
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TROPICAL GEOMETRY FEATURES FOR NOVELTY DE-
TECTION AND INTERPRETABILITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Existing methods for critical tasks such as out-of-distribution (OOD) detection,
uncertainty quantification, and adversarial robustness often focus on measuring
the output of the last or intermediate layers of a neural network such as logits and
energy score. However, these methods typically overlook the geometric properties
of the learned representations in the latent space, failing to capture important
signals that relate to model reliability, fairness, and adversarial vulnerability.
Innovations: We introduce an innovative method, termed Tropical Geometry Fea-
tures (TGF), for detecting out-of-distribution data and enhancing overall model
evaluation. This approach leverages the geometric properties of polytopes derived
from a trained neural network’s learned representations. By integrating these
geometric features with the data used during training, TGF establishes a unique
signature of in-distribution data points. Our framework extends beyond OOD
detection, providing insights into model uncertainty, adversarial robustness, inter-
pretability, and fairness. Through TGF, we enhance interpretability techniques
to detect OOD, uncertainty, adversarial robustness in dynamic and unpredictable
environments.

1 INTRODUCTION

In the domain of machine learning (ML), the efficacy of a model is not solely measured by its
predictive accuracy but also by its ability to provide reliable, interpretable, and fair outcomes under
varying conditions. Beyond classification tasks, machine learning models must demonstrate versatility
in tasks such as uncertainty quantification, out-of-distribution detection, adversarial robustness,
fairness and bias detection, interpretability, and generalization to new tasks or domains (Mohseni
et al., 2022; Amodei et al., 2016; Xu et al., 2018). These aspects ensure that the model not only works
well on known data but can also be trusted and used effectively in dynamic, real-world environments.

For example, a well-trained classifier must not only provide high accuracy but also produce meaningful
outputs that can be used for confidence calibration, enabling better uncertainty estimation (Guo et al.,
2017), and for detecting adversarial examples, which are malicious inputs designed to fool the
model (Carlini & Wagner, 2017). Additionally, the learned representations should support model
interpretability, enabling humans to understand why a model made a particular prediction, and help in
transfer learning, where features learned on one task can be reused on related tasks, thereby improving
generalization (Yosinski et al., 2014).

While ML models have traditionally been developed with the assumption of closed-world scenarios,
where test data is similar to the training data (Krizhevsky et al., 2012; He et al., 2015), the true
utility of a model expands when it is capable of addressing diverse real-world challenges. For
instance, models should be able to detect when they encounter out-of-distribution (OOD) data,
handle adversarial threats, and ensure that their decisions remain fair and unbiased across different
demographic groups. Furthermore, the model’s internal representations should provide insights into
its decision-making process, enhancing interpretability and explainability in complex systems.

In this work, we explore the theoretical and practical aspects of these learned representations, focusing
on how neural networks manage uncertainty, detect OOD data, defend against adversarial inputs, and
maintain fairness. Additionally, we build on the connection between neural networks and geometric
structures, such as the relationship between feedforward neural networks with ReLU activation

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

functions and tropical geometry (Zhang et al., 2018). This geometric perspective offers a deeper
understanding of how models represent data and adapt to different tasks and challenges, providing new
avenues for enhancing the reliability, robustness, and interpretability of machine learning systems.

Can the tropical geometric features of the learned representations,
provide insights into distinguishing in-distribution data from OOD data,
assessing model uncertainty, detecting adversarial inputs,
and improving interpretability and fairness?

A neural network with a ReLU activation function can be decomposed into polytopes in the vector
space where the data points reside, as discussed by Sudjianto et al. (2020). This property arises
because the composition of linear functions with the ReLU activation function results in a piecewise
linear function. Essentially, each piecewise linear segment corresponds to a distinct polytope in the
vector space, delineating different regions where the neural network’s behavior is linear.

The training process facilitates the learning of these polytopes, suggesting that the geometric attributes
of the polytopes could be pivotal in delineating in-distribution (ID) data. We hypothesize that
parameters such as the volume, the number of ID points contained within the polytopes, and their
density could serve as indicators to characterize ID data effectively.

In fig. 1, we present a schematic representation of our proposed algorithm which we use to detect and
explain out-of-distribution inputs to a pre-trained machine learning model. In the case that the input is
tabular data and the machine learning model is a ReLU neural network, we analyse the entire network.
In the case that the model expects some other form of data, e.g. a CNN for image detection, the
model may consist of arbitrary initial layers that extract features (e.g. the flattened features extracted
by a CNN), followed by ReLU feed-forward layers which we analyse. As ReLU feed-forward layers
occur as a component of many types of networks, including transformers, there are many potential
applications of our approach.

Traditional features for uncertainty quantification are based on just the final layer of the network. In
many cases, the logits—i.e., the raw, unnormalized outputs of the neural network—are utilized as
features for tasks such as out-of-distribution (OOD) detection or assessing adversarial vulnerability.

However, our approach diverges from this standard practice. We introduce novel features that
incorporate a more comprehensive understanding of the ReLU network’s structure and behavior, such
as volume and density metrics. These features capture the complex interactions and characteristics of
the entire ReLU network, rather than focusing solely on the final output layer. By considering the
network holistically, our method aims to enhance the detection of OOD data, offer interpretations
that may assist in understanding cases where inputs are misclassified (for example, due to outliers,
dataset shift, or as a result of an adversarial attack) as well as provide additional characteristics to
assist in detection of bias and vulnerabilities to adversarial attacks.

