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Abstract—Dynamic encirclement is a strategy employed to
maintain ongoing monitoring or neutralize a target by restricting
its range of movements. This paper proposes a novel approach
to handle finite-time dynamic encirclement problems for multi-
autonomous surface vehicle (ASV) systems. To be consistent with
the actual task scenarios, each ASV faces challenges such as
model uncertainties, unavailable velocities, saturated inputs, and
external disturbances. Specifically, a fuzzy logic system (FLS) is
utilized to approximate the nonlinear dynamics, and an adaptive
fuzzy state observer is designed to estimate the unavailable
velocities of the multi-ASV system. Next, a time-varying sliding
mode controller is developed based on a time-varying formation
function. In order to prevent singularity, the system is divided
into two zones. A terminal sliding mode controller and a linear
auxiliary sliding mode controller are assigned to each zone,
respectively. Then, by applying finite-time theory, the dynamic
encirclement issues of multi-ASV systems can be addressed within
a finite time. Finally, the effectiveness of the obtained results can
be verified by the Lyapunov theory and simulation examples
presented.

Index Terms—Finite-time dynamic encirclement, Time-varying
sliding mode control, Autonomous surface vehicle (ASV), Adap-
tive fuzzy state observer

I. INTRODUCTION

With advancements in control engineering, communication
capabilities, and maritime technology, formation control of
multi-autonomous surface vehicle (ASV) systems has garnered
considerable attention in recent years. Up to now, applications
in both the civilian and military domains employ formation
control of multi-ASV systems., including exploring marine
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resources, formation escort, executing transportation tasks, and
so on [1] [2].

In contrast to individual ASV, the multi-ASV system offers
advantages such as improved performance, task execution
efficiency, and reliability [3] [4]. Thus far, numerous formation
control methods have been presented in multi-ASV systems,
such as the artificial potential field method [5], the virtual
structure method [6], the leader-follower method [7] [8], and
so forth. In addition to these approaches, the combined leader-
follower within the graph theory approach has gained popu-
larity in recent years because the followers in the formation
can make their own decisions based on local information
exchanges. Although the leader-follower approach is desirable,
the formation configuration is fixed in the aforementioned
works. The flexibility of formation cannot satisfy the require-
ments in complicated scenarios, such as scenarios with static
or moving obstacles, narrow channels, and so on.

In order to overcome this limitation, many studies are
proposed to improve the diversity of formation configurations.
In [9], time-varying formation control is first introduced in
the field of unmanned aerial vehicles (UAVs). Unlike the
previously studies [3] [5] [7] [8], formation patterns can be
modified using time-varying formation functions. In [10], a
time-varying formation controller based on adaptive NNs is
designed for nonlinear multi-agent systems (MASs). However,
the research in [9] [10] was limited to UAVs and MASs. The
relevant results cannot be directly employed with multi-ASV
systems because of the external disturbances and the strong
nonlinearity of ASVs [11].

Flexible formation configurations are necessary for multi-
ASV systems to complete complicated working scenarios,
such as crossing narrow channels [12], avoiding obstacles
[13], executing dynamic encirclement tasks [14], and so on.



Specifically, dynamic encirclement is a significant strategy that
involves surrounding a target and employing encircling motion
to limit its movement, ultimately leading to its capture. For
a multi-ASV system, encircling and limiting its movement
enables a follower ASV team to monitor the target in real-
time. In [15], a distributed controller is developed to enable
the agents to move around the target. An estimator is designed
for each agent to identify the target by utilizing the bearing
measurements of both the agent and its surrounding agents. To
solve dynamic encirclement problems for multi-ASV systems,
the authors in [14] propose a time-varying formation con-
troller and feasible conditions. In addition, nonlinear dynamics
and actuator saturation are considered. In [16], an integrated
distributed guidance and a model-free control method are
presented to achieve target enclosing control. The cooperative
moving target enclosing and tracking problem is addressed
in [17] by a dynamic distributed control law for networked,
unicycle-type vehicles moving at constant linear velocities.
On the one hand, the above methods rely on the position
and velocity state information. However, most ASVs are not
capable of obtaining velocity state information in real-time. On
the other hand, the methods in [14] [16] [17] cannot guarantee
that the controlled object will achieve the control objective
within a finite time.

Motivated by the above discussions, this paper develops
a distributed time-varying formation sliding mode controller
to address finite-time dynamic encirclement issues for the
multi-ASV with unavailable velocity state information, sat-
urated inputs, and external disturbances. First, to estimate the
unavailable velocity state information by using position and
heading state information, an adaptive fuzzy state observer is
proposed based on the approximation of nonlinear dynamics
by utilizing the fuzzy logic system (FLS) [18] [19]. Second,
a novel distributed controller for the ASV team is designed
by combining finite-time theory with the time-varying sliding
mode control approach. Third, to be consistent with actual task
scenarios, saturated inputs are also considered due to the power
limitation of actuators. Finally, simulation results are presented
to demonstrate the efficiency of the proposed approach.

