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ABSTRACT

Trustworthy machine learning necessitates meticulous regulation of model reliance on non-robust
features. We propose a framework to delineate such features by attributing model predictions to the
input. Within our framework, robust feature attributions exhibit a certain consistency, while non-
robust feature attributions are susceptible to fluctuations. This feature behavior leads to the identi-
fication of correlation between model reliance on non-robust features and smoothness of marginal
density of the input samples. Hence, we propose to regularize the gradients of the marginal density
w.r.t. the input features for robustness. We also devise an efficient implementation of our regulariza-
tion to address the potential numerical instability of the underlying optimization process. Moreover,
we analytically reveal that, as opposed to our marginal density smoothing, the commonly adopted
input gradient regularization smooths conditional or joint density of the input, resulting in limited
robustness. Our experiments validate the effectiveness of the proposed method, providing clear ev-
idence of mitigating spurious correlations learned by the model, and addressing the feature leakage
problem. We demonstrate that our regularization enables the model to exhibit robustness against
perturbations in pixel values, input gradients and density.

1 INTRODUCTION

Research on mitigating model reliance on non-robust input features has recently gained increasing attention due to
high-stake machine learning applications (Rudin, 2019; Grathwohl et al., 2020; Srinivas & Fleuret, 2021; Dombrowski
et al., 2022). In this paper, we advance this direction by introducing a regularization technique that promotes a smooth
marginal probability density function of the input to regulate the model’s reliance on non-robust features.

To distinguish between robust and non-robust features, we leverage the notion of attributions (Zeiler & Fergus, 2014;
Fong & Vedaldi, 2017; Sundararajan et al., 2017). For a model f parameterized by θ, attributions characterize the
importance of the i-th feature xi of the input x for the model prediction by quantifying the output change between
f(x; θ) and f(x[xi=0]; θ). Since robust input features contribute to model predictions equally well across slight con-
dition variations, their attributions exhibit a certain consistency. On the other hand, non-robust feature attributions
fluctuate under such variations. This identifies a correlation between the model’s reliance on the non-robust features
and the smoothness of the marginal probability density function of the input sample pθ(x). For robustness, this offers
a possibility of model regularization using the gradients of the marginal density with respect to the input ∇xpθ(x).
Regularizing ∇xpθ(x) can encourage the model to prioritize the use of robust features and regulate its reliance on
non-robust features. However, this can also lead to numerical instability in model optimization. To address that, we
further introduce a stable and efficient implementation to estimate the gradient of the marginal density.

We also investigate input gradient norm regularization (Drucker & LeCun, 1992; Ross et al., 2017; Ross & Doshi-
Velez, 2018) and reveal that input gradients can be interpreted as input gradients of the log-conditional density
∇xlog pθ(x|y) or log-joint density ∇xlog pθ(x, y). Input gradient regularization mitigates the model’s reliance on
non-robust features specific to the class label y = i, leading to model blindness to class-specific non-robust fea-
tures where y ̸= i. In contrast, our regularization encourages smoothness of the marginal density pθ(x) without
imposing unintended constraints, providing a comprehensive regularization of the non-robust features. In Figure 1,
we employ attribution maps (Shrikumar et al., 2017) and insertion game scores (Petsiuk et al., 2018) to compare the
robustness of vanilla models, input gradient regularized models and the models trained with our regularization on
BlockMNIST (Shah et al., 2021) and CelebA (Liu et al., 2015) datasets. As the representative examples show, our
regularization suppresses both feature leakage and feature spurious correlation, leading to better explainability.
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Figure 1: Attribution maps (Shrikumar et al., 2017) and insertion game scores (Petsiuk et al., 2018) for representative
samples from (a) BlockMNIST and (b) CelebA datasets. As compared to input gradient regularization, our regulariza-
tion leads to lower feature leakage while also achieving higher AUC for the insertion game.

The effectiveness of our approach is extensively established through a series of experiments. First, using BlockMNIST
dataset (Shah et al., 2021), we demonstrate that the model trained with our regularization considerably mitigates
the problem of feature leakage. This problem occurs when a model wrongly attributes importance to irrelevant but
persistent features in the data to make its predictions, e.g., the null block (⊠) in Figure 1. Addressing feature leakage
suppresses spurious correlation between the input features and model predictions (Sagawa et al., 2019; Adebayo et al.,
2020). Our experiments on CelebA and Waterbirds datasets (Wah et al., 2011; Liu et al., 2015; Sagawa et al., 2019)
affirm a significant reduction of this spurious correlation with the proposed regularization. We also establish the
robustness of models trained with our regularization against perturbations from adversarial attacks (Goodfellow et al.,
2015; Madry et al., 2018), input pixels (Samek et al., 2017) and input density, demonstrating the broad applicability
of our approach. Our main contributions are summarized as follows.

1. We identify robust and non-robust features by leveraging attributions, and establish the correlation between model
reliance on non-robust features and the smoothness of data marginal density.

2. We propose an efficient technique for regularizing the gradients of log data density, also addressing the numerical
instability of the underlying optimization problem.

3. Through extensive experiments, we demonstrate the effectiveness of the proposed regularization. We also establish
that our approach exhibits general robustness against perturbations.

2 RELATED WORK

Regularization for Interpretability Robustness: Current deep neural networks lack interpretability in their decision-
making process, which is exacerbated by their reliance on non-robust input features. It was demonstrated in (Dom-
browski et al., 2019; Zhang et al., 2020) that gradients of the input can be manipulated, which compromises the
reliability of predictions. Shah et al. (2021) identified that a standard trained model may rely on non-informative
input features, while Adebayo et al. (2020; 2022) showed that deep networks are prone to relying on spurious corre-
lated features. To address that, several regularization techniques are proposed to improve the model’s interpretability.
In (Schramowski et al., 2020; Erion et al., 2021), the authors incorporated prior knowledge into the model training
process to regularize the model behavior. Dombrowski et al. (2019; 2022) found that regularizing the input Hessian
using SoftPlus activations or weight decay can boost resilience against manipulated inputs. In addition, Grathwohl
et al. (2020) trained a joint energy-based model as a discriminative model for improved robustness. Srinivas and
Fleurent (Srinivas & Fleuret, 2021) enhanced the interpretability of the model by improving the alignment between
the implicit density model and the data distribution.

