

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 REASONNAV: HUMAN-INSPIRED GLOBAL MAP REASONING FOR ZERO-SHOT EMBODIED NAVIGATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Embodied agents often struggle with efficient navigation because they rely primarily on partial egocentric observations, which restrict global foresight and lead to inefficient exploration. In contrast, humans plan using maps: we reason globally first, then act locally. We introduce **ReasonNav**, a human-inspired framework that operationalizes this reason-then-act paradigm by coupling Multimodal Large Language Models (MLLMs) with deterministic planners. ReasonNav converts a top-down map into a discrete reasoning space by room segmentation and candidate target nodes sampling. An MLLM is then queried in a multi-stage process to identify the candidate most consistent with the instruction (object, image, or text goal), effectively leveraging the model’s semantic reasoning ability while sidestepping its weakness in continuous coordinate prediction. The selected waypoint is grounded into executable trajectories using a deterministic action planner over an online-built occupancy map, while pretrained object detectors and segmenters ensure robust recognition at the goal. This yields a **unified zero-shot navigation framework** that requires no MLLM fine-tuning, circumvents the brittleness of RL-based policies and scales naturally with foundation model improvements. Across three navigation tasks, ReasonNav consistently outperforms prior methods that demand extensive training or heavy scene modeling, offering a scalable, interpretable, and globally grounded solution to embodied navigation.

1 INTRODUCTION

Embodied AI agents often face challenges in efficient navigation due to reliance on partial, egocentric observations, which limit global foresight leading to suboptimal, meandering trajectories. While existing methods incorporate global map information, these approaches are typically task-specific, require extensive training, or struggle to generalize across diverse goal types (Wen et al., 2024; Lin et al., 2025). In contrast, humans navigate by reasoning globally over maps before acting locally, enabling strategic planning even with coarse 2D floor plans and minimal real-time exploration. This contrast motivates a central question: *Can we endow embodied agents with human-inspired global map reasoning to enable zero-shot, goal-directed navigation across diverse tasks?*

Multimodal Large Language Models (MLLMs) appear promising for this challenge. When presented with a floor plan and an instruction such as “Bring the mug from the kitchen to the bedroom,” current MLLMs can generate plausible high-level plans in a zero-shot manner. However, when tasked with embodied navigation, these models struggle. The reason lies in a fundamental mismatch: MLLMs are optimized for semantic reasoning, not for producing precise spatial coordinates or continuous control signals. They are excellent global reasoners but poor spatial controllers.

Our key insight is to embrace this mismatch by decomposing navigation into two complementary components. Instead of asking an MLLM to directly output coordinates, we transform navigation into a discrete reasoning problem. A set of well-distributed candidate is first generated using Poisson Disk Sampling over a top-down map. The MLLM then reasons in a multi-stage querying process to select the candidate that best aligns with the instruction, effectively leveraging its semantic reasoning capabilities while sidestepping its weakness in continuous spatial prediction. This global reasoning process is further strengthened by incorporating a model ensemble strategy to enhance robustness and accuracy. Once a target coordinate is selected, we ground this global plan into an executable trajectory using deterministic algorithms. Specifically, a hybrid A* + VFH* planner, operating on

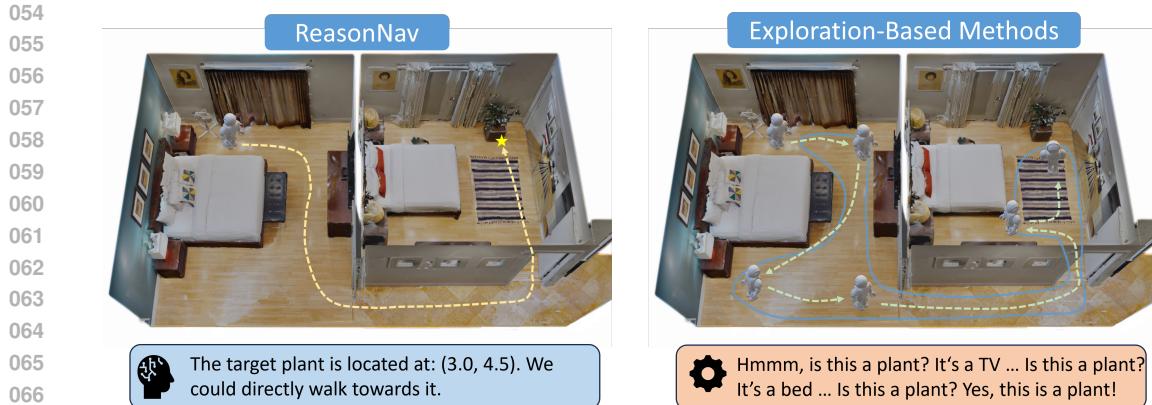


Figure 1: Main difference between our ReasonNav and previous exploration-based methods: in ReasonNav, after reasoning and obtaining the location of the desired target, the controlled agent will directly walk towards to object, whereas exploration-based methods heavily rely on extensive local semantic recognition or matching.

an online, wall-aware occupancy map, ensures reliable local path execution and collision avoidance. Robust recognition at the goal is achieved with pretrained detection and segmentation models.

This design yields several distinct advantages over prior work. By explicitly separating high-level reasoning from low-level control, ReasonNav implements a human-inspired *reason-then-act* paradigm that produces interpretable plans and avoids the inefficiency of reactive, exploration-heavy strategies, as shown in Figure 1. Because the framework relies purely on zero-shot reasoning without task-specific fine-tuning, ReasonNav unifies object-goal, image-goal, and text-goal navigation in a single framework, in contrast to fragmented approaches requiring separate models or training pipelines. Deterministic planners provide robustness and generalization, eliminating the instability, sample inefficiency, and sim-to-real challenges commonly faced by reinforcement learning methods. Finally, ReasonNav naturally benefits from ongoing improvements in foundation models: as MLLMs become stronger, their global reasoning quality directly enhances navigation performance, making the framework inherently scalable and future-proof. Readers are encouraged to view our supplementary video.

In summary, our contributions are as follows:

- We propose **ReasonNav**, a novel framework that integrates MLLM-based global reasoning with deterministic local planning, enabling a human-inspired *reason-then-act* paradigm for embodied navigation.
- ReasonNav provides a unified, zero-shot solution to diverse navigation tasks, including object-goal, image-goal, and text-goal navigation, without requiring task-specific fine-tuning or reinforcement learning.
- By reframing navigation as discrete global reasoning followed by robust grounding with A* + VFH*, ReasonNav achieves superior efficiency, reliability, and interpretability compared to prior approaches that rely on reactive exploration or complex scene modeling.

2 RELATED WORK

Goal-Oriented Navigation. Recent advances in embodied navigation can be broadly categorized into end-to-end learning-based methods and construction-based planning approaches. End-to-end methods, often based on reinforcement learning (RL), encode visual observations and directly predict low-level actions (Mousavian et al., 2019; Yang et al., 2018; Ye et al., 2021; Majumdar et al., 2023; Maksymets et al., 2021; Yadav et al., 2023; Sun et al., 2025; Chang et al., 2023). While effective for short-term action prediction, these approaches often struggle to capture long-horizon dependencies and efficiently memorize fine-grained context, limiting their ability to plan globally.

Construction-based planning methods address this limitation by building structured representations of the environment, such as top-down semantic maps (Zhang et al., 2024b; Lei et al., 2024; Kuang et al., 2024; Krantz et al., 2023), value maps (Yokoyama et al., 2023; Long et al., 2024), or 3D



Figure 2: **The ReasonNav Framework** in two stages: 1) Global Reasoning, where a Multimodal Large Language Model (MLLM) reasons about a top-down map and the goal instruction through a multi-stage discrete selection process to determine a precise global target waypoint (p_{global}). This MLLM reasoning stage can be further enhanced by a model ensemble for increased robustness; 2) Local Navigation, where a deterministic planner safely guides the agent to the selected global waypoint using an online occupancy map.

scene graphs (Yin et al., 2024; 2025; Zhu et al., 2025). These methods update the map dynamically using online observations, enabling more informed path planning. However, because the map is constructed incrementally from local observations, global planning remains constrained, and agents may take sub-optimal paths or incur unnecessary exploration. Offline methods (Werby et al. (2024); Gu et al. (2023)) build dense, open-vocabulary 3D scene graphs prior to navigation, offering richer semantic priors but at the cost of significant computational overhead and long reconstruction times, which limits real-time applicability. Overall, while construction-based approaches improve over purely reactive RL agents, they either depend on dense pre-built representations or remain limited by incremental local observations, leaving room for more flexible and scalable global reasoning.

