098

The Llama 2 model weights are down-1099 loaded from the official Llama website 1100 https://llama.meta.com/llama-downloads/. 1101 Mistral-7B (https://huggingface.co/ 1102 mistralai/Mistral-7B-v0.3) 1103 model and Mixtral-8x7B(https://huggingface.co/ 1104 mistralai/Mixtral-8x7B-Instruct-v0.1) are 1105 accessed via the Hugging Face interface. All 1106 the models are gated and require access, which 1107 is typically a safety measure and can be easily 1108 granted. The transformer version used in our 1109 experiments is v4.40.0 and should ideally be above 1110 v4.28.0 or the latest version to run Llama and 1111 Mistral models without errors. All other library 1112 1113 requirements will be specified in the code.

	Туре	Example		
	Missing	BerkeleyCollege (\underline{x})		
	Quanti-	\land ResidentialCollegeAt(\underline{x} ,		
	fier	yaleUniversity)		
rsing	Parenthesis	BeneficialTo(cherry, people)		
	error	$\oplus On(cherry, warningList))$		
Ра		$\rightarrow \neg \text{RedFruit}(\text{cherry})$		
	Completion $\forall x (\text{Athlete}(x))$			
	error	$\rightarrow \neg \text{NeverExercises}(x))$		
		Never: does not exist a time		
	Quantifier	$\exists y(\text{Own}(\text{emily}, y))$		
	location	$\overline{\wedge R}$ oommate $(y)) \rightarrow$		
		$\exists y(\text{Own}(\text{emily}, y))$		
/pe		$\overline{\wedge}$ LiveIn(emily, apartment))		
H.	Missing	$\forall x \exists y (\text{In(indonesia)} \land$		
	variable	Prosecutor(x) \land		
		$\text{SpecialCrime}(y) \rightarrow$		
		InvestigatePersonally (x, y))		
u	Special	Endowment(vale 42.3 billion)		
	token	Endownient(yale, <u>42.5</u> onnon)		
oke	Unknown	$\forall r(Rating(r, u) \land u > 4 \rightarrow Listed(r))$		
F	Operator	$v_{\omega}(\operatorname{Iutilig}(\omega, g)) \land g \ge 1 \land \operatorname{Disted}(\omega)$		
	Predicate	Error: \neg Solid2Pointers(jack) \land		
	errors	Successful3Pointers(jack)		
se		True: \neg GoodAt(Jack, twos) \land		
Sen		GoodAt(jack, threes)		
	Incorrect	Error: $\exists x$ (FleaBeetle(x) \rightarrow		
	Quantı-	\neg InFamily(x, chrysomelidae))		
	fier	True: $\forall x \text{ (FleaBeetle(x))} \rightarrow$		
		$\neg \ln(x, chrysomelidaeFamily))$		
	Predicate	Error: ¬H1gh(NewHaven);		
	Mis-	Low(towerA)		
	match	True: ¬High(NewHaven);		
		¬High(towerA)		
Arities	Arities er-	Error: Sees(Tiger, Mouse);		
	rors	$\forall x(((Visits(x, Rabbit)) \land$		
		$(Sees(Mouse))) \rightarrow (Visits(x, $		
		Tiger)))		
		True: Sees(Tiger, Mouse); $\forall x$		
		$(((Visits(x, Rabbit)) \land (Sees(x, $		
		Mouse))) \rightarrow (Visits(x, Tiger)))		
	Subject	Platypus(platypus)		
	Predicate	$\overline{\wedge \neg \text{Teeth}(\text{platypus})}$		
		\wedge Mammal(platypus)		

Table 10: Common Errors in First-Order Logic: The first block of errors are syntactic and the second are semantic errors. This table categorizes errors by their cause, with the <u>underlined</u> text highlighting the specific cause or location of each error. For semantic errors, there are 'True' values to make sense of the error.

Dataset	Verifier	Correct	Training	Manual
ProofWriter	Predicate	1978	326	2991
ProofWriter	FOL	2375	1595	2358
FOLIO	Predicate	1724	-	3448
FOLIO	FOL	2000	-	3241

Table 11: Amount of data for each type of perturbations

Inference	FOLIO	ProofWriter
vanilla*	31.52	64.00
Incremental	32.02	27.16
+Verifier	<u>37.44</u>	29.05

Table 12: Comparing two forms of inference for incremental models. This inference ablation is done on FOLIO and ProofWriter datasets.