Regularization for Adversarial Robustness: In addition to the other sources of prediction unreliability, adversarial
attacks can manipulate model outputs with imperceptible perturbations to inputs (Goodfellow et al., 2015; Madry
et al., 2018). To address this, adversarial training through data augmentation with adversarial samples is widely
employed (Carlini & Wagner, 2017; Madry et al., 2018; Shafahi et al., 2019). Certified adversarial robustness through
regularizations (Ross & Doshi-Velez, 2018; Simon-Gabriel et al., 2019; Anil et al., 2019) is another branch of methods
to defend against the adversarial perturbations. Inspired by the classic double backpropagation (Drucker & LeCun,
1992), Ross & Doshi-Velez (2018) regularized the input gradient norm for adversarial robustness. In their method,
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the Frobenius norm of the Jacobian w.r.t. input is included in the training loss. Etmann (2019) further explored the
different variants of double backpropagation regularizations for various real-world scenarios. Moosavi-Dezfooli et al.
(2019) also proposed regularization to encourage a low curvature for adversarial robustness.

Attribution Methods: Feature attribution methods are used to estimate the importance of input features for a model’s
prediction and can be categorized as either back-propagation-based or perturbation-based techniques. The former
(Simonyan et al., 2014; Sundararajan et al., 2017; Erion et al., 2021) estimate the attribution scores by computing the
gradients or integrated gradients with respect to the input features in the backward propagation process. Perturbation-
based methods (Zeiler & Fergus, 2014; Fong & Vedaldi, 2017; Zintgraf et al., 2017) calculate the attribution scores by
repeatedly perturbing the input features and analyzing the resulting effects on the model prediction. These methods
are also extended for evaluating the reliability of the computed attributions (Samek et al., 2017; Petsiuk et al., 2018;
Ancona et al., 2018). Our work leverages the attribution framework to distinguish between robust and non-robust
features, which enables us to systematically analyze the robustness of input features.

3 ROBUST AND NON-ROBUST FEATURES BY ATTRIBUTIONS

We first provide a framework for distinguishing between robust and non-robust features by analyzing feature attribu-
tions. Herein, attribution inconsistencies among the features with distinct degrees of robustness identifies a correlation
between the model’s reliance on non-robust features and the smoothness of output logits.

Let us consider an input sample x ∈ Rn with label y ∈ Rc from a dataset D, and a classifier f : Rn → Rc

parameterized by θ. We denote robust and non-robust features within the input x as xrob, xnrob ⊆ x. Consider
an attribution method ϕ : Rc → Rn attributing model predictions to input features by estimating their importance,
resulting in an attribution map M = ϕ(f(x; θ)). Inspired by the success of attribution methods in model explanation,
we identify robust and non-robust features by leveraging their attributions.

Without loss of generality, we assume that attributions M of the features can be estimated by calculating the change in
output logits when these features are removed from the input, following perturbation-based methods (Zeiler & Fergus,
2014; Ribeiro et al., 2016): Mxrob

= f(x; θ)− f(x[xrob=0]; θ) and Mxnrob
= f(x; θ)− f(x[xnrob=0]; θ). For the ease

of understanding, we use f(xnrob; θ) and f(xrob; θ) to represent attributions Mrob and Mnrob in the text to follow.
We define robust features within the attribution framework as follows.

Definition 1. A feature xfeat shared among different input instances under its domain ∆xfeat
is robust if, for a

randomly chosen class y = i, its attribution Mxfeat
is bounded by a small constant h under a metric c(·), i.e.,

c(f(xfeat; θ)− f(x̃feat; θ)) ≤ h : x̃feat ∈ ∆xfeat
.

Existence of a robust features is expected to contribute consistently to the model’s prediction across different input
samples. Non-robust features, on the other hand, are those that contribute to the prediction score inconsistently or
only under specific conditions. Our focus here is on distinguishing between robust and non-robust features, without
specifying a particular metric. Definition 1 emphasizes on attribution consistency for robust features rather than
attribution positivity, thereby allowing for robust features that can also make a negative contribution to the model’s
prediction. Building further upon the above definition, we make the following remark.
Remark 1. Robust features are largely condition-invariant in that they retain similar attributions despite slight
changes to the input. In contrast, non-robust features are condition-specific in that their attributions either vary
drastically with slightly varying input conditions, or behave robustly only under specific conditions.

In classification, robust features exhibit stable behavior across the input space, which is observable through consistent
output logits f(xrob; θ) regardless of the class y or specific input instance. In contrast, non-robust features rely on
specific conditions to exhibit a particular behavior tailored to a specific class y = i or the input instance. Robust
modeling aims for a stronger reliance of prediction on robust features. Due to the consistency of output logits f(x; θ)
for robust features, a smooth f(x; θ) ensures a positive step towards this objective.

4 REGULARIZING THE GRADIENTS OF MARGINAL DENSITY

Here, we establish the correlation between model robustness and the gradients of input marginal density. Then, a robust
regularization is proposed for regulating model reliance on non-robust features by smoothing the marginal density.

