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ABSTRACT

Vertical federated learning trains models from feature-partitioned datasets across
multiple clients, who collaborate without sharing their local data. Standard ap-
proaches assume that all feature partitions are available during both training and
inference. Yet, in practice, this assumption rarely holds, as for many samples only
a subset of the clients observe their partition. However, not utilizing incomplete
samples during training harms generalization, and not supporting them during
inference limits the utility of the model. Moreover, if any client leaves the federa-
tion after training, its partition becomes unavailable, rendering the learned model
unusable. Missing feature blocks are therefore a key challenge limiting the appli-
cability of vertical federated learning in real-world scenarios. To address this, we
propose LASER-VFL, a vertical federated learning method for efficient training
and inference of split neural network-based models that is capable of handling
arbitrary sets of partitions. Our approach is simple yet effective, relying on the
sharing of model parameters and on task-sampling to train a family of predictors.
We show that LASER-VFL achieves a O(1/

√
T) convergence rate for nonconvex

objectives and, under the Polyak-Łojasiewicz inequality, it achieves linear conver-
gence to a neighborhood of the optimum. Numerical experiments show improved
performance of LASER-VFL over the baselines. Remarkably, this is the case even
in the absence of missing features. For example, for CIFAR-100, we see an im-
provement in accuracy of 19.3% when each of four feature blocks is observed
with a probability of 0.5 and of 9.5% when all features are observed. The code for
this work is available at https://github.com/Valdeira/LASER-VFL.

1 INTRODUCTION

In federated learning (FL), a set of clients collaborates to jointly train a model using their local data
without sharing it (Kairouz et al., 2021). In horizontal FL, data is distributed by samples, meaning
each client holds a different set of samples but shares the same feature space. In contrast, vertical
FL (VFL) involves data distributed by features, where each client holds different parts of the feature
space for overlapping sets of samples. Whether an application is horizontal or vertical FL is dictated
by how the data arises, as it is not possible to redistribute the data. This work focuses on VFL.

In VFL (Liu et al., 2024), the global datasetD := {x1, . . . ,xN}, whereN is the number of samples,
is partitioned across clients K := {1, . . . ,K}. Each client k ∈ K typically holds a local dataset
Dk := {x1

k, . . . ,x
N
k }, where xn

k is the block of features of sample n observed by client k. We have
that xn = (xn

1 , . . . ,x
n
K). Unlike horizontal FL, in VFL, different clients collect local datasets with

distinct types of information (features). Such setups—e.g., an online retail company and a social
media platform holding different features on shared users—typically involve entities from different
sectors, reducing competition and increasing the incentive to collaborate. To train VFL models
without sharing the local datasets, split neural networks (Ceballos et al., 2020) are often considered.

In split neural networks, each client k has a representation model fk, parameterized by θfk . The
representations extracted by the clients are then used as input to a fusion model g, parameterized
by θg . This fusion model can be at one of the clients or at a server. Thus, to learn the parameters
θK := (θf1 , . . . ,θfK ,θg) of the resulting predictor h, we can solve the following problem:

minθK
1
N

∑N
n=1 `(h(xn;θK), yn) where h(xn;θK) := g

(
{fk(xn

k ;θfk)}Kk=1 ;θg

)
, (1)

with ` denoting a loss function and yn the label of sample n, which we assume to be held by the
same entity (client or server) as the fusion model. We illustrate this family of models in Figure 1a.
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Method
pmiss

0.0 0.5

MIMIC-IV
(F1-score×100)

Local 74.9 73.0
Standard VFL 91.6 51.8
LASER-VFL (ours) 92.0 82.0

(a) Split neural network. (b) Dataset availability and usage. (c) Results preview.

Figure 1: In Figure 1a, we illustrate a split neural network. In Figure 1b, we show the availability
of a dataset with K = 3 blocks of features, each with a 0.5 probability of being observed, and its
usage and waste by three key methods: standard VFL, a local approach, and our method. Standard
VFL trains a single predictor, while the local approach and our method train different predictors at
different clients (we show the data usage for client 1). In Figure 1c, we present a preview of our
results: a mortality prediction task using the MIMIC-IV dataset, when the probability of each block
of features missing, pmiss, is in {0.0, 0.5}, for both data and test data.

Generalization and availability in standard VFL. We see in (1) that, even for a single sample n,
predictor h depends on all the blocks of features, {xn

k : ∀k}. Thus, for both training and inference,
(1) requires the observations of all the clients to be available.1 Building on our example of an online
retailer and a social media company sharing users, each company is also likely to have unique users.
This applies to both training and test data. Further, if any client drops from the federation during
inference, its block will permanently stop being observed. In both the case of nonshared users and of
clients leaving the federation, standard VFL predictors become unusable. Figure 1b illustrates this
phenomenon: for both training and inference, if each of K = 3 clients observes its block of features
with an (independent) probability of 0.5, only 0.53 = 12.5% of the original data is usable. Thus,
restricting training to fully-observed samples hinders generalization, while restricting inference to
such samples limits the availability and utility of the model.

Dealing with missing features. To handle missing features in training data, some approaches ex-
pand the dataset, filling the missing features before collaborative training (Kang et al., 2022b), while
others use their partition of partially-observed samples for local representation learning but exclude
them from collaboration (He et al., 2024). These methods can outperform standard VFL when par-
tially observed samples are present, but they add new training stages and auxiliary modules, making
them more complex. Moreover, they train a joint predictor that requires the collaboration of all
clients during inference. On the other hand, to improve robustness against missing blocks at in-
ference, each client can train a local predictor using only its own features, avoiding collaboration
altogether. This also addresses missing features in the training data. Alternatively, collaborative
methods can employ techniques such as knowledge distillation (Huang et al., 2023) and data aug-
mentation (Gao et al., 2024) to train local predictors, also adding complexity with multiple stages.
However, while robust to missing features, these local predictors cannot utilize additional feature
blocks if available at test time, resulting in wasted data and reduced predictive power. We illustrate
this in Figure 1b.

Therefore, there is a gap in the literature when it comes to leveraging all the available data without
either dropping incomplete samples or ignoring existing features. This raises the following question:

Can we design an efficient VFL method that is robust to missing features at both training and
inference with provable convergence guarantees, without wasting data?

In this work, we answer this question in the affirmative. We propose LASER-VFL (Leveraging All
Samples Efficiently for Real-world VFL), a novel method that enables both training and inference
using any and all available blocks of features. To the best of our knowledge, this is the first method to
achieve this. Our approach avoids the multi-stage pipelines that are common in this area, providing

1This contrasts with horizontal FL, where the local data of one client suffices to estimate mini-batch gradi-
ents and to perform inference.
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a simple yet effective solution that leverages the sharing of model parameters alongside a task-
sampling mechanism. By fully utilizing all data (see Figure 1b), our method leads to significant
performance improvements, as demonstrated in Figure 1c. Remarkably, our approach even surpasses
standard VFL when all samples are fully observed. We attribute this to a dropout-like regularization
effect introduced by task sampling.

Our contributions. The main contributions of this work are as follows.
• We propose LASER-VFL, a simple, hyperparameter-free, and efficient VFL method that is flex-

ible to varying sets of feature blocks during training and inference. To the best of our knowledge,
this is the first method to achieve such flexibility without wasting either training or test data.

• We show that LASER-VFL converges at aO(1/
√
T) rate for nonconvex objectives. Furthermore,

under the Polyak-Łojasiewicz (PL) inequality, it achieves linear convergence to a neighborhood
around the optimum.

• Numerical experiments show that LASER-VFL consistently outperforms baselines across multi-
ple datasets and varying data availability patterns. It demonstrates superior robustness to missing
features and, notably, when all features are available, it still outperforms even standard VFL.