The primary contributions of this paper are listed as follows:
1) To address finite-time dynamic encirclement issues for

multi-ASV systems, a time-varying formation sliding mode
controller is developed based on a predefined time-varying
formation function. The formation patterns can be adjusted by
modifying this function.

2) By integrating the finite-time stability theory with the
time-varying formation sliding mode control approach, the
ASV team can achieve time-varying formation while dynam-
ically encircling the target within a finite time.

3) To be consistent with the actual situation, each ASV
faces unavailable velocities, saturated inputs, and external
disturbances. The nonlinear dynamics are approximated by
utilizing a FLS. After that, an adaptive fuzzy state observer
is designed to estimate the velocity state information from
the position and heading state information. Additionally, the
control inputs are restricted within a specific range by applying

a saturation function.
The rest of this paper is structured as follows: In Sec-

tion II, some preliminaries are presented, and a dynamic
encirclement movement description is given. In Section III,
an adaptive fuzzy state observer-based time-varying sliding
mode controller is developed. In addition, the effectiveness of
the developed controller is analyzed. In Section IV, a series of
simulation results and discussions are presented. The relevant
conclusions are introduced in Section V.

II. PRELIMINARIES

In this section, the finite-time stability theory is described.
The mathematical models of a ASV team and a target are
provided.

A. Basic Graph Theory

Denoted a directed graph as G = {N,E,A} to describe the
topology connection of a multi-ASV system communication
network. N = {1, 2, ..., n} is the set of nodes to represent
the n ASVs. E ⊆ N ×N is the set of edges to represent the
information transfer among all neighboring ASVs. A = [aij ] ∈
Rn×n is the adjacency matrix to represent the communication
quality between two neighboring ASVs. Besides, the neighbor-
hood set can be defined as Θi = {j ∈ N |(i, j) ∈ E}. If and
only if the information can be transformed from the jth ASV
to the ith ASV, the adjacency elements aij = 1 and aij = 0
for other cases. For a directed graph, the in-degree matrix is
denoted as D = diag{d1, d2, ..., dn} and the Laplacian matrix
ℓ can be expressed as

ℓ = [ℓij ] = D −A. (1)

Assumption 1: Consider the weakly linked network com-
posed of N + 1 ASVs. It means that there exists at least one
directed path from the target ASV to any ASVs in the ASV
team. Note that there is no directed path from any ASV in the
ASV team to the target ASV. In addition, the communication
relationship between all ASVs of the ASV team in remains
fixed.
L = {lij} is the normalized directed Laplacian matrix that

is expressed as

lij =


1, i = j, i ̸= 0

ℓij/ℓii, i ̸= j, i ̸= 0

0, otherwise,

(2)

where lij ∈ R(N+1)×(N+1), i = 1, 2, ..., n, j = 0, 1, ..., n.
ℓii =

∑
i ̸=j

aij and ℓij = −aij for i ̸= j. The subscripts

1, 2, ..., n are used to represent the ASV in an ASV team,
and the subscript 0 is used to represent the target ASV.

Remark 1: Since the target ASV cannot transform any
information to the ASV team, the Laplacian matrix L (2) can
be expressed as

L =

[
0 01×n

l1 l2

]
, (3)
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Fig. 1. A dynamic encirclement movement description.

where

l1 =

 l10
...
ln0

 , l2 =

 l11 · · · l1n
...

. . .
...

ln1 · · · lnn

 . (4)

B. Finite-Time Stability Theory

Let ∂Ω, Ω̄, and
◦
Ω represent the boundary, the closure, and

the interior of the set Ω ∈ Rn×1, respectively. ∥·∥∞ is the
norm of ℓ∞, V ′(x) is denoted as the Fréchet derivative of V
at x.

Then, the nonlinear dynamical system is considered as

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0 (5)

where x(t) ∈ Ω ⊆ Rn×1, t ≥ 0 represents the state vector.
The set Ω is open, 0 ∈ Ω, f(0) = 0, and the function f(·)
maintain continuity over Ω. With the initial condition x0 ∈ Ω,
we can instead represent the solution to (5) by qx0(t), t>0, or
by q(x0, t), t ≥ 0. Next, the following lemmas are necessary
for system analysis.

Lemma 1 ( [20]): Given (5), let Ω0 ⊂ Ω be a positively
invariant set. Ω0 is finite-time stable if it has an open neighbor-
hood Z ⊂ Ω and a settling-time function T : Z\Ω0 → (0,∞),
such that the following statements hold.