In this paper, we first define Tropical Geometry Features (TGF) as the set of geometric characteristics
(e.g., volume, density) of the polytopes formed by the linear regions of a ReLU-activated neural
network in the input space. We make our code publicly available for others that wish to experiment
with our features1 and outline the potential real-world applications of these features. Following this,
we conduct an experiment to evaluate the suitability of TGF for OOD detection to see if our features
are able to capture differences between in-distribution data and out-of-distribution data not detected
by traditional logit-based features. Finally we conclude, noting that even weak performance on the
task of detecting a single OOD point can lead to strong results on tasks such as dataset shift detection.

2 OUR ALGORITHM (TGF)

The family of feed forward neural network with ReLU activation functions is equivalent to the tropical
rational maps Zhang et al. (2018). So if we are training a neural network with data coming from a m
dimensional space that would imply that we have a collection of polyhedra bounded by hyperplanes
of dimension m− 1 in Rm.

1Link to github repo removed for double-blind review

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: TGF for enhanced detection

Let us explain how this is done, it’s a recursive process. First let’s assume that the our training
data is normalised, with norm less than one. Hence we can assume that all the data lives in the
m dimensional cube, which mathematically can be described by the intersection of the following
hyperplanes x1 = ±1, x2 = ±1, . . . , xm = ±1.

Consider a feedforward neural network with L hidden layers, employing the ReLU (Rectified Linear
Unit) activation function:

Rm (W1,b1)−−−−−→ ReLU −→ Rh1
(W2,b2)−−−−−→ ReLU −→ Rh2 (1)

→ · · · → RhL−1
(WL,bL)−−−−−→ ReLU −→ RhL

(WL+1,bL+1)−−−−−−−−→ Rn. (2)

In this configuration:

• Rm represents the input space.
• Rn denotes the output space.
• hi signifies the number of nodes in layer i.
• Layer 0 corresponds to the input space (h0 = m) and layer L + 1 to the output space

(hL+1 = n).
• Wi ∈ Rhi×hi−1 and bi ∈ Rhi are the weight matrix and bias vector for layer i, respectively.

The activation functions for hidden layers (layers 1 through L) are ReLU functions, applied coordinate-
wise. The transition to the last layer (output layer) is an affine linear map without the application of a
ReLU function.

The ReLU function is defined as:

ReLU(a) =

{
a if a > 0,

0 if a ≤ 0.
(3)

This function is a piecewise linear and continuous map on real numbers. For a vector x ∈ Rhi , the
ReLU function is applied to each coordinate.

Let wi,j represent the jth row of the matrix Wi and bi,j the jth entry of bi. For an input data point
x ∈ Rm, the output in layer i is denoted by Fi(x). Thus, with this notation we have Fi(x) ∈ Rhi ,
F0(x) = x and

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Fi(x) = ReLU(WiFi−1(x) + bi) = max{0, wi,1Fi−1(x) + bi,1}
...

max{0, wi,hi
Fi−1(x) + bi,hi

}


The composition of linear maps remains linear, the composition of a linear map with the ReLU
function results in a function that is stepwise linear. This property is crucial in analyzing the geometric
transformations performed by layers in neural networks, especially in understanding how data is
transformed as it passes through the network.

Let f : Rm → Rp and g : Rp → Rq be linear maps. These maps satisfy additivity f(x + y) =
f(x) + f(y) and homogeneity f(αx) = αf(x) for x, y ∈ Rm, α ∈ R. Their composition g ◦ f is
also linear.

The ReLU function, defined as ReLU(x) = max(0, x), is piecewise linear but not globally linear
due to its behavior at x = 0.

In a neural network, a layer’s transformation R ◦ L where L : Rm → Rp is linear and R : Rp → Rp

is ReLU, is stepwise linear. This implies that R ◦ L is linear within certain intervals of Rm.

This property allows hyperplanes in Rp to be mapped back to Rm in a piecewise linear manner, a
feature unique to ReLU and not necessarily applicable to other activation functions.

2.1 DEVISION OF SPACE USING HYPERPLANES CORRESPONDING TO RELU ACTIVATION POINT

A hyperplane in an m-dimensional vector space Rm is a subspace that has dimension m− 1. It can
be described as the set of vectors that satisfy a linear equation of the form:

ax1 + bx2 + · · ·+ kxm = d (4)

where a, b, . . . , k and d are constants in the field R (the real numbers), and at least one of a, b, . . . , k
is non-zero. Here, x1, x2, . . . , xm are the coordinates of a vector in Rm.

In terms of a linear map, a hyperplane in Rm can be interpreted as the kernel (or null space) of a
non-zero linear function. A linear functional f : Rm → R maps vectors in Rm to scalars in R. The
kernel of f , denoted as ker(f), is the set of all vectors v ∈ Rm such that f(v) = 0. When f is
non-zero, ker(f) is a hyperplane in Rm.

Thus, the hyperplane can be formally defined as:

Hyperplane = {v ∈ Rm | f(v) = d}

where f : Rm → R is a non-zero linear functional and d is a constant in R.