Related work. VFL shares challenges with horizontal FL, such as communication efficiency (Liu
et al., 2022; Valdeira et al., 2025) and privacy preservation (Yu et al., 2024), but also faces unique
obstacles, such as missing feature blocks. During training, these unavailable partitions render the
observed blocks of other clients unusable, and at test time, they can prevent inference altogether.
Therefore, most VFL literature assumes that all features are available for both training and infer-
ence—an often unrealistic assumption that has hindered broader adoption of VFL (Liu et al., 2024).

To address the problem of missing features during VFL training, some works use nonoverlapping,
or nonaligned, samples (that is, samples with missing feature blocks) to improve generalization. In
particular, Feng (2022) and He et al. (2024) apply self-supervised learning to leverage nonaligned
samples locally for better representation learning, while using overlapping samples for collaborative
training of a joint predictor. Alternatively, Kang et al. (2022b), Yang et al. (2022), and Sun et al.
(2023) employ semi-supervised learning to take advantage of nonaligned samples. Although these
methods enable VFL to utilize data that conventional approaches would discard, they still train a
joint predictor and thus require all features to be available for inference, which remains a limitation.

A recent line of research leverages information from the entire federation to train local predictors.
This can be achieved via transfer learning, as in the works by Feng & Yu (2020); Kang et al. (2022a)
for overlapping training samples and in the works by Liu et al. (2020); Feng et al. (2022) for handling
missing features. Knowledge distillation is another approach, as used by Ren et al. (2022); Li
et al. (2023b) for overlapping samples and by Li et al. (2023a); Huang et al. (2023) which leverage
nonaligned samples when training local predictors (only the latter considers scenarios with more
than two clients). Xiao et al. (2024) recently proposed using a distributed generative adversarial
network for collaborative training on nonoverlapping data and synthetic data generation. These
methods yield local predictors that outperform naive local approaches, but fail to utilize valuable
information when other feature blocks are available during inference.

A few recent works enable a varying number of clients to collaborate during inference. Sun et al.
(2024) employ party-wise dropout during training to mitigate performance drops from missing fea-
ture blocks at inference; Gao et al. (2024) introduce a multi-stage approach with complementary
knowledge distillation, enabling inference with different subsets of clients for binary classification
tasks; and Ganguli et al. (2024) extend Sun et al. (2024) to deal with communication failures during
inference in cross-device VFL. However, all of these methods consider the case of fully-observed
training data and they all lack convergence guarantees.

In contrast to prior work, LASER-VFL can handle any subset of feature blocks being present during
both training and inference without wasting data, while requiring only minor modifications to the
standard VFL approach. It differs from conventional VFL solely in its use of parameter-sharing and
task-sampling mechanisms, without the need for additional stages.

2 DEFINITIONS AND PRELIMINARIES

Our global dataset D is drawn from an input space X which is partitioned into K feature spaces
X = X1×· · ·×XK such thatDk ⊆ Xk, where, recall,Dk is the local dataset of client k. Ideally, we
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would train a general, unconstrained predictor h̃ : X 7→ Y , where Y is the label space, by solving
minθ̃

1
N

∑N
n=1 `(h̃(xn; θ̃), yn). However, VFL brings the additional constraint that this must be

achieved without sharing the local datasets. That is, for all k, the local dataset Dk must remain
at client k. As mentioned in Section 1, standard VFL methods approximate h̃ by h : X 7→ Y , as
defined in (1), allowing for collaborative training without sharing the local datasets, but they cannot
handle missing features during training nor inference.

Another way to train predictors without sharing local data is to learn local predictors. In particular,
each client k ∈ K can learn the parameters θk of a predictor hk : Xk 7→ Y to approximate h̃:

hk(xn
k ;θk) := gk(fk(xn

k ;θfk);θgk) where θk := (θfk ,θgk). (2)

The representation models fk : Xk 7→ Ek, where Ek is the representation space of client k, are as
in (1), yet the fusion models gk : Ek 7→ R differ from g : E1 × · · · × EK 7→ R in (1) and hk differs
from h. This approach is useful in that hk allows client k to perform inference (and be trained)
independently of other clients, but it does not make use of the features observed by clients j 6= k.

More generally, to achieve robustness to missing blocks in the test data while avoiding wasting
other features, we wish to be able to perform inference based on any possible subset of blocks,
P(K)\{∅}, where P(K) denotes the power set ofK. Standard VFL allows us to obtain a predictor
for the blocks K and the local approach provides us with predictors for the singletons {{i} : i ∈ K}
in the power set. However, none of the other subsets of K is covered by either approach.

A naive way to achieve this would be to train a predictor for each set I ∈ P(K) \ {∅} in a
decoupled manner. That is, we could train each of the following predictors {hI :

∏
k∈I Xk 7→ Y}

independently using the collaborative training approach of standard VFL:{
hI(xn

I ;θI) := gI((fk(xn
k ;θfk(I)) : k ∈ I);θgI ) : I ∈P(K) \ {∅}

}
, (3)

where θI = ((θfk(I) : k ∈ I),θgI ) and xn
I = (xn

k : k ∈ I). The fusion models {gI} can either be
at one of the clients or at the server. The set of predictors in (3) includes the local predictors {hk}
in (2) and the standard VFL predictor h in (1), but also all the other nonempty sets in the power set
P(K).2 This approach addresses the issue of limited flexibility and robustness in prior methods,
which struggle with varying numbers of available or participating clients during inference. However,
by requiring the independent training of 2K − 1 distinct predictors, it introduces a new challenge:
the number of models would grow exponentially with the number of clients, K. Consequently, the
associated memory, computation, and communication costs would also increase exponentially.

Further, if the fusion models in (3) are all held by a single entity, this setup introduces a dependency
of all clients on that entity. To enhance robustness against clients dropping from the federation, we
would like each client to be able to ensure inference whenever it has access to its corresponding
block of the sample. That is, we want each client k ∈ K to train a predictor for every nonempty
subset of K that includes k. We define this family of subsets as Pk(K) := {I ∈ P(K) : k ∈ I}.
This allows client k to make predictions even if the information from blocks observed by other
clients is not available and thus cannot be leveraged to improve performance.

In the next section, we present our method, LASER-VFL, which enables the efficient training of
a family of predictors that can handle scenarios where features from an arbitrary set of clients are
missing. We have included a table of notation and a diagram illustrating our method in Appendix B.

3 OUR METHOD

Key idea. The main challenge, when striving for each client to be able to perform inference from
any subset of blocks that includes its own, is to circumvent the exponential complexity arising from
the combinatorial explosion of possible combinations of blocks. To address this, in LASER-VFL, we
share model parameters across the predictors leveraging different subsets of blocks and train them
so that the representation models allow for good performance across the different combinations of
blocks. Further, we train the fusion model at each client to handle any combination of representations
that includes its own. To train the predictors on an exponential number of combinations of missing
blocks while avoiding an exponential computational complexity, we employ a sampling mechanism
during training, which allows us to essentially estimate an exponential combination of objectives
with a subexponential complexity.

2The notation in (3) differs slightly from (1) and (2), which use a simpler, more specific formulation.
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3.1 A TRACTABLE FAMILY OF PREDICTORS SHARING MODEL PARAMETERS

In our approach, each client k ∈ K resorts to a set of predictors {hkI : I ∈Pk(K)}. Each predictor
hkI :

∏
i∈I Xi 7→ Y has the same target, but a different domain. Therefore, we say that each

predictor performs a distinct task. We define the predictors of client k as follows:{
hkI

(
xn
I ;θ(k,I)

)
:= gk

(
1

|I|
∑
i∈I

fi(x
n
i ;θfi);θgk

)
: I ∈Pk(K)

}
, (4)

where θ(k,I) = ((θfi : i ∈ I),θgk) and |I| denotes the cardinality of set I.