1) Lyapunov stability: For any open neighborhood Γ1 ⊆ Z
containing Ω0, there exists a smaller open neighborhood Γ2 ⊆
Γ1 of Ω0 such that for every x ∈ Γ2\Ω0, the trajectory q(x, t)
remains within Γ1 for all t ∈ [0, T (x)].

2) Finite-time convergence: q(x, t) is defined on
[0, T (x)), q(x, t) ∈ Z\Ω0 for all t ∈ [0, T (x)), and
lim

t→T (x)
dist(r(t, x),Ω0) = 0 for each x ∈ Z\Ω0.

Consequently, if Ω0 is finite-time stable with Z = Ω = Rn,
then it is globally finite-time stable.

Lemma 2 ( [8]): With respect to (5), let Ω0 ⊂ Ω be an
invariant set regard. Ω0 is finite-time stable if there exists a

continuously differentiable function V : Ω → R, along with
positive real numbers c and d ∈ (0, 1), such that V (x) = 0
for x ∈ Ω0 and V (x)>0 for x ∈ Ω\Ω0, and

V ′(x)f(x) ≤ −c(V (x))d, x ∈ Ω. (6)

Additionally, if T : Z → [0,∞) represents the setting-time
function and Z is defined as in Lemma 1, then

T (x0) ≤
1

c(1− d)
(V (x0))

1−d, x0 ∈ Z (7)

and T (·) is continuous on Z. Furthermore, Ω = Rn. If (5)
holds on Rn and V (·) is radially unbounded, then Ω0 is
globally finite-time stable.

This lemma outlines the sufficient conditions for a set that
is invariant to be finite-time stable.

C. The ASV Model formulation

A dynamic encirclement movement description is presented
in Fig 1. The kinematics and dynamics model of the ASV is
given as follows:

η̇(t) = R(ψ)w(t)

Iẇ(t) = −C ′(w)w(t)−D′(w)w(t)− δ′(t) + τ ′(t)
(8)

where η = [x, y, ψ]T represents the position and heading
state of the ASV in the earth-fixed reference coordinate,
w = [wx, wy, wz]

T denotes the velocity state of the ASV
in the body-fixed reference coordinate, τ ′ = [Fx, Fy, Tz]

T

denotes the control input, δ′ =
[
δ′x, δ

′
y, δ

′
z

]T
denotes the

external disturbance, R(ψ) represents the rotation matrix with
RT (ψ) = R−1(ψ), it can be expressed as follows:

R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 .



The system inertial matrix, denoted by I , is mostly based
on the mass of the ASV.

I = IT =

 m11 0 0
0 m22 m23

0 m32 m33

 .
The nonlinearity of the ASV dynamics model determines

both the Coriolis matrix, defined as C(w)T = C(w)−1, and
the hydrodynamic damping matrix, represented by D(w). The
following formulations describe C(w) and D(w):

C(w) =

 0 0 c13
0 0 c23

−c13 −c23 0


where c23 = m11wx, c13 = −m22wy − 1/2(m23 +m32)vz .
The hydrodynamic parameters are defined as X(·), Y(·), J(·).

D(w) =

 d11 0 0
0 d22 d23
0 d32 d33


where

d11(w) = −Xx −X|x|x −Xxxxw
2
x,

d22(w) = −Yy − Y|y|y |wy| − Y|z|y |wz|,
d23(w) = −Yz − Y|y|z |wy| − Y|z|z |wz|,
d32(w) = −Jy − J|y|y |wy| − J|z|y |wz|,
d33(w) = −Jz − J|y|z |wy| − J|z|z |wz|.

With R(ψ)w(t) = v(t), the dynamics model (8) of the ASV
can be expressed as

η̇(t) = v(t)

v̇(t) = δ(t) + τ(t) +D(v)v(t) + C(v)v(t)
(9)

where
δ(t) = −R(ψ)I−1δ′(t), τ(t) = R(ψ)I−1τ ′(t),
D(v)=Ṙ(ψ)R−1(ψ)−R(ψ)I−1D′(R−1(ψ)v)R−1(ψ),
C(v)=−R(ψ)I−1C ′(R−1(ψ)v)R−1(ψ).
Let C(v)v(t) +D(v)v(t) = f(η, v, t). Then, an ASV team

consisting of n ASVs with unavailable velocities and saturated
inputs is considered. The dynamics of an individual ASV are
expressed as

η̇i(t) = vi (t)

v̇i(t) = fi (ηi(t), vi(t), t) + δi(t) + τis(t)

i = 1, 2, ..., n

(10)

where vi = [vxi, vyi, vzi]
T denotes the unavailable velocity

state vector, δi = [δxi, δyi, δzi]
T denotes the external distur-

bances, τis = [τx, τy, τz]
T represents the saturated control

input and it can be described as

τis =

{
τis |τis| ≤ ζ

sign(τis)ζ |τis|>ζ
(11)

where ζ is the saturation boundary.
As previously mentioned, the target is denoted with a

subscript 0. The following describes the dynamics of the target
ASV:

η̇0(t) = v0 (t)

v̇0(t) = f0 (η0(t), v0(t), t)
(12)

where v0 denotes the velocity state, η0 represents the position
state, and f0 denotes a limited unknown function.

