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Abstract

The Naive Mean Field (NMF) approximation is widely employed in modern
Machine Learning due to the huge computational gains it bestows on the statistician.
Despite its popularity in practice, theoretical guarantees for high-dimensional
problems are only available under strong structural assumptions (e.g., sparsity).
Moreover, existing theory often does not explain empirical observations noted in
the existing literature.

In this paper, we take a step towards addressing these problems by deriving sharp
asymptotic characterizations for the NMF approximation in high-dimensional
linear regression. Our results apply to a wide class of natural priors and allow
for model mismatch (i.e., the underlying statistical model can be different from
the fitted model). We work under an iid Gaussian design and the proportional
asymptotic regime, where the number of features and the number of observations
grow at a proportional rate. As a consequence of our asymptotic characterization,
we establish two concrete corollaries: (a) we establish the inaccuracy of the NMF
approximation for the log-normalizing constant in this regime, and (b) we provide
theoretical results backing the empirical observation that the NMF approximation
can be overconfident in terms of uncertainty quantification.

Our results utilize recent advances in the theory of Gaussian comparison inequal-
ities. To the best of our knowledge, this is the first application of these ideas to
the analysis of Bayesian variational inference problems. Our theoretical results
are corroborated by numerical experiments. Lastly, we believe our results can be
generalized to non-Gaussian designs and provide empirical evidence to support it.

1 Introduction

The Naive Mean Field (NMF) approximation is widely employed in modern Machine Learning as an
approximation to the actual intractable posterior distribution. The NMF approximation is attractive
as (a) it bestows huge computational gains, and (b) it is naturally interpretable and can provide access
to easily interpretable summaries of the posterior distribution e.g., credible intervals. However, these
two advantages may be overshadowed by the following limitations: (a) it is a priori unclear whether
this strategy of using a product distribution as a proxy for the true posterior will result in a “good”
approximation, and (b) it has been empirically observed that NMF often tends to be significantly
over-confident, especially when the feature dimension p is not negligible compared to the sample
size n. In the traditional asymptotic regime (p fixed and n — o), significant progress was made in
understanding these two problems for different statistical models, see for instance [8] and references
therein. On the other hand, in the complementary high-dimensional regime where both n and p are
growing, Ghorbani et al. [7]] recently established an instability result for the topic model under the
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Figure 1: These three figures serve as a visual summary of our main results when the Gaussian Spike
and Slab prior is adopted, i.e., NMF does not provide up to leading order correct approximation to the
log-normalizing constant (left), and the estimated credible regions suggested by the NMF distribution
do not achieve the nominal coverage (middle), even when NMF could achieve close to optimal MSE.
PleaseQSee Lemma [§] for definitions of the Gaussian Spike and Slab prior and the hyper-parameters ¢
and A°.

proportional asymptotics, i.e., n = ©(p). In fact, in this regime, based on non-rigorous physics
arguments, it is conjectured and partially established that instead of the NMF free energy one should
optimize the TAP free energy. For linear regression in particular, please see [13,[18]. On the other
hand, positive results of NMF for high-dimensional linear regression were recently established in
[16] when p = o(n).

In this paper, we investigate the performance of NMF approximation for linear regression under
the proportional asymptotics regime. As a consequence of our asymptotic characterization, we
establish two concrete corollaries: (a) we establish the inaccuracy of the NMF approximation for
the log-normalizing constant in this regime, and (b) provide theoretical results backing the empirical
observation that NMF can be overconfident in constructing Bayesian credible regions.

Before proceeding further, we formalize the setup under investigation. Given data {(y;,z;) : 1 <
i1 <n},y; € R, z; € RP, the scientist fits a linear model

Y = XB* + ¢, (@))]
where ¢; w N(0,0%) and 3* € S? is a p-dimensional latent signal. We consider either S = R or
S = [—1, 1]. In fact, unless explicitly specified otherwise, S = R. Most of our results generalize
to bounded support naturally. To recover the latent signal, the scientist adapts a Bayesian approach.
She puts an iid prior on j3;’s, namely, dmo(3) = [[/_, dw(5;) and then constructs the posterior
distribution of j3,

dpe dpxy — sz Y -x8|?
dWO( = “dm (B) oc ez :
with normalization constant
2, = Z,(X,Y) = / 7Y =XBI 1 (4 ). @
Sp

Our results are established assuming that the design matrix X is randomly sampled from an iid
Gaussian ensemble, i.e., X;; ud (0,1/n), while we provide empirical evidence for more general
classes of X that has iid entries with mean 0 and variance 1/n. Moreover, we assume n/p — o €
(0,00) asn, p — 0.

Definition 1 (Exponential tilting). For any v := (71,72) € R x R* and probability distribution 7
on S, we define ™ as

ar
dm

(2) = exp (12 = Ta® = e(7) ) e(3) = ex(7) := log /S exp (e — ) n(da).

Note that c(-) depends on the distribution T and is usually referred to as the cumulant generating
function in the statistics literature.



Using this definition of exponential tilts, the (X7 X);;32 terms in (2)) can be absorbed into the base
measure
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where 7; := 7(%%) and d; : L By the classical Gibbs variational principle (see for instance
[27]), the log-normalizing constant can be expressed as a variational form,
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where the inf is taken over all probability distribution on SP. While the infimum is always attained if
and only if ) = p, the Naive Mean Field (NMF) approximation restricts the variational domain to
product distributions only and renders a natural upper bound,
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It can be shown that the product distribution @) that achieves this infimum is exactly the one closest to
u, in terms of KL-divergence. Before moving forward, we need some additional definitions and basic
properties of exponential tilts. The first lemma establishes that instead of using (71, 72) we can also
use (u,72) = (Ey~xrU,7y2) to parameterize the tilted distribution.

+Dgkr <Q

ﬁﬂ'i> — zp:C(O,dl)] . (3)
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Lemma 1 (Basic properties of the cumulant generating function c(-)). Let c(-) be as in Definition|]|
Let supp(7) denote the support of w. If m(w) := inf supp(w) < 0 and M () := sup supp(w) > 0,
then the following conclusions hold.

(a) ¢(y1,72) = %}YIW) = Ex~nv(X) is strictly increasing in 1, for every o € R.

(b) For any v € (m(w), M(w)), there always exists a unique h(u,v2) € R such that
¢(h(u,72),72) = u
Definition 2 (Naive mean field variational objective). With d; := (X7 X);; /02, we define M,(u) :
[m(m), M(7)]P — R as

Mp(u): 2 5. 92 ”y XUH +Z ulv l 2 )

where G is defined as a possibly extended real valued function on [m(w), M(m)] X R,

G(u,d) := Dgp (7DD 70Dy = yh(u, d) — c(h(u,d),d) + c(0,d)  ifu € (m(r), M(r)),d € R,
.= D1, (Woo||7r(0’d)) ifu = M(r) < 0o,d € R,
:= Dk, (7T_OC||7T(O’d)) ifu=m(r) > —o0,d € R,

in which h(-,-) was defined in Lemmaand Moo and T_ o, are degenerate distributions which assigns
all measure to M () and m(7) respectively.

