
Under review as submission to TMLR

Reproducibility Study of “Efficient Episodic Memory Utiliza-
tion of Cooperative Multi-Agent Reinforcement Learning"

Anonymous authors
Paper under double-blind review

Abstract

This paper reports on the reproducibility study on the paper "Efficient episodic memory uti-
lization of cooperative multi-agent reinforcement learning" by Na et al. (2024). The original
study proposed a method to enhance MARL performance by leveraging episodic memory to
accelerate learning and prevent local optima convergence. EMU introduced a trainable en-
coder/decoder structure for memory retrieval and an episodic incentive reward mechanism to
promote desirable transitions. The original work evaluated the method in StarCraft II and
Google Research Football, demonstrating improvements over state-of-the-art approaches.
This study further examines the effectiveness of EMU by assessing its reported performance
improvements, the impact of its state embedding approach on exploration efficiency, and the
robustness of its incentive mechanism in preventing suboptimal convergence. The analysis
focuses on the SMAC benchmark, particularly in complex scenarios where EMU showed the
most promise, while also exploring its scalability in high-performance computing environ-
ments to determine its computational feasibility. Our findings confirm the advantages of
EMU but underscore the sensitivity of its performance to embedding quality and hyperpa-
rameter selection. Our extended implementation and results are available on Github.

1 Introduction

Cooperative multi-agent reinforcement learning (MARL) has become increasingly vital in real-world applica-
tions, from traffic management Wiering et al. (2000) to manufacturing systems Dittrich & Fohlmeister (2020),
resource allocation Dandanov et al. (2017). Despite notable successes, MARL faces persistent challenges in
achieving effective agent coordination, primarily due to partial observability and complex inter-agent interac-
tions during training. The framework of centralized training and decentralized execution (CTDE) Oliehoek
et al. (2008) emerged as a promising solution, enabling agents to leverage global information during train-
ing while maintaining decentralized execution capabilities. Value factorization approaches within CTDE
have achieved state-of-the-art performance on challenging tasks like the StarCraft II Multi-agent Challenge
(SMAC) Samvelyan et al. (2019).

However, MARL systems still struggle with prolonged convergence times and susceptibility to local optima,
particularly in complex task environments. While recent work has explored committed exploration mech-
anisms to escape these local optima, a fundamental tension exists between exploration and exploitation.
The introduction of Efficient Episodic Memory Utilization (EMU) Na et al. (2024) addresses this challenge
by refining how agents leverage past experiences. Traditional episodic memory approaches rely on random
projections for state embeddings, which often fail to capture semantic similarities between states. EMU
selectively encourages desirable transitions with semantic memory embeddings that identify and prioritize
high-value transitions based on their contextual relevance to goal achievement, enabling more efficient explo-
ration while avoiding the pitfalls of repeated local optima. Consequently, given the enhanced semantic state
representations and efficiency gains achieved by EMU, we deem it both pertinent and valuable to replicate
these findings to further substantiate its potential in mitigating exploration–exploitation trade-offs within
complex MARL environments.

Our work makes the following contributions:

1

https://anonymous.4open.science/r/MLRC-EMU-E0EF/README.md

Under review as submission to TMLR

• A systematic replication of the EMU framework Na et al. (2024), focusing on reproducible exper-
iments while documenting implementation challenges and resource requirements. This validation
effort strengthens the theoretical foundations of episodic control in MARL.

• A rigorous parametric analysis of the state embedding threshold (δ) unveils its pivotal role in dic-
tating convergence and stability across diverse memory embedding techniques (Random Projection,
EmbNet, and dCAE).

• Adaptation of the EMU framework for distributed computing environments, enabling scalable train-
ing across high-performance computing clusters while maintaining coordination efficiency. This
extension demonstrates EMU’s potential for large-scale, computation-intensive MARL applications.

2 Scope of Reproducibility

EMU was introduced to address the challenges of efficient exploration and exploitation in cooperative multi-
agent reinforcement learning (MARL) through improved episodic memory utilization. The framework builds
upon episodic control techniques, enhancing them with semantic embeddings and targeted incentive mecha-
nisms. Na et al. (2024) presented three main claims in their paper, which we aim to investigate:

1. Claim 1: EMU achieves superior performance compared to state-of-the-art MARL
frameworks.
The authors demonstrate that EMU, when integrated with existing frameworks like QPLEX and
CDS Chenghao et al. (2021), significantly improves performance and accelerates convergence to
optimal policies, particularly in challenging scenarios like super hard SMAC maps. Our reproduction
focuses on validating these improvements and understanding the computational requirements needed
to achieve them.

2. Claim 2: The proposed state embedding approach enhances exploration efficiency.
The authors claim that their dCAE (deep Convolutional AutoEncoder) structure effectively handles a
wider range of similarity thresholds (δ) compared to traditional embedding networks. They demon-
strate that selecting appropriate δ values significantly impacts learning performance in complex
MARL tasks. Our work examines the robustness of these improvements across different threshold
values and validates the reported optimal ranges.

3. Claim 3: The episodic incentive mechanism prevents convergence to local optima.
The original paper shows that their episodic incentive mechanism reduces performance variation
across different random seeds, particularly when compared to conventional episodic control imple-
mentations. They argue this demonstrates the mechanism’s ability to prevent detrimental local
convergence. Our reproduction investigates this stability claim and examines the mechanism’s ef-
fectiveness across various environmental conditions.

Our reproduction efforts focus particularly on the SMAC benchmark environment, as it represents the
primary testbed used in the original paper and provides a standardized way to evaluate MARL performance.
We pay special attention to the super hard scenarios (e.g., 6h_vs_8z) where the benefits of EMU were
most pronounced. Additionally, we examine the scalability of these results in high-performance computing
environments, as this aspect was not extensively covered in the original work.