III. ADAPTIVE FUZZY STATE OBSERVER BASED SLIDING
MODE CONTROLLER DESIGN

An adaptive fuzzy state observer-based sliding mode con-
troller for multi-ASV systems is designed in this section.
The effectiveness of the designed observer and controller is
validated by utilizing the Lyapunov theory.

A. Fuzzy logic system

Lemma 3: For any given continuous function f(x) defined
on a compact set ∇. It can be approximated by a FLS with
the approximation error σ:

sup
x∈∇

|f(x)−W ∗Φ(x)| ≤ σ (13)

where W ∗ = [W ∗
1 ,W

∗
2 , ...,W

∗
m]T is the ideal weighted vector,

and satisfies ∥W ∗∥ ≤ W̄ with W̄>0 being an unknown
constant, σ is assumed as a constant, the number of fuzzy
rules is denoted as m.

Φi(x) = exp[
−(xi − µi)

T
(xi − µi)

ϕ2i
] (14)

where Φi(x) is the Gaussian function, ϕ and µi are the width
and center vector of the Gaussian function, respectively.

B. Fuzzy State Observer Design

Based on the excellent approximation ability of the FLS,
the state observer is designed by

˙̂ηi(t) = v̂i(t) + k1(ηi(t)− η̂i(t))

˙̂vi(t) = Ŵi
T
Φi(v̂i) + k2(ηi(t)− η̂i(t)) + δi(t) + τis(t)

(15)
where η̂i = [x̂i, ŷi, ψ̂i]

T and v̂i = [v̂xi, v̂yi, v̂zi] denote
the position and velocity state information obtained by the
designed state observer, k1 and k2 are positive gain matrices.

System (10) is equivalent to

η̇i(t) = vi(t)

v̇i(t) = f(η̂i, v̂i, t) + ∆fi + τis(t) + δi(t)
(16)

where f(η, v, t) = f(η̂, v̂, t) + ∆f .
Define the observer errors as η̃i(t) = ηi(t) − η̂i(t) and

ṽi(t) = vi(t) − v̂i(t). Then, the error dynamics of the ith
ASV can be expressed as:

˙̃ηi(t) = ṽ(t)− k1(ηi(t)− η̂i(t))

˙̃vi(t) = f(η̂, v̂, t) + ∆fi − Ŵi
T
Φi(v̂i)− k2(ηi(t)− η̂i(t)).

(17)
A fuzzy logic system (FLS) can be used to approximate the

nonlinear function term f(η̂, ŵ, t) as follows

f(η̂, v̂, t) =W ∗T
i Φi(v̂i) + σ. (18)

Taking (24) into (23), one has obtained

˙̃ηi(t) = ṽ(t)− k1(ηi(t)− η̂i(t))

˙̃vi(t) = W̃i
T
Φi(v̂i) + σi +∆fi − k2(ηi(t)− η̂i(t)).

(19)



Differential (15) yields

¨̂ηi(t) = τis(t) + Ŵi
T
Φi(v̂i) + δi(t) + k2η̃i(t)

+ k1ṽ(t)− k1
2η̃i(t).

(20)

For sake of simplification, let θ̂i(t) = [η̂Ti (t), v̂
T
i (t)]

T ,
θ̃i(t) = [η̃Ti (t), ṽ

T
i (t)]

T , one has:

˙̃
θi(t) = Aiθ̃i(t) +Hi(W̃i

T
Φi(v̂) + σ +∆f) (21)

where Ai =

[
−k1
−k2

1
0

]
, Hi = [0, 1]T .

In addition, if the components are chosen correctly, Ai can
be a stringent Hurwitz matrix. Currently, a positive definite
matrix Pi exists, making it

Ai
TPi + PiAi = −Qi (22)

where Qi is a positive definite matrix.
Theorem 1: By a given adaptive fuzzy state observer, if the

adaptive law satisfies

˙̂
Wi = Λi

[
Φi(v̂i)θ̃i − αiŴi

]
(23)

where Λ and α are both positive constants. The corresponding
state observing errors θ̃i are uniformly ultimately bounded
(UUB).