Note that under product distributions, the Eq(-) term in (3 is parameterized by the mean vector
u = Egf and exponential tilts of 7;’s minimize the KL-divergence term. Therefore, the scaled
log-normalizing function, which is also referred to as the average free energy in statistical physics
parlance and (log) evidence in Bayesian statistics, is bounded by the following variational form,

1 1
—— log Z, < — inf — E c(0 — = log ZNMF, @)
P — P p
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The right-hand side is equal to (3] and is also referred to as the evidence lower bound (ELBO) or NMF
free energy, which can be used as a model selection criterion, see for instance [[14]. Asymptotically,
the second term is nothing but a constant since it concentrates around c(0, 1/02) as n,p — oo.

The main theoretical question of interest here is whether this bound in (@) is asymptotically tight
or not, which serves as the fundamental first step towards answering the question of whether NMF
distribution is a good approximation of the target posterior. Please see [4, 27] for comprehensive
surveys on variational inference, including but not limited to NMF approximation.

To derive sharp asymptotics for the NMF approximation, the key observation is that the optimization
problem is convex under certain priors. We then employ the Convex Gaussian Min-max Theorem
(CGMT). CGMT is a generalization of the classical Gordon’s Gaussian comparison inequality [9],
which allows one to reduce a minimax problem parameterized by a Gaussian process to another
(tractable) minimax Gaussian optimization problem. This idea was pioneered by Stojnic [21] and
then applied to many different statistical problems, including regularized regression, M-estimation,
and so on, see for instance [[15, [24]]. Unfortunately, concentration results derived from CGMT require
both Gaussianity and convexity. This is exactly why we need the Gaussian design assumption in our
analysis. In the meantime, though we do not pursue this front theoretically, we provide empirical
evidence for more general design matrices in the Supplementary Material. It is worth noting that there
is a parallel line of research that aims to develop universality results for these comparison techniques.
‘We refer the interested reader to [[11] and references within.

Let us emphasize that our main conceptual concern is not investigating whether @) as a convex
optimization procedure gives a good point estimator, but instead evaluating whether NMF as a strategy
or product distributions as a family of distributions can provide “close to correct” approximation
for the true posterior. Nevertheless, this optimizer’s asymptotic mean square error can also be
characterized as a by-product of our main theorem.

Regarding the accuracy of variational approximations in general, certain contraction rates and
asymptotic normality results were established in the traditional fixed p large n regime [28 |17}
10]. However, under the high-dimensional setting and scaling we consider in the current paper,
without extra structural assumptions (e.g., sparsity), both the true posterior and its variational
approximation are not expected to contract towards the true signal, which also explains why one is
instead interested in whether the log-normalizing constant can be well approximated, as a weaker
standard of “correctness”. Ray et al. [19] studied a pre-specified class of mean field approximation in
sparse high-dimensional logistic regression. Recently, the first known results on mean and covariance
approximation error of Gaussian Variational Inference (GVI) in terms of dimension and sample size
were obtained in [12].

2 Results

This section starts with some necessary definitions and our main assumptions. Then, we present our
main theorem and one natural corollary. Finally, we identify a wide class of priors that would ensure
the convexity of the NMF objective, which plays a crucial role in our analysis.

2.1 Notations and main assumptions

Notations: We use the usual Bachmann-Landau notation O(-), o(-), ©(-) for sequences. For a

sequence of random variables {X,, : p > 1}, we say that X, = 0,(1) if X, 5 0as p — oo and
X, =o0,(f(p)) if X,/ f(p) = 0p(1). Weuse C, Cq,C5 - - - to denote positive constants independent
of n, p. Further, these constants can change from line to line. For any square symmetric matrix A,
| Allop and || Al| 7 denote the matrix operator norm and the Frobenius norm, respectively.

Assumption 1 (Proportional asymptotics). We assume n/p — a € (0,00), as n,p — oc.
Assumption 2 (Gaussian features). For all our theoretical results, we assume the design matrix X is
randomly sampled from an iid Gaussian ensemble, i.e., X;; YN (0,1/n).

Definition 3. Define F' : (m(n), M (7)) — Ras

w?Ed 1 u?
F(u) = Frg2(u) = G(u, Edy) — — Ly—ye (u 02) ~ 503



Definition 4 (The NMF point estimator). Recalling the NMF objective M,(-) as in Definition [2] let
U = Bymr = argming ey 1jr M, (v) be the NMF point estimator, which is also the mean vector of
the product distribution ( Q ) that best approximates the posterior in terms of KL-divergence. We refer
to this optimal product distribution as the NMF distribution.

Assumption 3 (Convexity of F'(-)). We assume F(-) is strongly convex on S° := S\ 9S.

As alluded to, our analysis relies on the convexity of the “penalty” term F'(-). Please note that the
definition of F'(-) only depends on the prior 7 chosen by the statistician, rather than the “true prior”
7*. Therefore, to support this assumption, we provide a few sufficient conditions that identify a broad
class of priors that ensure (strong) convexity of F(-) in Section

Throughout, we work under a partially well-specified situation, i.e., model (I)) is assumed to be
correct, but 3;’s may not have been a priori sampled iid from 7. Instead, we assume the empirical
distribution of 3;’s converges in Ly to a probability distribution 7* supported on S. In addition, the
noise level o2 is fixed and known to the statistician. Last but not least, 7* is assumed to have finite
second moment and let so := Ep« [TQ] < Q.

2.2 Main results

From now on, we always assume Assumption [T} 2] and[3] Next, we introduce a scalar denoising
function, which is just the proximal operator of F'(-).

Definition 5 (Scalar denoising function). For x € Randt > 0,
1 2
t) := in< —(w-— F ©
n(z,t) arggelg{%(w )+ (w)} €es
Since F'(+) is strongly convex, this one-dimensional optimization has a unique minimizer. Note that
when S = [—1, 1], since lim,, 41 g—i(w) = limy, 41 h(w,1/0?) F % = 400, the minimum is
never achieved on the boundary of S. Similarly, when S = R, lim,,—, + % (w) = 0. Therefore,

the minimum is always achieved at a stationary point. Lastly, n(0,t) = 0 if 7 is symmetric. In fact,
throughout this paper, we only consider symmetric priors.

Before stating our main result and its implications, we first introduce a two-dimensional optimization
problem, which will play a central role in our later discussion,

max min ¢(b, 7) (5)

b>0 >0

b o?
br) = (T
¢(b,7) = 5 (=

where F'(-) was defined in Definition[3|and the E is taken over (B, Z) ~ 7* @ (0, 1). In the next
lemma, we gather some additional characterizations of this min-max problem.

Lemma 2. The max-min in Q) is achieved at some (b*,7*) € (0,00) X (0, 00). In fact, b* is unique.
In addition, (b*,7*) is also a solution to the following fixed point equation,

7'0'2 2
2 2

ber— 2Bz (rz+B )| =r(1-LE |y (r2z+B 7)),
« b « b

where 1/ (z,t) := %(m,t).