3 Methodology

In this section, we detail our approach for reproducing and analyzing the Efficient Episodic Memory Uti-
lization (EMU) framework for cooperative multi-agent reinforcement learning (MARL) using the publicly
available code from the repository of EMU.

3.1 EMU

Efficient Episodic Memory Utilization (EMU) enhances cooperative multi-agent reinforcement learning
(MARL) by integrating structured memory representations with an adaptive incentive mechanism. Standard

2

https://github.com/HyunghoNa/EMU

Under review as submission to TMLR

MARL approaches often struggle with inefficient exploration and suboptimal convergence due to complex
agent interactions. EMU addresses these limitations by employing a trainable memory embedding that
encodes and organizes past experiences, allowing agents to retrieve relevant information and refine their
decision-making. Simultaneously, it introduces an episodic incentive mechanism that selectively amplifies
the influence of beneficial transitions, ensuring a balance between exploitation and exploration.

Figure 1: Overview of EMU framework. Note: Image from Na et al. (2024)

As illustrated in Figure 1, EMU refines episodic memory utilization in MARL by structuring the way agents
store, retrieve, and leverage past experiences. Instead of relying on random projections, EMU employs a
deep Convolutional Autoencoder (dCAE) to encode state representations, ensuring that semantically similar
states are clustered in the latent space. This structured memory representation enables agents to retrieve
meaningful past experiences, improving policy learning and decision-making efficiency Na et al. (2024).
Unlike conventional approaches that apply fixed-distance thresholds for memory recall, EMU dynamically
adapts its retrieval process, reducing errors in state generalization and allowing more effective long-term
credit assignment.

Beyond memory encoding, EMU introduces an episodic incentive mechanism that promotes efficient ex-
ploration by modifying the learning process. Rather than relying solely on environmental rewards, EMU
computes additional incentives based on the desirability of visited states. A state’s desirability is deter-
mined by its historical contribution to successful trajectories, with high-value transitions receiving greater
reinforcement. Formally, the episodic incentive rp is defined as:

rp = γη̂(s′) (1)

where η̂(s′) quantifies the discrepancy between the actual state value V ∗(s′) and the predicted value of the
function Q. In practice, this term is computed as follows:

η̂(s′) = Nξ(s′)
Ncall(s′) ·

(
H(fϕ(s′)) − max

a′
Qθ−(s′, a′)

)
(2)

Here, Nξ(s′) and Ncall(s′) represent the state’s visitation count and memory retrieval frequency, respectively,
while H(fϕ(s′)) denotes the entropy of the state’s latent representation. This mechanism prevents premature
convergence to suboptimal policies by encouraging agents to revisit promising but underexplored states. By
integrating structured memory representations with adaptive incentives, EMU significantly enhances MARL
performance, improving convergence speed, exploration efficiency, and overall agent coordination.

3

Under review as submission to TMLR

3.2 Environments

Feature StarCraft Multi-Agent Challenge Google Research Football

Description Cooperative environment where agents control
units in StarCraft II to defeat enemy units

Multi-agent soccer simulation where agents
control players to score goals

State space Coordinates of all agents and comprehensive
features of both allied and enemy units

Player coordinates, ball possession informa-
tion, and player directional data

Action space Movement and attack actions; action space in-
creases with the number of enemy units

Fixed set of actions including movement, ball
control (kick, intercept, dribble), and running

Episode duration Variable duration depending on map configu-
ration (ranges from 70 to 400 time steps)

Consistent duration of 150 time steps across all
tasks

Reward structure Agents receive rewards for damaging enemies
and bonuses for winning. The maximum cu-
mulative reward per episode is scaled to 20

Sparse reward system: +1 for successful goal,
-1 for conceded goal

Table 1: Comparison of Multi-Agent Reinforcement Learning Environments

3.3 RL Algorithms

3.3.1 CDS

Coordinate Descent Scheduling (CDS) is an optimization algorithm that iteratively updates individual coor-
dinates of the decision variable while keeping others fixed, progressively improving the objective function. It
is particularly useful in high-dimensional problems due to its computational efficiency and ability to exploit
sparsity. According to Wright (2015), the CDS algorithm follows a structured update process where, at each
iteration, a single coordinate xi of the decision variable x ∈ Rn is selected and updated based on the partial
derivative of the objective function f(x). The update rule can be expressed as:

x
(k+1)
i = x

(k)
i − α

∂f(x)
∂xi

(3)

where α is the step size. The choice of coordinate selection can follow different strategies, such as cyclic selec-
tion, random selection, or adaptive methods that prioritize coordinates with the highest gradient magnitudes.
By updating one coordinate at a time, CDS reduces the computational burden compared to full-gradient
methods, making it well-suited for large-scale optimization problems. Its convergence depends on the objec-
tive function and selection rule, with strong theoretical guarantees in convex settings.

3.3.2 EMC

EMC (Episodic Multi-agent Reinforcement Learning with Curiosity-driven Exploration) is a reinforcement
learning framework designed to enhance exploration in multi-agent systems by introducing curiosity-driven
mechanisms. The algorithm focuses on promoting exploration by using intrinsic rewards based on the agents’
curiosity about the environment, which encourages them to explore unknown or less visited states.