Large Pretrained Models in Embodied Navigation. The emergence of multimodal large language models (MLLMs) has introduced a new paradigm for navigation, leveraging their common-sense reasoning and generalization capabilities (Driess et al., 2023; Brohan et al., 2023; Chen et al., 2024; Dorbala et al., 2024; Yu et al., 2023). Following the Vision-Language-Action (VLA) paradigm (Brohan et al., 2023), methods such as Navid (Zhang et al., 2024a), NaviLLM (Zheng et al., 2024), and OctoNav (Gao et al., 2025) fine-tune MLLMs to directly map visual observations and instructions to low-level actions. Zero-shot approaches like NavGPT (Zhou et al., 2023a) and ESC (Zhou et al., 2023b) instead encode the agent’s observation and action history as textual prompts to guide decision-making. Despite their reasoning power, invoking MLLMs at every timestep incurs high computational cost and latency, challenging real-time deployment.

Limitations and Opportunities. Taken together, prior work highlights a key trade-off: end-to-end RL methods offer reactive control but limited global foresight; construction-based methods improve planning but depend on incremental or dense scene representations; and MLLM-based methods excel at reasoning but are computationally expensive and often disconnected from robust low-level control. Our work, ReasonNav, addresses these gaps by combining the strengths of each paradigm: we leverage MLLM reasoning for global, zero-shot goal selection over a top-down map, while using deterministic planning for reliable local navigation. As shown in Figure 1, different from all the prior exploration-based methods, this integration enables interpretable, efficient, and scalable navigation without relying on dense scene reconstructions or fine-tuning the LLM, directly addressing the limitations of previous approaches.

3 METHOD

In this section, we present the architecture of our framework, as illustrated in Figure 2. We first define our versatile navigation tasks, then describe our hierarchical global reasoning module that identifies a target coordinate on a 2D map. We subsequently explain the local navigation policy for reaching this target and conclude with a model ensemble strategy for improved robustness.

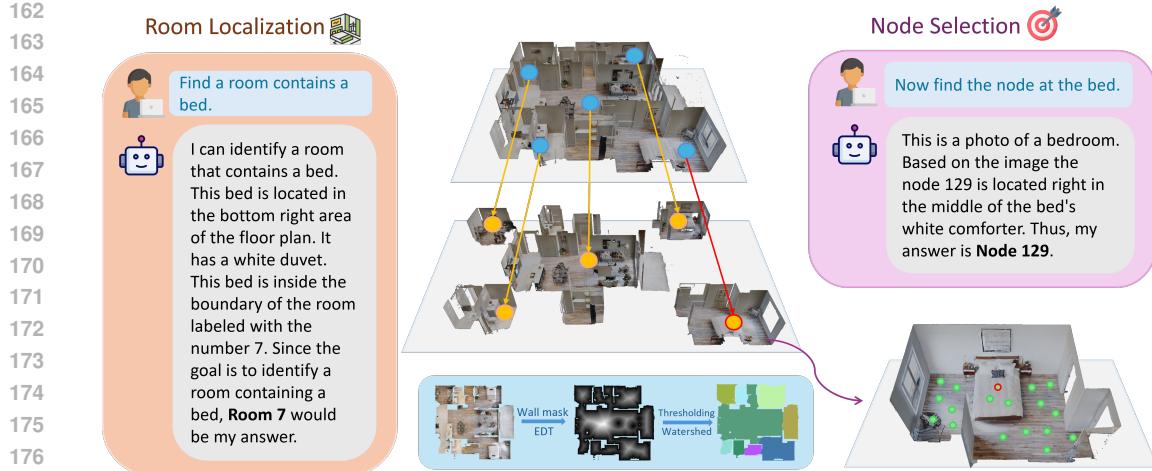


Figure 3: For global reasoning, instead of querying the MLLM for a direct coordinate, we devise a hierarchical, two-stage framework, which effectively leverages MLLM’s vision priors.

3.1 VERSATILE GOAL NAVIGATION

Task Definition. We formulate our goal-oriented navigation task as follows: An embodied agent is deployed in an indoor environment E . The agent’s objective is to navigate to a goal g , which in turn defines a target object instance O or multiple possible instances within object category c in the environment. The goal g can be specified in one of three ways, defining three distinct sub-tasks: Object-goal Navigation, ON (Chaplot et al., 2020), where g is an object category, Instance-Image-goal Navigation, IIN (Krantz et al., 2022), where g is an image containing object that can be found in the scene and Text-goal Navigation, TN (Sun et al., 2025), where g is a description about a certain object).

The agent is initialized at an arbitrary starting pose $p_0 \in E$. At each timestep t , the agent receives an egocentric RGB-D observation o_t . It also has access to a global 2D map M and its own pose p_t localized within this map. Based on these inputs, the agent must select an action a_t from a discrete action space $\mathcal{A} = \{\text{move_forward}, \text{turn_left}, \text{turn_right}, \text{stop}\}$. The task is successfully done if the agent stops within d meters of O in less than T time steps.

Task Specification. Unlike traditional goal-oriented navigation, which requires extensive exploration in the unseen environments, we consider zero-shot object navigation with global information: the task necessitates reasoning on the global view, the goal g can be freely specified with text (a category or a description) or a image and the navigation system works in a training-free manner.

3.2 GLOBAL REASONING

The global reasoning module aims to translate the goal description into a specific, long-term navigational goal on the 2D map, denoted as a coordinate p_{global} . To achieve this, we leverage the inherent commonsense and spatial reasoning capabilities of a Multi-modal Large Language Model (MLLM). Instead of directly regressing coordinates, which is often imprecise for MLLMs, we propose a hierarchical, coarse-to-fine framework. As illustrated in Figure 3, this two-stage approach first localizes the target to a specific room and then pinpoints a location within it, efficiently pruning the search space and simplifying the reasoning task.

Room-Level Localization. The first stage narrows the search down to a single room or a distinct region. We begin by processing the global 2D map to create a structured representation suitable for the MLLM. First, a binary wall mask M_0 is extracted using thresholding. For room segmentation, we apply Euclidean Distance Transform on M_0 and derive a number of isolated region seeds by thresholding Euclidean Distance Field (EDF). Then we apply the Watershed algorithm on these region seeds to obtain 2D region masks. This process partitions the entire floor plan into a set of unlabeled, segmented regions. To avoid that the rooms are incorrectly over-segmented, we then merge the tiny regions and derive the final region set $R = \{r_1, r_2, \dots, r_k\}$:

$$R = \text{Merge}(\text{Watershed}(\text{EDT}(M_0, d_{th}), M_0))$$

216 where d_{th} is the distance threshold to achieve the region seeds on the EDF. Please see B for details.
 217

218 We then generate an annotated map $M(R)$ labeling each region. The MLLM is prompted with this
 219 map and a query $P_1(g)$ to select the most probable room r^* . For ON and TN, the prompt is purely
 220 text. For IIN, the prompt also contains a goal image of O . The MLLM analyzes the spatial layout
 221 to identify the target room:

$$222 \quad r^* = \text{MLLM}(M(R), P_1(g)) = \arg \max_{r_j \in R} P(g \text{ in } r_j \mid M) \\ 223$$

224 where $P(g \text{ in } r_j \mid M)$ represents the likelihood of finding the target object g in room r_j , given the
 225 map M . The output of this stage is the selected room r^* .

226 **Intra-Room Node Selection.** To avoid the difficulty of regressing continuous coordinates, we dis-
 227 cretize the entire navigable area of the global map into a set of candidate points. Leveraging the
 228 wall mask M_0 obtained from map preprocessing, we employ Poisson Disk Sampling (PDS) with a
 229 sampling radius of d_s on all navigable areas (i.e., regions not covered by M_0). PDS ensures that
 230 the sampled nodes are uniformly distributed and maintain a minimum distance from each other,
 231 providing good coverage and density across the entire map. This process generates a global set of
 232 candidate nodes, N_{global} .

233 Upon selecting a target room r^* , we then filter N_{global} to obtain a subset of candidate nodes $N =$
 234 $\{n_1, n_2, \dots, n_m\}$ that are located strictly within r^* . We then generate an annotated map, showing
 235 the cropped view of room r^* with these nodes marked with unique numbers. The MLLM is then
 236 prompted with the original cropped map M_{r^*} of room r^* , the node-annotated room map $M_{r^*}(N)$,
 237 along with the designed prompt $P_2(g)$ to the goal g , selecting the most plausible node $n^* \in N$:

$$238 \quad n^* = \text{MLLM}(M_{r^*}(N), M_{r^*}, P_2(g)) = \arg \max_{n_j \in N} P(g \text{ at } n_j \mid M_{r^*}) \\ 239$$

240 where M_{r^*} is the map of the selected room. The 2D coordinates of this chosen node n^* become the
 241 final global goal, p_{global} , which is then passed to the local navigation method.
 242

243 3.3 LOCAL NAVIGATION AND TARGET VERIFICATION

245 **Local Navigation.** The local navigation module guides the agent safely and efficiently to the global
 246 target p_{global} . Unlike conventional navigation, p_{global} often lies in unexplored regions, meaning a
 247 complete, direct path may not exist in the agent’s current map. Our approach employs a hierarchical
 248 control strategy to dynamically plan collision-free and optimal paths.