Lo 1o [ b o 2 2
+7) 2b +0¢Ewmelg{27'w bZw+oc°F(w+ B) —c°F(B) ¢, (6)

1
=04+ —E
a

)

Definition 6. We use v* = vy .. to denote the distribution of (77 (T*Z + B, %ﬁﬁ) ,B), in which
(B,Z) ~ 7 @ N(0,1). We denote by i the empirical distribution of {(u;, B)}1_,.

We are ready to state our main result, which provides a sharp asymptotic characterization of .

Theorem 1. Suppose the max-min problem in ) has a unique optimizer (b*,7*), or the fixed point
equation in ({7)) has a unique solution (b*,7*). Then for all ¢ > 0, as n,p — oo,

P (W2 (v,9)’ 2 ) 0,

where Wy (-, -) stands for order 2 Wasserstein distance.



Remark 1. This result indicates the NMF estimator U should be asymptotically roughly iid among
different coordinates, which is different from the NMF distributions being product distributions.

Corollary 1. Suppose the hidden true signal 3* was a priori sampled iid from a probability
distribution 7 with finite second moment. Note that 7 can differ from the prior m that the Bayesian
statistician chose. In addition, suppose the max-min problem in () has a unique optimizer (b*,7*),
or the fixed point equation in (7)) has a unique solution (b*,7*), then for all € > 0,

P (W2 (v

T,

ﬁ)Q > 5) — 0, asn,p— o0,
in which v* was defined in Definition6].

We provide a proof sketch in Section[6and all the detailed proofs are deferred to the Supplementary
Materials.

2.3 Convexity of F(-)

In this section, we present a few lemmas that would ensure the validity of Assumption [3] In fact, if
conditions of any of these lemmas are satisfied, Assumption [3|holds.

Lemma 3 (Condition to ensure convexity of F'(-): nice prior). Suppose 7 is absolutely continuous
with respect to Lebesgue measure and

d -
d—ﬂ-(x) o eV Yz € support(),
x

Sor some V : support(n) — R. In addition, suppose either of the following two conditions is true,

1. support(m) = R; V(z) is continuously differentiable almost everywhere; V (x) is un-
bounded above at infinity.

2. support(w) = [—a, al, for some 0 < a < 0o; V(x) is continuously differentiable almost
everywhere.

Then if V(x) is even, non-decreasing in |x| and V'(x) is convex, F(-) is always strongly convex,
regardless of the value of o2.

Lemma 4 (Condition to ensure convexity of F'(-): discrete prior). Suppose 7 is a symmetric discrete
distribution supported on {—1,0,1},

r(dz) = g(z) + 12;%(:5 1)+ %5@ +1),

for q € (2/3,1). Then F(-) is always strongly convex, regardless of the value of .

Proofs of Lemma [3] and [ crucially utilize the Griffiths-Hurst-Sherman (GHS) inequality [5] 6],
which arose from the study of correlation structure in spin systems. The following two lemmas give
examples of some other families of priors for which convexity of F'(-) depends on the noise level o2,
while those in Lemma [3] and E] do not.

Lemma 5 (Condition to ensure convexity of F'(+): low signal-to-noise ratio). Suppose support(mw) C
[—a, a] for some a > 0. Then as long as 0* > a?, F(u) = Fr(u,0?), as a function of u, is always

strongly convex on S, regardless of the exact choice of ™ and value of o2.

Lemma 6 (Condition to ensure convexity of F'(-): Spike and Slab prior). Consider a spike and slab
prior to the following form,

1—q _ a2
m(dx) = gd(x) + e 222dx
() =0+ 75

which is just a mixture of a point mass at 0 and a Normal distribution of mean 0 and variance A2,
Suppose

. 2
min Varxr, ;,(X) <o ®)
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Figure 2: These two figures demonstrate the existence of a gap between lim,_, . (Z,)/p and
limy, oo (log ZYMF) /p when 7 = 7* is a Gaussian Spike and Slab distribution. The left panel
features the observation that the gap gets smaller as ¢ (prior sparsity) increases, while the right panel
shows as « := n/p gets large, the gap seems to converge to 0, which is consistent with the results
established in [[16] when p = o(n).

where 7; i is again a Gaussian spike and slab mixture,
:

1—qg 22
m(dx) = go(x) + 7?67de
V2w A2
2 A2
. - q A2 o“A
th §= d A= ———.
B Y R R Y= e Ve R o2 + A2
Then, F(u) is strongly convex. In addition, one easier-to-check sufficient condition for (8) is
2q A2 A2
1+ —\/14+—= | —= < 1.
<+1—q +0'2>0'2+A2< ©)

Remark 2. [t is easy to see that for large enough o (q and A fixed), or small enough q (A and o
fixed), or small enough A (q and o fixed), Q) is always satisfied. In other words, F(-) is strongly
convex for low signal-to-noise ratio or high temperature in physics parlance.

3 Log normalizing constant: sub-optimality of NMF

As alluded, as implications of Theorem we develop asymptotics of both log
error (MSE) of the NMF point estimator ¢ in terms of (b*, 7*).

Corollary 2 (MSE). When conditions of Corollary[I|hold, as n,p — oo,

Z)MF and mean square

1

2
N . P T2
’ @ — B*II” == E(p, 2)mman(0,1) KT} (T*Z + B, b*) - B) =a(r*? = ¢?).

Corollary 3 (Log normalizing constant). When conditions of Corollary[I|hold, as n,p — oo,

*2
] = ZL +EF(n(B + 7 Z,7*/b")) — ¢(0,1/5?).

o2

1 1
——log ZMME — Z |\ M (0) — ) ¢(0,d;
ez = L an0) - 3 0.0

i=1

Though all our main theorems and corollaries apply to the case when 7* # m, for simplicity and
clarity, from now on, we only consider the “nicest” setting, i.e, when assumptions of Corollary [T] are
satisfied and in addition = = 7*. By doing so, we would like to convey that even if there were no
model mismatch at all, NMF still would not be “correct”.

Concentration and limiting values of both the optimal Bayesian mean square error (i.e., E, |5 —
E[8*| X, y]||?/p) and the actual log-normalizing constant were conjectured and rigorously established
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Figure 3: These two figures show that estimated credible regions given by NMF do not achieve
the nominal coverage (95%) when m = 7* is a Gaussian Spike and Slab distribution. Recall that
a = n/p and please see Lemma|§| for exact definitions of the hyper-parameters ¢ and A2

under additional regularity conditions, which provides us the “correct answers” to compare with.
Please see [2, 20].

Please see Figure [2] for numerical evaluations of Corollary [3] which suggests the bound in (@) is
not tight for Gaussian Spike and Slab prior. Since, in general, both F(-) and 7(-, -) lack analytical
forms, it is hard to provide a universal guarantee on whether (3] has a unique optimizer or the fixed
point equation (7) has a unique solution. In fact, our numerical experiments suggest it is possible
for ((7) to have multiple fixed points. Therefore, how to exactly realize and evaluate the asymptotic
predictions in these two corollaries (so as Corollary [d]in the next section) is challenging in general
and can only be done in a case-by-case basis and usually involves numerically solving (7). In light of
this observation, we use the Gaussian Spike and Slab prior as defined in Lemma 6| for presentation
purposes. Since it is both non-trivial and of practical interest, though, we do emphasize that the same
framework and workflow also apply to other priors. Without loss of generality, we also take o2 = 1.
This choice renders Figure 2] and [3]in the next section. Details of how to generate these plots are
deferred to the Supplementary Material.