According to Zheng et al. (2021), EMC incorporates episodic memory to retain past experiences and uses
curiosity-driven exploration to address the exploration-exploitation trade-off in multi-agent settings. The
episodic memory enables agents to revisit useful past experiences, improving both sample efficiency and
the overall learning process. The curiosity mechanism is implemented by an intrinsic reward function that
depends on the agents’ uncertainty about their environment, formalized as:

rcuriosity(s, a) = α · log
(

1
P (s, a)

)
, (4)

where P (s, a) represents the predicted probability of an agent’s state-action pair, and α is a scaling factor.
This intrinsic reward encourages the agent to explore actions that lead to states with high uncertainty, com-
plementing the extrinsic rewards from the environment. By integrating episodic memory with curiosity-driven
exploration, EMC improves exploration efficiency and accelerates the convergence of policies in cooperative
multi-agent environments. Its approach is particularly beneficial in tasks where agents need to balance
exploration and exploitation over extended episodes.

4

Under review as submission to TMLR

3.4 Experimental setup

This section describes the experimental setup used to evaluate the performance of EMU. The experiments
were conducted in two challenging environments: StarCraft Multi-Agent Challenge (SMAC) and Google
Research Football (GRF) Kurach et al. (2020), which we will briefly detail. The setup includes information
about the hyperparameters, evaluation metrics, and infrastructure.

3.4.1 Hyperparameters

Parameter Specification

δ (Delta, controls the influence of episodic memory) • Easy/Hard SMAC Maps: 1.3 × 10−5

• Super Hard SMAC Maps: 1.3 × 10−3

• GRF Tasks: 1.3 × 10−3

fϕ (Embedding Function) • Random Projection
• EmbNet (neural network-based)
• dCAE (deep convolutional autoencoder-based)

Training Configuration • ncircle: 1 (32 episodes/batch)
• Batch Size: 32 episodes
• Random Seeds: 5 (32 episodes/seed)

Table 2: Hyperparameters and Training Configuration Details

3.4.2 Evaluation Metrics

• Overall Win-Rate (µ̄w): A new performance index that combines training efficiency (speed) and
quality (win-rate) across different random seeds.

• Learning Curves: Win-rate plot over training time to visualize model’s convergence and stability.

• Convergence time: Number of episodes required to reach a stable win-rate.

3.4.3 Infrastructure

• Experiments were conducted on NVIDIA GeForce RTX 3090 GPUs.

• The most time-consuming training experiment was completed in under 18 hours using EMU (CDS).

• When training with ncircle = 2, the time increased by more than 1.5 times additionally.

• Training of the encoder / decoder structure and update of DE (Dynamic Embedding) with fϕ

(embedding function) took less than 2 seconds in the corridor task.

• The embedding network (fϕ) and DE are updated periodically with temb (time interval for updating).
While this adds some time to the training process, that additional time is negligible compared to
the total MARL training time.

3.5 Additional Experiments

3.5.1 Parametric analysis of the state embedding threshold (δ)

In this experiment, we aim to perform a comprehensive parametric analysis to assess how the state embedding
threshold (δ) influences the performance of episodic memory representations in cooperative MARL. By
systematically comparing three memory embedding strategies (Random Projection, EmbNet, and dCAE)
over a range of δ values, we aim to elucidate their impact on learning dynamics, particularly in terms of
convergence behavior and the trade-off between exploration and exploitation. The insights derived from this
analysis are critical to refining the theoretical foundations of episodic memory utilization and to guiding the
design of more robust and efficient multi-agent systems capable of addressing complex learning challenges.

5

Under review as submission to TMLR

3.5.2 Overcoming Local Optima Through Exploration Incentives

EMU’s semantic memory learning reinforces high-value transitions using a loss function that aligns pre-
dicted and actual state values. However, this can lead to premature convergence, as frequently retrieved
states dominate exploration, trapping agents in suboptimal policies. To counter this, we introduce an explo-
ration incentive that encourages broader exploration before agents rely on memory-driven decision-making,
preventing overcommitment to familiar states and mitigating early convergence to local optima.

Mathematically, the challenge is expressed as:

E

[∞∑
t=0

γtrt | πlocal

]
< E

[∞∑
t=0

γtrt | π∗

]
, (5)

where πlocal is a suboptimal policy, π∗ is the optimal policy, γ is the discount factor, and rt is the reward at
time t. To regulate exploration, we introduce:

I(s′) =
{

0, if Ncall ≤ Nthreshold,

1 − e−β(Ncall−Nthreshold), otherwise.
(6)

Here, I(s′) penalizes overvisited states, with Ncall tracking visits, Nthreshold defining when penalties start,
and β controlling penalty growth. The modified total reward is:

rtotal = r − λI(s′), (7)

where λ scales the penalty. This ensures agents fully explore the environment before relying on memory-
driven learning, leading to more robust policies while preserving EMU’s strengths.

3.5.3 Extending EMU with Deep Q-Networks (DQN) for complex discrete scenarios in iTHOR

The EMU framework enhances multi-agent reinforcement learning (MARL) by leveraging semantic episodic
memory embeddings and an episodic incentive mechanism to improve sample efficiency and prevent conver-
gence to suboptimal policies. However, existing evaluations have focused primarily on value factorization
methods such as QMIX Rashid et al. (2018), QPLEX, and CDS, as well as episodic control techniques like
EMC Wang et al. (2020).

To broaden the scope of the study and assess the impact of episodic memory representation on different
RL paradigms, we propose integrating Deep Q-Networks (DQN) into EMU. This will provide a comparative
analysis between single-agent reinforcement learning (DQN) and multi-agent approaches, particularly in
complex discrete decision-making scenarios within the iTHOR simulation environment. Given that episodic
memory mechanisms can be incorporated into both single-agent and multi-agent reinforcement learning
frameworks, this study aims to empirically evaluate the feasibility and effectiveness of such an integration.
Specifically, we seek to test the applicability of episodic memory strategies originally designed for multi-agent
settings in single-agent learning, thereby examining their influence on sample efficiency, policy optimization,
and overall performance. The integration of Deep Q-Networks (DQN) allows us to address more complex
discrete scenarios. Using the iTHOR library, we will evaluate the performance of DQN in these scenarios by
comparing the effectiveness of different episodic memory representation techniques: Autoencoder, Random
Projection, and Embeddings. This comparison will highlight how memory representation impacts learning
efficiency, policy performance, and overall task success.