249 Central to the navigator is an online occupancy map, acting as the agent’s long-term memory. This
 250 map categorizes areas into explored, unexplored, and occupied. Initially, occupied areas are defined
 251 by the wall mask M_0 , with continuous updates from RGB-D observations during navigation.
 252

253 To navigate towards p_{global} , A* search is executed every T timesteps on the latest occupancy map to
 254 find an optimal path. A short-term waypoint w_t , d_0 meters ahead along this path, then serves as the
 255 immediate goal for the low-level controller. EDF, derived from EDT, acts as an additional costmap
 256 during A* search to ensure waypoints avoid walls and obstacles.
 257

258 For reactive, collision-free movement towards w_t , the Vector Field Histogram* (VFH*) algorithm
 259 (Ulrich & Borenstein, 2000) computes steering commands by analyzing local obstacles in the occu-
 260 pancy map. A safety check ensures robustness: if online map updates reveal w_t or p_{global} is within
 261 an occupied area, the point is immediately relocated to the nearest valid, non-occupied location,
 262 preventing the agent from getting stuck. The agent iteratively follows these waypoints. Local navi-
 263 gation terminates and transitions to the target verification phase when the agent reaches a predefined
 264 proximity to p_{global} .

265 **Target Verification.** Upon reaching this first proximity threshold, the agent transitions into a veri-
 266 fication mode to confirm the presence of the target object O . At every time step, the agent attempts
 267 to detect the target object within its current field of view using an object detector.
 268

269 If no confident detection for the target category c is made in this initial view, the agent performs a
 270 final short approach to a second, closer proximity threshold, using VFH* with the original p_{global}
 271 as its waypoint. If still no detection at this second threshold, the agent then performs a 360-degree
 272 in-place scan. At each rotational step, the egocentric RGB image is processed by the object detector.
 273

If a confident detection for the target category c is made at any stage of the verification process, we proceed to precise 3D localization. The 2D bounding box is fed to MobileSAM for precise segmentation mask generation. This mask isolates corresponding depth image points, which are then back-projected using camera intrinsics to form a 3D point cloud of the target. Its centroid in the occupancy map is computed to determine the object’s exact position. The agent then navigates to this precise position using VFH* with the detected object’s centroid as its waypoint, and executes a ‘stop’ action, completing the task. If the agent completes the 360-degree scan without any confident detections, the ‘stop’ action is called as well.

3.4 MODEL ENSEMBLE

To further enhance performance in global reasoning, we design an additional plug-and-play component that integrates the strengths of different models. For our global reasoning task “locating objects from a top-down map”, it typically lack large-scale datasets for MLLM training. We recognize that different MLLMs exhibit varying capabilities and limitations across different scenarios. This implies that simply switching to another model might not always significantly enhance performance. Therefore, we propose a model ensemble approach, introducing an additional discriminator to select the more plausible p_{global} from those provided by Model A and Model B. This aims to strengthen the performance of our global reasoning component.

Specifically, we employ two independent Global Reasoning (GR) units, denoted as GR_A and GR_B . These two units are based on different MLLM A and B. Each reasoning unit independently receives the global 2D map M and the goal g , and performs room-level localization and intra-room node selection to generate a candidate global target point:

$$p_{\text{global}}^A = \text{GR}_A(M, g)$$

$$p_{\text{global}}^B = \text{GR}_B(M, g)$$

To enable the discriminator to compare these two candidate points, we visualize them on the map. We generate two cropped annotated maps: M_A and M_B , where p_{global}^A and p_{global}^B are marked on two cropped map M_a and M_b from M respectively.

Subsequently, these two annotated maps, along with the original goal g , are fed into an additional discriminator MLLM. The task of this discriminator MLLM is to evaluate which candidate point better aligns with the semantics of goal g , based on its understanding of the map layout and the goal description. The discriminator is guided by a carefully designed prompt P_{dis} that encourages the MLLM to perform “self-verification,” comparing the plausibility of the two proposals,

$$p_{\text{global}}^{\text{final}} = \text{Discriminator}(M_A, M_B, P_{\text{dis}}(g))$$

The discriminator MLLM then outputs the global target point $p_{\text{global}}^{\text{final}}$ that it deems most plausible. This finally selected $p_{\text{global}}^{\text{final}}$ is then passed to the local navigation module, serving as the ultimate target for the agent’s navigation. This ensemble approach leverages the complementary strengths of multiple MLLMs and enhances the robustness and accuracy of global reasoning through the discriminator’s verification mechanism.

4 EXPERIMENTS

We validate our framework through extensive experiments, comparing it with state-of-the-art methods across multiple benchmarks. Ablation studies confirm the effectiveness of our core components, and qualitative results demonstrate its generalization to complex scenarios like multi-floor and multi-agent navigation. Readers are encouraged to view our supplementary video.

4.1 EXPERIMENT SETUP

Benchmarks. We evaluate our ReasonNav framework on object-goal, image-goal and text-goal navigation. For object-goal, we conduct experiments on the widely used Habitat-Matterport 3D (HM3D) 2022 challenge benchmark. For image-goal and text-goal navigation, we compare with other methods on HM3D 2023 ImageNav challenge and TextNav following Sun et al. (2025).

324 Table 1: Results of Obj-goal, Image-goal and Text-goal navigation on HM3D challenge benchmarks.
 325 We compare the SR and SPL of state-of-the-art methods in different settings.

327 328 Method	329 330 331 332 333 334 335 336 337 338 339 340 341 342 -Free	329 330 331 332 333 334 335 336 337 338 339 340 341 342 ObjNav		329 330 331 332 333 334 335 336 337 338 339 340 341 342 ImgNav		329 330 331 332 333 334 335 336 337 338 339 340 341 342 TextNav	
		329 330 331 332 333 334 335 336 337 338 339 340 341 342 SR	329 330 331 332 333 334 335 336 337 338 339 340 341 342 SPL	329 330 331 332 333 334 335 336 337 338 339 340 341 342 SR	329 330 331 332 333 334 335 336 337 338 339 340 341 342 SPL	329 330 331 332 333 334 335 336 337 338 339 340 341 342 SR	329 330 331 332 333 334 335 336 337 338 339 340 341 342 SPL
OVRL-v2 (Yadav et al., 2023)	×	64.7	28.1	—	—	—	—
OVRL-v2-IIN (Yadav et al., 2023)	×	—	—	24.8	11.8	—	—
IEVE (Lei et al., 2024)	×	—	—	70.2	25.2	—	—
PSL (Sun et al., 2025)	×	42.4	19.2	23.0	11.4	16.5	7.5
GOAT (Chang et al., 2023)	×	50.6	24.1	37.4	16.1	17.0	8.8
ESC (Zhou et al., 2023b)	✓	39.2	22.3	—	—	—	—
OpenFMNav (Kuang et al., 2024)	✓	54.9	24.4	—	—	—	—
Mod-IIN (Krantz et al., 2023)	✓	—	—	56.1	23.3	—	—
SG-Nav (Yin et al., 2024)	✓	54.0	24.9	—	—	—	—
VLFM (Yokoyama et al., 2023)	✓	52.5	30.4	—	—	—	—
Trihelper (Zhang et al., 2024b)	✓	56.5	25.3	—	—	—	—
InstructNav (Long et al., 2024)	✓	58.0	20.9	—	—	—	—
UniGoal (Yin et al., 2025)	✓	54.5	25.1	60.2	23.7	20.2	11.4
ReasonNav (ours)	✓	57.9	31.4	47.8	30.4	38.8	24.3

343
 344 **Implementation Details.** Our evaluation was conducted in Habitat-sim. We set the maximum time
 345 steps $T = 500$, with a linear step size of 0.25m and an angular rotation of 30 degrees per action.
 346 We also set the success threshold $d = 1\text{m}$. In our PDS sampleing process, we use a sampling radius
 347 of 0.5m. We used Seed-1.6-thinking and Gemini-2.5 pro as global reasoning model, while utilizing
 348 GPT-5 as discriminator. Detailed prompts we are using are provided in Appendix A.

349 **Evaluation Metrics.** We use two standard metrics: Success Rate (SR), the percentage of successful
 350 episodes, and Success weighted by Path Length (SPL), which measures path efficiency. If an episode
 351 is successful, $\text{SPL} = \frac{\text{Optimal Path Length}}{\text{Path Length}}$, otherwise $\text{SPL} = 0$.