Sharing model parameters. Note that, although we can see (4) as |Pk(K)| = 2K−1 different
predictors, the predictors are made up of different combinations of only K representation models
and K fusion models. That is, we only require parameters θ := (θf1 , . . . ,θfK ,θg1 , . . . ,θgK ). In
particular, in contrast to (3), where the predictors used different representation models for each task,
in (4), we share the representation models across predictors. Similarly to the representation models,
we have a single fusion model per client.

It is also important to note that each fusion model gk ((fi(x
n
i ;θfi) : i ∈ I);θgk) takes the specific

form of gk
(

1
|I|
∑

i∈I fi(x
n
i ;θfi);θgk

)
. By employing a nonparameterized aggregation mecha-

nism on the extracted representations whose output does not depend on the number of aggregated
representations, the same fusion model can handle different sets of representations of different sizes.
In particular, we opt for an average (rather than, say, a sum) because neural networks perform better
when their inputs have similar distributions (Ioffe & Szegedy, 2015). Note that the representation
model can be adjusted so that using averaging instead of concatenation as the aggregation mecha-
nism does not reduce the flexibility of the overall model, but simply shifts it from the fusion model
to the representation models, as explained in Appendix A.2.

With this approach, we have avoided an exponential memory complexity by sharing the weights
across an exponential number of predictors such that we haveK representation models andK fusion
models. In the next subsection, we will go over the efficient training of this family of predictors.

3.2 EFFICIENT TRAINING VIA TASK-SAMPLING

The family of predictors introduced in Section 3.1 can efficiently perform inference for an expo-
nential number of tasks. We will now discuss how to train this family of predictors while avoiding
exponential computation and communication complexity during the training process. The key to
this approach lies in carefully sampling tasks at each gradient step of model training.

Our optimization problem. As noted in Section 1, we want to address missing features not only
during inference, but also during training. Let Kn

o be the set of observed feature blocks of sample n,
we assume that Ko := {Kn

o : ∀n} follows a random distribution. Recalling (4), we denote the loss `
of sample n, with label yn, for the predictor of client k using blocks I ∈Pk(Kn

o ) of xn as follows:

LnkI(θ) := `
(
hkI

(
xn
I ;θ(k,I)

)
, yn
)
.

For sample n and client k, the (weighted) prediction loss across all observed subsets of blocks that
include k is denoted by:

Lo
nk(θ) :=

∑
I∈Pk(Kn

o )
1
|I| · LnkI(θ),

where superscript o indicates that this loss concerns the observed dataset. The normalization by |I|
avoids assigning a larger weight to tasks concerning a larger number of blocks, since the set I is
used for prediction at |I| different clients, whose losses are combined in the loss of sample n:

Lo
n(θ) :=

∑
k∈Kn

o

Lo
nk(θ). (5)

Now, to train the predictors in (4), we consider the following optimization problem:

min
θ
{L(θ) := E [Lo(θ)]} where Lo(θ) :=

1

N

N∑
n=1

Lo
n(θ), (6)

where the expectation is over the set of observed feature blocks, Ko.
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Algorithm 1: LASER-VFL Training

Input: initial point θ0, training data D.
1 for t = 0, . . . , T − 1 do
2 Clients K sample the same mini-batch Bt with K(t)

o = Kn
o , ∀n ∈ Bt, via a shared seed.

3 for k ∈ K(t)
o in parallel do

4 Broadcast f t
k and receive {f t

i : i ∈ K(t)
o , i 6= k}.

5 Sample a task-defining set of blocks Stkj ∼ U(Pj
k(K(t)

o )) for j = 1, . . . ,Kt
o .

6 Compute L̂BtSt
k
(θt), as in (8), and backpropagate over fusion model gk.

7 Send the derivative of L̂BtSt
k
(θt) with respect to each k ∈ K(t)

o and receive theirs.
8 Sum the received gradients and backpropagate over fk.

9 Update the weights θt+1 = θt − η∇L̂BtSt(θt), where L̂BtSt(θt) is as in (7).

Note that, if different blocks of features have different probabilities of being observed, we can also
normalize the loss with respect to the different probabilities, which can be computed during the
entity alignment stage of VFL (see below), before taking the expectation in (5). We omit this here
for simplicity. We assume that the data is missing completely at random (Zhou et al., 2024).

Looking at (5), we see that, while we are interested in tackling K × 2K−1 different tasks, which
falls in the realm of multi-objective optimization and multi-task learning (Caruana, 1997), we opt
for combining them into a single objective, rather than employing a specialized multi-task optimizer.
This corresponds to a weighted form of unitary scalarization (Kurin et al., 2022).

Our optimization method. To solve (6), we employ to a gradient-based method, summarized in
Algorithm 1, which we now describe. At iteration t, with the current iterate θt, we select mini-batch
indices Bt ⊆ [N ], where [N ] := {1, . . . , N}, such that the set of observed feature blocks for each
sample n ∈ Bt, denoted by Kn

o , is identical. We denote this common set by K(t)
o , that is, K(t)

o = Kn
o

for all n ∈ Bt, and define Lo
B(θ) := 1

|B|
∑

n∈B Lo
n(θ). Then, each client k ∈ K(t)

o broadcasts its
representation

f t
k := fk

(
xB

t

k ;θtfk

)
where xB

t

k := {xn
k : ∀n ∈ Bt}

to the other clients in K(t)
o . At this stage, each client k ∈ K(t)

o holds the representations correspond-
ing to the set of observed feature blocks of the current mini-batch, {f t

i : i ∈ K(t)
o }.

To train the model on all possible combinations of feature blocks without incurring exponential
computational complexity at each iteration, each client k ∈ K(t)

o samples Kt
o := |K(t)

o | tasks from
the 2K

(t)
o −1 tasks in Pk(K(t)

o )—the subset of the power set ofK(t)
o whose elements contain k. These

sampled tasks estimate Lo
Bt(θt) without computing predictions for an exponential number of tasks

(note that Kt
o ≤ K). We use this estimate to update the model parameters.

More precisely, the task-defining feature blocks sampled by client k at step t are given by Stk :=
{Stk1, . . . ,SnkKt

o
}, where set Stki contains i feature blocks. Each set Stki is sampled from a uniform

distribution over a subset of Pk(K(t)
o ) that contains its sets of size i. That is:

Stki ∼ U(Pi
k(K(t)

o )) where Pi
k(K(t)

o ) := {I ∈Pk(K(t)
o ) : |I| = i}.

This task-sampling mechanism allows us to estimate the loss with linear complexity, instead of the
exponential cost of exact computation. More precisely, we use the following loss estimate:

L̂BtSt(θt) :=
∑

k∈K(t)
o
L̂BtSt

k
(θt), (7)

where St := {St1, . . . ,StK} and each L̂BtSt
k
(θt), computed at client k, is given by:

L̂BtSt
k
(θt) :=

1

|Bt|
∑
n∈Bt

Kt
o∑

i=1

ati · LnkSt
ki

(θt) where ati :=
1

i
·
(
Kt

o − 1

i− 1

)
. (8)
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Algorithm 2: LASER-VFL Inference

Input: test sample x′, trained parameters θT .
1 The blocks of features K′o of sample x′ are observed.
2 for k ∈ K′o in parallel do
3 Broadcast fk(x′k;θTfk) and receive fi(x′i;θ

T
fi

), for all i ∈ K′o \ {k}.
4 Client k predicts the label using hkK′

o

(
xn
K′

o
;θ(k,K′

o)

)
.

The weighting ati counteracts the probability of each task being sampled, allowing us to obtain an
unbiased estimate of the observed loss. Now, we use this to minimize (5) by doing the following
update:

θt+1 = θt − η∇L̂BtSt(θt).

After completing the training described in Algorithm 1, we can perform inference according to
Algorithm 2. In this inference algorithm, each client k ∈ K′o that observes a partition of the test
sample x′ shares its corresponding representation of x′. Then, each such client k uses h(k,K′

o) to
predict the label.