4 Uncertainty quantification: the average coverage rate

To study uncertainty quantification properties of NMF approximation, we consider the average cover-
age rate of symmetric Bayesian credible regions (of level 1 — () suggested by the NMF distributions,
ie, Ry ¢ = zl) Zle Lipreldi e andin—c 2]}> Where G+ is the t-th quantile of m(h@i,di).di) In order to
study asymptotic behavior of R, ¢, we define an (m(n), M (7)) x S — {0, 1} indicator function

Y (uo, Bo) = ]1{

Poe |:qﬂ(h(“0v1/“2)v1/52)’4/2"(1.,\-(}””(’“0«1/02)11/02),17g/2j| }

The following corollary of Theoremmestablishes the asymptotic convergence of 12, .. Numerically
evaluating it for the Gaussian Spike and Slab prior renders Figure 3] which shows NMF credible
regions can not achieve the nominal coverage, in this case, 95%, and also provides an exhibition of
how large the gaps are for different hyper-parameters.

Corollary 4. Suppose conditions of Corollary[I|hold. In addition, assume the quantile function of 7
is continuous. Then as n,p — oQ,

"0

2
Rpc = E(B,2)mm 0N (0,1) [w (n (T*Z + B, b*) ,Bﬂ :

On the other hand, based on the asymptotic joint distribution of @ and 3* as stated in Corollary[T} we
can in fact identify a strategy of constructing asymptotically exact Bayesian credible regions based
on 4. Let g;(x) be the ¢-th quantile of conditional distribution of B given n(7*Z + B, 7*02/b*) = .
This way, the following Corollary ensures [qc /2 (), q1—¢/2(;)] is asymptotically of at least 1 — ¢
coverage.



Corollary 5. Suppose conditions of Corollary@|hold, then for any £ > 0,
12
pli}rrolop (p ; ]1{6;€[q(/2(ﬂi)vq1—(/2(ai)]} <1l-C- 5) =0.

5 Discussion: Extensions and Limitations

In order to provide some intuition on why the NMF approximation is loose in the current setting,
it is worth noting that in comparison with the proportional asymptotics regime we consider here,
positive results of NMF for high-dimensional linear regression were recently established in [[16]
when p = o(n). Using terminology from Austin [I], Mukherjee and Sen [[16] (when restricted to
designs with iid Gaussian features) essentially proved, when p/n — 0, the eigenvalue concentration
behavior of X7 X leads to the Hamiltonian being of “low complexity”. On the other hand, when
p = O(n), tr(A?) # o(p), where A = A(X) is defined as the off-diagonal part of X7 X, which
violates [16, Equation (5)]. Roughly speaking, when the eigenstructure of A is not “dominated” by a
few top eigenvalues, the Hamiltonian can not be covered by an efficient net and thus is not of “low
complexity”. Please see [[1,116, 3] for more details.

We want to be clear about the fact that, technically, we did not “prove” the sub-optimality of NMF.
Instead, we rigorously derived asymptotic characterizations of NMF approximation through the
solution of a fixed point equation. But this fixed point equation can only be solved numerically on
a case-by-case basis and is not guaranteed a unique solution. All our plots are based on iteratively
solving the fixed point equation. As a matter of fact, for instance, when q is close to 1 for the Gaussian
Spike and Slab prior we considered, the fixed point equation is clearly not converging to the right fixed
point, as demonstrated in the Supplementary Material. It could also just not converge for very small
a. Nevertheless, all the plots we are showing in the main text are backed by a numerical simulation
using simple gradient descent to optimize the NMF objective, i.e. inf M, (u), for n = 8000. All in
all, it is probably more accurate to say we provided a tool for establishing the sub-optimality of NMF
for a general class of priors rather than proving it for good.

Another obvious limitation is we can only handle priors that guarantee convexity of the KL-divergence
term in terms of the mean parameters. Though it is indeed a broad class of distributions covering
some of the most commonly used symmetric priors (e.g., Gaussian, Laplace, and so on), little is
known about the asymptotic behavior of NMF when the convexity assumption is violated.

We note that, in theory, in order to carry out the analysis using CGMT, the additive noise € as defined
in (T)) does not have to be Gaussian. Instead, as long as it has log-concave density, the same proof
idea applies, though we intentionally chose to stick with Gaussian noise as it renders much cleaner
results and a more comprehensive presentation. In addition, we expect stronger uniform convergence
results (e.g., uniform in 0?) could also be established, which can be crucial for applications like
hyperparameters selection. Please see [[15] for an example in which results of this flavor were
obtained.

6 Proof strategy

This section gives a proof outline of Theorem[I] More details can be found in the Supplementary
Material. Replacing all d;’s in M, with Ed; = 1/0?, we define N, as

u? 1 u
ooz | = gl = Xl 3 P
=1

1 P
Ny(u) = EHY — Xul|2 + Z |:G(ui, 1/0%) —

=1

Lemma 7. Let iy := arg min, [N, (u)]. Then for some Cs € R, asn,p — oo,
1 . .
P (p max(||a)?, [|an|?) > (1 + CS)SQ) — 0.

Lemma 8. For any e > 0, as n,p — oo, with C as defined in Lemmal(7/]

f: {G(ui,l/az) - ;fz} - {G(ui,di) - ‘12“2]

=1

1
B el >e| —0. (0
D |ul|2/p<(1+Cs)s2



According to Lemma [8|and (7| N,(-) and M, (-) are with high probability uniformly close. Thus,
from now on, we focus on using Gaussian comparison to analyze  and N, (i) in place of @ and
M, (4). Since F(-) is strongly convex, © := @ — S* is the unique minimizer of

2 P

1 o .
L(w) = || Xw — el + — > (Flwi + ) = F(57))-
i=1
By introducing a dual vector s, we get
min L(w) = min ma lsT(Xw —€) — iHsH2 + 0—2 i (F(w; + B7) — F(BY))
w  weRe seR}TE n ‘ 2n n ! ‘ e

i=1
By CGMT (see for instance [22, Theorem 3.3.1] or [15, Theorem 5.1]), it suffices now to study

p

, 1 . 1 s 1. 1., o X
&%ﬁg&%WHSHQ w‘*‘WHU}Hh U= s 6—%”3” ‘*‘;;(F(wri-ﬁi*)—F(ﬁi))

where g ~ N(0,1,) and h ~ N(0,I,) and they are independent. Note that the min and max
can be flipped due to convex-concavity. By optimizing with respect to s/||s|| and introducing