Proof: The considered Lyapunov function is

Vi0(t) =
1

2
θ̃Ti Piθ̃i +

1

2
W̃T

i Λ−1
i W̃i. (24)

Differential (24), one has get

V̇i0(t) =
1

2
θ̃Ti

(
AT

i Pi + PiAi

)
θ̃i + W̃T

i Λ−1
i

˙̂
Wi

+ θ̃Ti PiHi(W̃
T
i Φi(v̂i) + σi +∆fi

= −1

2
θ̃Ti Qiθ̃i + W̃T

i Λ−1
i

˙̂
Wi

+ θ̃Ti PiHi(W̃
T
i Φi(v̂i) + σi +∆fi).

(25)

By substituting the adaptive law (23), (25) can be rewritten
as

V̇i0(t) =− 1

2
θ̃Ti Qiθ̃i + W̃T

i Φi(v̂i)θ̃i − αiW̃
T
i Ŵi

+ θ̃Ti PiHi(W̃
T
i Φi(v̂i) + σi +∆fi).

(26)

Applying Young’s inequality yields

θ̃Ti PiHiσi ≤
1

2

∥∥∥θ̃i∥∥∥2 + 1

2
∥Pi∥2 ∥σi∥2 (27)

θ̃Ti PiHi∆fi ≤
1

2

∥∥∥θ̃i∥∥∥2 + 1

2
∥Pi∥2 ∥∆fi∥2 (28)

−αiW̃
T
i Ŵi ≤ −

αi

∥∥∥W̃i

∥∥∥2
2

+
αi ∥W ∗

i ∥
2

2
(29)

θ̃Ti PiHiW̃
T
i Φi(v̂i) ≤

1

2

∥∥∥θ̃i∥∥∥2 + 1

2
∥Pi∥2 W̃T

i W̃i (30)

W̃T
i Φi(v̂i)θ̃i ≤

1

2

∥∥∥W̃i

∥∥∥2 + 1

2

∥∥∥θ̃i∥∥∥2 (31)

Taking (27)-(31) into (26), it can be rewritten as follows

V̇i0(t) ≤ −λ0
∥∥∥θ̃i∥∥∥2 + 1

2
(∥Pi∥2 − αi + 1)

∥∥∥W̃i

∥∥∥2 + U0

(32)
where λ0 = 1

2 (λmin(Q) − 5), U0 =
αi∥W∗

i ∥2

2 +
1
2 ∥Pi∥2 (∥σi∥2 + ∥∆fi∥2).

Definition 1: In this paper, the ASV team with unavailable
velocities (15) is required to achieve time-varying formation
while encircling the target. Therefore, the time-varying forma-
tion tracking errors are defined as

ei(t) = η̂i(t)− hi(t)− ηj(t)

(i = 1, 2, ..., n, j = 0, 1, ..., n, i ̸= j, h0(t) = 0)
(33)

where h(t) represents the time-varying formation function of
the ASV team corresponding to position and heading state.

Furthermore, with respect to the ith ASV, the generalized
error state is defined as:

ri(t) = η̂i(t) +
ℓij
ℓii

∑
[η̂j(t) + hi(t)− hj(t)]

(i = 1, 2, ..., n, j = 0, 1, ..., n, i ̸= j, h0(t) = 0).
(34)

Lemma 4: The normalized Laplacian matrix (3) and the
generalized error state (34) are considered. If ri(t) converges
to zero, ei(t) converges to zero. It means that dynamic
encirclement is achieved.

Taking the second-order differentiation of (34) with respect
to time yields the following equation:

r̈i(t) = ¨̂ηi(t) +
ℓij
ℓii

∑[
¨̂ηj(t) + ḧi(t)− ḧj(t)

]
= τis(t) + Ŵi

T
Φi(v̂i) + (k2 − k21)η̃i(t) + k1ṽ(t)

+
ℓij
ℓii

∑[
¨̂ηj(t) + ḧi(t)− ḧj(t)

]
+ δi(t).

(35)

The corresponding sliding mode vector function is defined
as

si(ri, ṙi) = ṙi(t) +KiFi(ri)|ri|
1
2 , (ri, ṙi) ∈ R3 ×R3 (36)

where
Ki = diag(Ki1,Ki2,Ki3), Kip>0, p = 1, 2, 3, i =

1, 2, ..., n,
Fi(ri) = diag(sign(ri1), sign(ri2), sign(ri3)), rip ∈ R,

p = 1, 2, 3, i = 1, 2, ..., n.
|ri|1/2 = [|r1|1/2, |r2|1/2, |r3|1/2]T .
After that, the null space of si is the definition of the ith

sliding surface, that is,

Si(ri, ṙi) =
{
(ri, ṙi) ∈ R3 ×R3, si(ri, ṙi) = 0

}
. (37)