We commence our analytical analysis with probability density, following Bridle (1990). Given a class y = i, a joint
probability density function over the input with the output logit fi(x; θ) is defined as

pθ(x, y = i) = efi(x;θ)/Zθ, (1)
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where the constant Zθ =
∫
efi(x;θ)dx is the partition function. Zθ normalizes the input x to a probability density

by integrating over all possible input points x in the input space via the model f . By applying Bayes’ rule, we
eliminate the condition y = i, resulting in the marginal density being defined solely on the input x: pθ(x) = pθ(y =
i, x)/pθ(y = i|x). The conditional density function pθ(y = i|x) can be further defined as

pθ(y = i|x) = efi(x;θ)/Zf(x;θ), (2)

where Zf(x;θ) =
∑C

i=1 e
fi(x;θ) is the partition function for the output logits fi(x; θ) defined on all the C classes. For

the simplicity of notation, we use Zf(x) to represent Zf(x;θ) in the subsequent discussion. Exploiting the symmetry
property of the joint density defined in Equation 1, i.e., pθ(x, y = i) = pθ(y = i, x), the marginal density pθ(x) can
be expressed as

pθ(x) =
efi(x;θ)/Zθ

efi(x;θ)/Zf(x)

=
Zf(x)

Zθ
, (3)

As Remark 1 implies, smoothness of output logits encourages the use of robust features by the model. Hence, we
consider the marginal density pθ(x) defined on output logits f(x; θ) across the input space. Promoting a small gradient
of the marginal density with respect to the input x, denoted as ∇xpθ(x), contributes to the smoothness of output logits.
Thus, a positive correlation can be established between the use of robust features and the smoothness of the probability
marginal density pθ(x). In particular, the smooth output logits of robust features across input samples suggest that
these features will have small gradients of the density pθ(x) with respect to the input values. On the other hand, non-
robust features with fluctuating output logits and resulting large gradients of the density will be suppressed during the
training process. Therefore, we can conclude with the following remark.

Remark 2. Model reliance on non-robust features xnrob can be regulated by regularizing the gradients of the marginal
density pθ(x) with respect to x, and this regularization is achieved through optimizing the model parameters θ∗.

In the light of Remark 2, we proposed a regularization term for minimizing the gradients of marginal density. However,
computing the gradients of the marginal density ∇xpθ(x) is not feasible because the partition function defined on
the entire input space is intractable. We instead compute the gradients with respect to the log-density to avoid the
estimation of the intractable Zθ. This is possible because Zθ only depends on the model parameter θ and not the input
x. Specifically, we compute the gradients with respect to the log-density as ∇xlog pθ(x) = ∇xlog Zf(x)−∇xlog Zθ =

∇xlog Zf(x). Expanding the partition function Zf(x), we obtain ∇xlog pθ(x) =
∑C

i=1 ∇xe
fi(x;θ)/

∑C
i=1 e

fi(x;θ).
The p-norm of this gradient is then computed as the regularization term. In the optimization process, the goal is to find
the optimal parameter θ∗ by minimizing the loss ℓ as

θ∗ = min
θ

ℓ(f(x; θ), y) + λ||
∑C

i=1 ∇xe
fi(x;θ)∑C

i=1 e
fi(x;θ)

||p, (4)

where λ indicates the magnitude of the coefficient for controlling the strength of the regularization.

To regulate model reliance on non-robust features, our regularization encourages the smoothness of marginal density
by regularizing its gradients. Since the output logit change in the log-marginal density log pθ(x) = log Zf(x)−log Zθ,
and Zθ is independent of the input x, we can only focus on the first term Zf(x) =

∑C
i=1 e

fi(x;θ). Recall, our definition
of robust features. Assuming the robust input feature xrob exists in a random input x, the corresponding output logit
fi(xrob) will consistently attribute to the model prediction. This property of xrob leads to the smoothness of output
change

∑C
i=1 e

fi(xrob;θ) across different input samples and class labels.

In contrast, non-robust input features xnrob show relatively high attributions for the output logit fi(xnrob) for given a
class y = i. However, they cannot maintain consistency in attributions across different inputs or labels, leading to the
fluctuation in the output change

∑C
i=1 e

fi(xnrob;θ). It is demonstrated that the magnitude of gradients for input features
in the marginal density pθ(x) reflects the model’s sensitivity to those features. We leverage this relation to mitigate
model reliance on the non-robust features by smoothing the marginal density of the input samples.

5 STABLE AND EFFICIENT IMPLEMENTATION FOR REGULARIZATION

From the implementation perspective, the gradient computation of marginal density involves multiple exponen-
tial operations in both the numerator and denominator of Equation 4 which can introduce numerical instability
in the optimization process, leading to gradient vanishing and explosion problems. Such issues can potentially
hinder the application of our regularization to large non-linear models or wide-distribution data. For instance,
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(a) Numurical Stability. (b) Training Efficiency.

Figure 2: Numerical stability and training efficiency com-
parison of ResNet-34 trained on CIFAR-10 dataset.

batch normalization (BN) (Ioffe & Szegedy, 2015) layer
solving internal covariate shifts with learnable scaling
and shifting parameters can amplify the errors caused
by the exponential operations during the backpropaga-
tion, leading to gradient vanishing or explosion. Fig-
ure 2(a) shows the L2 norm change of input gradients as
the number of training iterations increases for ResNet-
34. Two implementations, corresponding to yellow and
red lines, for minimizing the gradients of the marginal
density cause gradient vanishing and explosion in the
training process. Therefore, it is crucial to address these
through careful implementation to ensure the feasibility
of our regularization.

To address this challenge, we transform the computation from the summation of exponential operations to softmax. By
subtracting a constant value η from the logits before exponentiation, softmax can prevent numerical overflow during
the exponential operations (i.e., efi(x;θ)/

∑
j e

fj(x;θ) = efi(x;θ)−η/
∑

j e
fj(x;θ)−η). Thus, we incorporate the softmax

function into the computation of log density gradient ∇xlogzf(x) as

∇xlogzf(x) = ∇xfi(x; θ)−∇x(loge
fi(x;θ) − logzf(x))

= ∇xfi(x; θ)−∇x(log(fi(x; θ)/zf(x))),
(5)

where fi(x) indicates a logit of a random i-th class, and zf(x) equals
∑

j e
fj(x;θ). Thus, the gradients with respect to

the log-marginal density pθ(x) can be replaced by computing the difference between the gradient ∇xfi(x; θ) and the
gradient of a log-softmax output ∇xlog(e

fi(x;θ)/Zf(x)).