In this generalized setting of a linear map f : Rm → Rn, each component function of f , considering
f as a vector of n scalar-valued functions f = (f1, f2, . . . , fn), can define a hyperplane in Rm. For
each linear functional fi : Rm → R, a hyperplane can be defined as:

{v ∈ Rm | fi(v) = di}

for some constant di.

2.2 POLYTOPES FROM LINEAR MAPS

A polytope in Rm can be defined as the set of points satisfying a system of linear inequalities
represented by f . These inequalities define a region in Rm bounded by hyperplanes. Formally, a
polytope P can be defined as:

P = {x ∈ Rm | Ax ≤ b}
where A is an n×m matrix representing the linear map, and b is a vector in Rn. Each row of A and
the corresponding element of b define one of the bounding hyperplanes of the polytope.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

(a) Noisy points around a circle (b) Neural network classification regions after
training

Figure 2: Polygonal decomposition for a neural network trained to classify noisy points lying around
a circle.

2.3 POLYTOPE DECOMPOSITION OF A NEURAL NETWORK

Overview In this subsection, we examine the decomposition of polytopes derived from a ReLU
neural network, as detailed in our neural network model. The analysis focuses on the transformation
of input space through each layer of the network, leading to a piecewise linear mapping that can be
conceptualized as a collection of hyperplanes in Rm.

First Layer Transformation Consider the first transformation in the network:

Rm (W1,b1)−−−−−→ ReLU −→ Rh1

As ReLU is piecewise linear, this transformation results a piecewise linear map from Rm to Rh1 . Each
linear region in this map is a polytope bounded by hyperplanes corresponding to the non-linearity in
the ReLU activation at a = 0 for each of the hidden neurons.

Recursive Process through Layers The process extends recursively to subsequent layers. For
instance, consider the second layer, which involves the following composite mapping:

Rm (W1,b1)−−−−−→ ReLU −→ Rh1
(W2,b2)−−−−−→ ReLU −→ Rh2

As the first layer transformation results in a piecewise linear map composed of linear regions in Rm,
we can apply the process recursively to each of these linear regions. The final result is therefore
another piecewise linear map from Rm to Rh2

Hyperplane-Induced Decomposition Each hyperplane effectively divides Rm into two distinct
regions:

• The region where ax1 + bx2 + · · ·+ kxm − d > 0 is assigned a binary value of 1.

• The region where ax1 + bx2 + · · ·+ kxm − d < 0 is assigned a binary value of 0.

Classification Without loss of generality, in this paper we examine neural networks designed to
predict a probability (e.g. the probability that an image is of a cat); as such the final output passes
though a sigmoid function to transform a logit of range R to a probability within the range [0, 1]. Our
approach allows for optionally including one final decomposition of positive logits (i.e. corresponding
to probabilities > 0.5) from negative logits (corresponding to probabilities < 0.5). However, our
approach does not allow for hidden sigmoid layers as unlike ReLU layers, sigmoid operations cannot
be composed as a piecewise linear map.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

In fig. 2, we demonstrate how a two-dimensional dataset transforms into a collection of two-
dimensional polytopes. fig. 2(a), represents the two-dimensional dataset. After training the neural
network to classify the points, the resulting polygonal decomposition is illustrated in fig. 2(b). These
polygons are two-dimensional because the data itself is two-dimensional. Each polygon is assigned a
unique label, generated recursively through the neural network layers by binary combinations of “0"
for inactive neurons and “1” for active neurons.

2.4 FEATURES OF POLYTOPES

In the section 2.3 we discussed how we obtained the polytopes from trained neural networks. We
now assign the following features to the polytopes.

Binary vector assignment to polytopes Each polytope, defined by the bounds of these hyperplanes,
can be associated with a binary vector of dimension h1 + · · ·+ hL. Each coordinate in this vector
corresponds to a neuron in the network, the active is represented by > 0 and inactive by < 0. This
representation allows for a clear and structured understanding of how the input space is transformed
and partitioned across the layers of the neural network.

Volume assignment to polytope There are various mathematical ways we can define the volume
of polytopes such as the triangulation method, divergence theorem, Monte Carlo method etc. Let’s
choose the triangulation method along with the determinant method for calculating the volume.

Consider a convex polytope P in Rm defined as:

P = {x ∈ Rm | Ax ≤ b}

where A is an n×m matrix and b is a vector in Rn. Each row of A along with the corresponding
element of b defines a hyperplane, and the polytope P is the intersection of the half-spaces defined by
these inequalities.

To compute the volume of P , one method is to decompose the polytope into simplices and calculate
the volume of each simplex. For a simplex in Rm defined by vertices v0, v1, . . . , vm, the volume is
given by:

Volume of simplex =
1

m!
|det([v1 − v0, v2 − v0, . . . , vm − v0])|

If the polytope P is decomposed into k simplices S1, S2, . . . , Sk, then the volume of P is the sum of
the volumes of these simplices:

Volume of P =

k∑
i=1

Volume of Si

This method requires an effective decomposition of P into simplices, which can be complex, espe-
cially in higher dimensions.

Density assignment to polytope Consider the training of a Neural Network using in-distribution
data. Let the polytope formed in the feature space of the network be denoted as P . The number of
in-distribution data points within polytope P is denoted by |P |, representing the count of training
data points that fall inside P .