With (35) and (36), the time-varying terminal sliding mode
controller is given by

τis(t) = −Ŵi
T
Φi(v̂i)− (k2 − k21)η̃i(t)− k1ṽ(t)

− ℓij
ℓii

∑[
¨̂ηj(t) + ḧi(t)− ḧj(t)

]
− 1

2
Kizi(ri, ṙi)−Bisign(si(ri, ṙi))

(i = 1, 2, ..., n, j = 0, 1, ..., n, j ̸= i, h0(t) = 0)

(38)



where
(ri, ṙi) ∈Mi, Mi is a set, zi(·, ·) is bounded,
Mi =

{
(ri, ṙi) ∈ R3×1 ×R3×1 : ∥zi(ri, ṙi)∥∞ ≤ λi

}
,

zi(ri, ṙi) =
[
ṙi1 |ri1|−1/2

, ṙi2 |ri2|−1/2
, ṙi3 |ri3|−1/2

]T
,

λi = ∥Ki∥∞ + γi (γi>0),

sign(si(ri, ṙi)) =

 sign(si1(ri, ṙi))
sign(si2(ri, ṙi))
sign(si3(ri, ṙi)),

 ,
Bi = diag(Bi1, Bi2, Bi3), Bip ∈ R, i = 1, 2, ..., n, p =

1, 2, 3.
The terminal sliding mode controller is bounded because

zi(·, ·) is bounded. The necessary requirements for Mi to be
positively invariant with respect to (35) are presented in the
following lemma.

Lemma 5 ( [5]): Consider the generalized error dynamics
(35) with the terminal sliding mode controller (38), if Bip

satisfy

Bip = βip + sup
(z,ṙ,t)∈R3n×R3n×R

∥δi(t)∥∞, (39)

with

βip>
λ2i − kipλi

2
>0 (40)

then the Mi is positively invariant regard to (35).
Notice that the singularity issue of the terminal sliding mode

controller is led by (ri, ṙi) → 0, zi (ri, ṙi) → ∞. To avoid this
issue, the above lemma is presented.

Next, to avoid the singularity problem, an auxiliary sliding
surface Sia is designed with the corresponding controller
under the initial conditions (ri, ṙi) ∈ Rn ×Rn\Mi. The
auxiliary vector is designed as

sia(ri, ṙi) = ṙi(t), (ri, ṙi) ∈ R3 ×R3. (41)

Then, the relevant sliding surface can be defined as

Sia(ri, ṙi) =
{
(ri, ṙi) ∈ R3 ×R3, sia(ri, ṙi) = 0

}
. (42)

Applying (35) and (41) as a basis, the auxiliary sliding mode
controller is proposed as

τisa(t) = −Ŵi
T
Φi(v̂i)− (k2 − k21)η̃i(t)− k1ṽ(t)

− ℓij
ℓii

∑[
¨̂ηj(t) + ḧi(t)− ḧj(t)

]
−Biasign(sia(ri, ṙi))

(i = 1, 2, ..., n, j = 0, 1, ..., n, j ̸= i, h0(t) = 0)

(43)

where (ri, ṙi) /∈ Mi, Bia = diag(Bi1a, Bi2a, Bi3a), Bipa ∈
R, i = 1, 2, ..., n, p = 1, 2, 3. Similarly,

Bipa = βipa + sup
(z,ṙ,t)∈R3n×R3n×R

∥δi(t)∥∞, (44)

where βipa>0, and

sign(sia(ri, ṙi)) =

 sign(si1a(ri, ṙi))
sign(si2a(ri, ṙi))
sign(si3a(ri, ṙi))

 .
Remark 2: The state space of the system is divided into two

regions as there is a singularity issue. The terminal sliding
mode controller (38) corresponds to the nonsingular region,
and the auxiliary sliding mode controller (43) corresponds to
the singular region.

Theorem 2: Consider the terminal sliding mode controller
(38) and the auxiliary sliding mode controller (43) for an ASV
team (15) and a target (12). The time-varying formation of the
ASV team can be achieved while encircling the target within
a finite time. The error states (ri, ṙi) can be converged to the
origin within a finite time.

Proof: First, under the (ri, ṙi) /∈ Mi condition, a Lya-
punov function candidate is designed as

Vi(sia(ri, ṙi)) =
1

2
sTia(ri, ṙi)sia(ri, ṙi), (ri, ṙi) /∈Mi. (45)

Take the time differential of (45), together with (41) and
(43), one has obtained:

V̇i(sia(ri, ṙi)) = sTia(ri, ṙi)ṡia(ri, ṙi)

= sTia(ri, ṙi)z̈i(t)

= sTia(ri, ṙi)(τisa(t) + Ŵi
T
Φi(v̂i)

+
ℓij
ℓii

∑[
¨̂ηj(t) + ḧi(t)− ḧj(t)

]
+ (k2 − k21)η̃i(t) + k1ṽ(t) + δi(t)).