Our technique improves upon the common approach (Bridle, 1989; Blanchard et al., 2021) to achieve numeri-
cal stability in log exponential sum calculations, which typically employs the formula log(

∑
i∈{1,...,n} e

xi) =

η + log(
∑

i∈{1,...,n} e
xi−η), with η being the maximum value of inputs {x1, . . . , xn}. We address the numerical

instability by employing softmax, avoiding computationally expensive comparisons of the maximum gradient values.
Specifically, the basic stable implementation involves finding the maximum gradient within the gradients of various
classes, leading to a time complexity of O(n), where n represents the number of classes. In contrast, our method
eliminates numerical instabilities associated with a randomly selected class, eliminating the need for maximum value
comparisons and leading to a more favorable time complexity of O(1).

While our solution helps avoid numerical instability, it requires twice the gradient computations as compared to the
sole calculation of density gradients. Hence, we further propose an efficient mechanism for estimating the difference
in the gradients. Specifically, we compute the gradients of the difference between two outputs to approximate the
difference between the two gradients of outputs using Taylor series as

∇xfi(x; θ)−∇xlog(e
fi(x;θ)/Zf(x)) ≈ ∇x(fi(x; θ)− log(efi(x;θ)/Zf(x))). (6)

The proof of Equation 6 is provided in Appendix A.1. As such, the proposed approach enables stable and efficient
model optimization. The blue curve in Figure 2(a) shows that our efficient implementation can effectively avoid
numerical instability in the gradient computation. Figure 2(b) provides a comparison of training efficiency between the
basic implementation with numerical stability and our two implementations. It is evident that our method substantially
improves the per-epoch training time.

6 LIMITED ROBUSTNESS IN INPUT GRADIENT REGULARIZATION

Input gradient regularization (InputGrad Reg.) (LeCun et al., 1998; Ross & Doshi-Velez, 2018) computes the Frobe-
nius norm of input gradients ||∇xfi(x; θ)||F for a given class label y = i, which is a baseline robust regularization for
model optimization. Existing works (LeCun et al., 1998; Ross et al., 2017; Ross & Doshi-Velez, 2018) explain Input-
Grad Reg. as the prediction stability to gain robustness against perturbations. In this section, we reveal that the input
gradient norm potentially regularizes the gradients of implicit data density. Moreover, we provide an understanding of
how InputGrad Reg. encourages robustness as well as its limitations.
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Suppose all the classes have equal probability, i.e., pθ(y = i) = 1/C. We can express the class-conditional density
pθ(x|y) by using Bayes’s rule as

pθ(x|y = i) =
pθ(x, y = i)

pθ(y = i)
=

efi(x;θ)

Zθ/C
. (7)

Now, we compute the gradients of the log density defined in Equation 7 with respect to the input x as

∇xlog pθ(x, y = i) = ∇xlog pθ(x|y = i) = ∇xfi(x; θ). (8)

Thus, Equation 8 demonstrates that the input gradients can be interpreted as the gradients of either the log joint density
or the log conditional density with respect to the input x.

To simplify the expression, we consider the exponential of the output logits, i.e., efi(x;θ). This formulation highlights
that InputGrad Reg. encourages consistent attributions of input features for the model’s predictions. However, it is
important to note that the condition y = i in this context refers to the label of the input x in InputGrad Reg. The
regularization is assumed under the specific condition y = i, which limits its effectiveness in resolving inconsistencies
when predicting a different class y = j, where j ̸= i.

Although input features consistently contribute to the model’s prediction under a given class, InputGrad Reg. fails to
consider inconsistent attributions of these features across different classes, thereby allowing model non-robust behavior
to exist. Consequently, a model trained with input gradient regularization may exhibit spurious robustness relying on
specific conditions.
Remark 3. Input gradient regularization smooths the joint and conditional density of the input x under a specific
label y = i, compromising its ability to resist the class-specific non-robust features.

In contrast to the existing contributions (Ross & Doshi-Velez, 2018; Srinivas & Fleuret, 2021) that highlight the reasons
of InputGrad Reg. efficacy, we reveal a weakness of this technique. Unlike regularizing gradients based on joint or
conditional densities, our approach allows for more effective regularization without imposing the condition y = i. Our
method focuses on regularizing the gradients of the marginal density ∇xpθ(x), thereby smoothing the output logits
across the input samples.

7 EXPERIMENTS

We perform extensive experiments to validate the efficacy of our regularization and the newly established correlation
between the smooth marginal density and model reliance on non-robust features. We present measurement results
for two applications to demonstrate the robustness of models trained with our regularization. Firstly, we evaluate our
method on the BlockMNIST dataset (Shah et al., 2021) and observe significant suppression of the model’s reliance
on non-robust features. This dataset allows for a controlled and straightforward robustness assessment, allowing a
faithful analysis of different methods in terms of their robustness. Moreover, we extend our analysis to natural images
and investigate the mitigation of spurious correlations (Sagawa et al., 2019). Our regularization technique effectively
mitigates spurious correlations learned by the models on both CelebA and WaterBrid datasets (Liu et al., 2015; Wah
et al., 2011; Zhou et al., 2017; Sagawa et al., 2019), demonstrating its effectiveness in handling real-world scenarios.
In addition to these specific applications, more quantitative tests on the robustness against perturbations in input pixels,
gradients and density (Samek et al., 2017; Srinivas & Fleuret, 2021) demonstrate the desirability of our regularization.
More details about the datasets and the models used in our experiments can be found in Appendix A.8.