The volume of the polytope P , denoted as Vol(P), represents the size of P in the feature space. This
volume can be calculated using tools described in the previous section.

The density of in-distribution data points within P is defined as the ratio of the number of data points
in P to the volume of P . Mathematically, this is expressed as:

Density(P) =
|P |

Vol(P)
(5)

This formulation of Density(P) provides a metric for evaluating how densely the in-distribution data
points are populated within the polytope P . A higher value of Density(P) indicates a region with a

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

higher concentration of data points, while a lower value suggests a sparser region. Unlike traditional
density-based approaches which require defining bounds or parameters to determine the regions over
which density is calculated, our technique is fundamentally different. Here, the regions are derived
directly from the structure of the neural network.

3 USE CASE OF TGF IN MACHINE LEARNING MODELS

In this section we outline potential applications of TGF. In our experiment we focus on OOD detection,
noting that if TGF can provide an improvement over a traditional OOD baseline, such features are
likely to also find applications in many other use cases outside of just OOD. We leave it to the
community to experiment and find more applications of the TGF.

• Model Reliability and Robustness Techniques Uncertainty Quantification, Out-of-
Distribution (OOD) Detection, adversarial Example Detection, and Network Robustness
Analysis are techniques closely related to the evaluation of model reliability and robustness.
For instance, in traditional OOD detection, the logits, or the output from the final fully
connected layer of a neural network, are typically employed to identify whether an input lies
outside the distribution of the training data Djurisic et al. (2022); Wang et al. (2022). In this
work, we demonstrate how our Tropical Geometry Features (TGF) approach can be effec-
tively utilized for OOD detection. Furthermore, we argue that TGF has potential applications
in other related areas, such as uncertainty quantification and adversarial robustness.

• Model Interpretability The paper by Geva et al. (Geva et al., 2020) reveals that feed-
forward layers in transformer models store and utilize patterns from the training data to
make predictions about subsequent words. Simpler patterns are captured in the lower
layers, while more complex patterns are learned in the upper layers. This insight enhances
our understanding of the role these layers play in the overall language comprehension of
transformer models. A crucial aspect of the feed-forward layers is that their activation
function is ReLU, which, when considered within the TGF framework, suggests a potential
for exploring deeper connections. Other works such as Pollano et al. (2023), can be seen
through the lens of TGF.

• Bias Evaluation In regions that are data rich, neural networks are able to learn a detailed
approximation of how inputs map to the predicted output, which may require many polytopes.
However, in regions that are data poor, we would expect a course approximation. Therefore,
in cases where the distribution of tropical geometry features differs between groups, e.g.
groups based on age, race, or gender, this may be an indicator that the neural network does
not perform equally well on all groups, most likely as a result of insufficient training data
for certain groups.
From an implementation standpoint, this is similar to out of distribution detection, but in
the case of protected attributes should be interpreted as a failure of the network to behave
appropriately for that input rather than an issue with the input.

• adversarial attack adversarial attacks involve subtly manipulating the input data of a
classifier, such that models like deep neural networks misclassify the altered input with
high confidence, even though the changes are almost imperceptible. This vulnerability
raises serious concerns about the reliability of these models, particularly in safety-critical
applications Dalvi et al. (2004); Lowd & Meek (2005). Although several countermeasures
have been proposed Gu & Rigazio (2014); Goodfellow et al. (2014), these methods exhibit
significant limitations. In their work, Hein et al. Hein & Andriushchenko (2017) investigated
the extent to which a classifier’s decision remains stable (i.e., does not change) when the
input is perturbed within a certain radius in the input space. We anticipate that our proposed
TGF approach could enhance robustness against adversarial attacks, as it incorporates
additional information about the data residing within specific polytopes and leverages its
geometric features.

• Dataset Shift Even weak evidence that a data point is out-of-distribution or anomalous can
become strong evidence when we observe many such values. Thus a practical application of
our approach could be early alerts of potential dataset shift when the distribution of volume
or density features differs to that of the training data.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

4 EVALUATION OF TGF FOR OOD DETECTION

In this section, we conduct an experiment to answer the following questions:

• Can the feature volume, which does not require access to training data points, be used as
a standalone feature for better OOD detection? How does it compare to existing baseline
methods for OOD detection without access to training data?

• Can TGF features that combine structure with knowledge of the training distribution, such
as the TGF density feature, result in a better OOD detection?

4.1 EQUIVALENCE OF BASELINE OOD METHODS WHEN APPLIED TO BINARY CLASSIFICATION

Existing baseline techniques for OOD detection include maximum softmax probability Hendrycks &
Gimpel (2017) and energy score Liu et al. (2020). These are computed from the logits for each class
in the last layer of a neural network. While these techniques differ in performance for multi-class
prediction, in the case of a neural network that performs binary classification, the output may consist
of only a single logit that is passed through a sigmoid function to produce a probability between 0
and 1. Any monotonic transformation will have no effect on the separability of in-distribution data
from OOD data.