352 4.2 COMPARISION WITH STATE-OF-THE-ART

353 We compare ReasonNav with the state-of-the-art goal-oriented navigation methods of different set-
 354 tings across three tasks in Table 1.

355 **Object-goal Navigation.** ReasonNav achieves the highest SPL among all methods, including
 356 trained ones, underscoring its superior path efficiency. Despite a marginally lower SR than Instruct-
 357 Nav (Long et al., 2024), our significantly higher SPL (31.4% vs. 20.9%) highlights our ability to find
 358 more direct paths to the goal. Our method also surpasses many other training-free and fine-tuned
 359 approaches in overall performance.

360 **Image-goal Navigation.** ReasonNav adopts a unified framework for all navigation tasks, which
 361 means it relies on object detectors for final target verification in ImgNav, rather than specialized
 362 similarity matching techniques. This design choice, while ensuring broad applicability, leads to
 363 an SR (47.8%) that is slightly lower than some highly specialized methods. However, ReasonNav
 364 still achieves the highest SPL (30.4%) in this category. This high SPL stems directly from our
 365 global reasoning, which pinpoints a precise waypoint and eliminates the need for the extensive local
 366 exploration and matching required by other methods.

367 **Text-goal Navigation.** The inherent strength of ReasonNav’s MLLM-powered global reasoning is
 368 particularly evident in TextNav. Here, our framework demonstrates clear dominance, achieving the
 369 best performance across all metrics with an SR of 38.8% and an SPL of 24.3%. This significantly
 370 surpasses other methods like GOAT (Chang et al., 2023) and UniGoal (Yin et al., 2025), highlighting
 371 ReasonNav’s superior ability to interpret complex textual instructions and translate them into precise
 372 navigation goals in a zero-shot manner.

373 In summary, ReasonNav’s strength lies in its human-like global reasoning, which translates diverse
 374 goals into precise map coordinates. This training-free, unified approach consistently yields high SPL
 375 by enabling direct, efficient paths to the target, setting a new benchmark for zero-shot navigation,
 376 especially in text-goal tasks where its semantic understanding excels.

378
 379 Table 2: Ablation study on the selection module. We compare our proposed multi-stage selection
 380 against directing predicting coordinate, and a single-stage baseline on the HM3D ObjNav challenge
 381 dataset. We are using Seed-1.6-Thinking as reasoning model in this experiment.

Selection Method	SR	SPL
Directly predicting coordinate	12.3	6.13
Single-stage selection	44.5	23.1
Multi-stage selection	55.1	29.6

382
 383
 384 Table 3: Ablation study on different reasoning MLLMs. We report the performance of our frame-
 385 work when equipped with different large language models on the HM3D ObjNav, ImgNav, and
 386 TextNav datasets.

Reasoning MLLM	ObjNav		ImgNav		TextNav	
	SR	SPL	SR	SPL	SR	SPL
Qwen2.5-7B-VL	41.3	21.2	22.8	14.3	17.0	10.1
Seed-1.6-Thinking	55.1	29.6	40.2	25.2	30.1	19.0
Gemini-2.5-Pro	55.8	29.1	40.7	25.6	37.2	22.8
Model Ensemble	57.9	31.4	47.8	30.4	38.8	24.3

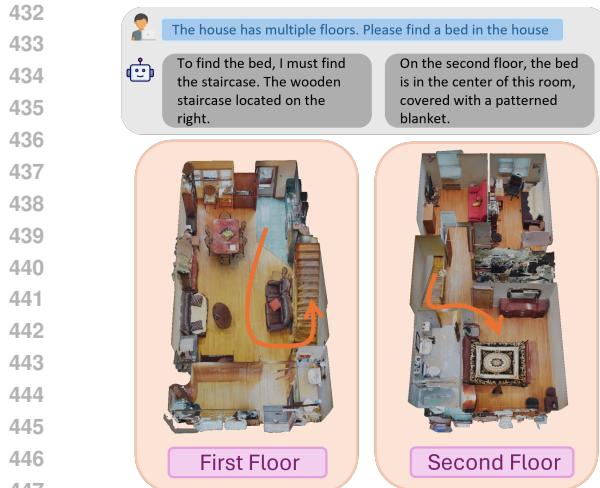
4.3 ABLATION STUDY

402 In our ablation study, we validate the effectiveness of our proposed multi-stage selection module
 403 and conduct experiments to compare the performance of different reasoning LLMs.

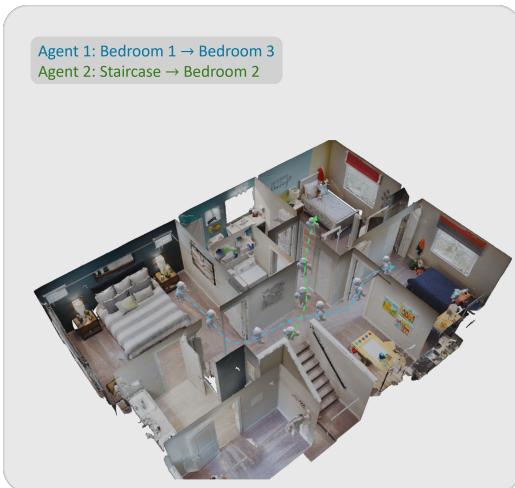
404 **Ablation on our multi-stage selection.** Our ablation study, presented in Table 2, clearly demon-
 405 strates the efficacy of our multi-stage selection strategy. Directly predicting continuous 3D coordi-
 406 nates yielded extremely low performance (SR 12.3%, SPL 6.13%), indicating the MLLM’s difficulty
 407 in regressing precise spatial coordinates and underscoring the necessity of selecting discrete, nav-
 408 igable nodes. While single-stage selection, which involves the MLLM choosing from the entire
 409 global topological graph, showed improved results (SR 44.5%, SPL 23.5%). However, it still shows
 410 asking the MLLM to select the optimal node from a vast global graph in a single step remains a
 411 challenging task. In contrast, our proposed multi-stage selection method achieved the best perfor-
 412 mance (SR 55.1%, SPL 29.6%), significantly outperforming single-stage selection (SR by 10.6%,
 413 SPL by 6.1%). This ablation study thus clearly confirms the superiority of ReasonNav’s multi-stage
 414 node selection strategy, demonstrating that its hierarchical decision-making, which breaks down the
 415 complex target selection task into more manageable steps, enables the MLLM to reason and select
 416 targets with greater precision and robustness.

417 **Ablation on different reasoning MLLMs.** To evaluate the impact of the reasoning engine on
 418 our framework, we benchmarked several MLLMs, including the open-source Qwen2.5-7B-VL, and
 419 the advanced proprietary models Seed-1.6-Thinking and Gemini-2.5-Pro. The results, detailed in
 420 Table 3, show a clear correlation between the model’s reasoning capabilities and navigation perfor-
 421 mance. The advanced reasoning models, Seed-1.6-Thinking and Gemini-2.5-Pro, achieves signif-
 422 icantly better performance compared with the smaller model across all the tasks, highlighting the
 423 importance of advanced reasoning for complex spatial understanding for our framework. Gemini-
 424 2.5-pro and Seed-1.6-Thinking generally derive similar results in object-goal navigation and image-
 425 goal navigation. However, possibly due to stronger capability in text understanding and reasoning,
 426 Gemini-2.5-pro outperforms Seed-1.6-Thinking with a large margin on TextNav. To maximize per-
 427 formance, we implement the model ensemble strategy in our method. This approach yielded the
 428 best results across all tasks. This demonstrates that ensembling leverages the diverse strengths of
 429 each model, mitigating individual weaknesses and leading to more robust and accurate navigation
 430 decisions.

431 This analysis confirms that advanced MLLMs are critical for performance. Our model ensemble
 432 strategy, by leveraging the complementary strengths of different models, consistently achieves the
 433 best results and pushes our framework to state-of-the-art performance.



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
(a) Figure 4a: Our framework can tackle the multi-
floor task by decomposing it to single-floor tasks.



448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
(b) Figure 4b: Our framework inherently allows dif-
ferent agents running in the same workspace.

4.4 QUALITATIVE ANALYSIS

4.4.1 NAVIGATION IN MULTI-FLOOR SCENARIOS

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
Despite the inherent challenges of precisely controlling an agent to traverse between different floors via stairs in a zero-shot scenario, our proposed method exhibits powerful inter-floor reasoning abilities. As indicated in Figure 4a, when a target object is localized on a distinct floor, we utilize Chain-of-Thought (CoT) to decompose the complex multi-floor path into a series of single-floor navigation tasks, specifically, moving from the current position to the stairs, and then from the stairs to the target. This represents a crucial step beyond traditional single-floor navigation paradigms, enabling agents to tackle more realistic and complex spatial reasoning tasks.