Block availability-aware entity alignment. Entity alignment is a process the precedes training in
VFL where the samples of the different local datasets are matched so that their features are correctly
aligned, thus allowing for collaborative model training (Liu et al., 2024). The identification of the
available blocks for each sample can be performed during this prelude to VFL training, allowing for
a batch selection procedure that ensures that each batch contains samples with the same observed
blocks, which we use in our method.

Extensions to our method. It is important to highlight that our method can also be easily em-
ployed in situations where different clients hold different labels, as it naturally fits multi-task learn-
ing problems. Further, it can easily be applied to setups where any subset of K holds the labels,
sufficing to drop fusion models from the clients which do not hold the labels or have them tackle
unsupervised or self-supervised learning tasks instead.

4 CONVERGENCE GUARANTEES

In this section, we present convergence guarantees for our method. Let us start by stating the as-
sumptions used in our results.
Assumption 1 (L-smoothness and finite infimum). FunctionLo : Θ 7→ R is differentiable and there
exists a positive constant L such that:

∀ θ1,θ2 ∈ Θ : ‖∇Lo(θ1)−∇Lo(θ2)‖ ≤ L‖θ1 − θ2‖. (A1)
The inequality above holds if L is L′-smooth. We assume and define L? := infθ L(θ) > −∞.
Assumption 2 (Unbiasedness). The mini-batch gradient estimate is unbiased. That is, we have that:

∀θ ∈ Θ : E
[
∇Lo
B(θ)

∣∣ Ko

]
= ∇Lo(θ), (A2)

where the expectation is with respect to the mini-batch B.
Assumption 3 (Bounded variance). There exist positive constants σb and σs such that, for all θ ∈ Θ
and k ∈ K, we have that:

E
[
‖∇Lo

B(θ)−∇Lo(θ)‖2
∣∣ Ko

]
≤ σ2

b and E
[∥∥∥∇L̂BSk(θ)−∇Lo

Bk(θ)
∥∥∥2 ∣∣ Ko,B

]
≤ σ2

s ,

(A3)
where Lo

Bk(θ) := 1
|B|
∑

n∈B Lo
nk(θ) and the (conditional) expectations are with respect to mini-

batch B and with respect to the tasks sampled at each client k, Sk, respectively.

We use the following set in our results:
F t := {B0,S0,B1,S1, . . . ,Bt−1,St−1}.

Let us start by presenting a lemma which we resort to in our proof of Theorem 1.
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Lemma 1 (Unbiased update vector). If the mini-batch gradient estimate is unbiased (A2), then, for
all t ≥ 0:

E
[
∇L̂BtSt(θt) | Ko,F t

]
= ∇Lo(θt), (9)

where the expectation is with respect to mini-batch Bt and the sampled set of tasks St.
Theorem 1 (Main result). Let {θt} be a sequence generated by Algorithm 1, if L is L-smooth and
has a finite infimum (A1), the mini-batch estimate of the gradient is unbiased (A2), and our update
vector has a bounded variance (A3), we then have that, for η ∈ (0, 1/L]:

1

T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2 ≤ 2∆

ηT
+ ηL

(
σ2
b +K · σ2

s

)
, (10)

where ∆ := L(θ0)− L? and the expectation is with respect to {Bt}, {St}, and Ko.

If we take the stepsize to be η =
√

2∆
LT (σ2

b +K · σ2
s)
−1, we get from (10) that

1

T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2 ≤
√

8∆L

T
(σ2

b +K · σ2
s),

thus achieving a O(1/
√
T) convergence rate. Note the effect of the variance induced by the task-

sampling mechanism, which grows with K.

We can further establish linear convergence to a neighborhood around the optimum under the
Polyak-Łojasiewicz inequality (Polyak, 1963).
Assumption 4 (PL inequality). We assume that there exists a positive constant µ such that

∀θ ∈ Θ : ‖∇L(θ)‖2 ≥ 2µ(L(θ)− L?). (A4)

We use the expected suboptimality δt := EL(θt) − L?, where the expectation is with respect to
{Bt}, {St}, and Ko, as our Lyapunov function in the following result.
Theorem 2 (Linear convergence). Let {θt} be a sequence generated by Algorithm 1, if L is L-
smooth and has a finite infimum (A1), the mini-batch estimate of the gradient is unbiased (A2), our
update vector has a bounded variance (A3), and the PL inequality (A4) holds for L, we then have
that, for η ∈ (0, 1/L]:

δT ≤ (1− µη)T δ0 +
ηL

2µ

(
σ2
b +K · σ2

s

)
.

It follows from µ ≤ L that 1 − µη ∈ (0, 1). Therefore, we have linear convergence to a
O
(
σ2
b +K · σ2

s

)
neighborhood of the global optimum.

We defer the proofs of Lemma 1, Theorem 1, and Theorem 2 to Appendix C.

5 EXPERIMENTS

In this section, we describe our numerical experiments and analyze their results, comparing the
empirical performance of LASER-VFL against baseline approaches. We begin with a brief overview
of the baseline methods and tasks considered, followed by a the presentation and discussion of the
experimental results.

We compare our method to the following baselines:

• Local: as in (2); the local approach leverages its block for training and inference whenever it
is observed, but ignores the remaining blocks.

• Standard VFL (Liu et al., 2022): as in (1); the standard VFL model can only be trained on
and used for inference for fully-observed samples. When the model is unavailable for prediction,
a random prediction is made.

• VFedTrans (Huang et al., 2023): VFedTrans introduces a multi-stage VFL training pipeline
to collaboratively train local predictors. (We give more details about VFedTrans below.)
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Table 1: Test metrics forK = 4 clients across different datasets and varying probabilities of missing
blocks during training and inference, averaged over five seeds (± standard deviation).

Training pmiss 0.0 0.1 0.5
Inference pmiss 0.0 0.1 0.5 0.0 0.1 0.5 0.0 0.1 0.5

HAPT (accuracy, %)
Local 82.3± 0.4 82.5± 0.5 82.1± 1.2 81.7± 0.6 81.8± 0.4 81.5± 1.6 80.7± 0.9 80.8± 0.8 80.5± 2.1
Standard VFL 91.6± 0.9 67.3± 3.5 16.0± 4.1 90.0± 1.4 66.0± 2.8 15.8± 3.9 84.6± 2.5 62.2± 2.2 15.3± 3.5
VFedTrans 82.5± 0.4 82.5± 0.4 82.3± 0.7 82.9± 0.3 82.9± 0.2 82.8± 0.7 82.2± 0.5 82.2± 0.5 82.2± 0.8
Ensemble 90.9± 0.9 90.3± 0.9 84.8± 1.1 89.8± 0.4 89.3± 0.5 84.1± 1.6 88.7± 1.5 88.1± 1.8 83.0± 2.5
Combinatorial 92.5± 0.2 92.4± 0.3 88.5± 1.7 90.0± 1.6 90.0± 1.4 87.3± 1.6 84.2± 2.5 84.7± 1.9 83.0± 1.3
PlugVFL 91.1± 1.4 88.5± 1.6 75.1± 6.3 90.9± 0.9 88.6± 2.6 78.3± 4.8 87.7± 1.6 87.2± 1.5 82.8± 1.6
LASER-VFL (ours) 94.2± 0.1 93.9± 0.2 89.0± 1.1 92.4± 1.3 92.0± 1.3 86.6± 1.2 90.1± 3.2 89.5± 3.1 84.8± 2.6