As such, the baseline method used in this paper for OOD detection is the absolute value of the logit
score, which can be thought of as a measure of how confident the neural network is in its prediction.
The absolute value is taken as negative values of the logit corresponding to probabilities below 0.5
can be interpreted as confidence in the negative class. For ease of visualising large values, we further
log transform the result when plotting distributions, noting that monotonic transformations, such as
log, exp, and sigmoid, have no effect on the separability of in-distribution data from OOD data.

4.2 DATASETS

It is known that the performance of any given OOD method is highly dependent on the dataset Tajwar
et al. (2021). As such, we test on multiple datasets as well as different types of OOD data.

For this experiment, we use three different in-distribution datasets: Higgs (a physics dataset, which
we reduce to 6 input dimensions), Skin (a simple classification challenge with 3 input dimensions
representing a color), and Circle (a synthetic dataset with 2 dimensions). Details of each dataset are
provided in appendix A.1. We performed a test/train split, in which training data was used for model
training as well as reporting the number of training points in each polytope. The in-distribution test
data was used for computing TGF, as well as for generating OOD datasets that distort the test data in
some manner. The full list of methods we use for generating OOD data is described in appendix A.2
and the number of test/train points for each dataset are listed in appendix B.

4.3 MODELS

For each of the datasets, we trained a fully connected ReLU network to predict the output. These
consisted of one or more hidden ReLU layers followed by a sigmoid function in the final output layer
to convert the result to a probability between 0 and 1. Details of the structure of each network is
provided in appendix B. Note that our goal is not to train a state of the art neural network, but rather
to provide a sample of ReLU neural networks trained for different datasets on which to test TGF.

4.4 METHODOLOGY

We use our TGF framework, described in section 2, to construct the polytopes from the neural
network. Each polytope is assigned a unique label. We calculate the number of points, volume, and
density for each polytope.

For each in-distribution test point that lies within a polytope, we attach the features of volume and
density of the polytope to it. This process allows us to obtain a distribution for each feature. We
repeat the same process for each of the OOD test points. We evaluate the ability of each TGF feature
to separate an OOD data point from the in-distribution data. We report the False Positive Rate at 95%

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Comparative Analysis of Various Attributes for ID and OOD (color inversion method
described in appendix item 2) for the Skin dataset

(FPR@95), a widely-used metric in OOD detection. It represents the percentage of OOD examples
that are incorrectly classified as in-distribution (false positives), when the classification threshold is
set such that 95% of in-distribution examples are correctly classified (true positives).

In the case of baseline methods based on logits, it is assumed that a larger absolute logit (higher
confidence) is more likely to be in-distribution, while points with lower confidence are out-of-
distribution. For TGF, we hypothesise that in-distribution data points are more likely to fall in high
density polytopes (small volume with many training points) while OOD data will fall in low density
polytopes (large volume with few training points). A random classifier will obtain a FPR@95% score
of 0.95, a false positive rate above this indicates the assumptions were incorrect.

4.5 RESULTS

The results of our experiment are presented in tables 1 to 3. To provide more insight into the ability
of different features to distinguish in-distribution data from out-of-distribution data, we show the
feature distributions for the the Skin dataset in fig. 3. We also include the feature distribution for the
Higgs boson dataset in the Appendix (fig. 4).

The OOD dataset created using OOD_permu is particularly challenging to detect, as the data in
each column retains the same distribution, despite being permuted to create the OOD samples. We
demonstrate that our feature density continues to perform excellently.

Our volume feature was worse than random (i.e. FPR@95% > 0.95) on the Higgs dataset. Never-
theless, we can see that for Skin and Circle datasets there were certain types of OOD data where
volume performed better than random while logits performed worse than random. This suggests
that despite being a weak classifier, it is extracting features that a baseline classifier based on logits
doesn’t, opening up the possibility of a hybrid approach.

Features FPR@95% for OOD classification (lower is better)

OOD_permu OOD_noise OOD_nonlinear OOD_rearrange

Logits 0.98 0.98 0.97 0.97

Volume 0.97 0.98 0.99 0.99

No. of Training Points 0.47 0.06 0.062 0.062

Density 0.44 0.03 0.025 0.025

Table 1: False Positive Rate at 95% (lower is better) for different features on the Higgs dataset across
OOD datasets.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Features FPR@95% for OOD classification (lower is better)

OOD_min OOD_inv OOD_diff_dist Textures OOD_permu

Logits 0.84 0.39 0.99 0.88 0.96

Volume 0.99 0.92 0.99 0.77 0.54

No. of Training Points 0.70 0.49 0.69 0.50 0.87

Density 0.57 0.57 0.59 0.11 0.26

Table 2: False Positive Rate at 95% (lower is better) for different features on the Skin dataset across
OOD datasets.

Features FPR@95% for OOD classification (lower is better)

OOD_min OOD_noise OOD_nonlin OOD_max OOD_permu

Logits 0.99 0.96 0.98 0.96 0.95

Volume 0.93 0.92 0.90 0.96 0.83

No. of Training Points 0.79 0.84 0.87 0.77 0.88

Density 0.73 0.78 0.85 0.72 0.52

Table 3: False Positive Rate at 95% (lower is better) for different features on the Circle dataset across
OOD datasets.