3.6 Computational Requirements

The reproduction experiments were conducted on a high performance computing (HPC) cluster. Specifically,
we utilized both CPU and GPU processing nodes with the following configurations: (1) CPU Node: Intel®
Xeon® Gold 6130 processor with 157 GB of DRAM. (2) GPU Node: AMD EPYC 64-Core processor with
1 TB of DRAM and 2 NVIDIA A100 GPUs (40 GB).

Table 3 presents the average training times across all maps. The experiments performed on the CPU node
required between 3 and 6 GB of RAM, whereas those on the GPU node utilized 3 to 5 GB of RAM and 4
to 7 GB of GPU memory.

6

Under review as submission to TMLR

Map Mean Time (hours) Standard Deviation (hours) Hardware
1c3s5z 32 6 CPU
3s_vs_5z 15 4 CPU
5m_vs_6m 19 4 CPU
6h_vs_8z 95 28 CPU
3s5z_vs_3s6z 79 27 CPU
MMM2 84 13 CPU
3_vs_1WK 65 9 GPU
CA_easy 42 8 GPU
CA_hard 96 5 GPU

Table 3: Training times for different maps

4 Results

4.1 Results reproducing original paper

4.1.1 Q1. Comparative evaluation on Starcraft II (SMAC)

Figure 2: Reproduction of comparative evaluation on Starcraft II (SMAC)

One of the primary claims of EMU is its superior performance compared to state-of-the-art MARL frame-
works. Our reproduced results, presented in Figure 2, largely support this assertion. In most scenarios
tested, EMU (CDS) achieves either comparable or superior performance relative to EMC and CDS, consis-
tently reaching a 100% test win rate while stabilizing in an equal or fewer number of steps, thus validating
Claim 1.

Furthermore, EMU (QPLEX) exhibits performance on par with EMU (CDS) in the 1c3s5z and 3s_vs_5z
maps. However, its effectiveness diminishes in more challenging environments, such as 5m_vs_6m, and
particularly in super-hard maps like 6h_vs_8z and 3s5z_vs_3s6z, where it underperforms in comparison
to both EMC and CDS. This discrepancy suggests that the stochastic nature of multi-agent reinforcement
learning (MARL) tasks significantly influences policy convergence, leading to performance variations between
EMU (CDS) and EMU (QPLEX).

7

Under review as submission to TMLR

The results indicate that the episodic incentive mechanism in EMU effectively mitigates the impact of
stochasticity, enabling faster convergence, especially in EMU (CDS), fulfilling Claim 3. However, in super-
hard scenarios, the increased randomness amplifies estimation errors in the Q-value function, ultimately
degrading EMU (QPLEX)’s performance. These findings highlight a trade-off between algorithmic complex-
ity and resilience to environmental uncertainty, suggesting that while EMU enhances learning efficiency, its
robustness varies depending on the chosen architecture and the stochastic properties of the task.

4.1.2 Q1. Comparative evaluation on Google Research Football (GRF)

As illustrated in Figure 3, this study presents a performance comparison of EMU (QPLEX), EMU (CDS),
and EMC across three different maps within the Google Research Football (GRF) environment. While the
original evaluation was conducted over a range of 3 to 8 million steps, this reproduction is limited to the first
2 million steps. Nevertheless, despite this restriction, the results obtained remain largely consistent with the
original findings. Specifically, EMU (CDS) consistently outperforms EMU (QPLEX) across all tested maps.

Figure 3: Reproduction of performance comparison of EMU against baseline algorithms on Google Research
Football

Furthermore, EMC exhibits an inconsistent performance across different scenarios. In less complex maps,
such as 3_vs_1WK, EMC demonstrates competitive results, occasionally surpassing EMU (QPLEX). How-
ever, in more challenging environments, such as CA_hard, EMC struggles to achieve stable performance,
likely due to its limited adaptability in highly dynamic multi-agent interactions. In contrast, EMU (CDS)
maintains a more robust learning trajectory, reinforcing the effectiveness of its episodic memory mechanism
in mitigating policy instability.

These findings underscore the advantages of EMU’s memory-driven approach, particularly in scenarios where
traditional methods like EMC exhibit performance degradation due to the increased complexity of agent
coordination, validating Claim 1.

4.1.3 Q2. Parametric and ablation study

Here, our objective is to recreate the original experiment to compare the hyperparameters and evaluate the
reproducibility of the work. We carefully followed the experimental setup and configuration as recommended
by the author, ensuring that all parameters and settings matched those described in the original work. To
achieve this, we replicated the experiment on selected SMAC maps to measure µ̄w as a function of δ and the
choice of design for fϕ, considering the following configurations:

(a) 3s_vs_5z (b) 5m_vs_6m (c) 3s_vs_5z (Test) (d) 5m_vs_6m (Test)
Figure 4: Comparative evaluation of experiments on SMAC maps.

8

Under review as submission to TMLR

Random Projection and EmbNet, with δ1 = 1.3×10−7, δ2 = 1.3×10−5, δ3 = 1.3×10−3, δ4 = 1.3×10−2.

Variability Across Runs: When running the experiment multiple times, we observed that the results of
Test Win [%] and the overall win-rate µ̄w exhibit significant variations. This variability may be due to
several factors, including differences in the initialization of random seeds and sensitivity of the model to the
values of δ and the architecture of fϕ. Therefore, we perform further experiments to explore Claim 2.