Credit (F1-score×100)
Local 37.7± 3.1 37.6± 3.1 37.5± 3.2 37.6± 3.0 37.6± 2.9 37.5± 3.2 36.2± 3.5 36.2± 3.6 36.0± 3.6
Standard VFL 45.7± 2.6 38.8± 2.5 31.0± 0.7 42.4± 1.2 38.3± 0.7 31.0± 0.7 32.4± 2.4 32.5± 1.3 30.3± 0.5
VFedTrans 37.7± 1.5 37.6± 1.4 37.2± 1.6 39.5± 0.8 39.4± 0.8 39.2± 0.9 35.7± 0.3 35.6± 0.3 35.6± 0.4
Ensemble 42.1± 1.0 42.1± 1.0 40.1± 0.8 41.4± 1.3 40.8± 0.9 39.2± 1.1 42.4± 2.1 41.8± 1.7 40.1± 1.1
Combinatorial 42.8± 2.9 42.7± 2.5 41.7± 1.5 44.4± 1.0 41.8± 2.2 41.7± 1.5 32.8± 3.6 36.3± 0.6 37.6± 2.1
PlugVFL 44.4± 3.7 41.3± 4.0 32.7± 4.6 40.8± 2.0 39.8± 1.6 37.9± 1.7 38.6± 2.1 37.8± 0.9 35.4± 3.4
LASER-VFL (ours) 46.5± 2.8 45.0± 2.5 43.7± 1.2 43.1± 4.2 41.9± 4.0 41.3± 1.9 41.5± 4.2 40.9± 4.0 41.4± 1.7

MIMIC-IV (F1-score×100)
Local 74.9± 0.5 74.9± 0.5 74.8± 0.5 75.0± 0.3 75.0± 0.2 75.0± 0.3 73.0± 0.5 73.0± 0.5 73.0± 0.5
Standard VFL 91.6± 0.2 77.0± 1.3 52.5± 2.2 90.9± 0.3 76.8± 1.3 52.5± 2.2 81.1± 0.4 70.2± 0.8 51.8± 1.8
Ensemble 84.2± 0.3 83.9± 0.3 77.9± 1.6 84.1± 0.4 83.7± 0.5 78.1± 1.1 82.1± 0.3 81.8± 0.5 76.4± 1.1
Combinatorial 91.3± 0.3 87.2± 1.7 83.6± 0.4 91.0± 0.3 86.7± 1.4 83.4± 0.4 80.5± 1.2 80.6± 1.7 78.9± 0.5
PlugVFL 91.2± 0.5 89.0± 0.8 79.6± 2.8 90.6± 0.2 88.8± 0.5 79.8± 2.6 86.5± 0.7 85.3± 0.9 77.9± 2.8
LASER-VFL (ours) 92.0± 0.2 91.2± 0.3 85.5± 1.0 91.1± 0.5 90.2± 0.3 84.7± 0.9 87.7± 0.2 86.9± 0.2 82.0± 1.0

CIFAR-10 (accuracy, %)
Local 76.1± 0.1 76.0± 0.1 76.2± 0.2 75.6± 0.1 75.6± 0.1 75.7± 0.3 71.2± 0.4 71.1± 0.4 71.3± 0.7
Standard VFL 89.7± 0.2 60.5± 12.1 11.6± 3.5 87.0± 0.6 58.8± 11.4 11.5± 3.4 54.9± 10.0 38.6± 9.1 10.9± 2.2
Ensemble 86.4± 0.2 85.2± 0.7 78.3± 0.9 86.1± 0.3 85.0± 0.5 77.8± 0.7 82.4± 0.2 81.0± 0.8 73.8± 0.6
Combinatorial 89.4± 0.1 88.7± 0.4 83.4± 1.2 87.1± 0.8 86.7± 0.4 82.4± 0.8 54.9± 9.7 58.6± 7.7 68.4± 3.1
PlugVFL 89.4± 0.2 88.1± 0.8 81.8± 1.7 88.1± 0.5 86.9± 0.6 81.2± 1.2 76.5± 2.1 75.6± 1.5 72.4± 1.0
LASER-VFL (ours) 91.5± 0.1 90.5± 0.4 83.8± 1.5 91.2± 0.2 90.2± 0.4 83.3± 1.4 87.4± 0.3 86.4± 0.6 79.4± 1.6

CIFAR-100 (accuracy, %)
Local 50.3± 0.1 50.3± 0.1 50.4± 0.1 49.1± 0.2 49.2± 0.2 49.1± 0.3 41.3± 0.7 41.3± 0.6 41.3± 0.7
Standard VFL 64.7± 0.4 41.5± 9.7 2.4± 2.9 57.2± 2.2 36.6± 7.6 2.3± 2.8 15.8± 7.0 10.5± 4.6 1.4± 1.0
Ensemble 62.1± 0.3 60.2± 1.2 52.3± 0.9 60.8± 0.3 58.8± 1.0 51.0± 0.5 52.6± 0.6 50.4± 0.7 43.5± 0.8
Combinatorial 64.4± 0.5 64.0± 0.4 58.5± 1.3 57.2± 2.2 57.8± 1.8 55.5± 0.7 16.4± 6.9 19.5± 5.9 31.6± 4.3
PlugVFL 66.0± 0.3 64.1± 1.2 55.3± 2.1 63.2± 1.1 61.5± 0.7 53.1± 1.9 44.6± 2.3 43.9± 1.7 41.2± 1.6
LASER-VFL (ours) 72.3± 0.1 71.0± 0.7 61.3± 1.8 70.4± 0.3 68.9± 0.6 59.8± 1.6 61.4± 0.9 59.9± 0.5 51.9± 1.2

• Ensemble: we train local predictors as in Local. During inference, the clients share their
predictions, and a joint prediction is selected by majority vote, with ties broken at random.

• Combinatorial: as in (3); during training, each batch is used by all the models corresponding
to subsets of the observed blocks. During inference, we use the predictor corresponding to the
set of observed blocks. We go over the scalability problems of this approach below.

• PlugVFL (Sun et al., 2024): we extend PlugVFL to handle missing features during train-
ing by replacing missing representations with zeros. This method matches the work proposed
by (Ganguli et al., 2024) for scenarios where all clients have reliable links to one another.

Our experiments focus on the following tasks:

• HAPT (Reyes-Ortiz et al., 2016): a human activity recognition dataset.

• Credit (Yeh & Lien, 2009): a dataset for predicting credit card payment defaults.

• MIMIC-IV (Johnson et al., 2020): a time series dataset concerning healthcare data. We focus
on the task of predicting in-hospital mortality from ICU data corresponding to patients admitted
with chronic kidney disease. We resort to the data processing pipeline of Gupta et al. (2022).

• CIFAR-10 & CIFAR-100 (Krizhevsky et al., 2009): two popular image datasets.

For all datasets, we split the samples into K = 4 feature blocks. For example, for the CIFAR
datasets, each image is partitioned into four quadrants, each assigned to a different client. Given
our interest in ensuring that all clients perform well at inference time, we average the metrics across
clients. In Appendix D, we provide detailed descriptions of how we compute accuracy and F1-score.

Experiments on HAPT and Credit show that VFedTrans does not significantly outperform Local
despite being considerably more complex and slower. The training pipeline of VFedTrans in-
cludes three stages: federated representation learning, local representation distillation, and training
a local model. The first two stages are repeated K − 1 times for each client pair. This makes
VFedTrans time-intensive to run and hyperparameter tune, as seen in Appendix D. For this rea-
son, we limit our experiments with VFedTrans to these simpler tasks.
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Performance for different missing data probabilities. In Table 1, we see that the methods with
local predictors (Local and VFedTrans) are robust to missing blocks during both training and
inference, yet they fall behind when all the blocks are observed. In contrast, Standard VFL
performs well when all the blocks are observed, yet its performance degrades very quickly in the
presence of missing blocks. The Ensemble method improves upon Standard VFL significantly
in the presence of missing blocks, as it leverages the robustness its local predictors. Yet, when all
the blocks are observed, although Ensemble improves over the local predictors significantly, it still
cannot match the performance of Standard VFL. We see that the Combinatorial approach
outperforms most baselines when there is little to no missing training data (pmiss ∈ {0.0, 0.1}). Yet,
for a larger amount of missing training data (pmiss = 0.5), its performance degrades significantly.
This degradation is due to the fact that each mini-batch is only used to train predictors that use ob-
served feature blocks, harming the generalization of predictors that use a larger subset of the features.