5 DISCUSSION

A key benefit of our proposed volume feature is that it can be computed from the model weights
without requiring any access to the training data. This makes the approach well suited for applications
where the training dataset cannot be shared for privacy or commercial reasons, for example, a classifier
trained on sensitive information. While the false positive rate was too high to safe-guard against
single OOD points, as argued in section 3 even a weak OOD detector for a single data point can be a
strong detector for other applications. In particular, we showed that the features it extracts differe to
baseline approaches based on logits, performing well in some cases where logits fails.

Our density feature performed well, but computation requires access to the count of training data
points that fall inside each polytope. Nevertheless, we argue that these counts could be provided in a
privacy preserving manner. For example, k-anonymity Sweeney (2002) could be achieved by only
sharing counts for polytopes that contain at least k points. When an input lies within a polytope that
doesn’t meet this threshold (or if the threshold is met but the density is low), the output could be
treated as untrusted. Contrast this to traditional density based methods such as Bishop (1994) that
require access to the raw training data.

REFERENCES

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

Christopher M Bishop. Novelty detection and neural network validation. IEE Proceedings-Vision,
Image and Signal processing, 141(4):217–222, 1994.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In 2017
ieee symposium on security and privacy (sp), pp. 39–57. Ieee, 2017.

Nilesh Dalvi, Pedro Domingos, Mausam, Sumit Sanghai, and Deepak Verma. Adversarial classifica-
tion. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pp. 99–108, 2004.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Andrija Djurisic, Nebojsa Bozanic, Arjun Ashok, and Rosanne Liu. Extremely simple activation
shaping for out-of-distribution detection. arXiv preprint arXiv:2209.09858, 2022.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

Shixiang Gu and Luca Rigazio. Towards deep neural network architectures robust to adversarial
examples. arXiv preprint arXiv:1412.5068, 2014.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural
networks. In International conference on machine learning, pp. 1321–1330. PMLR, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. Advances in neural information processing systems, 30, 2017.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In International Conference on Learning Representations, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-
tional neural networks. Advances in neural information processing systems, 25, 2012.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward
networks with a nonpolynomial activation function can approximate any function. Neural networks,
6(6):861–867, 1993.

Weitang Liu, Xiaoyun Wang, John Owens, and Yixuan Li. Energy-based out-of-distribution detection.
Advances in neural information processing systems, 33:21464–21475, 2020.

Daniel Lowd and Christopher Meek. Adversarial learning. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge discovery in data mining, pp. 641–647, 2005.

Sina Mohseni, Haotao Wang, Chaowei Xiao, Zhiding Yu, Zhangyang Wang, and Jay Yadawa.
Taxonomy of machine learning safety: A survey and primer. ACM Computing Surveys, 55(8):1–38,
2022.

Andres Pollano, Anupam Chaudhuri, and Anj Simmons. Detecting out-of-distribution text using
topological features of transformer-based language models. arXiv preprint arXiv:2311.13102,
2023.

Agus Sudjianto, William Knauth, Rahul Singh, Zebin Yang, and Aijun Zhang. Unwrapping the
black box of deep relu networks: interpretability, diagnostics, and simplification. arXiv preprint
arXiv:2011.04041, 2020.

Latanya Sweeney. k-anonymity: a model for protecting privacy. Int. J. Uncertain. Fuzziness Knowl.-
Based Syst., 10(5):557–570, oct 2002. ISSN 0218-4885. doi: 10.1142/S0218488502001648. URL
https://doi.org/10.1142/S0218488502001648.

Fahim Tajwar, Ananya Kumar, Sang Michael Xie, and Percy Liang. No true state-of-the-art? ood
detection methods are inconsistent across datasets. arXiv preprint arXiv:2109.05554, 2021.

Haoqi Wang, Zhizhong Li, Litong Feng, and Wayne Zhang. Vim: Out-of-distribution with virtual-
logit matching. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4921–4930, 2022.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In International
conference on machine learning, pp. 5453–5462. PMLR, 2018.

11

https://doi.org/10.1142/S0218488502001648

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep
neural networks? Advances in neural information processing systems, 27, 2014.

Liwen Zhang, Gregory Naitzat, and Lek-Heng Lim. Tropical geometry of deep neural networks. In
International Conference on Machine Learning, pp. 5824–5832. PMLR, 2018.

A APPENDIX

A.1 DATASETS

• Higgs Boson: The Higgs boson dataset from the UCI Machine Learning Repository2 is used
for classification tasks in particle physics. Generated through Monte Carlo simulations, it
consists of approximately 11 million entries, each with 28 features. The target variable is
binary: 1 (signal) indicates Higgs boson production, and 0 (background) indicates no Higgs
boson production. We pre-process the data using PCA to extract 6 high-level features and
train a neural network on a sample of the transformed data. The OOD dataset is generated
via appendix A.2.

• Circle: The Sphere dataset is synthetic, 3D, and used for binary classification. It is generated
with two concentric spheres. Parameters include n_samples (total number of data points),
noise (adds Gaussian noise), factor (scale factor for the inner sphere). Features (X) are 3D
points (x, y, z), and labels (y) are binary for points on the outer and inner spheres. Challenges
include the three-dimensional nature and noise, and potential class imbalance. The OOD
dataset is generated via appendix A.2. The Circle dataset is 2D and generated similarly to
the Sphere dataset.