4.4.2 NAVIGATION WITH MULTIPLE AGENTS

464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
In real-world scenarios, the presence of dynamic obstacles (e.g., moving objects) poses significant challenges to dense scene modeling approaches reliant on point cloud representations. This complexity leads to critical issues in multi-agent collaborative navigation, where concurrent operations within shared environments induce catastrophic interference in existing frameworks. Prior construction-based methods often rely on static or one-shot semantic information. The dynamic presence of additional agents can substantially interfere with their semantic understanding, leading to compromised navigation performance. As shown in Figure 4b, our approach, on the other hand, fundamentally differs by relying solely on depth data for local obstacle avoidance during navigation. This design choice inherently minimizes inter-agent conflicts, thereby demonstrating superior scalability and robustness in multi-agent environments.

5 CONCLUSION

477
478
479
480
481
482
483
484
485
In this paper, we introduce ReasonNav, a novel, human-inspired framework for zero-shot embodied navigation. Our approach uniquely leverages the strengths of MLLMs for high-level hierarchical global reasoning, while relegating low-level control and execution to robust, deterministic planners. This “reason-then-act” paradigm sidesteps the challenges of using LLMs for precise, continuous control, a task for which they are not optimized. We demonstrate that only by focusing the MLLM’s role on a one-off global reasoning task with one global view image, we can achieve state-of-the-art (SOTA) performance in a computationally efficient manner. The framework’s zero-shot and computationally efficient nature eliminates the need for costly and time-consuming fine-tuning, RL training or real-time inference, making it a scalable and practical solution for a diverse range of embodied navigation tasks.

486 **6 ETHICS STATEMENT**
487488 All research presented in this paper was conducted in adherence to the ICLR Code of Ethics. Our
489 work is centered on a framework for embodied navigation within simulated environments. The
490 experiments exclusively utilize the publicly available HM3D dataset, which consists of static 3D
491 reconstructions of indoor spaces and does not involve human subjects, personally identifiable infor-
492 mation, or sensitive data. The goal of this research is to advance the state of the art in embodied
493 navigation, and we do not foresee any direct negative societal impacts stemming from this work.
494495 **7 REPRODUCIBILITY STATEMENT**
496497 We have made a concerted effort to ensure the reproducibility of our work. Our framework, Reason-
498 Nav, is described in detail in Section 3, with its core components—global reasoning and local nav-
499 igation—clearly outlined. To facilitate replication, the Appendix B provides comprehensive pseudo-
500 code for our key algorithms, including Room Segmentation, Node Generation, and the complete
501 Local Navigation and Target Verification pipeline. The experimental setup, including the specific
502 benchmarks, evaluation metrics, and implementation details is specified in Section 4.1. To ensure
503 the central reasoning component of our method is reproducible, we have included the exact, detailed
504 prompts used to query the MLLMs for all stages of our framework in Appendix A.
505506 **REFERENCES**
507508 Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choro-
509 manski, Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, Pete Florence, Chuyuan Fu,
510 Montse Gonzalez Arenas, Keerthana Gopalakrishnan, Kehang Han, Karol Hausman, Alexander
511 Herzog, Jasmine Hsu, Brian Ichter, Alex Ipan, Nikhil Joshi, Ryan Julian, Dmitry Kalashnikov,
512 Yuheng Kuang, Isabel Leal, Lisa Lee, Tsang-Wei Edward Lee, Sergey Levine, Yao Lu, Hen-
513 ryk Michalewski, Igor Mordatch, Karl Pertsch, Kanishka Rao, Krista Reymann, Michael Ryoo,
514 Grecia Salazar, Pannag Sanketi, Pierre Sermanet, Jaspia Singh, Anikait Singh, Radu Soricu-
515 tran, Huong Tran, Vincent Vanhoucke, Quan Vuong, Ayzaan Wahid, Stefan Welker, Paul Wohlhart,
516 Jialin Wu, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna Zitkovich. Rt-
517 2: Vision-language-action models transfer web knowledge to robotic control. *arXiv preprint*
518 *arXiv:2307.15818*, 2023.
519 Matthew Chang, Theophile Gervet, Mukul Khanna, Sriram Yenamandra, Dhruv Shah, So Yeon Min,
520 Kavit Shah, Chris Paxton, Saurabh Gupta, Dhruv Batra, Roozbeh Mottaghi, Jitendra Malik, and
521 Devendra Singh Chaplot. Goat: Go to any thing. *arXiv preprint arXiv:2311.06430*, 2023. URL
522 <https://arxiv.org/abs/2311.06430>.
523 Devendra Singh Chaplot, Dhiraj Gandhi, Abhinav Gupta, and Ruslan Salakhutdinov. Object goal
524 navigation using goal-oriented semantic exploration. *arXiv preprint arXiv:2007.00643*, 2020.
525 Jiaqi Chen, Bingqian Lin, Ran Xu, Zhenhua Chai, Xiaodan Liang, and Kwan-Yee K. Wong. Mapgpt:
526 Map-guided prompting with adaptive path planning for vision-and-language navigation. *arXiv*
527 *preprint arXiv:2401.07314*, 2024.
528 Vishnu Sashank Dorbala, James F. Mullen, and Dinesh Manocha. Can an embodied agent find
529 your “cat-shaped mug”? llm-based zero-shot object navigation. *IEEE Robotics and Automation*
530 *Letters*, 9(5):4083–4090, May 2024. ISSN 2377-3774. doi: 10.1109/LRA.2023.3346800. URL
531 <http://dx.doi.org/10.1109/LRA.2023.3346800>.
532 Danny Driess, Fei Xia, Mehdi S. M. Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
533 Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, Wenlong Huang, Yevgen Chebotar,
534 Pierre Sermanet, Daniel Duckworth, Sergey Levine, Vincent Vanhoucke, Karol Hausman, Marc
535 Toussaint, Klaus Greff, Andy Zeng, Igor Mordatch, and Pete Florence. Palm-e: An embodied
536 multimodal language model. *arXiv preprint arXiv:2303.03378*, 2023.
537 Chen Gao, Liankai Jin, Xingyu Peng, Jiazhao Zhang, Yue Deng, Annan Li, He Wang, and Si Liu.
538 Octonav: Towards generalist embodied navigation. *arXiv preprint arXiv:2506.09839*, 2025.

540 Qiao Gu, Alihusein Kuwajerwala, Sacha Morin, Krishna Murthy Jatavallabhula, Bipasha Sen,
 541 Aditya Agarwal, Corban Rivera, William Paul, Kirsty Ellis, Rama Chellappa, Chuang Gan,
 542 Celso Miguel de Melo, Joshua B. Tenenbaum, Antonio Torralba, Florian Shkurti, and Liam Paull.
 543 Conceptgraphs: Open-vocabulary 3d scene graphs for perception and planning. *arXiv preprint*
 544 *arXiv:2309.16650*, 2023.

545 Jacob Krantz, Stefan Lee, Jitendra Malik, Dhruv Batra, and Devendra Singh Chaplot. Instance-
 546 specific image goal navigation: Training embodied agents to find object instances. *arXiv preprint*
 547 *arXiv:2211.15876*, 2022.

548 Jacob Krantz, Theophile Gervet, Karmesh Yadav, Austin Wang, Chris Paxton, Roozbeh Mottaghi,
 549 Dhruv Batra, Jitendra Malik, Stefan Lee, and Devendra Singh Chaplot. Navigating to objects
 550 specified by images. In *ICCV*, pp. 10916–10925, 2023.

551 Yuxuan Kuang, Hai Lin, and Meng Jiang. Openfmnav: Towards open-set zero-shot object naviga-
 552 tion via vision-language foundation models. In *Findings of the Association for Computational*
 553 *Linguistics: NAACL 2024*, pp. 338–351, 2024.

554 Xiaohan Lei, Min Wang, Wengang Zhou, Li Li, and Houqiang Li. Instance-aware exploration-
 555 verification-exploitation for instance imagegoal navigation. In *IEEE/CVF Conference on Com-*
 556 *puter Vision and Pattern Recognition (CVPR)*, pp. 16329–16339, 2024.

557 Jinzhou Lin, Han Gao, Xuxiang Feng, Rongtao Xu, Changwei Wang, Man Zhang, Li Guo, and
 558 Shibiao Xu. Advances in embodied navigation using large language models: A survey. *arXiv*
 559 *preprint arxiv:2311.00530*, 2025.

560 Yuxing Long, Wenzhe Cai, Hongcheng Wang, Guanqi Zhan, and Hao Dong. Instructnav: Zero-
 561 shot system for generic instruction navigation in unexplored environment. *arXiv preprint*
 562 *arXiv:2406.04882*, 2024.