> ) lwli? | 2 .
\/ % + 02 =min, >, { = 2:0 + 5}, it can be further reduced to

. b 0'2 b2 1 . L 1 b 2 2 * 2 *
%{?ﬁ?zh+T>‘z+a£§%;[p{z¢wi‘bgiwi”F(w”ﬁi)‘”(ﬁ”}]-

Under minor regularity conditions, as n, p — 0o, it converges to

2 2
max min b (U + 7') _r + lIEJB 7z min {bw2 —bZw + o’ F(w + B) — 02F(B)}
b>0 >0 2 \ T 2 a 7 weR | 27

with (B, Z) ~ 7 ® N (0, 1), which is how we got ¢(-, -) as in (3. Furthermore, by differentiating
¢ (b, 7) with respect to T and b, we arrive at the fixed point equation in Lemma Last but not least,
note that arg min,, {%wQ —bZw+ 0?F(w+ B)} =n(rZ+ B,70?/b) — B, which explains why
the joint empirical distribution of (i;, 3;)’s converges to the law of (n(7*Z + B, 7*¢?/b*) — B, B).
Finally, we note that similar proof arguments were made in [15} 22]].

Acknowledgements

I am grateful to Subhabrata Sen for some very insightful conversations and encouragement throughout
the process. Along with Subhabrata Sen and three anonymous referees, they also made valuable
suggestions about earlier versions of this paper. The author was partially supported by a Harvard
Dean’s Competitive Fund Award to Subhabrata Sen and NSF DMS CAREER 2239234.

References

[1] T. Austin. The structure of low-complexity gibbs measures on product spaces. The Annals of
Probability, 47(6):4002-4023, 2019.

[2] J. Barbier, N. Macris, M. Dia, and F. Krzakala. Mutual information and optimality of approxi-
mate message-passing in random linear estimation. [EEE Transactions on Information Theory,
66(7):4270-4303, 2020.

[3] A. Basak and S. Mukherjee. Universality of the mean-field for the potts model. Probability
Theory and Related Fields, 168:557-600, 2017.

[4] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American statistical Association, 112(518):859-877, 2017.

[5] R.S.Ellis and J. L. Monroe. A simple proof of the ghs and further inequalities. Communications
in Mathematical Physics, 41(1):33-38, 1975.

10



[6] R.S. Ellis, J. L. Monroe, and C. M. Newman. The ghs and other correlation inequalities for a
class of even ferromagnets. Communications in Mathematical Physics, 46(2):167-182, 1976.

[7] B. Ghorbani, H. Javadi, and A. Montanari. An instability in variational inference for topic
models. In International conference on machine learning, pages 2221-2231. PMLR, 2019.

[8] R.J. Giordano, T. Broderick, and M. L. Jordan. Linear response methods for accurate covariance
estimates from mean field variational bayes. Advances in neural information processing systems,
28, 2015.

[9] Y. Gordon. Some inequalities for gaussian processes and applications. Israel Journal of
Mathematics, 50:265-289, 1985.

[10] P. Hall, T. Pham, M. P. Wand, and S. S. Wang. Asymptotic normality and valid inference for
gaussian variational approximation. 2011.

[11] Q.Han and Y. Shen. Universality of regularized regression estimators in high dimensions. arXiv
preprint arXiv:2206.07936, 2022.

[12] A. Katsevich and P. Rigollet. On the approximation accuracy of gaussian variational inference.
arXiv preprint arXiv:2301.02168, 2023.

[13] F. Krzakala, A. Manoel, E. W. Tramel, and L. Zdeborova. Variational free energies for
compressed sensing. In 2014 IEEE International Symposium on Information Theory, pages
1499-1503. IEEE, 2014.

[14] C. A. McGrory and D. Titterington. Variational approximations in bayesian model selection
for finite mixture distributions. Computational Statistics & Data Analysis, 51(11):5352-5367,
2007.

[15] L. Miolane and A. Montanari. The distribution of the lasso: Uniform control over sparse balls
and adaptive parameter tuning. The Annals of Statistics, 49(4):2313-2335, 2021.

[16] S. Mukherjee and S. Sen. Variational inference in high-dimensional linear regression. arXiv
preprint arXiv:2104.12232, 2021.

[17] D. Pati, A. Bhattacharya, and Y. Yang. On statistical optimality of variational bayes. In
International Conference on Artificial Intelligence and Statistics, pages 1579-1588. PMLR,
2018.

[18] J. Qiu and S. Sen. The tap free energy for high-dimensional linear regression. arXiv preprint
arXiv:2203.07539, 2022.

[19] K. Ray, B. Szabd, and G. Clara. Spike and slab variational bayes for high dimensional logistic
regression. Advances in Neural Information Processing Systems, 33:14423—-14434, 2020.

[20] G. Reeves and H. D. Pfister. The replica-symmetric prediction for compressed sensing with
gaussian matrices is exact. In 2016 IEEE International Symposium on Information Theory
(ISIT), pages 665-669. IEEE, 2016.

[21] M. Stojnic. A framework to characterize performance of lasso algorithms. arXiv preprint
arXiv:1303.7291, 2013.

[22] C. Thrampoulidis. Recovering structured signals in high dimensions via non-smooth convex
optimization: Precise performance analysis. PhD thesis, California Institute of Technology,
2016.

[23] C. Thrampoulidis, S. Oymak, and B. Hassibi. Regularized linear regression: A precise analysis
of the estimation error. In Conference on Learning Theory, pages 1683—-1709. PMLR, 2015.

[24] C. Thrampoulidis, E. Abbasi, and B. Hassibi. Precise error analysis of regularized m-estimators
in high dimensions. IEEE Transactions on Information Theory, 64(8):5592-5628, 2018.

[25] J. v. Neumann. Zur theorie der gesellschaftsspiele. Mathematische annalen, 100(1):295-320,
1928.

11



[26] R. Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

[27] M. J. Wainwright and M. 1. Jordan. Graphical models, exponential families, and variational
inference. Now Publishers Inc, 2008.

[28] F. Zhang and C. Gao. Convergence rates of variational posterior distributions. 2020.

12



Supplementary Materials

A Technical lemmas and basic facts

Lemma9. Let ¢(h,d) := %(h, d) and é(h,d) := g—;i(h, d). We have, for v € (m(w), M (w)) and
d eR,
%(u,d) = h(u,d), % = % /S 22 dr(Pwd)d) () % /5 22 dr0d ().
0?G 1 1
7(u7d) == =
0%u é(h(u,d),d)  Varx . mwaa(X)
Lemma 10 (von Neumann’s minimax theorem, [25])). Let S,, C R™ and Sy C R™ be compact convex

sets. If f + Sy X S — Ris a continuous function that is convex-concave, i.e., f(-,8) : Sy, — Ris
convex for fixed s, and f(w,-) : Ss — R is concave for fixed w. Then we have that

> 0.