(46)

Substituting (43) into the above equation yields

V̇i(t) = sTia(ri, ṙi)(−Biasign(sia(ri, ṙi)) + δi(t))

≤ −
3∑

p=1

βipa |sipa(ri, ṙi)|

≤ −
3∑

p=1

min
p=1,2,3

{βipa} |sipa(ri, ṙi)|

≤ − min
p=1,2,3

{βipa} ∥ṙi∥1

≤ −
√
2 min
p=1,2,3

{βipa}V
1
2
i (sia(ri, ṙi))

(ri, ṙi) /∈ Mi, i = 1, 2, ..., n.

(47)

From the Lemma 2, we can get the trajectories (ri, ṙi) /∈
Mi will converge and remain in Sia(ri, ṙi) within a finite
time.Then, for the case (ri, ṙi) ∈ Mi, a Lyapunov candidate
function is considered as

Vi1(t) =
1

2
sTi (ri, ṙi)si(ri, ṙi), (ri, ṙi) ∈Mi. (48)



Taking the time differential of Vi1(t) yields

V̇i1(t) = sTi (ri, ṙi)ṡi(ri, ṙi)

= sTi (ri, ṙi)(z̈i(t) +
1

2
Kizi(ri, ṙi))

= sTi (ri, ṙi)(τis(t) + Ŵi
T
Φi(v̂i) + (k2 − k21)η̃i(t)

+ k1ṽ(t) +
ℓij
ℓii

∑[
¨̂ηj(t) + ḧi(t)− ḧj(t)

]
+

1

2
Kizi(ri, ṙi) + δi(t)).

(49)
Substitute (38) into (49), one has obtained

V̇i1(t) = sTi (ri, ṙi)(−Bisign(si(ri, ṙi)) + δi(t))

≤ −
3∑

p=1

βip |sip(ri, ṙi)|

≤ −
3∑

p=1

min
p=1,2,3

{βip} |sip(ri, ṙi)|

≤ − min
p=1,2,3

{βip} ∥ṙi∥1

≤ −
√
2 min
p=1,2,3

{βip}V
1
2
i (si(ri, ṙi))

(ri, ṙi) ∈ Mi, i = 1, 2, ..., n.

(50)

From the Lemma 2, we can get the trajectories of (ri, ṙi) ∈
Mi will converge to Si(ri, ṙi) and stay on this surface within
a finite time. To sum up, the error states (ri, ṙi) are able
to converge to the sliding surface and remain there within a
finite time, regardless of the beginning states. Additionally, as
indicated by (36), while on the sliding surface Si, the dynamics
of the closed-loop error are described by

ṙi(t) = −KiFi(ri)|ri|
1
2 , ri ∈ Si. (51)

Then, the Lyapunov function is considered as

Vi(ri) = ∥ri∥1. (52)

Taking the time differential of Vi(ri) yields:

V̇i(ri) =

3∑
p=1

sign(rip)ṙip

= −
3∑

p=1

kip |rip|
1
2

≤ −
∥∥K−1

i

∥∥−1

∞ (Vi(ri))
1
2

ri ∈ Si, i = 1, 2, ..., n

(53)

Based on Lemma 2 with Ω0 = {0}, the error states (51) can
converge to zero within a finite time. To sum up, according to
Lemma 4, the ASV team can achieve the encircle motion and
predefined time-varying formation within a finite time.

TABLE I
THE PARAMETERS OF EACH ASV

Elements Values Elements Values Elements Values
Iz 1.70 Y|z|z -2.00 J|y|z -4.00
Yz 0.10 J|y|y 5.00 Jẑ -1.00
xg 0.04 Y|y|y -36.00 J|z|z -4.00

Xxxx -5.80 Jy 0.10 Yż -0.00
Xx -0.72 Y|y|z 2.00 Xẋ -2.00
Yy -0.86 Jz -6.00 Jẏ -0.00

X|x|x -1.30 Y|z|y -3.00 Yẏ -10.00

IV. SIMULATION EXAMPLE

According to the specifications detailed in [5], it is assumed
that the parameters of all ASVs in this simulation are uniform.
The parameters are shown in Table I. This simulation example
reproduces the strategy scenario of dynamic encirclement for
the multi-ASV system to test the proposed approach. Finally,
the efficiency of the developed time-varying sliding mode
controller under saturated actuators and unavailable velocity
state information is validated by the simulation results.