Figure 2: Performance and runtime
across different numbers of clients
(CIFAR-10, pmiss = 0.1 for train-
ing and inference). We did not run
Combinatorial for 8 clients due
to resource constraints.

This also leads to an interesting phenomenon: when pmiss =
0.5 for training data, Combinatorial performs better
for higher probabilities of missing testing data. This is
because missing test data dictates the use of predictors
trained on smaller, more frequently observed feature sub-
sets. PlugVFL often outperforms most of the other base-
lines, though not consistently. Specifically, it is at times out-
performed by Combinatorial when the missing prob-
ability of the training data is low, and by Ensemble
when it is high. LASER-VFL consistently outperforms
the baselines across the different probabilities of missing
blocks during training and inference. (In fact, in Table 1,
LASER-VFL is never outperformed by more than a standard
deviation.) In particular, even when the samples are fully-
observed, LASER-VFL outperforms Standard VFL and
Combinatorial. We believe this is due to the regulariza-
tion effect of the task-sampling mechanism in our method,
which effectively behaves as a form of dropout.

Scalability. Figure 2 examines the scalability of the dif-
ferent methods with respect to the number of clients, K.
In the top plot, we see that LASER-VFL performs the
best for all K. It is followed by Combinatorial,
Ensemble, and PlugVFL. However, the performance
of Combinatorial drops faster as K increases, since
each exact combination of feature blocks is observed less
frequently. In contrast, Ensemble and PlugVFL, like
LASER-VFL, train each representation model on all batches
for which its feature block is observed. In the bot-
tom plot, we observe the expected scalability issues of
Combinatorial, caused by its exponential complexity.

Nonuniform missing features. Table 3 in Appendix E presents an experiment where the prob-
ability of each feature block k not being observed is independent and identically distributed as
pmiss(k) ∼ Beta(2.0, 2.0). As in the previous experiments, LASER-VFL outperforms the baselines.

6 CONCLUSIONS

In this work, we introduced LASER-VFL, a novel method for efficient training and inference in
vertical federated learning that is robust to missing blocks of features without wasting data. This
is achieved by carefully sharing model parameters and by employing a task-sampling mechanism
that allows us to efficiently estimate a loss whose computation would otherwise lead to an expo-
nential complexity. We provide convergence guarantees for LASER-VFL and present numerical
experiments demonstrating its improved performance, not only in the presence of missing features
but, remarkably, even when all samples are fully observed. For future work, it would be interesting
to apply LASER-VFL to multi-task learning and investigate how it behaves when different clients
tackle different tasks—a scenario that naturally fits our setup.
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A ADDITIONAL DISCUSSIONS

A.1 A MORE DETAILED COMPARISON WITH CLOSEST RELATED WORKS

As mentioned in Section 1, a few recent works have addressed the problem of missing features
during VFL training. In particular, a line of work uses all samples that are not fully observed lo-
cally to train the representation models via self-supervised learning (Feng, 2022; He et al., 2024).
This is followed by collaborative training of a joint predictor for the whole federation using the
samples without missing features. Another line of work utilizes a similar framework but resort-
ing to semi-supervised learning instead of self-supervised learning in order to take advantage of
nonaligned samples (Kang et al., 2022b; Yang et al., 2022; Sun et al., 2023). In both cases, these
works are lacking in some areas that are improved by our method: 1) they require the existence of
fully observed samples; 2) they do not allow for missing features at inference time; and 3) they do
not leverage collaborative training when more than one, but less than the total number of clients
observed their feature blocks.

Another approach leverages information across the entire federation to train local predictors, thereby
enabling inference in the presence of missing features. Feng & Yu (2020); Kang et al. (2022a)
propose following standard, collaborative vertical FL with a transfer learning method allowing each
client to have its own predictor. These works assume that the training samples are fully observed.
Liu et al. (2020); Feng et al. (2022) follow a similar direction but they also consider the presence of
missing features. Instead of utilizing transfer learning to train local predictors, Ren et al. (2022); Li
et al. (2023b) use knowledge distillation under the assumption of fully observed training samples,
while Li et al. (2023a); Huang et al. (2023) also employ knowledge distillation, but on top of this
they further consider missing features during training. Finally, Xiao et al. (2024) recently proposed
using a distributed generative adversarial network for collaborative training on nonoverlapping data,
leveraging synthetic data generation. In all of these works, the output of training are local predictors
which, despite being able to perform inference when other clients in the federation do not observe
their blocks, are also not able to leverage other feature blocks when they are observed. This failure
to utilize valuable information during inference leads to reduced predictive power.
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Only a few, very recent works allow for inference from a varying number of feature blocks in ver-
tical FL. PlugVFL (Sun et al., 2024) employs party-wise dropout during training to mitigate per-
formance drops from missing feature blocks at inference; Gao et al. (2024) introduce a multi-stage
approach with complementary knowledge distillation, enabling inference with different client sub-
sets; and Ganguli et al. (2024) deal with the related task of handling communication failure during
inference in cross-device VFL. These methods make progress towards inference in vertical FL in the
presence of missing feature blocks, however, they do not consider missing features in the training
data. Further, none of these methods provides convergence guarantees.

In contrast to the prior art, our LASER-VFL method can handle any missingness pattern in the
feature blocks during both training and inference simultaneously without wasting any data. Fur-
ther, LASER-VFL achieves this without requiring a complex pipeline with additional stages and
hyperparameters, requiring only minor modifications to the standard VFL approach.

A.2 ON THE USE OF AVERAGING AS THE AGGREGATION MECHANISM

As mentioned in Section 3.1, using averaging instead of concatenation as the aggregation mech-
anism in the fusion model does not reduce the flexibility of the overall approach, provided the
representation models are adjusted accordingly. We illustrate this with a simple example employing
aggregation by sum (which differs only by a parameter scaling factor).

Consider the scenario with two clients, each extracting a representation, v1 ∈ Rd1 and v2 ∈ Rd2 .
When aggregation is by concatenation, the first layer of the fusion model can be written as W ∈
Rd0×(d1+d2), with W = [W1 W2], and we define v :=

[
v>1 v>2

]>
. Hence, the output of the

first layer isWv = W1v1 +W2v2.

In contrast, a naive aggregation by sum would restricts us to W1(v1 + v2) and impose d1 = d2.
However, if we include an extra linear layer in the representation models for each client (namely
W1 in the first and W2 in the second), then the outputs become W1v1 and W2v2. This way, even
with aggregation by summation, the fusion model can recoverW1v1 +W2v2.

Thus, by adjusting the representation models appropriately, we can indeed achieve the same flexi-
bility as in the concatenation-based approach, while using aggregation by sum or average.