S g o) = g g o)

Theorem 2 (CGMT, [23| 22| [15]])). Let S\, C RP? and S; C R™ be two compact sets and let

Q : Sw x S5 — R be a continuous function. Let G = (Gij)1<i<n1<j<p i N(0,1), g ~ N(0,L,),
h ~ N(0,1,,) be independent standard Gaussian vectors. Denote

®(G) = mi e
(@)= Jp g Go QLwws),

U(g,h) = min max Tw + ||w||h? +Q .
(g,h) welsw se%‘s llsllg” w + [lw][h"s (w,s)
Then we have

1. Forallt € R,
B((G) < t) < 2B(¥(g.h) < 1).

2. If both S, and Ss are convex and if Q(-,-) is convex-concave, then for all t € R,
P(B(G) > 1) < 2P(W(g, ) > 1).

Remark 3. The most important message of this theorem is essentially whenever ¥(g, h) concentrates
around a certain value t, ®(QG) will also concentrate around t, assuming Q(-, ) is convex-concave.

B Proofs

Proof of Lemma[T]and 0] can be found in for instance [16].

B.1 Convexity of F'(-)

Proof of Lemma[3] We only prove part (1) here, as proof of part (2) is almost exactly the same. For
any h,d € R, by GHS inequality [6, Equation 1.4],

0 [VaI'BNﬂ.(h,d) (B)}
oh

Together with the assumption that V' is even, we have for any h € R and d > 0,

3 9 3 GHS
= E[B%] — 3EBE[B?] + 2 (EB)® < 0,

Varg,.n.a(B) < Varg .0 (B).

Consider now a family of parametric distributions {Py : # > 0} as a generalization of 7(*%), with

4Py

e () o exp(—0V (z)) exp (—dz?/2) .
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Note that Pg—; = 7(*?. Since V() is even and increasing,
Varg, 0,4 (B) = Vargp,_, (S) < Varg.p,_,(S)
e 2247124,
- f]R e—d22/2d
1 Iz 22e=% 24z
d fpe#2dz
1 1

< 3 Vargar(o,1)(5) = 7
which ensures Vary__(u(u.1/02).1/02) (B) < o and therefore ‘if.f (u) > 0 by (II). Note that as

long as 7 is a valid probability distribution, F'(+) is not only convex but always strongly convex, as
Varg nwise?).1702) (B) = o2 if and only if V(-) is a constant function and the support of 7 is the
whole real line. O

The same proof idea also applies to Lemmad} therefore, we omit its proof to avoid redundancy.

Proof of Lemma 5| The conclusion follows by noting
d2F( ) 1 1
u) = - =
du? Varg  waseasen (B) 02

>0, (11)

as (" is a distribution on [—a, a] and thus its variance is at most a?, which is assumed to be
smaller than o2 O

For Lemma@, since Varp, .. (B) can be analytically computed for the Gaussian Spike and Slab
prior, its proof is nothing but elementary calculation and then checking for (TT).

B.2 Replacing d; with Ed;

Proof of Lemmal7} We focus on only ||4|| since almost exactly the same argument also applies to
un. We first collect a few high-probability claims, proofs of which are just direct applications of
basic standard random matrix results (see, for instance, [26]]).

1. There exist positive constants C7 and Cy (only depend on «), such that for any € > 0,
S1 = {Pmax(XTX) — Cy| < e} and Sy := {|Amin(XTX) — C3| < &} are both of high
probability.

2. Recall the additive noise € ~ N'(0,021,). For any ¢ > 0, S5 := {|||€||?/n — 02| < €} is of
high probability.

3. Forany e > 0, Sy = {|¢/ X3*/p| < &} is of high probability.

Let Sp = 51 N S N S3 N Sy, which is again an event of approaching 1 probability. Note that since
the empirical distribution of 3’s converge in Ly to 7, one has ||3*||? < 1.01psz for large enough p.
When Sy happens, if [|u||?/p > (1 + Cy)s2 (with Cs > 0 to be chosen later, but large enough such
that | Xul|| > Y]],

N>1YX2>1X Y2>p\/0 e g 9
o) = IV = Xul? = = (IXul = Y1) = 55 [V(C =)@+ Co)sz = |IX8* +ell/p
2
= % {\/(02 —&)(1+ Cy)s2 — V/2(C1 + ) - 252 + 2a(0? + e)} .
On the other hand,

a 1 2 p 2

5
Upon C being large enough, we have N, (u) > N, (0) for any u such that ||u|?/p > (1 + C,)ss.

Therefore, ||iy|*/p < (1 4+ C2)s2 on Sp. O
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Proof of Lemmal(8] If S = [—1,1], by Lemma@ ‘%(u, d)‘ < 1 for any u, d, thus

|

2 2
up diyg
202 2

LHS of (T0) < sup [f: |G (ui, di) — Glui, 1/0%)| + Ep:
u ; i=1

=1
G (u, d) ) 1< )
< sup [2 o (i 1/0%)(di = 1/0%)| | + 5; |d; —1/0?]
<3|t
= 4 3 0_2
=1
Since X;’s are iid with variance 1/n, we know Ed; = E [Z?Zl Xi} = 5. d; 7 2>, and all

d;’s are iid, which guarantee RHS of the previous display goes to 0 in probability as n, p — oc. On
the other hand, if S = R, note that for any § € (0,1/(20%)), P(maxi<;<,|d; — 1/0?| > ) = 0
as n,p — oo. In addition, when max;<;<, |d; — 1/0?| < § is true, which is of approaching 1
probability,

1 - 2,2
+3 1= 1ol

where §; € (min(0,d; — 1/0?), max(0,d; — 1/5?)). By Lemma@ it is further smaller than

du

1~LHS of
p

Z|G w;, d ul,l/a ’Jrz

202

HUH/p<(1+C

—_

0G (u,d)

5 (us, 1/0% 4+ 6;)(d; — 1/0?)

< - su
p ul|ull/p<(1+Cs)s2 | ;=1

p

o

Powlul/p<(i+Cos2 | 25

1

di — ﬁ . [Va‘rXNT((h(ul’1/02+5i)’1/02) (X) + uf + VaI’XNW(OJ/UzJFJi)) (X) + uﬂ } .

Lastly, note that when conditions of one of Lemma EL and|§| are true, for d close enough to 1/ o2,
we have Var, .4 (X) < 202 for any h € R. Therefore, upon choosing small enough & such that
all d;’s are close enough to 1/02, the display above is controlled by

1 1< [ 2 2
) sup — di — —|- (40 + Qui)
P wilull/p<2ss {2 ; ’
2
< max |d; — 1/d%|-  sup {4‘72 + HUH}
1<i<p willull/p<2s2 p

<6 - (402 + (1 + Cy)s),

Lastly, further requiring § < m renders Lemma@ O

B.3 Regarding the fixed point equation

Proof of Lemma[2] First of all, recall the definition of ¢(-, -) in (@),
1
gz)(b T) = ( 2/T+T)fb*%+27E (tZ+ B —n(rZ + B, 102 /b))? ]
Note that for any fixed z, |x — n(z, t)| is always strictly increasing with respect to ¢, we have
O{E[(rZ+ B —n(tZ + B,70%/b))?] }

0
b <5

which further leads to
%
b2

Therefore, for any fixed 7, ¢(-, 7) is 1-strongly concave. Define ¢(b) := min >, ¢(b, 7). Since 9)(+)
is the minimum of a collection of 1-strongly concave functions, it is 1-strongly concave itself and

(b,7) < -1, Vb,
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must have a unique maximizer b* over [0, 00). In addition, by definition of 1, lim;_, . n(z,t) = 0,
dominated convergence theorem gives

Jim B [(Z+ B —n(tZ + B,70%/b))*] =E[(Z + B)?| = * + E[B?].
—0
Therefore, for any fixed T,

> 0.