7.1 EFFICACY AGAINST FEATURE LEAKAGE AND ADVERSARIAL ATTACKS

In Shah et al. (2021); Adebayo et al. (2020), it is demonstrated that deep models also end up assigning importance to
irrelevant input features. The issue is mitigated in adversarially trained models due to their better interpretabilty. Here,
we extend the analysis of (Shah et al., 2021) on the topic. Shah et al. (2021) used BlockMNIST in their experiments,
which is a synthetic dataset extended from MNIST (LeCun et al., 1998). To each MNIST sample, BlockMNIST
attaches a null block (an irrelevant pattern) randomly at the top or bottom of the image. Representative samples of
BlockMNIST are shown in Figure 3(a). Shah et al. (2021) observed that the explaining tool InputGrad (Simonyan
et al., 2014) attributes importance to both the informative number block and the uninformative null block in the
standard trained model. This phenomenon is termed as feature leakage by the authors.

Reproducibility and Quantitative Measurement of Feature Leakage. Owing to the unreliability of InputGrad
caused by model saturation (Shrikumar et al., 2017), we employ Integrated Gradients (IG) (Sundararajan et al., 2017),
an axiomatic model explanation tool, to re-investigate the feature leakage phenomenon. In Figure 3(b)-(c), we show
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(a) Input samples of BlockMNIST

(b) Integrated Gradients on 

standard trained model 

(c) Integrated Gradients on 

adversarially trained model 

Figure 3: BlockMNIST samples and feature leakage
problem. (a) BlockMNIST randomly appends a null
block at the top or bottom of MNIST samples. (b&c)
Attribution maps are calculated by IG on the standard
and adversarially trained models.

the attributions computed by IG for both the standard and
adversarially trained models given the input samples in Fig-
ure 3(a). Originally, Shah et al. (2021) showed that the in-
formative pattern of the number could be leaked to the null
block regions by observing attributions computed by Input
Gradients. In contrast, IG can reproduce the leakage problem
but confines the attributions within the null block. We em-
ploy explanations provided by IG to serve as the basis for our
subsequent analysis, given its higher reliability compared to
Input Gradients. Feature leakage, an important phenomenon
in the context of model robustness, lacks a quantitative met-
ric in the current literature to quantify its extent. We use at-
tributions to define the metric Mleakage to address the gap.
Mathematically,

Mleakage = E
xnrob∼D

||xnrob×
∫ 1

α=0

∂f(α · xnrob; θ))

∂xnrob
dα||F ,

(9)
where α indicates the step from the absence to the presence
of the input features, and xnrob represents the non-robust fea-
tures in the null block. Since the attributions of xnrob for the
model’s prediction are expected to be zero, estimating the at-
tribution norm can be used to measure the leakage of features.

Robustness against Feature Leakage. Table 1 presents the experimental results on the BlockMNIST dataset. We
compare our method with other robust regularizations and techniques including InputGrad (Ross & Doshi-Velez,
2018), SoftPlus activations (Dombrowski et al., 2019) and Hessian (Dombrowski et al., 2022). InputGrad and Hessian
regularize the first-order and second-order gradients w.r.t. the input. Models trained with SoftPlus activations and
Hessian regularization fail to suppress the leakage problem, which indicates that feature leakage is not caused by the
geometry of the model output manifold or high curvature (Dombrowski et al., 2019; Zhang et al., 2020). InputGrad
regularization demonstrates robustness against both L2 and L∞ adversarial attacks, yet it still fails to address the
leakage problem. The result aligns well with Remark 3 which highlights the allowance of non-robust features across
different classes in InputGrad regularization. These results further reveal that adversarial robustness is not a sufficient
condition for suppressing feature leakage. Our method demonstrates a considerable improvement over other tech-
niques for feature leakage, while maintaining superiority in adversarial robustness. In our experiments, we take the L2

norm for all compared regularization terms for a fair comparison. It is worth noting that our use feature of attribution
enables us to select different normalizations for feature sparsity in various data distributions. By exploring optimal
normalization, our regularization enables a more favorable trade-off for model robustness. Additional experiments
with different norms are provided in Appendix A.2.

Table 1: Experimental results on BlockMNIST. Standard accuracy, feature leakage, and adversarial accuracy under L2

and L∞ attacks are reported. ST: Standard Training, AT: Adversarial Training.

Method Feature Leakage ↓ PGD-20 (L2) ↑ PGD-20 (L∞) ↑ Accuracy ↑
AT-FGSM 3.324 87.48 0.00 99.02
AT-PGD 2.313 92.75 28.05 98.97
ST 3.657 73.57 0.00 99.12
ST + SoftPlus Activations 3.533 67.95 0.02 98.52
ST + Hessian Reg. 4.258 80.06 0.00 98.48
ST + InputGrad Reg. 3.461 83.46 21.14 94.56
ST + Our Reg. 2.259 85.41 29.36 93.05

Feature Leakage in Adversarially Trained Model. The FGSM adversarially trained model (Goodfellow et al., 2015)
augments the training samples by adversarial examples x+ ϵ · sign(∇xfi(x; θ)). Notably minimizing the loss of the
perturbed input x+ ϵ · sign(∇xfi(x; θ)) is similar to the InputGrad regularization. Thus, training with FGSM is still
limited in its ability to suppress the leakage problem. On the other hand, PGD attack (Madry et al., 2018) weakens the
effect of the given condition y = i by iteratively searching for the perturbations from a random starting point, leading
to a substantial enhancement in suppressing feature leakage.
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Figure 4: Performance comparison between our method and InputGrad regularization under varying regularization
coefficient for (a) Feature leakage, (b)-(c) Adversarial Accuracy under L∞ and L2 PGD-20 attacks, and (d) Accuracy.

Magnitude of Coefficient for Regularization. Figure 4(a)-(d) present a comparison of results for feature leakage and
adversarial accuracy under L∞ and L2 PGD attacks, as well as the standard accuracy across varying magnitudes of
the coefficient for the regularization strength. The results affirm that our method effectively regulates feature leakage
by imposing a penalty on non-robust features. Moreover, our regularization enables the model to defend against both
L2 and L∞ attacks while maintaining high accuracy, showing an outstanding trade-off across four criteria. More
adversarial robustness comparisons on CIFAR dataset (Krizhevsky et al., 2009) are also reported in Appendix A.3.