563 Arjun Majumdar, Gunjan Aggarwal, Bhavika Devnani, Judy Hoffman, and Dhruv Batra.
 564 Zson: Zero-shot object-goal navigation using multimodal goal embeddings. *arXiv preprint*
 565 *arXiv:2206.12403*, 2023.

566 Oleksandr Maksymets, Vincent Cartillier, Aaron Gokaslan, Erik Wijmans, Wojciech Galuba, Stefan
 567 Lee, and Dhruv Batra. Thda: Treasure hunt data augmentation for semantic navigation. In
 568 *IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 15374–15383, 2021.

569 Arsalan Mousavian, Alexander Toshev, Marek Fiser, Jana Kosecka, Ayzaan Wahid, and James
 570 Davidson. Visual representations for semantic target driven navigation. *arXiv preprint*
 571 *arXiv:1805.06066*, 2019.

572 Dujun Nie, Xianda Guo, Yiqun Duan, Ruijun Zhang, and Long Chen. Wmnav: Integrating vision-
 573 language models into world models for object goal navigation. *arXiv preprint arXiv:2503.02247*,
 574 2025. URL <https://arxiv.org/abs/2503.02247>.

575 Xinyu Sun, Lizhao Liu, Hongyan Zhi, Ronghe Qiu, and Junwei Liang. Prioritized semantic learning
 576 for zero-shot instance navigation. In *European Conference on Computer Vision (ECCV)*, pp.
 577 161–178, 2025.

578 I. Ulrich and J. Borenstein. Vfh/sup */: local obstacle avoidance with look-ahead verification. In
 579 *Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics*
 580 *and Automation. Symposia Proceedings (Cat. No.00CH37065)*, volume 3, pp. 2505–2511 vol.3,
 581 2000. doi: 10.1109/ROBOT.2000.846405.

582 Congcong Wen, Yisiyuan Huang, Hao Huang, Yanjia Huang, Shuaihang Yuan, Yu Hao, Hui Lin,
 583 Yu-Shen Liu, and Yi Fang. Zero-shot object navigation with vision-language models reasoning.
 584 *arXiv preprint arxiv:2410.18570*, 2024.

585 Abdelrhman Werby, Chenguang Huang, Martin Büchner, Abhinav Valada, and Wolfram Burgard.
 586 Hierarchical Open-Vocabulary 3D Scene Graphs for Language-Grounded Robot Navigation. In
 587 *Proceedings of Robotics: Science and Systems*, July 2024.

594 Karmesh Yadav, Arjun Majumdar, Ram Ramrakhya, Naoki Yokoyama, Alexei Baevski, Zsolt Kira,
 595 Oleksandr Maksymets, and Dhruv Batra. Ovrl-v2: A simple state-of-art baseline for imagenav
 596 and objectnav. *arXiv preprint arXiv:2303.07798*, 2023. URL <https://arxiv.org/abs/2303.07798>.

598 Wei Yang, Xiaolong Wang, Ali Farhadi, Abhinav Gupta, and Roozbeh Mottaghi. Visual semantic
 599 navigation using scene priors. *arXiv preprint arXiv:1810.06543*, 2018.

601 Joel Ye, Dhruv Batra, Abhishek Das, and Erik Wijmans. Auxiliary tasks and exploration enable
 602 objectnav. *arXiv preprint arXiv:2104.04112*, 2021.

603 Hang Yin, Xiuwei Xu, Zhenyu Wu, Jie Zhou, and Jiwen Lu. Sg-nav: Online 3d scene graph prompt-
 604 ing for llm-based zero-shot object navigation. *arXiv preprint arXiv:2410.08189*, 2024.

606 Hang Yin, Xiuwei Xu, Lingqing Zhao, Ziwei Wang, Jie Zhou, and Jiwen Lu. Unigoal: Towards
 607 universal zero-shot goal-oriented navigation. *arXiv preprint arXiv:2503.10630*, 2025.

609 Naoki Yokoyama, Sehoon Ha, Dhruv Batra, Jiuguang Wang, and Bernadette Bucher. Vlfm: Vision-
 610 language frontier maps for zero-shot semantic navigation. *arXiv preprint arXiv:2312.03275*,
 611 2023.

612 Bangguo Yu, Hamidreza Kasaei, and Ming Cao. L3mvn: Leveraging large language models
 613 for visual target navigation. In *IEEE/RSJ International Conference on Intelligent Robots and*
 614 *Systems (IROS)*, pp. 3554–3560, October 2023. URL <http://dx.doi.org/10.1109/IROS55552.2023.10342512>.

616 Jiazhao Zhang, Kunyu Wang, Rongtao Xu, Gengze Zhou, Yicong Hong, Xiaomeng Fang, Qi Wu,
 617 Zhizheng Zhang, and He Wang. Navid: Video-based vlm plans the next step for vision-and-
 618 language navigation. *arXiv preprint arXiv:2402.15852*, 2024a.

620 Lingfeng Zhang, Qiang Zhang, Hao Wang, Erjia Xiao, Zixuan Jiang, Honglei Chen, and Ren-
 621 jing Xu. Trihelper: Zero-shot object navigation with dynamic assistance. *arXiv preprint*
 622 *arXiv:2403.15223*, 2024b. URL <https://arxiv.org/abs/2403.15223>.

623 Duo Zheng, Shijia Huang, Lin Zhao, Yiwu Zhong, and Liwei Wang. Towards learning a generalist
 624 model for embodied navigation. *arXiv preprint arXiv:2312.02010*, 2024.

626 Gengze Zhou, Yicong Hong, and Qi Wu. Navgpt: Explicit reasoning in vision-and-language navi-
 627 gation with large language models. *arXiv preprint arXiv:2305.16986*, 2023a.

628 Kaiwen Zhou, Kaizhi Zheng, Connor Pryor, Yilin Shen, Hongxia Jin, Lise Getoor, and Xin Eric
 629 Wang. Esc: Exploration with soft commonsense constraints for zero-shot object navigation. In
 630 *International Conference on Machine Learning (ICML)*, 2023b.

632 Ziyu Zhu, Xilin Wang, Yixuan Li, Zhuofan Zhang, Xiaojian Ma, Yixin Chen, Baoxiong Jia, Wei
 633 Liang, Qian Yu, Zhidong Deng, Siyuan Huang, and Qing Li. Move to understand a 3d scene:
 634 Bridging visual grounding and exploration for efficient and versatile embodied navigation. *arXiv*
 635 *preprint arXiv:2507.04047*, 2025.

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX
649650 In this appendix, we present:
651652 • Prompts used in ReasonNav.
653 • Details of our method.
654 • Additional comparison with concurrent work.
655 • Limitations and future work.
656 • The use of large language models (LLMs)659 A PROMPTS USED IN REASONNAV
660661 We provide our detailed prompts used in ReasonNav:
662663 **Room-Level Localization:**664 You are an AI assistant for a robot's navigation system. Your
665 task is to identify a certain room.
666667 **CONTEXT:** You will be provided with a top-down floor plan
668 showing furniture and layout with room segmentation. (The
669 floor plan is segmented to at least one room/region with
670 numbered room annotations. The boundaries of different rooms
671 is noted in white.)671 **GOAL:** Identify the room number that contains the {goal_object}.672 **INSTRUCTIONS:**673 1. If you can find the object directly from map, describe the
674 object's location using text.675 2. **Analyze the Goal Object:** Determine the room number
676 where the {goal_object} can be found. If you cannot find
677 {goal_object} on the top-down view, then please consider
678 the most-possible room that the {goal_object} may locate at.
679 (e.g., a "bed" is in a bedroom)680 3. **Verify the Room:** Scan the top-down view to make sure that
681 the {goal_object} indeed locates in the chosen room. If
682 {goal_object} cannot be found, make sure the chosen room
683 is the most appropriate room to search. Note that you
684 should consider the precise semantics of {goal_object} during
685 verification. (e.g., "sofa chair" is different from "sofa")
686 Note that you should choose the room that contains the
687 {goal_object} instead of the room that is the closest to the
688 {goal_object}!689 Repeat the instruction until the verification (3.) is passed.
690 Provide your answer in the last line in the form of: "Room X"
691 where X is your chosen number. (e.g. Room 1)692 **Goal Object:** {goal_object}693 where {goal_object} will be replaced by the goal g .
694695
696
697
698
699
700
701

702
703**Intra-Room Node Selection:**

704

CONTEXT: You are given two images:

1. **Map Image:** A top-down schematic of the room's layout.
2. **Node Image:** The same map with numbered navigation nodes.

GOAL: {goal_object}**INSTRUCTIONS:**

1. **Analyze the Goal:** Consider the common placement of a {goal_object}. For example, a "TV" is opposite to sofa in the living room; a "book" is on a shelf or table. Note the **precise semantics** of {goal_object} and do not misunderstand the target. (e.g., **sofa chair** is different from **sofa**).