B LASER-VFL DIAGRAM AND TABLE OF NOTATION

Figure 3: Diagram illustrating a forward pass of LASER-VFL.
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Table 2: Table of Notation

Symbol Description
K Number of clients

N Number of samples

xn Sample n

xn
k Block k of sample n

D Global dataset

Dk Local dataset

θ Parameters of our model

θK Parameters of the standard VFL model

θfk Parameters of the representation model at client k

θgk Parameters of the fusion model at client k

` Loss function

L Objective function

h Predictor of the standard VFL model

h(k,J ) Predictor at client k using feature blocks J
P(S) Power set of S
Pj(S) Subsets in the power set of S containing j

Pi
j(S) Subsets in the power set of S of size i containing j

fk Representation model at client k

gk Fusion model at client k

hk Predictor at client k

g Standard VFL fusion model

h Standard VFL predictor

Kn
o Set of observed features blocks of sample n

x′ Test sample

C PROOFS

C.1 PRELIMINARIES

The following quadratic upper bound follows from the L-smoothness of Lo (A1):

∀ θ1,θ2 ∈ Θ : Lo(θ1) ≤ Lo(θ2) +∇Lo(θ2)>(θ1 − θ2) +
L

2
‖θ1 − θ2‖2. (11)

Let X denote a random variable and let F be a convex function, Jensen’s inequality states that

F (E(X)) ≤ E(F (X)). (12)

We define the following shorthand notation for conditional expectations used in our proofs:

Eo [·] := E [· | Ko] ,

Et [·] := E
[
· | Ko,F t

]
,

Et+ [·] := E
[
· | Ko,F t,Bt

]
.
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C.2 PROOF OF LEMMA 1

From the law of total expectation, we have that

Et

[
L̂BtSt(θt)

]
= Et

[
Et+

[
L̂BtSt(θt)

]]
. (13)

Focusing on the inner expectation, we have from the definition of L̂BtSt(θt) in (7) and (8) that

Et+

[
L̂BtSt(θt)

]
=

1

|Bt|
∑
n∈Bt

∑
k∈K(t)

o

Kt
o∑

i=1

ati · Et+

[
LnkSt

ki
(θt)

]
. (14)

Now, from the fact that Stki ∼ U(Pi
k(K(t)

o )), we have that

Et+

[
LnkSt

ki
(θt)

]
=

∑
I∈Pi

k(K(t)
o )

P(Stki = I) · LnkI(θt)

=
1

|Pi
k(K(t)

o )|
·

∑
I∈Pi

k(K(t)
o )

LnkI(θt)

=

(
Kt

o − 1

j − 1

)−1

·
∑

I∈Pi
k(K(t)

o )

LnkI(θt).

So, we have from (14) and from the fact that ati =
(
Kt

o−1
i−1

)
/i, as defined in (8), that

Et+

[
L̂BtSt(θt)

]
=

1

|Bt|
∑
n∈Bt

∑
k∈K(t)

o

Kt
o∑

i=1

1

i
·

∑
I∈Pi

k(K(t)
o )

LnkI(θt)

=
1

|Bt|
∑
n∈Bt

∑
k∈K(t)

o

∑
I∈Pk(K(t)

o )

1

|I|
· LnkI(θt)

= Lo
Bt(θt).

So, from (13) and (A2), it follows that

Et

[
L̂BtSt(θt)

]
= Et

[
Lo
Bt(θt)

]
= Lo(θt).

Therefore, we have from the dominated convergence theorem, which allows us to interchange the
expectation and the gradient operators, that

Et

[
∇L̂BtSt(θt)

]
= ∇Et

[
L̂BtSt(θt)

]
= ∇Lo(θt).

C.3 PROOF OF THEOREM 1

Let us show the convergence of our method. It follows from the quadratic upper bound in (11) which
ensues from the L-smoothness assumption (A1), that

Lo(θt+1)− Lo(θt) ≤ ∇Lo(θt)>(θt+1 − θt) +
L

2

∥∥θt+1 − θt
∥∥2
.

Using the fact that θt+1 = θt − η∇L̂BtSt(θt), we get that:

Lo(θt+1)− Lo(θt) ≤ −η∇Lo(θt)>∇L̂BtSt(θt) +
η2L

2

∥∥∥∇L̂BtSt(θt)
∥∥∥2

.

We now take the conditional expectation Et [·], defined in Appendix C.2, arriving that:

Et

[
Lo(θt+1)

]
− Lo(θt) ≤ −η∇Lo(θt)>Et

[
∇L̂BtSt(θt)

]
+
η2L

2
Et

[∥∥∥∇L̂BtSt(θt)
∥∥∥2
]
.
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Now, under the unbiasedness assumption (A2), we can use Lemma 1 to arrive at:

Et

[
Lo(θt+1)

]
− Lo(θt) ≤ −η

∥∥∇Lo(θt)
∥∥2

+
η2L

2
Et

[∥∥∥∇L̂BtSt(θt)
∥∥∥2
]
. (15)

From Lemma 1, we also have that the following equation holds

Et

[∥∥∥∇L̂BtSt(θt)−∇Lo(θt)
∥∥∥2
]

= Et

[∥∥∥∇L̂BtSt(θt)
∥∥∥2
]
−
∥∥∇Lo(θt)

∥∥2
. (16)

Further, we have that

Et

∥∥∥∇L̂BtSt(θt)−∇Lo(θt)
∥∥∥2

= Et

∥∥∥∇L̂BtSt(θt)−∇Lo
Bt(θt) +∇Lo

Bt(θt)−∇Lo(θt)
∥∥∥2

= Et

∥∥∥∇L̂BtSt(θt)−∇Lo
Bt(θt)

∥∥∥2

+ Et

∥∥∇Lo
Bt(θt)−∇Lo(θt)

∥∥2

+ 2Et

[
Et+

[(
∇L̂BtSt(θt)−∇Lo

Bt(θt)
)> (
∇Lo
Bt(θt)−∇Lo(θt)

)]]
.

Recalling that Et+

[
∇L̂BtSt(θt)

]
= ∇Lo

Bt(θt), as seen in Appendix C.2, we get

Et

[
Et+

[(
∇L̂BtSt(θt)−∇Lo

Bt(θt)
)> (
∇Lo
Bt(θt)−∇Lo(θt)

)]]
= 0.

Further, it follows from the bounded variance assumption in (A3) that

Et

∥∥∇Lo
Bt(θt)−∇Lo(θt)

∥∥2 ≤ σ2
b

and

Et

∥∥∥∇L̂BtSt(θt)−∇Lo
Bt(θt)

∥∥∥2

= Et

∥∥∥∥∥∥
∑

k∈KBt
o

L̂BtSt
k
(θt)−∇Lo

Bk(θt)

∥∥∥∥∥∥
2

≤ K · σ2
s .

Therefore, we arrive at

Et

∥∥∥∇L̂BtSt(θt)−∇Lo(θt)
∥∥∥2

≤ σ2
b +K · σ2

s .

Using the inequality above in (16) we get that

Et

[∥∥∥∇L̂BtSt(θt)
∥∥∥2
]
≤
∥∥∇Lo(θt)

∥∥2
+ σ2

b +K · σ2
s ,

which we can use in (15) to arrive at

Et

[
Lo(θt+1)

]
− Lo(θt) ≤ −η

∥∥∇Lo(θt)
∥∥2

+
η2L

2

∥∥∇Lo(θt)
∥∥2

+
η2L

2

(
σ2
b +K · σ2

s

)
= −η

(
1− ηL

2

)∥∥∇Lo(θt)
∥∥2

+
η2L

2

(
σ2
b +K · σ2

s

)
.

Therefore, for a stepsize η ∈ (0, 1/L], we have that

Et

[
Lo(θt+1)

]
− Lo(θt) ≤ −η

2

∥∥∇Lo(θt)
∥∥2

+
η2L

2

(
σ2
b +K · σ2

s

)
.

Taking the unconditional expectation (over Ko and F t+1) on both sides of this inequality, we get:

E
[
Lo(θt+1)− Lo(θt)

]
≤ −η

2
· E
[∥∥∇Lo(θt)

∥∥2
]

+
η2L

2

(
σ2
b +K · σ2

s

)
.

Now, using the law of total expectation, we get that

E
[
E
[
Lo(θt+1)− Lo(θt) | F t+1

]]
≤ −η

2
· E
[
E
[∥∥∇Lo(θt)

∥∥2 | F t+1
]]

+
η2L

2

(
σ2
b +K · σ2

s

)
.
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Therefore, using the fact that L(θ) = E[Lo(θ)] and Jensen’s inequality (12), we have

EL(θt+1)− EL(θt) ≤ −η
2
· E
∥∥E [∇Lo(θt) | F t+1

]∥∥2
+
η2L

2

(
σ2
b +K · σ2

s

)
.