L) 1l E[B?]
llgn_jélf%(bﬂ') = 5(0 JT+T)+ 9

Together with Lemma |1 1{and continuity of ¢(-, -), it ensures b* # 0. On the other hand, for any
b>0,

%(bﬂ') - % {72 - <ch + éE [(T](TZ+B,TO'2/b) - B)2D] ;
%(b,r:a) < 0.

Together with Lemma 11} we have min, >, ¢(b*, 7) has at least one minimizer 7* € (o, 00). Finally,
since b* and 7* are not on the boundary, we have % (b, ) = g—f(b*, 7*) = 0, which gives rise to
the fixed point equation as in (7). O

Lemma 11. Recall the definition of ¢ in (6). For any fixed b € (0, 00),

lim ¢(b,7) = c0.
T—>00
Therefore, min, ¢(b, T) admits at least one minimizer.

Proof. Since E[B?] = s5 < 00, Eminyes { fw? — bZw + 0*F(w + B) — 0*F(B)} is decreas-
ing in 7 and always finite for any (b, 7) € (0, 00) X [g, 00). Therefore lim,_, (b, 7) = co. O

B.4 Proof of the main results

We devote this subsection to proving Theorem [I} while we note Corollary [T} 2] 3] f] and [5] are all
direct consequences of it. We first prove Theorem [I] while introducing some necessary lemmas. Then,
we prove these lemmas at the end of this subsection. Whenever the optimization domains for w and s
are omitted throughout this subsection, they are understood to be R? and R™, respectively. We use ¥
to denote empirical distribution in general.

Since F'(-) is strongly convex, w := @ — 8* is the unique minimizer of

1 22

[ Xw = el + = (Fwi + B7) — F(B})

L(w) := o '

By introducing a dual vector s, we get

1 1 2 2
min L(w) = %Rg, max EST(Xw —€) — %IISH2 + % ; (F'(w; + B7) = F(B])) := minmax G (w, 5)

Following the recipe in Theorem [2] we define

1 - 1 L T
Wyn(w,s) '_W”SHQ w‘*‘m”“’”h 5= 08 G—EHSH +;§(F(wi+5i*)—F(5¢*))7
(12)

where g ~ N(0, I,) and h ~ N(0, I,,) and they are independent. Note that with a deliberate abuse
of notations, we use ¢ and ¥ to denote these two functions to indicate their resemblance to those in
the statement of Theorem By Theorem it suffices now to study min,, max, ¥, 5 (w, s) in place
of min,, max, ®x (w, s), which is made rigorous by the following lemma.

Lemma 12. Let D be any close set.
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1. We have forallt € R

P <min max ®x (w, s) < t> < 2P (min max ¥, p(w,s) < t) .
weD s weD s

2. If D is in addition convex, then we have for all t € R

i P > < i 1\ > .
P (glelg max x(w,s) > t) < 2P <g1€1g max gn(w,s) > t)

We defer the proof of Lemma[I2]to the end of this section and proceed with proving Theorem[I] Due
to strong convexity, Wy := arg min,, maxs ¥, ,(w, s) always exists and is unique. Note that the
min and max can be flipped due to convex-concavity (Lemma[I0). By optimizing with respect to
s/|s|| and introducing

llwl? 2
[|w]|? o . ——to T
n tot= 7'212 2T + 5 ’ (13)

min,, max, ¥4 5 (w, s) can be further reduced to

mexmin Ly, (b, 7)
b,o? o1 SN
Lgn(b,7) = 5(1 +7) = 5+~ min Y [ {w? — bgw; + o F (w; + B}) — 02F(6Z)H :

T 2 Q. weRP p |27

i=1

in the sense that (i) the optimizers wy and wr are close, i.e, for any x > 0,
1
P (|uaqu —ar|? > /$> -0, (14)
p

and (ii) the optimum value is preserved with arbitrarily small error with high probability.
The next lemma ensures empirical distribution of (wy,*) is close to the distribution of

(n (T*Z + B, 72‘32) — B,B), which we denote as v/(,,. .., where (B, Z) ~ m* @ N(0, 1).

Lemma 13. Suppose all conditions of Theore are satisfied. For any € > 0, there exists C(e) €
(0, ), such that as p,n — oo,

2
P (311} € RP such that Wy (ﬁ(@,ﬁ*), u(*w*,,r*)) > e and max W, 5 (0, s) < minmax ¥, ,(w, s) + C(E)) — 0.

w S
In the meantime,

b2
minmax ¥, p(w, s) N O;—Q +EF(n(B+ 12,77 /b%)).
w s g

Again, for now, we proceed assuming Lemma and prove it later at the end of this sec-
tion. Building upon Lemma [I2] and Lemma we now prove the empirical distribution of
(in,B*) = (B* + w,B*) is close to v* as defined in Definition @ For ¢ > 0, define D, =

2
{w ERP: W, (f/(w,@*), u(*w*m*)> > 5}. To establish

P (Wg(ﬁ(@’ﬁ*% U{w*)ﬂ*))z > 6) — 0,
it suffices to show with high probability, for some d(¢) > 0,

i P > mi P o(e). 15
Juin max x(w,s) > Inin max x(w,s)+6(e) (15)
On the one hand, by applying both (1) and (2) of Lemma[I2]to D = RP?, together with Lemma [13]
we have
ab*?
lim minmax®x(w,s) = lim minmax ¥, (w,s) = — + EF(n(B+ 7°Z,7%/b")),

n,p—00  w s n,p—00  w s 202
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where the “lim” is understood to be convergence in probability. It further leads to
P (‘min max @ x (w, s) — minmax ¥, j, (w, s)‘ > 5) — 0.

On the other hand, applying (1) of Lemma[I2]to D = D., together with Lemma[I3] we have

P < min max ®x (w, s) > minmax ®x (w, s) + C(e) + 6) — 0,

weD, s w s

which establishes (I3) with () = C(e) + &, where C(e) > 0 was defined in Lemma T3] Therefore,
we have the empirical distribution of (@, 8*) is close to the target distribution v*, i.e.,

W (D(ay o), V") = 0. (16)

Finally, according to Lemma [8]and[7] N,,(-) and M, (-) are with high probability uniformly close.
Together with strong convexity of N, (-), we have for any x > 0

1
P<p||ﬁﬂ1v|2<n) — 0. (17)
Theorem [T]is therefore given by (I6) and (I7).

Proof of Lemma(I2] In order to prove Lemma [I2]using Theorem 2} one only needs to establish that
the optimizer of @ x (w, s) always has a bounded norm with high probability. In fact, Lemmaensures
boundedness of 1w = arg min,, max, ® x (w, s) while the boundedness of § := arg max, ¢ x (w, s)
can be established by a similar argument. O

Proof of Lemmal(I3] Define

. b, o2 o1 " T1(b
Lyn(b,1):= 5(1 +7)— —+ — min [ {wf — bg;w; + 0 F(w; + B7) UQF(ﬂZ)H .