2. **Locate on Map:** Scan the Map Image to find the {goal_object} or the most logical place it would be (e.g., find the dining table if the goal is a "plate").

3. **Select Best Node:** Based on your location analysis, choose the single best node from the Node Image. The best node is determined by this priority:

- * **Priority 1:** A node located directly on the object.

- * **Priority 2:** If no node is on the object, the node closest to the object.

- * **Priority 3:** If the object cannot be found on the topdown-view, the node that provides the best vantage point to search the inferred area.

4. **Verify The Node:** Make sure the selected node satisfy the above requirements.

Repeat the instructions until the verification (4.) is passed.

Goal Object: {goal_object} Provide your answer in the last line in the form of: "node X" where X is your chosen number. (e.g. node 100)

731

732 where {goal_object} will be replaced by the goal g .
733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757**Discriminator:**

758

759 You are an expert navigation system evaluator. I need you to
 760 analyze a controversial episode where two different AI models
 761 disagreed on the success of an object navigation task.

762

Target Object: {goal_object}

763

Images Provided: You will see two separate images:

764

1. **First Image (Model 1):** Shows an area around Model 1's
 765 target selection with a **BLUE** circle marking the chosen target
 766 location.

767

2. **Second Image (Model 2):** Shows a area around Model 2's
 768 target selection with a **RED** circle marking the chosen target
 769 location.

770

Your Task: Please analyze these navigation scenarios and
 771 determine which model made the better decision. Consider:

772

1. **Target Identification:** Which model identified a more
 773 plausible target location for "{goal_object}"? Look at the
 774 environment around each colored circle, find the corresponding
 775 node that is closer to the {goal_object}.

776

2. **Accessibility:** If two nodes are both at a plausible
 777 position of the {goal_object}, which target location appears
 778 more accessible and reachable in a real navigation scenario?
 779 (i.e. more close to the navigable/walkable area and more
 780 close to the open space. (e.g. Two chairs. The one that
 781 is closer to the open area is more suitable than the one that
 782 is closer to the wall.))

783

Please respond with:

784

1. Your analysis of both models' target selections based on
 785 the environmental context
2. Which model you believe made the better decision (Model 1
 786 or Model 2)
3. Key reasoning points for your decision

787

Output Format: Decision: [Model 1 or Model 2]

788

789 where {goal_object} will be replaced by the goal g .
 790

791

B DETAILS OF OUR METHOD

792

B.1 ROOM SEGMENTATION

793

794 Our room segmentation pipeline is designed to robustly partition a top-down floor plan into
 795 distinct room areas. The process leverages a combination of morphological operations, EDT, and the
 796 Watershed algorithm, followed by a post-processing step to merge small, erroneous room fragments.

797

798 The process begins with a binary wall mask, where non-walkable areas (walls) are distinguished
 800 from walkable spaces. A morphological closing operation is first applied to fill minor gaps and
 801 holes in the detected walls, ensuring that rooms are well-enclosed entities.

802

803 Subsequently, the EDT is computed on the walkable areas. The EDT assigns each pixel a value
 804 corresponding to its distance to the nearest wall. This transform is crucial as it allows us to identify
 805 the central, core regions of rooms—pixels with high distance values are far from any walls and are
 806 thus strong candidates for being region seeds.

807

808 The determination of these seeds is critical. For greater adaptability, we employ Otsu's method on
 809 the normalized and blurred distance map. This automatically finds an optimal threshold to sepa-
 810 rate the map into two classes: room cores (sure foreground) and areas closer to walls (ambiguous
 811 regions). This dynamic approach makes the segmentation robust to varying room sizes and layouts.

810 With the seeds (sure foreground) and walls (sure background) identified, the Watershed algorithm
 811 is applied. This algorithm treats the distance map as a topographical surface, “flooding” it from the
 812 seed locations until the “waters” from different seeds meet. These meeting lines form the boundaries
 813 that segment the space into initial room candidates.

814 Finally, a merging procedure is executed to handle over-segmentation, where small, insignificant re-
 815 gions might be incorrectly labeled as separate rooms. This iterative process identifies rooms smaller
 816 than a minimum area threshold and merges them into the most suitable adjacent larger room. The
 817 suitability is determined by a merge score that considers the length of the shared boundary and the
 818 proximity of the room centroids, ensuring that merges are geometrically logical. The process is
 819 outlined in Algorithm 1.

Algorithm 1 Room Segmentation via EDT and Watershed

821
 822
 823
Require: Binary Wall Mask M_{binary}
Ensure: Labeled Marker Matrix M_{rooms}
 824 $M_{\text{closed}} \leftarrow \text{MorphologicalClose}(M_{\text{binary}})$
 825 $M_{\text{dist}} \leftarrow \text{EuclideanDistanceTransform}(M_{\text{closed}})$
 826 $M_{\text{norm}} \leftarrow \text{Normalize}(M_{\text{dist}}, \text{range} = [0, 255])$
 827 $M_{\text{blur}} \leftarrow \text{GaussianBlur}(M_{\text{norm}})$
 828 $T_{\text{Otsu}}, M_{\text{seeds}} \leftarrow \text{OtsuThreshold}(M_{\text{blur}})$
 829 $M_{\text{bg}} \leftarrow \text{Dilate}(M_{\text{closed}}, K)$
 830 $M_{\text{unknown}} \leftarrow M_{\text{bg}} - M_{\text{seeds}}$
 831 $M_{\text{markers}} \leftarrow \text{ConnectedComponents}(M_{\text{seeds}})$
 832 $M_{\text{markers}} \leftarrow M_{\text{markers}} + 1$
 833 $M_{\text{markers}}[M_{\text{unknown}} = \text{true}] \leftarrow 0$
 834 $M_{\text{rooms}} \leftarrow \text{Watershed}(M_{\text{closed}}, M_{\text{markers}})$
 835 $M_{\text{rooms}} \leftarrow \text{MergeSmallRooms}(M_{\text{rooms}})$
 836 **return** M_{rooms}

 838
 839
 840
 841
 842
B.2 NODES GENERATION

843 Our implementation begins with the binary walkable mask and applies a configurable wall padding.
 844 This is achieved through morphological erosion, which shrinks the walkable area by a specified
 845 distance. This crucial preprocessing step ensures that all generated navigation nodes maintain a safe
 846 distance from walls and obstacles, preventing the planner from creating paths that are too close to
 847 collisions.

848 Then we use an enhanced PDS algorithm to handle environments with multiple disconnected re-
 849 gions. First, a connected components analysis is performed on the padded walkable mask to identify
 850 all distinct, navigable areas. Then, the PDS algorithm is executed independently within each of these
 851 regions. This ensures that every separate walkable space is populated with navigation nodes, guar-
 852 anteeing comprehensive coverage of the entire environment. The algorithm iteratively adds points
 853 by selecting a random point from an “active list,” generating new candidate points in an annulus
 854 around it, and validating that the new point respects the minimum distance constraint relative to all
 855 existing points. The process is outlined in Algorithm 2.

 856
 857
 858
B.3 LOCAL NAVIGATION

859
 860
 861 The entire process is outlined in Algorithm 3.

864 **Algorithm 2** Node Generation via Multi-Region Poisson Disk Sampling

865 **Require:** Binary Walkable Mask M_{walkable} , Wall Padding Distance D_{padding} , PDS Radius R_{pds}

866 **Ensure:** Set of Navigation Nodes N_{all}

867 $M_{\text{padded}} \leftarrow \text{Erode}(M_{\text{walkable}}, D_{\text{padding}})$

868 $C_{\text{list}} \leftarrow \text{FindConnectedComponents}(M_{\text{padded}})$

869 $N_{\text{all}} \leftarrow \emptyset$

870 **for** each component C in C_{list} **do**

871 $N_{\text{active}} \leftarrow \emptyset$

872 $N_{\text{component}} \leftarrow \emptyset$

873 $G_{\text{grid}} \leftarrow \text{InitializeGrid}(C, R_{\text{pds}})$

874 $p_{\text{initial}} \leftarrow \text{SelectRandomPointIn}(C)$

875 Add p_{initial} to N_{active} , $N_{\text{component}}$, and G_{grid}

876 **while** N_{active} is not empty **do**

877 $p_{\text{current}} \leftarrow \text{SelectRandomPointFrom}(N_{\text{active}})$

878 $p_{\text{found}} \leftarrow \text{false}$

879 **for** $i \leftarrow 1$ to k_{attempts} **do**

880 $p_{\text{new}} \leftarrow \text{GeneratePointInAnnulus}(p_{\text{current}}, R_{\text{pds}}, 2R_{\text{pds}})$