• Skin: The Skin Segmentation dataset from the UCI Machine Learning Repository3 differen-
tiates between skin and non-skin pixels. It consists of 245,057 instances, each representing
a pixel. Features include RGB Values (intensity of Red, Green, and Blue components) and
Class Label (1 for skin and 0 for non-skin). The OOD dataset is generated via appendix A.2.

A.2 GENERATING THE OOD DATA

Out-of-Distribution (OOD) data generation plays a pivotal role in evaluating the robustness and gener-
alization of machine learning models. By intentionally creating data samples that significantly deviate
from the training distribution, OOD data tests models against scenarios not covered during training,
highlighting potential weaknesses and biases. Statistically, OOD data introduces distributional shifts.
Mathematically, this process explores the model’s ability to handle unexpected data, emphasizing the
importance of designing systems that are resilient to a wide array of real-world conditions. Thus,
generating and analyzing OOD data is crucial for advancing machine learning methodologies.

For the Higgs dataset we created OOD dataset as follows. For OOD_permu we use item 1,
for OOD_noise we use item 3, for OOD_nonlinear we use item 4 and for OOD_rearrange we
use item 2.

For the skin dataset we created OOD dataset as follows. For OOD_min we use item 1, for OOD_inv
we change the sign of the data to negative. For the Texture we use item 2, for OOD_diff_dist we
use item 5.

For the circ dataset we created OOD dataset as follows. For OOD_permu we use item 1, for
OOD_noise we use item 3, for OOD_nonlinear we use item 4 and for OOD_max we use item 6.

1. Shuffling Data to Create OOD Samples (OOD_permu):
The features (test_x) in the dataset are shuffled column-wise. This means that within each
feature column, the values are randomly rearranged. This process ensures that the original
relationship between different features in a sample is disrupted, creating out-of-distribution
instances.

2https://archive.ics.uci.edu/dataset/280/higgs
3https://archive.ics.uci.edu/dataset/229/skin+segmentation

12

https://archive.ics.uci.edu/dataset/280/higgs
https://archive.ics.uci.edu/dataset/229/skin+segmentation

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Our process of generating OOD data through shuffling the columns is designed such that the
marginal distribution for any particular column will be unaffected. This creates a challenging
OOD dataset where it is not possible to detect data as OOD based on the distribution of any
particular column; i.e. trivial OOD approaches based on detecting outliers in a column will
not work.

2. Color Inversion (OOD_rearrange): In this procedure for generating out-of-distribution
(OOD) data, we start with the original test data from the Skin dataset, which comprises
pixel values represented by three columns corresponding to the Red, Green, and Blue (RGB)
color channels.
To create an OOD dataset, we perform a color inversion transformation on the RGB values.
The inversion process is achieved by multiplying the values of these three columns by -1.
This mathematical operation effectively inverts the color representation, resulting in new
RGB values that are the opposite of the original colors in terms of intensity. For instance, a
pixel originally having a high intensity in the red channel will now have a high intensity in
the opposite direction, and similarly for the green and blue channels.
This transformation significantly alters the nature of the pixel data while preserving the
dimensional structure of the dataset, thus producing OOD data that is fundamentally different
in appearance but retains the same overall format as the original dataset. This approach
is commonly used to test the robustness of machine learning models in handling data that
deviates from the training distribution.
This method can be generalized and applied to other datasets, particularly when the columns
are permuted to create an out-of-distribution (OOD) dataset.

3. Generating Out-of-Distribution Data Using Gaussian Noise Perturbation (OOD_noise):
In this procedure for generating out-of-distribution (OOD) data, we start with an original
dataset consisting of multiple features organized across different columns. The goal is to
introduce randomness into each feature to create an OOD dataset that diverges significantly
from the original data while maintaining the same dimensional structure.
For each column in the dataset, a noise component is added. This noise is generated from a
Gaussian (normal) distribution with a mean of 0 and a standard deviation of 1. Specifically,
a noise vector with values drawn from this distribution is independently generated for each
column, matching the number of rows in the dataset. The generated noise is then added
element-wise to the values within that column.
By repeating this process across all columns, the entire dataset is subjected to random per-
turbations, ensuring that every feature experiences unique fluctuations. This transformation
alters the original values, producing data that deviates from the initial distribution, thus
making it out-of-distribution.

4. Generating Out-of-Distribution Data Using Sine Transformation and Gaussian Noise
Addition (OOD_nonlin): In this procedure, the goal is to create out-of-distribution (OOD)
data by applying a combination of non-linear transformation and noise addition to the
original dataset, thereby producing data that is fundamentally different from the original
while retaining the same dimensional structure.
For each feature (column) in the dataset, we perform the following steps:

(a) Non-linear Transformation: Apply the sine function to every value in the column.
This transformation changes the original values into their sine equivalents, introducing
non-linearity and altering the data’s nature. Mathematically, if x represents the original
data values in a column, the transformation becomes:

x′ = sin(x)

(b) Adding Gaussian Noise: After applying the sine transformation, we generate a noise
vector ϵ from a Gaussian (normal) distribution with a mean of 0 and a standard deviation
of 1, matching the number of rows in the dataset. This noise vector is then added
element-wise to the transformed values within the column. The resulting transformed
data for each feature becomes:

xood = sin(x) + ϵ

where ϵ ∼ N (0, 1).