Impact on the Interpretation of Results: Since the values obtained in each run may differ, this suggests
that the model’s performance is not entirely deterministic and may be influenced by the inherent random-
ness of training. Our results suggest that the choice of the hyperparameter δ and the architecture of fϕ

affects training stability. The variability across runs indicates that convergence is not entirely deterministic,
highlighting the need for stabilization strategies in future research.

4.1.4 Q3. Further ablation study

Figure 5 presents the ablation study results, revealing discrepancies from the original findings. In case
(a), test win rates remained below 10%, despite running all experiments twice with the provided configu-
ration files. In case (b), EMU (QPLEX) outperformed its variations, while removing the episodic incentive
(QPLEX-No-EI) resulted in zero test win rates, even after two independent runs. Similarly, in case (c), EMU
(CDS) and its variation without episodic incentive (CDS-No-EI) showed comparable results, but removing
state embedding led to zero test win rates, even after two executions.

Claim 3 states that the episodic incentive mechanism mitigates detrimental local convergence by reducing
variation across different seeds. Our ablation study partially supports this claim: removing the episodic
incentive significantly degrades EMU (QPLEX) performance, whereas its effect on EMU (CDS) is less pro-
nounced. This difference may arise from factors such as the stochasticity of SMAC environments, especially in
super-hard maps. Given MARL methods’ sensitivity to random initialization and environmental variations,
our findings underscore the role of episodic incentives in stabilizing performance across different runs.

(a) 6h_vs_8z SMAC (b) 3s5z_vs_3s6z SMAC (c) 3s5z_vs_3s6z SMAC

Figure 5: Reproduction of ablation studies on episodic incentive via complex MARL tasks.

4.2 Results additional experiments

4.2.1 Parametric analysis

As described above, we conducted a comprehensive evaluation to determine how the state embedding thresh-
old (δ) influences the performance of different memory embedding strategies in cooperative MARL. In this
experiment, we compared three memory types (Random Projection, EmbNet, and dCAE) by analyzing the
evolution of the Test Win over time under the algorithm’s original configuration (Figure 7).

In the case of Random Projection, we observed that at δ = 1.3e − 5, the model achieves competitive
performance, even surpassing the other memory types at certain points during training. However, by the
end of the process, its performance declines relative to the others, suggesting its inability to consolidate
semantic memories over time, which limits its long-term effectiveness.

9

Under review as submission to TMLR

On the other hand,in EmbNet, a clear relationship is observed between δ values and the model’s performance.
As δ decreases, performance improves, indicating that this parameter has a significant impact on the quality
of learning. This result suggests that, in this type of memory, δ is a key factor in the model’s evolution and
its ability to learn optimal strategies.

However, in dCAE, no clear correlation between δ and the model’s final performance is observed. Despite
the fact that δ = 1.3e − 7 (red) and δ = 1.3e − 2 (blue) have considerably different values, the obtained
performance is very similar. Moreover, the intermediate value δ = 1.3e − 5 does not lie between them in
the graph, suggesting that the impact of δ in this case is much lower. This indicates that, in the context of
the game, the model is not strongly affected by δ when using dCAE, and it is possible that another factor
is playing a more significant role in shaping the learning dynamics. Thus, these findings validate Claim 2,
demonstrating that the state embedding approach effectively enhances exploration efficiency through the
proper tuning of δ, particularly evident in the EmbNet configuration.

(a) Random Projection (b) EmbNet (c) dCAE

Figure 6: Comparison of BattleWon Mean for Memory type

4.2.2 Overcoming Local Optima Through Exploration Incentives

In Figure 7, we observe that the proposed penalty function enhances early-stage performance, particularly in
the Random Projection method for the 3s_vs_5z environment. The effect is most noticeable during the first
0.75 million steps, where the penalty function facilitates a faster increase in test win percentage compared
to the original function. However, after 1.5 million steps, the difference diminishes, suggesting that while
the penalty function aids in early exploration, long-term policy refinement remains unaffected.

Figure 7: Comparison of our penalty function vs the original proposal in 3s_vs_5z

A similar trend is seen in dCAE, though with greater fluctuations, indicating that the penalty function might
introduce momentary instability in certain representations. In contrast, EmbNet shows minimal impact from
the penalty function, suggesting that it may already incorporate effective generalization mechanisms. This
highlights that the effectiveness of the penalty function varies across different models, benefiting high-variance
methods more significantly.

10

Under review as submission to TMLR

Overall, these results suggest that the penalty function primarily accelerates early learning rather than
improving final performance. This insight opens the possibility of adaptive penalty scaling, where the
penalty gradually reduces over time to balance exploration and exploitation. A deeper variance analysis
could help clarify whether the observed fluctuations in dCAE and Random Projection are due to inherent
stochasticity or systematic effects of the penalty. Further discussion on local optima and additional results
are provided in Appendix A.1.

4.2.3 Experimental Challenges in Integrating DQN within EMU for iTHOR

Although integrating Deep Q-Networks (DQN) into the EMU framework was initially proposed to extend
its applicability to discrete environments such as iTHOR, this integration ultimately proved unfeasible. The
project’s design is closely aligned with SMAC and Google Research Football, which provided the foundation
for EMU’s episodic memory and incentive configurations. In contrast, DQN inherently relies on a replay
buffer to store and sample past experiences, a requirement that conflicts with the episodic memory structure
employed by EMU. This necessitated a decoupling of memory configurations, ultimately rendering the ex-
perimental setup impractical. Moreover, the existing codebase lacked sufficient robustness to accommodate
significant structural modifications, and the system configuration complicated the integration with iTHOR.
Another critical factor was the discrepancy in training paradigms: while DQN trains agents individually, the
EMU framework is designed to accommodate both individual and cooperative training approaches, thereby
requiring distinct architectural considerations. This divergence in training strategies further impeded the
successful incorporation of DQN. Additionally, the comparison algorithms are distributed across multiple
repositories, making standardization and reproducibility more challenging. Establishing a unified library for
episodic memory-based reinforcement learning methods would facilitate benchmarking, streamline integra-
tion, and enhance research consistency.