In this numerical simulation, an ASV team consisting
of four ASVs and a Target ASV are considered. The ini-
tial states of the target ASV at 0s are set as η0(0) =
[0, 2, π/4]T , v0(0) = [3,−3, 0]T . The initial states of the
ASV team include η1(0) = [−5, 5, π/4]T , v1(0) = [1, 1, 0]T ,
η2(0) = [−5, 10,−π/4]T , v2(0) = [1, 0.5, 0.25]T , η3(0) =
[−5, 0, π/2]T , v3(0) = [0.5, 1,−0.3]T , η4(0) = [−5,−5, 0]T ,
v4(0) = [1, 0.5, 0.2]T . The preset time-varying formation
function is given by:

hi(t) =

 5 cos(0.1t+ 2π(i− 1)/4)
5 sin(0.1t+ 2π(i− 1)/4)

0.1

 .
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Fig. 2. Trajectories of the ASV team and one target.

The controller parameter Ki is set as Ki = diag(3, 3, 3)
and the control gains are set as Bi = Bia = diag(2, 2, 2).



The gain matrix of the adaptive fuzzy state observer is set as
k1 = 5, k2 = 10. The adaptive law parameters of a FLS are
set as Λi = 3, αi = 2. The directed Laplacian matrix L is
given by

L =


0 0 0 0 0
− 1

4 1 − 1
4 − 1

4 − 1
4

− 1
4 − 1

4 1 − 1
4 − 1

4
− 1

4 − 1
4 − 1

4 1 − 1
4

− 1
4 − 1

4 − 1
4 − 1

4 1

 . (54)

Fig. 2 shows the trajectories of the ASV team and the target
ASV. The ASV team completed the dynamic encirclement
of the target ASV while also achieving the time-varying
formation. Besides, the four sets of ASVs in Fig. 2 represent
the positions between the ASV team and the target ASV at
0s, 30s, 60s, and 80s, respectively. By observing the three
connected markers, it can be indicated that the predefined time-
varying formation is a rotating quadrilateral.
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Fig. 3. A comparison of the estimated velocities and actual velocities of ASV
1 and ASV 2.
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Fig. 4. A comparison of the estimated velocities and actual velocities of ASV
3 and ASV 4.

Since this paper considers the case of unmeasurable veloc-
ities, an adaptive fuzzy state observer is implemented. Fig. 3
and Fig. 4 compare the observed and actual velocities of each
ASV to demonstrate the capability of the developed adaptive
fuzzy state observer. At the beginning, the observed velocities
for all four ASVs are zero. Gradually, the observed velocity
curves align closely with the actual velocity curves. The state
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Fig. 5. The observation error of the velocities.

Fig. 6. The generalized error states.

observer capability for ASV 1 and ASV 2 is shown in Fig. 3,
while that for ASV 3 and ASV 4 is indicated in Fig. 4. It can
be illustrated that, even with unknown initial velocities, the
observer quickly estimates the actual velocities within a short
time.

Fig. 5 shows the observation error of the velocities estimated
by the designed observer. It can be indicated that the velocity
estimation errors eventually converge to zero. Together with
Fig. 3 and Fig. 4, the efficiency of the developed adaptive
fuzzy state observer is demonstrated in situations where ve-
locity is not measurable.

The generalized error states are shown in Fig. 6. As shown
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Fig. 7. Saturated inputs of the ASV team.



in the figure, the generalized error states of the ASV team,
despite unmeasured velocity states, saturated inputs, and ex-
ternal disturbances, ultimately converge to zero within a finite
time under the designed sliding mode controller.

Fig. 7 indicates the control inputs calculated by the de-
veloped time-varying sliding mode controller. Notice that the
dashed lines represent the saturated limits of the control inputs,
and the real lines represent the saturated control inputs. The
control inputs are limited by

−50N ≤ τx ≤ 50N

−50N ≤ τy ≤ 50N

−50N ·m ≤ τz ≤ 50N ·m.
(55)

V. CONCLUSION

The finite-time dynamic encirclement issues are investigated
for multi-ASV systems with unavailable velocities using time-
varying sliding mode control in this paper. The multi-ASV
system suffers from saturated inputs and external disturbances.
First, the nonlinear dynamics are approximated by a FLS,
and an adaptive fuzzy state observer is developed to estimate
the ASVs velocities. In addition, the effectiveness of the
developed state observer is verified using Lyapunov stability
theory. Then, based on the finite-time theory, a distributed
time-varying formation sliding mode controller is proposed
to achieve encircle motion and time-varying formation within
a finite time. Finally, Lyapunov theory is utilized to verify
the stability of the closed-loop system. A series of simulation
examples are presented to demonstrate the efficiency of the
developed finite-time dynamic encirclement approach.
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