7.2 EFFICACY FOR SPURIOUS CORRELATION

Label: Blond hair

Spur. Feat.: Female

Accuracy: 92.1%

Label: Dark hair

Spur. Feat.: Male

Accuracy: 99.7%

Label: Blond hair

Spur. Feat.: Male

Accuracy: 23.6%

Common training samples: Test sample:

Figure 5: Spurious correlation in ResNet-34
trained on CelebA dataset. The model fails to clas-
sify the male celebrity (spurious correlated feature)
with blond hair (target label).

Recent research has highlighted the susceptibility of neural mod-
els in learning spurious correlations that enhance performance
on training samples but fail to generalize (Buolamwini & Ge-
bru, 2018; Sagawa et al., 2019; Adebayo et al., 2020). For in-
stance, in CelebA dataset (Liu et al., 2015), which commonly
consists of samples containing female celebrities with blond
hair and male celebrities with dark hair, models heavily rely
on the spurious correlated gender feature to predict the target
hair color (Hashimoto et al., 2018; Sagawa et al., 2019). Conse-
quently, accuracy tends to be lower for samples containing male
celebrities with blond hair, see Figure 5.

To mitigate spurious correlations, distributional robust optimiza-
tion (DRO) techniques have been proposed to re-weight the train-
ing loss of input samples from different groups (Hu et al., 2018;
Sagawa et al., 2019). In our regularization, an additional penalty is imposed to penalize the model’s reliance on these
spurious correlated features because of their inconsistent attributions. This encourages the use of robust features while
suppressing the model’s reliance on the spurious correlated features. Although quantitatively evaluating the model’s
robustness on natural images remains challenging, the attribution map (Sundararajan et al., 2017) and the insertion
game (Petsiuk et al., 2018) demonstrate the effectiveness of our regularization in suppressing the use of the spurious
correlated gender feature and promoting the use of the robust hair feature, as shown in Figure 1(b). This superiority
leads to performance improvements on worst-case samples in the model trained with our regularization.

Table 2 presents comparison of accuracy on worst-group samples and overall samples from the CelebA and Waterbirds
datasets (Liu et al., 2015; Sagawa et al., 2019). The Waterbirds dataset consists of synthetic bird images from CUB-
200-2011 (Wah et al., 2011) and Places (Zhou et al., 2017) datasets, incorporating spurious background features, such
as land and water scenes, to confuse true labels of bird categories. We compare the proposed regularization method
with InputGrad and Score-Matching regularizations (Srinivas & Fleuret, 2021), as well as Group DRO (Sagawa et al.,
2019). Score-Matching regularization is proposed to enhance the interpretability of the model by improving the
alignment of implicit density models. Experimental results clearly demonstrate the effectiveness of our method in
enhancing worst-group accuracy while maintaining overall sample accuracy. Furthermore, the performance gains can
be further enhanced by incorporating our regularization technique into Group DRO. This enhancement highlights the
applicability and effectiveness of our regularization technique in real-world scenario applications. More results of attri-
bution maps and corresponding insertion games on both CelebA and Waterbirds datasets are reported in Appendix A.7.
Moreover, out-of-distribution detection Hendrycks & Gimpel (2016) is also performed on CIFAR (Krizhevsky et al.,
2009) and SVHN (Netzer et al., 2011) in Appendix A.4.
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Table 2: Worst-group accuracy and overall accuracy comparisons between Vanilla ResNet-34, group DRO, Score-
Matching, InputGrad and our regularization on CelebA and Waterbirds datasets.

Method Worst-Group Accuracy (%) Overall Accuracy (%)

CelebA Waterbirds CelebA Waterbirds
Vanilla Model 49.90 ± 8.69 62.90 ± 0.10 94.90 ± 0.39 87.70 ± 0.08

Group DRO 59.44 ± 5.98 63.60 ± 0.17 94.96 ± 0.21 87.60 ± 0.05

Score-Matching Reg. 59.78 ± 7.56 58.19 ± 1.55 93.46 ± 0.71 85.64 ± 0.38

InputGrad Reg. 82.66 ± 3.63 58.18 ± 1.22 92.12 ± 2.18 85.50 ± 0.27

Our Reg. 85.62 ± 5.36 63.78 ± 2.83 92.30 ± 1.38 86.48 ± 0.38

Group DRO + Our Reg. 82.98 ± 4.69 73.82 ± 2.27 93.62 ± 0.74 90.52 ± 0.17

K% most and least salient pixels K% most and least salient pixels Standard Devia�on Standard Devia�on

(a) Pixel Perturbation on CIFAR-10 and CIFAR-100. (b) Robustness of Gradients and Density.

Σ

Figure 6: Robustness comparison. (a) Pixel perturbation experimental results on ResNet-18 trained on CIFAR-10
and CIFAR-100. Higher curves indicate better results. (b) Robustness of relative gradients and absolute density on
CIFAR-10. Lower curves indicate better results.

7.3 EFFICACY FOR PERTURBATION IN PIXELS, GRADIENTS AND DENSITY

In this part, we employ pixel perturbation (Samek et al., 2017; Yang et al., 2023) to quantitatively compare the robust-
ness of different models following Srinivas & Fleuret (2021) who iteratively removed the most and least important
input pixels identified by attribution maps for model robustness evaluation (Zeiler & Fergus, 2014; Sundararajan et al.,
2017). Robust models are expected to exhibit increased sensitivity when removing the most important pixels and
decreased sensitivity when removing the least important ones. We assess the difference in fractional output logit
change between the images with the top and bottom k% most salient pixels using SmoothGrad (Smilkov et al., 2017)
on ResNet-18 (He et al., 2016) trained on CIFAR-10 and CIFAR-100 (Krizhevsky et al., 2009), as depicted in Fig-
ure 6(a). It can be observed that the model trained with our regularization significantly outperforms different robust
regularizations including Score-Matching, InputGrad and CURE regularizations (Moosavi-Dezfooli et al., 2019).