As a result, despite initial efforts, the experimental evaluation of DQN within the EMU framework on iTHOR
could not be realized, highlighting the challenges of adapting memory-centric reinforcement learning methods
to heterogeneous environments. These findings underscore the importance of aligning reinforcement learning
architectures with the specific demands of their target environments. The incompatibilities observed between
memory management strategies and training paradigms offer valuable insights into the inherent trade-offs
of adapting diverse reinforcement learning methodologies. While the integration of DQN into EMU was
ultimately unsuccessful, the challenges encountered provide a promising foundation for future research aimed
at developing hybrid architectures or novel approaches that reconcile these differences.

5 Discussion

As we can appreciate from results, EMU (CDS) consistently demonstrated superior stability and efficiency
across various test environments. Its episodic incentive mechanism played a crucial role in mitigating
stochasticity, thereby facilitating faster and more reliable convergence, validating Claim 3. Conversely, EMU
(QPLEX) exhibited more variability, performing competitively in certain scenarios but displaying greater
fluctuations in performance. This suggests that while EMU improves exploration efficiency, its effectiveness
is contingent on the specific reinforcement learning architecture employed.

A key insight from this replication study is the sensitivity of EMU’s performance to hyperparameter selection
and computational architecture. Variability in results across different runs suggests that minor adjustments
to parameters such as the state embedding threshold (δ) can lead to significant differences in training stability.
This highlights the need for further research on robust tuning strategies to enhance model generalizability
and reproducibility across different computational setups.

Despite these promising findings, the study also revealed notable challenges in reproducibility. Difficulties
encountered during experimental replication-ranging from software compatibility issues to structural limita-
tions in the provided code-emphasize the importance of improving documentation, dependency management,
and code modularity. The integration of Deep Q-Networks (DQN) within the EMU framework proved infea-
sible, underscoring the need for greater architectural flexibility when adapting episodic memory mechanisms
to diverse reinforcement learning paradigms.

11

Under review as submission to TMLR

5.1 Reproducibility

When recreating the graphs proposed by the authors for the third time, we found some discrepancies in
the results obtained with the presented models (see Appendix A.2, Figure 10).. This is due to the inherent
variability in state exploration during the training of each game. Although we followed the steps described in
original paper, particularly for configuring the experiment with the 5m_vs_6m game, we observed that the
algorithm is still not as efficient as it should be. Its performance is significantly affected by the randomness
of the environment, suggesting that its stability and generalization could be improved.

For example, while Random Projection maintains a relatively stable win rate across different values of log δ,
dCAE exhibits a sharp drop at log δ = −5, reaching almost 0.0, before recovering. Similarly, EmbNet remains
stable until log δ = −3, where it drastically decreases. These fluctuations indicate that these memory models
are more sensitive to specific environmental variations than others.

5.2 What was easy

Certain aspects of the implementation process were relatively straightforward. Once the appropriate envi-
ronment was set up on a compatible system, the execution of the provided scripts proceeded without major
complications. Additionally, the presence of predefined configuration files minimized the need for extensive
manual adjustments, enabling a smoother initialization of experiments.

5.3 What was difficult

Throughout this study, several challenges hindered the reproduction and extension of the original paper.
Despite strictly following the original setup and repeating the experiment several times, the results obtained
did not exactly match those reported in the original study. Consequently, we contacted the authors of
the original paper to adjust the setup (see Appendix A.4), but this still resulted in varying results due
to the inherent variability in performance due to the stochastic nature of the problem. Additionally, the
reproducibility of the model is influenced by the computational architecture, as running the same experiment
on different machines can lead to variations in the results. Notably, the use of a GPU versus a CPU affects
processing times and overall performance, highlighting that system configuration is a critical factor beyond
just the experiment parameters.

The integration of different reinforcement learning approaches exposed methodological incompatibilities,
making standardization challenging. Similarly, certain parameters impacted the model’s performance incon-
sistently, complicating its analysis. Lastly, limitations in configuration flexibility prevented some experiments
from being conducted as planned, affecting comparisons with previous studies. Further explanation are pro-
vided in Appendix A.3

6 Conclusions

This study aimed to systematically reproduce and extend the findings of the original work on Efficient
Episodic Memory Utilization (EMU) for cooperative multi-agent reinforcement learning (MARL). The results
confirm that EMU provides significant performance enhancements in MARL tasks by leveraging structured
episodic memory representations and an adaptive incentive mechanism. These advantages were particularly
evident in environments where traditional exploration strategies struggle with inefficient learning and local
optima convergence.

In conclusion, while EMU effectively enhances MARL performance, further refinements in its implementation,
stability, and scalability are necessary. Future work should focus on addressing the challenges identified in
this study, particularly in improving cross-platform compatibility, refining memory management techniques,
and optimizing hyperparameter selection for more robust performance. A standardized library for episodic
memory-based MARL approaches could facilitate benchmarking and streamline future research efforts.

12

Under review as submission to TMLR

References

Li Chenghao, Tonghan Wang, Chengjie Wu, Qianchuan Zhao, Jun Yang, and Chongjie Zhang. Celebrat-
ing diversity in shared multi-agent reinforcement learning. Advances in Neural Information Processing
Systems, 34:3991–4002, 2021.