Using the dominated convergence theorem, we can interchange the expectation and the gradient
operators, arriving at the following descent lemma in expectation:

EL(θt+1)− EL(θt) ≤ −η
2
· E
∥∥∇L(θt)

∥∥2
+
η2L

2

(
σ2
b +K · σ2

s

)
. (17)

Taking the average of the inequality above for t ∈ {0, 1, . . . , T − 1}, we get that:

EL(θT )− L(θ0)

T
≤ − η

2T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2
+
η2L

2

(
σ2
b +K · σ2

s

)
.

Lastly, rearranging the terms and using the existence and definition of L? (A1), we have that

1

T

T−1∑
t=0

E
∥∥∇L(θt)

∥∥2 ≤ 2(L(θ0)− L?)

ηT
+ ηL

(
σ2
b +K · σ2

s

)
,

thus arriving at the result in (10).

C.4 PROOF OF THEOREM 2

Following the same steps as in the proof of Theorem 1, we can arrive at the same descent lemma in
expectation (17),

EL(θt+1)− EL(θt) ≤ −η
2
· E
∥∥∇L(θt)

∥∥2
+
η2L

2

(
σ2
b +K · σ2

s

)
.

Rearranging the terms and subtracting the infimum on both sides, we get that

EL(θt+1)− L? ≤ EL(θt)− L? − η

2
· E
∥∥∇L(θt)

∥∥2
+
η2L

2

(
σ2
b +K · σ2

s

)
.

Now, using the definition of our Lyapunov function, δt = EL(θt) − L?, we arrive at the following
inequality:

δt+1 ≤ δt − η

2
· E
∥∥∇L(θt)

∥∥2
+
η2L

2

(
σ2
b +K · σ2

s

)
.

Now, from the PL inequality (A4), we have that:

δt+1 ≤ δt − µη · E
[
L(θt)− L?

]
+
η2L

2

(
σ2
b +K · σ2

s

)
.

Therefore, again using the definition of our Lyapunov function, we arrive at

δt+1 ≤ (1− µη) · δt +
η2L

2

(
σ2
b +K · σ2

s

)
.

Recursing the inequality above, we get that

δT ≤ (1− µη)T δ0 +
η2L

2

(
σ2
b +K · σ2

s

) T−1∑
t=0

(1− µη)t.

Finally, using the sum of a geometric series, we arrive at

δT ≤ (1− µη)T δ0 +
ηL

2µ

(
σ2
b +K · σ2

s

)
,

which corresponds to the result that we set out to prove.

18



Published as a conference paper at ICLR 2025

D EXPERIMENT DETAILS

Notes on VFedTrans. For the VFedTrans (Huang et al., 2023) pipeline, we use FedSVD (Chai
et al., 2022) for federated representation learning and an autoencoder for local representation learn-
ing, as these are the best performing methods in Huang et al. (2023). For the local predictor,
we use a multilayer perceptron, as in Huang et al. (2023). As seen in Table 1, the performance
of VFedTrans is nearly identical to that of Local. However, given that requires a multi-stage
pipeline with operations for each pair of clients, its runtime is much longer. In particular, for the
Credit dataset, for pmiss = 0.0 for training and inference, running VFedTrans takes 2843.0±50.6s,
while running Local takes only 127.8± 3.0s.

Notes on PlugVFL. We also note that the original PlugVFL paper (Sun et al., 2024) 1) does not
address missing training data and 2) only considers settings with two clients. In our experiments, we
extended PlugVFL to handle more generic scenarios. To address missing training data fairly, we
replaced representations for missing feature blocks with zeros at the fusion model, similarly to the
dropout mechanisms in the original paper, but now, for missing data, these representations are zeroed
throughout training rather than per iteration. To generalize PlugVFL for more than two clients, we
assigned a dropout probability to each passive party (clients not holding the fusion model).

Notes on MIMIC-IV. We use ICU data of MIMIC-IV v1.0 (Johnson et al., 2020) and follow
the data processing pipeline in Gupta et al. (2022). We focus on the task of predicting in-hospital
mortality for patients admitted with chronic kidney disease. We do feature selection with diagno-
sis data and the selected features of chart events (labs and vitals) used in the “Proof of concept
experiments” Gupta et al. (2022) as input features.

Computing metrics. As mentioned in the main text of the paper, we want our metrics to capture
that fact that we want all clients to perform well at inference time. Therefore we consider the average
metrics across the clients. More precisely, we compute the metrics for Table 1 as follows:

• For the test accuracy, let ŷn(k) denote the prediction of client k for sample n, we compute:

accuracy = 100× 1

N

N∑
n=1

 1

|Kn
o |
∑
k∈Kn

o

1(ŷn(k) = yn)

 .

• For the F1-score, we compute:

F1-score =
1

K

K∑
k=1

Pk ·Rk

Pk +Rk
,

where Pk and Rk are the precision and recall of client k, with respect to its predictor and (only)
the samples it observed.

Models used. For the HAPT and Credit datasets, we trained simple multilayer perceptrons; for the
MIMIC-IV dataset, we trained an LSTM (Hochreiter, 1997); and, for the CIFAR-10 and CIFAR-100
experiments, we use ResNets18 (He et al., 2016) models.

E ADDITIONAL EXPERIMENTS

In this appendix, we present additional experimental results.

Nonuniform missing features. In Table 3, we present an experiment where the probability of
each feature block k not being observed, pmiss(k), is sampled independent and identically distributed
following pmiss(k) ∼ Beta(2.0, 2.0). Note that, for X ∼ Beta(2.0,2.0), we have that E[X] = 0.5.
This motivates our comparison with pmiss(k) = 0.5 for all k. For the column corresponding to the
case where both the probability of missing training data and inference data are nonuniform, these
probabilities are sampled independently for training and inference.
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As in the previous experiments, we see that LASER-VFL outperforms the baselines. Further, not
only does the nonuniform nature of pmiss(k) not harm performance, but in fact our LASER-VFL
method seems to do slightly better when the feature blocks have missing training data with a proba-
bility pmiss(k) ∼ Beta(2.0, 2.0) rather than when we simply have pmiss(k) = 0.5, which corresponds
to the expected value of the random variable pmiss(k).

Table 3: Test accuracy for different probabilities of missing blocks during training and inference
(including nonuniform) for CIFAR-10 with K = 4 clients, averaged over five seeds (± standard
deviation).

Training pmiss(k) ∼ Beta(2.0,2.0) 0.5
Inference pmiss(k) 0.0 0.1 0.5 ∼ Beta(2.0,2.0) 0.0 0.1 0.5

CIFAR-10 (accuracy, %)
Local 72.7± 1.9 72.8± 1.8 72.6± 2.2 73.4± 1.0 71.2± 0.4 71.1± 0.4 71.3± 0.7
Standard VFL 68.2± 11.6 54.0± 15.7 13.9± 5.4 13.5± 5.3 54.9± 10.0 38.6± 9.1 10.9± 2.2
Ensemble 83.9± 1.7 82.7± 2.0 75.3± 2.6 75.4± 1.7 82.4± 0.2 81.0± 0.8 73.8± 0.6
Combinatorial 67.8± 11.5 70.2± 10.1 73.4± 6.6 75.9± 2.9 54.9± 9.7 58.6± 7.7 68.4± 3.1
PlugVFL 80.9± 2.1 80.1± 1.7 77.8± 0.4 77.1± 0.1 76.5± 2.1 75.6± 1.5 72.4± 1.0
LASER-VFL (ours) 88.8± 1.4 88.2± 1.6 81.1± 2.3 81.7± 1.0 87.4± 0.3 86.4± 0.6 79.4± 1.6
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