We also test the robustness of the relative input gradients ||∇xf(x+ δ; θ)−∇xf(x; θ)||2/||∇xf(x; θ)||2 and the ab-
solute density through

∑C
i=1 e

fi(x+δ;θ)−fi(x;θ) on the input with Gaussian noise δ in increasing standard deviation on
CIFAR-10 dataset, as shown in Figure 6(b). We can observe that our regularization can achieve competitive robustness
for the relative gradient in comparison with regularizing the hessian norm in CURE. Moreover, our regularization nat-
urally leads to density robustness, which is associated with a strong generative ability of models (Srinivas & Fleuret,
2021). More robustness tests on CIFAR-100 are provided in Appendix A.5. Appendix A.6 further supports visu-
alization examples calculated by activation optimization. These results affirm that our regularization improves both
discriminative and generative abilities of models.

8 CONCLUSION

In this paper, we define robust and non-robust features from a feature attribution perspective, and establish a correlation
between the smoothness of input marginal density and model reliance on non-robust features. This connection moti-
vates us to propose a regularization that targets the gradients of the marginal density, aiming to regulate the reliance
on non-robust features. Extensive experiments demonstrate the effectiveness of our regularization in boosting model
robustness across different applications. It is essential to note that our approach does not advocate for the complete
removal of model reliance on non-robust features, but instead seeks to achieve a balance between model performance
and robustness through appropriate regularization strength.
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SOCIETAL IMPACT

Accurate attribution of features in a trained model helps reduce bias and inaccuracy by enabling a deeper understanding
of how the model arrives at its predictions. By identifying the most influential features, we can assess their potential
biases and correct them during model training. This process allows us to prioritize relevant information while reducing
the impact of biased or irrelevant features, leading to fairer and more accurate predictions. Additionally, accurate
feature attribution aids in interpreting the model’s decisions, making it easier to detect and address potential biases,
improve transparency, and ensure the model’s robustness against adversarial attacks or data drift.

REPRODUCIBILITY STATEMENT

The implementation code for our regularization method is provided in the supplementary material. Furthermore,
detailed information regarding the experimental setup, including datasets, models, the experimental platform, and
corresponding hyperparameter choices, can be found in Appendix A.8.
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A.1 PROOF

In this section, we provide proof of our proposed approach for estimating the gradient difference using the gradients
of the output difference.

Proof of Equation 7. Assuming that two functions, f and g, are continuously differentiable with respect to x ∈ Rn,
we can express them using their Taylor series expansions, as

f(x) = f(a) + f ′(a)(x− a) + o((x− a)2), (10)

and
g(x) = g(a) + g′(a)(x− a) + o((x− a)2). (11)

By subtracting Equation 11 from Equation 10, we have

f(x)− g(x) = f(a)− g(a) + (f ′(a)− g′(a))(x− a) + o((x− a)2). (12)

Next, we compute the gradients of both sides of Equation 12 with respect to x as

∇x(f(x)− g(x)) = f ′(a)− g′(a) + o((x− a)3). (13)

Then, we can set x = a in Equation 13 as

∇a(f(a)− g(a)) ≈ f ′(a)− g′(a). (14)

Since we have assumed that f and g are differentiable, we can estimate the difference between the gradients of the two
functions as the gradient of the difference between the functions as

∇x(f(x)− g(x)) ≈ ∇xf(x)−∇xg(x). (15)

Since the model fθ parameterized with θ is assumed as continuously differentiable, we can substitute the model output
logit fi(x; θ) and log-softmax output logit log( e

fi(x;θ)

Zf(x)
) into the functions f and g in Equation 15 as

∇xfi(x; θ)−∇xlog(
efi(x;θ)

Zf(x)
) ≈ ∇x(fi(x; θ)− log(

efi(x;θ)

Zf(x)
)). (16)

Thus, the gradients of the difference between two outputs can be used to approximate the difference between the two
gradients of the outputs.

A.2 NORM AND IMPLEMENTATION COMPARISON

In this section, we evaluate the impact of different norms and implementations on our regularizations.

Firstly, we investigate the effect of different p-norm values on our regularization approach. Given a variable p ∈ R,
p-norm of input x ∈ Rn is defined as

||x||p = (|x1|p + |x2|p + · · ·+ |xn|p)1/p. (17)

The Lp norm allows us to measure the magnitude of a vector using different p values. Different p values exhibit
different properties. Smaller p values promote sparsity, while larger p values emphasize the maximum value. Hence,
selecting an appropriate p value that strikes a balance between these characteristics is crucial when applying the
regularization method to models. In Figure 7, we test the effect of p norm values from p = 1.2 to p = 2.8 on models
using our regularization with two regularization coefficients λ = 0.1 and λ = 0.2 on BlockMNIST (Shah et al., 2021).
In Figure 7(a), lower p values effectively suppress feature leakage, indicating that encouraging sparse features reduces
reliance on non-informative features. In Figure 7(b) and Figure 7(c), larger p values lead to enhanced adversarial
robustness and higher accuracy, suggesting that models are susceptible to perturbations caused by large gradients. The
results reveal that models are easily perturbed from large gradients. The results demonstrate that our regularization
enables models to regulate their reliance on non-robust features by adjusting the norm value p and regularization
coefficient λ. In our experiments, we employ p = 2 for all regularizations to ensure a fair comparison. However,
exploring alternative norms in addition to the p norm is expected to further enhance robustness.
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Figure 7: Results of feature leakage, adversarial accuracy (%) and standard accuracy (%) under different p-norm
values. (a) Smaller p-norm values lead to better results in suppressing the feature leakage problem. Lower curves
indicate better results. (b-c) Larger p-norm values lead to enhanced adversarial robustness and higher accuracy.
Higher curves indicate better results.