Nikolay Dandanov, Hussein Al-Shatri, Anja Klein, and Vladimir Poulkov. Dynamic self-optimization of
the antenna tilt for best trade-off between coverage and capacity in mobile networks. Wireless Personal
Communications, 92(1):251–278, 2017.

Martin-André Dittrich and Silas Fohlmeister. Cooperative multi-agent system for production control using
reinforcement learning. CIRP Annals, 69(1):389–392, 2020.

Karol Kurach, Anton Raichuk, Piotr Stanczyk, Michal Zajkc, Olivier Bachem, Lasse Espeholt, Carlos
Riquelme, Damien Vincent, Marcin Michalski, Olivier Bousquet, et al. Google research football: A novel
reinforcement learning environment. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 4501–4510, 2020.

Hyungho Na, Yunkyeong Seo, and Il-chul Moon. Efficient episodic memory utilization of cooperative multi-
agent reinforcement learning. arXiv preprint arXiv:2403.01112, 2024. URL https://doi.org/10.48550/
arXiv.2403.01112.

Frans A. Oliehoek, Matthijs TJ Spaan, and Nikos Vlassis. Optimal and approximate q-value functions for
decentralized pomdps. Journal of Artificial Intelligence Research, 32:289–353, 2008.

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob Foerster, and Shimon
Whiteson. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement learning. In
International Conference on Machine Learning, pp. 4295–4304. PMLR, 2018.

Timur Samvelyan, Anuj Mahajan, Tabish Rashid, and Shimon Whiteson. Maven: Multi-agent variational
exploration. In Advances in Neural Information Processing Systems, volume 32, 2019.

Jian Wang, Ziyu Ren, Tong Liu, Yang Yu, and Cheng Zhang. Qplex: Duplex dueling multi-agent q-learning.
arXiv preprint arXiv:2008.01062, 2020. URL https://arxiv.org/abs/2008.01062.

Marco A. Wiering et al. Multi-agent reinforcement learning for traffic light control. In Proceedings of the
Seventeenth International Conference on Machine Learning (ICML’2000), pp. 1151–1158, 2000.

Stephen J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015. URL
https://arxiv.org/abs/1502.04759.

Lianmin Zheng, Jianye Chen, Jiawei Wang, Jinchi He, Yujing Hu, Yuxiao Chen, Cheng Fan, Yang Gao, and
Chongjie Zhang. Episodic multi-agent reinforcement learning with curiosity-driven exploration. arXiv
preprint arXiv:2111.11032, 2021. URL https://arxiv.org/abs/2111.11032.

13

https://doi.org/10.48550/arXiv.2403.01112
https://doi.org/10.48550/arXiv.2403.01112
https://arxiv.org/abs/2008.01062
https://arxiv.org/abs/1502.04759
https://arxiv.org/abs/2111.11032

Under review as submission to TMLR

A Appendix

A.1 Further Results Of Local Optima Through Exploration Incentives

Our goal is to demonstrate that the MARL algorithm can overcome local optima by prioritizing states with
higher past rewards. However, this approach may limit exploration of better alternatives. To address this,
we introduce an additional incentive to encourage new trajectory exploration and mitigate decision-making
minimization.

For this experiment, we set the penalty function parameters as follows:

Nthreshold = 10, Pmax = 0.5, β = 0.0009, δ1 = 1.3 × 10−7, Memory Type: DCAE.

The penalty function is defined as:

I(s′) =
{

0, if Ncall ≤ Nthreshold

1 − e−β(Ncall−Nthreshold), if Ncall > Nthreshold

Figure 9 presents performance comparisons. The red function, used as a Decision Function, applies penal-
ties to modify rewards while storing unpenalized values to compare strategies and prevent over-penalization.
Two cases were considered: storing versus not storing penalized values. Our results indicate that when
penalties are not stored, decisions improve in some cases, but feedback absence causes overfitting between
steps 100 and 125. Storing penalties led to better performance in 3s_vs_5z and 5m_vs_6m scenarios.
The loss graph highlights that the Memorizing Function (green) applies a more balanced penalty than
the Decision Function.

(a) 3s_vs_5z (b) 5m_vs_6m

(c) 3s_vs_5z (d) 5m_vs_6m

Figure 8: Penalty loss corporation.

During the first 75k steps, the penalty function enhances performance, but afterward, it converges to the
original function. This aligns with expectations, as early training favors exploration. Over time, the original
algorithm reaches optimal learning, confirming our hypothesis in the initial stages while progressively favoring
high-reward states.

14

Under review as submission to TMLR

To validate our approach, we conducted three runs per experiment with varying configurations to compute
variance. Figure 9 illustrates variance results, providing deeper insights. As step count increases, the original
algorithm efficiently differentiates between moves. However, despite its O(1) complexity, our modification
introduces overhead, with execution time increasing significantly beyond 80 steps.

(a) 3s_vs_5z (b) 5m_vs_6m

Figure 9: execution time.

Efforts to optimize the code revealed that lack of standardization and modularity hampers readability
and modifications. A structured architecture would facilitate analysis and experimentation.

Both semantic and episodic memory contribute to AI training stability in later stages, with or with-
out the penalty function. A more effective strategy would emphasize early-stage exploration to accelerate
learning and then seamlessly integrate the original implementation beyond 80 steps. Furthermore, optimiz-
ing modularity, standardization, and architecture is critical for improved performance and research
progress.