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

By repeating this process for each column, we obtain a dataset that is both non-linearly
transformed and randomly perturbed, resulting in OOD data that is significantly different
from the original dataset while maintaining the same overall dimensional structure.

5. Out-of-Distribution Data Generation Using Feature Transformation and Scaling This
method generates out-of-distribution (OOD) data by transforming each feature of the original
dataset to create significantly different distributions. First, the initial feature (representing
the ’B’ channel) is set to a constant value of 0.5, eliminating any variability. The second
feature (’G’ channel) undergoes a non-linear transformation by taking the square root of
each value, and altering its distribution. Lastly, the third feature (’R’ channel) is transformed
using a logarithmic function with a small constant added to avoid issues with log(0),
which compresses the feature’s range. These combined transformations produce an OOD
dataset that maintains the original dimensional structure but exhibits fundamentally different
characteristics from the original data.

6. Retaining Maximum/Minimum Feature Values Let Xtest ∈ Rn×m be the original test
dataset, where n is the number of samples and m is the number of features in each sample.
The goal is to create a new matrix X ′ ∈ Rn×m such that for each sample (row) in Xtest,
only the maximum value is retained while all other values are set to zero.

Mathematical Steps:

1. Initialization:

X ′ = 0 (an n×m matrix initialized with zeros)

2. Finding the maximum value index: For each row i where i ∈ {1, 2, . . . , n}, find the
column index j = argmax(Xtest[i, :]) such that

Xtest[i, j] = max(Xtest[i, k]) ∀k ∈ {1, 2, . . . ,m}

3. Updating the matrix: Set X ′[i, j] = Xtest[i, j], where j is the index of the maximum
value found in the previous step. All other elements in the row remain zero.

Final Formulation:

X ′[i, k] =

{
Xtest[i, k] if k = argmax(Xtest[i, :])

0 otherwise

The modified data X ′ is then saved together with the original labels ytest.

A.3 UNIVERSAL APPROXIMATION THEOREM

We have demonstrated that our method is effective for neural networks with ReLU activation functions.
Moreover, our approach is not far from being general. According to the universal approximation
theorem Leshno et al. (1993), any continuous function over a compact set can be approximated by
a multilayer neural network with ReLU activation. Therefore, even if we use a different activation
function, the same approximation can be achieved using a ReLU-based network. With this in mind,
we can conclude that our approach possesses a high degree of generality.

A.4 EVALUATION METRICS

In our evaluation, we compare the performance of various methods using several metrics to ensure
a comprehensive analysis. One of the primary metrics we utilize is the False Positive Rate at 95%
True Positive Rate (FPR95). This metric specifically measures the false positive rate (FPR) of
out-of-distribution (OOD) samples when 95% of in-distribution (ID) samples are correctly classified.
By focusing on this threshold, we can assess the robustness of different techniques in distinguishing
between ID and OOD data.

For the skin dataset we created OOD dataset as follows. For OOD_permu we use item 1, for
OOD_inv we use item 2, for OOD_diff_dist we use item 5.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Dataset Layer (with Input Dimension) Number of Neurons Activation Function
Higgs Dataset Input Layer (input dim: 6) 16 ReLU

Hidden Layer 16 ReLU
Output Layer (output dim: 1) 1 Sigmoid

Skin Dataset Input Layer (input dim: 3) 16 ReLU
Hidden Layer 16 ReLU

Output Layer (output dim: 1) 1 Sigmoid
Circle Dataset Hidden Layer (input dim: 2) 12 ReLU

Output Layer (output dim: 1) 1 Sigmoid

Table 4: Neural Network Models for Different Datasets

Figure 4: Comparative Analysis of Various Attributes for ID and OOD (shuffle method described in
appendix item 1) for the Higgs boson dataset

B MODELS USE FOR TRAINING

We give a brief description of the models used for training the neural networks on different datasets.

• For the Higgs and Skin datasets, the models were compiled using binary cross-entropy as
the loss function, Adam optimizer, and accuracy as the performance metric.

• For the Circle dataset, the model was compiled with binary cross-entropy loss, Adam
optimizer (learning rate = 0.001), and accuracy as the performance metric.

For training the neural network with the Circle dataset, we use 2000 training points and 400 testing
points. Additionally, for the out-of-distribution (OOD) dataset, we use 400 points.

For training the neural network with the Skin dataset, we use 245,056 training points. For testing, we
use 14,704 points, and for the OOD dataset, we also use 14,704 points.

For the Higgs dataset, we use 200,000 training points and 50,000 testing points. The out-of-
distribution datasets consist of the following:

• OOD_permu: 50,000 points,
• OOD_noise: 2,000 points,
• OOD_nonlinear: 20,000 points,
• OOD_rearrange: 50,000 points.

15

	Introduction
	Our algorithm (TGF)
	Devision of space using hyperplanes corresponding to ReLU activation point
	Polytopes from Linear Maps
	Polytope Decomposition of a Neural Network
	Features of polytopes

	Use case of TGF in Machine learning models
	Evaluation of TGF for OOD detection
	Equivalence of baseline OOD methods when applied to binary classification
	Datasets
	Models
	Methodology
	Results

	Discussion
	Appendix
	Datasets
	Generating the OOD data
	Universal approximation theorem
	Evaluation Metrics

	Models use for training