T 2 o wED, 4
=1

By definition, T', 5, (b, 7) > Ty (b, 7) for any (b, 7) deterministically. Recall the definition of &, 1,(-)
in (19,
ur;lé%ls max U, p(w,s)

P
0.2

= i max g+ | P = Lot S w4 0) - PU6)

=1

b::‘% min max llbgTw +0b (CIS +02 - ” + o i (F(w; + B;) — F(B)) | +on(1)
weD, b>0 | n n 2 n & ’ ’ "
© Juin max min S(J; +7) - g + é Zl []1) {;Twz — bgiw; + 0*F(w; + }) — 02F(5;)H + on(1)
Lemmal[IQ] - -
> rilg())(glzigf‘g,h(b, T) + 0n(1).
Therefore, ~
ur}relilgle max U, n(w,s) > rilg(%(g_nzig Ly n(b, 1)+ 0,(1)
> rTn>1(rjl f‘g,h(b*,T) + o0,(1)

=Ly n(b7,7(67)) + 0n(1)

(@)
> Ty n(0*,7(0%)) + on(1) (18)
(i)

> m>in Ly n(d*,7) + 0n(1)
=Ty n(b*,7) +0n(1)

= Inin max U, n(w,s)+o0,(1),
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where 7(b*) := argmin;>, fg}h(b*, 7). We claim that the gaps resulting from (i) and (ii) can not be
both negligible. Namely, there exists ¢ > 0 such that

limsupP (T} + Ty > o) > 0, (19)

n,p— o0

where

Ty n(b*,7(b%)) — Ty n(b*, 7(b*)) >0
T,

Ty
Ty R, T(0%)) =Ty p(b*,7%) > 0.

In order to establish (T9), we will proceed with proof by contradiction. Suppose (19) is NOT true,
equivalently, for any o > 0,

lim P (T} > o) =0, (20)
n,p—o0

lim P(T% > p)=0. (21
n,p—oo

Recall the definition of ¢(-) in (6). Since (b*,7*) is the unique optimizer of ¢(-) and I'y 5 (b, )
converges to ¢(b, 7) uniformly on any compact subset of [0, 00) X [0, 00), (ZI) is only possible if

|7(b*) — 77| % 0 as n, p — cc. On the other hand, by definition of D,, there exists 7 > 0 such that
with high probability, for any w € D,,

Z[ Lot v+ o Pl + )~ 2P0 |

p *
>Z;[;{ b w? — b*g;w; + o2 F(w; + ) — 2F(5$)}] + e,

where w; is sampled independently from the distribution of 7 ( *Z + pBr, s " — B > with Z ~
N (0, 1). Therefore, with high probability,

Ly n(0%,7) =Ty (0%, 7%) > 7e.

By triangle inequality,

Ty > [Ty n(b*,7%) — Fg7h(b*,7-*)] — [Ty n (0", 7(b%)) — Ty n (0%, 7)| — |Tyn (0%, 7(b*)) — Tyn(b*,7)|.

In addition, note that if |7(b*) — 7*| % 0asn,p — oo, then

Dy (b, 7(b%)) = Ty n(0*,7%) 550 and Ty p(b*, 7(b%)) — Tgn(b*,7*) 5 0.
Putting them together, we have
P(Th > ve/2) — 1.
The display above is in contradiction to (20}, which means (T9) is thus established.

Finally, note that Lemma|[I3]is equivalent to

P (érenélam?xllfgh(w s) —ur)xé%}gmsax\ﬁgh(w s)>Cle )) —1

and it is therefore a direct consequence of (T9) and (T8). O

C Numerical simulations

All source code can be found in a separate zip file in the Supplementary Materials.
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q=0.1;delta”2 =3. MSE (q = 0.1; alpha = 1) alpha = 1; delta”2 = 0.6.
—e— NMF: CGMT Theory Prediction —e— NMF: CGMT Theory Prediction
+  NMF: Gradient Decent simulation with Gaussian design 4+ NMF: Gradient Decent simulation with Gaussian design
16 x  NMF: Gradient Decent simulation with Laplace design X NMF: Gradient Decent simulation with Laplace design

—®— NMF: CGMT Theory Prediction
4 NMF: Gradient Decent simulation with Gaussian design
X NMF: Gradient Decent simulation with Laplace design \;

3
x
X

X

015

H 01 02 03 04 05 06 07
q

alpha

Figure 4: iid Gaussian design versus iid Laplace design (with Gaussian spike and slab prior): These
three plots showcase the empirical observation that prediction of Corollary [2]seem to be valid for a
design matrix with iid entries that have sub-exponential tails.

C.1 Universality: non-Gaussian design matrix

Instead of assuming X;; “d (0,1/n), we now present empirical evidence of universality, i.e.,
Theoremholds for a broader class of design matrix that has iid entries with variance 1/n. Since

it is impossible to exhaust all possible distributions, we will stick with a representative example

Xij wd Laplace(1/2/2) and the Gaussian spike and slab prior. We use Gradient Decent to optimize
M, (u) and then demonstrate that the empirical MSE of its optimizer coincides with the prediction of
Corollary 2] Please see Figure [ for a visual summary.

For more comprehensive and rigorous results on the universality of Gaussian comparison inequalities,
we refer interested readers to [[11] and references within.

C.2 Fixed point equation

alpha = 2; delta”2 = 0.4.

—8— NMF: CGMT Theory Prediction
+ NMF: Gradient Decent Simulation
Prior Variance
—e— Bayes Optimal
—e— AMP

Figure 5: As we can see, when ¢ is large (¢ = 0.8 or 0.9 in the figure above), our initialization did
not lead to the right fixed point.

As alluded to in the main text, all our plots are generated by iteratively solving the fixed point
equation (7). However, this naive strategy might not give the right fixed point, i.e., the (b*, 7*) that
minimizes ¢(b, 7), or it could just do not converge. Please see Figure [5|for an empirical example.
Since either F'(-) or (-, -) lacks analytical forms for most natural priors, unlike other applications
of CGMT (e.g., asymptotic analysis of lasso [13]]), it is hard to determine whether (7) has a unique
solution analytically. Fortunately, there are two possible remedies. First, which is the option we
took, one could solve min,, M, (u) for some large n and check if the empirical MSE matches the
prediction given by the fixed point. Alternatively, one could adapt a more brute-force way to find
the actual optimizer of max;, min, ¢ (b, 7), e.g., grid search or iteratively solving (7) with multiple
initializations. After all, it is only a two-dimensional scalar optimization problem. We followed
the first way simply because we wanted to use empirical simulations to corroborate our theoretical
predictions anyway.
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