A.2 Additional Parametric Results

When recreating the parametric and ablation study proposed by the authors for the third time, we observed
several discrepancies between our results and those reported in the original paper. This is due to the inherent
variability in state exploration during the training of each game. Although we used the same yaml files as
in the original paper, particularly for configuring the experiment with the 5m_vs_6m game, we observed
that the algorithm is still not as efficient as it should be. Its performance is significantly affected by the
randomness of the environment, suggesting that its stability and generalization could be improved.

For example, while the Random Projection model maintains a relatively stable win rate across different
values of log δ, the dCAE model exhibits a sharp drop at log δ = −5, reaching almost 0.0, before recover-
ing. Similarly, the EmbNet model remains stable until log δ = −3, where it drastically decreases. These
fluctuations indicate that these memory models are more sensitive to specific environmental variations than
others.

(a) Overall win-rate according to δ (b) Final win-rate according to δ

Figure 10: Performance comparison on SMAC maps.

15

Under review as submission to TMLR

A.3 Specific Limitations

A.3.1 Challenges regarding the code structure and the instructions provided in the GitHub repository

The installation process was hindered by unclear instruction and missing dependency specifications in the
Github repository. As a result, we encountered multiple issues with package compatibility and dependency
resolution. To address these problems, we had to rely on the source repositories of SMAC and Google
Research Football to manually resolve dependencies and ensure proper installation. Additionally, the required
version of starcraft.py differed from the one provided in the SMAC repository, yet no guidance was available on
how to install the correct version. This lack of comprehensive documentation significantly increased the time
required to set up the environment and replicate the experiments. This lack of comprehensive documentation
significantly increased the time required to set up the environment and reproduce the experiments.

A.3.2 Challenges encountered when utilizing non-Linux-based operating systems

Our initial installation attemps were conducted on a Windows laptop equipped with an NVIDIA GeForce
RTX 4050 GPU. However, the estimated runtime for a single experiment on an easy SMAC map ranged from
4 to 8 days, making this approach impractical. As a result, we transitioned to an HPC cluster to leverage
greater computational resources and enable parallel execution of multiple experiments.

A.3.3 Challenges related to the handle of Google Research Football

While we resolved the package related installation issues on Windows, transitioning to the HPC cluster
introduced new challenges due to its Linux-based environment. The installation process was further com-
plicated by the cluster’s restrictions, which prevented us from installing system level packages required for
Google Research Football due to the lack of root access. To overcome this limitation, we initially disabled
all GFootball-related code and focused solely on SMAC experiments. Weeks later, Apptainer was installed
on the cluster allowing us to containerize the environment. We built a Docker image with all necessary
dependencies and executed the experiments within an Apptainer container. Although this solution enabled
us to run the experiments, it added complexity to the setup and maintenance of the experimental workflow.

A.4 Contact with the authors

We contacted the authors to clarify specific hyperparameter configurations and training protocols, particu-
larly for the superhard SMAC maps. They emphasized the necessity of extending training to at least five
million steps (t_max = 5M) instead of the two million steps (t_max = 2M) initially used. According to
their feedback, prolonged training is essential for ensuring convergence in complex tasks, as shorter runs may
not fully capture the performance potential of the models.

Additionally, they highlighted the importance of maintaining consistency in baseline configurations by strictly
following the hyperparameter settings outlined in their official repository or paper. To ensure fair compar-
isons, they recommended enabling the “emu_circle=2” setting in default.yaml. In light of this guidance,
several models were retrained to align with these revised specifications, thereby ensuring methodological
fidelity to the original study.

16

Under review as submission to TMLR

A.5 YAML Configuration Changes

In our efforts to replicate the ablation study, we modified only two parameters within the YAML configuration
file: memory_emb_type and optimality_incentive. Since EMU was implemented on top of both the original
QPLEX and CDS frameworks, separate YAML configurations were provided for each variant to reproduce
Figure 5. Consequently, we adjusted these parameters in both configuration files. The modifications are
summarized in the following tables.

Table 4: Modified YAML Parameters Across Experiments in EMU_sc2

Parameter EMU
(QPLEX)

EMU
(QPLEX-
No-EI)

EMU
(QPLEX-
No-SE)

EMC
(QPLEX-
original)

memory_emb_type 3 3 1 1
optimality_incentive True False True False

Table 5: Modified YAML Parameters Across Experiments in EMU_sc2_cds

Parameter EMU
(CDS)

EMU
(CDS-No-
EI)

EMU
(CDS-No-
SE)

CDS
(QPLEX-
original)

memory_emb_type 3 3 1 1
optimality_incentive True False True False

17

	Introduction
	Scope of Reproducibility
	Methodology
	EMU
	Environments
	RL Algorithms
	CDS
	EMC

	Experimental setup
	Hyperparameters
	Evaluation Metrics
	Infrastructure

	Additional Experiments
	Parametric analysis of the state embedding threshold ()
	Overcoming Local Optima Through Exploration Incentives
	Extending EMU with Deep Q-Networks (DQN) for complex discrete scenarios in iTHOR

	Computational Requirements

	Results
	Results reproducing original paper
	Q1. Comparative evaluation on Starcraft II (SMAC)
	Q1. Comparative evaluation on Google Research Football (GRF)
	Q2. Parametric and ablation study
	Q3. Further ablation study

	Results additional experiments
	 Parametric analysis
	Overcoming Local Optima Through Exploration Incentives
	Experimental Challenges in Integrating DQN within EMU for iTHOR

	Discussion
	Reproducibility
	What was easy
	What was difficult

	Conclusions
	Appendix
	Further Results Of Local Optima Through Exploration Incentives
	Additional Parametric Results
	Specific Limitations
	Challenges regarding the code structure and the instructions provided in the GitHub repository
	Challenges encountered when utilizing non-Linux-based operating systems
	Challenges related to the handle of Google Research Football

	Contact with the authors
	YAML Configuration Changes