881 **if** $\text{IsValid}(p_{\text{new}}, C, G_{\text{grid}}, R_{\text{pds}})$ **then**

882 Add p_{new} to N_{active} , $N_{\text{component}}$, and G_{grid}

883 $p_{\text{found}} \leftarrow \text{true}$

884 **break**

885 **end if**

886 **end for**

887 **if** not p_{found} **then**

888 Remove p_{current} from N_{active}

889 **end if**

890 **end while**

891 $N_{\text{all}} \leftarrow N_{\text{all}} \cup N_{\text{component}}$

892 **end for**

893 **return** N_{all}

Algorithm 3 Local Navigation and Target Verification

894 **Require:** Global goal p_{global} , Proximity thresholds $d_{\text{prox1}}, d_{\text{prox2}}$

895 **Ensure:** Navigation Stop

896 $M_{\text{occ}} \leftarrow \text{InitializeMap}()$

897 **while** $\text{distance}(\text{GetAgentPose}(), p_{\text{global}}) > d_{\text{prox1}}$ **do**

898 $o_t \leftarrow \text{GetCurrentObservation}()$

899 $M_{\text{occ}} \leftarrow \text{UpdateMap}(M_{\text{occ}}, o_t)$

900 $P \leftarrow \text{A_star_Search}(M_{\text{occ}}, \text{GetAgentPose}(), p_{\text{global}})$

901 $w_t \leftarrow \text{GetLocalWaypoint}(P)$

902 $w_t \leftarrow \text{SafetyCheck}(w_t, M_{\text{occ}})$

903 $\text{action} \leftarrow \text{VFH_star_Controller}(w_t, M_{\text{occ}})$

904 $\text{Execute}(\text{action})$

905 **end while**

906 **while** $\text{distance}(\text{GetAgentPose}(), p_{\text{global}}) > d_{\text{prox2}}$ **do**

907 $\text{found}, p_{\text{obj}} \leftarrow \text{Scan360AndDetect}()$

908 **if** found **then**

909 **break**

910 **end if**

911 $\text{ApproachCloser}(p_{\text{global}})$

912 **end while**

913 **if** not found **then**

914 $\text{found}, p_{\text{obj}} \leftarrow \text{Scan360AndDetect}()$

915 **end if**

916 **if** found **then**

917 $p_{\text{final}} \leftarrow \text{LocalizeObject3D}(p_{\text{obj}})$

$\text{NavigateToFinalPosition}(p_{\text{final}})$

end if

 Navigation Stop

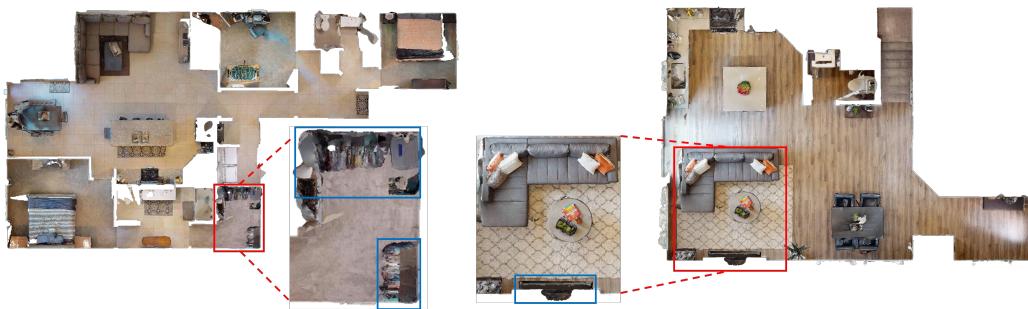


Figure 5: The ambiguity of the global map may influence the outcome. For example, MLLM sometimes struggles to pin-point the clothes (at the right-bottom corner) on the left map or the tv monitor (at the left-bottom corner) on the right map. (denoted with blue bounding box)

C ADDITIONAL COMPARISON WITH CONCURRENT WORK

During our research, we noted the concurrent development of WMNav (Nie et al., 2025), another framework that leverages Vision-Language Models (VLMs) for zero-shot object navigation. Both ReasonNav and WMNav achieve state-of-the-art performance on the HM3D ObjectNav benchmark, demonstrating remarkably similar top-line metrics (ReasonNav: 57.9% SR, 31.4% SPL; WMNav: 58.1% SR, 31.2% SPL). Despite these comparable results, the two methods are founded on fundamentally different philosophies regarding the role of the MLLM in navigation.

The core distinction lies in the source of visual understanding and the frequency of MLLM inference. ReasonNav operates on a *global-view, one-off* reasoning paradigm. It leverages the MLLM’s powerful spatial and semantic understanding capabilities a single time at the beginning of an episode. By processing a complete top-down map, ReasonNav formulates a comprehensive global plan, identifying a precise target coordinate (p_{global}) before the agent begins to move. This “reason-then-act” approach cleanly separates high-level strategic planning from low-level, deterministic execution, minimizing computational overhead and avoiding the risk of cumulative errors from repeated model inferences.

In stark contrast, WMNav relies entirely on *local observations* and employs a *step-by-step* reasoning process. Its visual understanding is derived from panoramic images captured at the agent’s current position at each timestep. This approach necessitates a heavy, iterative reliance on the VLM throughout the exploration phase to interpret the immediate surroundings, predict the potential presence of the target in different directions, and update a “Curiosity Value Map”. While this allows the agent to react to newly observed information, it involves a substantial number of VLM calls, making the process computationally intensive and potentially susceptible to model hallucinations over long horizons.

In summary, while both frameworks successfully utilize the power of modern foundation models, ReasonNav’s approach of using the MLLM for a single, decisive act of global reasoning based on a complete map proves to be a more efficient and robust strategy. Our significantly higher SPL, despite a marginal difference in SR, suggests that our global, one-off planning leads to more direct and efficient paths. This architectural choice not only enhances computational efficiency but also aligns more closely with human-like navigation, where a global plan (e.g., looking at a map) precedes local action.

D LIMITATIONS AND FUTURE WORK

D.1 LIMITATIONS

Reliance on a high-quality global view: The current framework fundamentally depends on the availability of a clean, top-down 2D map of the environment. This assumes such prior information is accessible, which may not be the case in many real-world applications.

972 **Disregarding semantic information from local observations:** ReasonNav performs its MLLM-
 973 based reasoning as a one-off step before navigation begins. It does not incorporate semantic infor-
 974 mation from its egocentric view while in transit to correct or refine its global plan. For example, if
 975 the initial plan is incorrect, the agent cannot use local visual cues (e.g., seeing kitchen appliances)
 976 to recognize its mistake and re-evaluate its path. Also, it cannot use local observations to refine the
 977 reasoning process.

978 **Inability to reason about objects with ambiguous top-down projections:** The MLLM’s ability to
 979 locate a target is limited by the quality of the 2D map. Objects that are not clearly or have an indis-
 980 tinct shape from a top-down perspective can be difficult for the MLLM to identify (even though our
 981 multi-stage global reasoning consists of “zoom-in” strategy), potentially leading to inaccurate goal
 982 localization. For example, as shown in Figure 5, the recognition of the clothes or the tv sometimes
 983 is challenging for MLLMs.

984 **D.2 FUTURE WORK**

985 **Incorporating diverse global map modalities:** To reduce the reliance on perfect pre-built maps,
 986 future work could explore using other forms of global information, such as architectural CAD draw-
 987 ings, hand-drawn sketches, etc.

988 **Integrating global reasoning with local semantic feedback:** A promising direction is to create a
 989 tighter loop between global planning and local perception. The MLLM could be invoked not just
 990 at the start but also when the agent encounters local semantic cues. This would allow the agent to
 991 re-reason and adapt its strategy mid-journey. Furthermore, this would develop interactive reasoning
 992 mechanisms where the agent can perform exploratory actions to resolve uncertainty about a potential
 993 target’s location, combining the strengths of both global foresight and local observation.

994 **E THE USE OF LARGE LANGUAGE MODELS (LLMs)**

995 This section discloses the extent to which LLMs were utilized as a general-purpose assistance tool
 996 in this research.

997 The use of LLMs in this work can be categorized into two main areas: academic writing and code
 998 generation.

999 For academic writing, LLMs were employed to enhance the clarity, conciseness, and grammatical
 1000 accuracy of the manuscript. This included tasks such as rephrasing sentences, improving the flow of
 1001 arguments, and ensuring consistent terminology throughout the paper.

1002 In terms of code generation, LLMs served as a supplementary tool to aid in the implementation of
 1003 certain algorithms and components of our proposed framework.

1004 It is important to note that while LLMs provided valuable assistance, the core research ideas, exper-
 1005 imental design, and the final interpretation of the results were conceived and executed entirely by
 1006 the authors.

1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025