More experimental results are presented to compare the three implementations of our regularization method on the
BlockMNIST dataset. Table 3 shows the results for three different models: MLP, VGG11 (Simonyan & Zisserman,
2015), and ResNet-18. Experimental results of models trained with our regularization, including variations with stable
and efficient implementations are reported. For MLP models, we observe that both the stable implementation and the
efficient implementation of our method achieve outstanding performance compared to the original implementation.
This demonstrates the effectiveness of our proposed alternative implementations in enhancing the robustness and
performance of MLPs. However, when applied to VGG11 and ResNet-18 models, our regularization compromises
their robustness in terms of feature leakage and vulnerability to adversarial perturbations. It can be also observed that
ResNet-18, which contains batch normalization (BN) layers (Ioffe & Szegedy, 2015), exhibits additional performance
degradation. This is because BN layers not only introduce the non-linearity operation in the model but also compute
gradients with respect to a batch of input samples. This can lead to inaccuracies in the computation of the density
gradients. Nevertheless, our implementation still demonstrates robustness compared to the vanilla model and the model
using InputGrad regularization. These results suggest that finding a more effective approach to address numerical
stability issues and extend the robustness of our regularization method from small to large models is a promising
direction for future work.

Table 3: Experimental results on BlockMNIST. Feature leakage, standard accuracy (%) and adversarial accuracy (%)
under L2 PGD-20 threat models are reported.

Method Feature Leakage ↓ Adv. Accuracy ↑ Accuracy ↑
MLP 3.657 73.57 99.12
MLP + InputGrad Reg. 3.461 83.46 94.56
MLP + Our Reg. (Stable & Efficient) 2.483 84.36 94.22
MLP + Our Reg. (Stable) 2.289 85.71 93.45
MLP + Our Reg. 2.259 85.41 93.05
VGG11 3.418 79.54 99.18
VGG11 + InputGrad Reg. 3.792 84.72 97.35
VGG11 + Our Reg. (Stable & Efficient) 2.899 87.79 97.74
VGG11 + Our Reg. (Stable) 2.878 84.75 96.63
ResNet-18 4.113 39.46 99.48
ResNet-18 + InputGrad Reg. 3.969 89.69 97.94
ResNet-18 + Our Reg. (Stable & Efficient) 3.408 86.67 96.29
ResNet-18 + Our Reg. (Stable) 3.057 89.93 99.16
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Table 4: Adversarial robustness comparison on ResNet-18. Adversarial accuracy (%) of the standard trained model
(ST) and models with various regularizations under PGD-20 L2 attack, along with the standard accuracy (%), are
reported.

Method Accuracy ||ϵ||2 = 0.1 ||ϵ||2 = 0.3 ||ϵ||2 = 0.5
ST 58.62 37.40 11.54 4.92
ST + Score-Matching Reg. 56.66 39.78 13.88 5.29
ST + InputGrad Reg. 57.94 40.94 14.88 5.70
ST + Our Reg. 58.62 47.03 26.76 15.19

Table 5: Adversarial robustness comparison on ResNet-18. Adversarial accuracy (%) of the standard trained model
(ST) and models with various regularizations under PGD-20 L∞ attack are reported.

Method ||ϵ||∞ = 1/255 ||ϵ||∞ = 2/255 ||ϵ||∞ = 3/255
ST 29.06 11.13 4.35
ST + Score-Matching Reg. 30.05 12.85 4.85
ST + InputGrad Reg. 30.95 13.49 5.16
ST + Our Reg. 41.10 26.02 13.38

A.3 ADVERSARIAL ROBUSTNESS COMPARISON

In this section, we present additional results for the comparison of adversarial robustness. Specifically, we evaluate the
performance of ResNet-18 (He et al., 2016) trained on the CIFAR-100 dataset (Krizhevsky et al., 2009), considering
both standard accuracy and adversarial accuracy with the varying perturbation budget ϵ. In Table 4 and Table 5, a
comprehensive comparison of the adversarial robustness for different models is presented. The first table shows the
performance under L2 adversarial PGD-20 (Madry et al., 2018) attacks, while the second table focuses on the mod-
els’ performance under L∞ attacks. We compare the standard trained model and three robust models trained with
Score-Matching regularization (Srinivas & Fleuret, 2021), InputGrad regularization (Ancona et al., 2018), and our
proposed method. Our results clearly demonstrate the superiority of models trained with our regularization technique.
The performance gap is significant, indicating that our approach outperforms the other methods in terms of adver-
sarial robustness under both L∞ and L2 attacks. These experimental findings provide compelling evidence that our
regularization technique effectively enhances the model’s robustness to adversarial attacks.

A.4 OUT-OF-DISTRIBUTION DETECTION

Out-of-distribution (OOD) detection (Hendrycks & Gimpel, 2016; Liang et al., 2017; Grathwohl et al., 2020) is a
binary classification problem that aims to identify samples that do not belong to the in-distribution dataset. A robust
model is expected to generate discriminative outputs capable of distinguishing between samples from in-distribution
and out-of-distribution data. In this section, we evaluate the performance of models trained with robust regularizations
in detecting OOD samples. To assess the performance of OOD detection in models, we employ the area under the
receiver-operating curve (AUROC) as the metric, following the recommendation by Hendrycks & Gimpel (2016).

Table 6 presents the OOD detection results obtained using ResNet-18 trained on the CIFAR-10 dataset (Krizhevsky
et al., 2009). In our experiments, we employ the ResNet-18 models trained with different regularizations to detect
out-of-distribution samples from both CIFAR-100 and SVHN (Netzer et al., 2011) datasets. The results include the
output logits f(x; θ) as well as the output logit fi(x; θ) for a specific label y = i. Results of both our regularization
and the corresponding efficient implementation are reported. The results clearly demonstrate that our regularization
technique, as well as the proposed efficient approach, significantly enhances the model’s performance in detecting out-
of-distribution samples. Our approach achieves high accuracy and demonstrates the model’s capability to effectively
discriminate between in-distribution and out-of-distribution samples.
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Table 6: AUROC results for OOD detection on ResNet-18. Models with different regularizations trained on CIFAR-10
are employed to detect the out-of-distribution samples from CIFAR-100 and SVHN datasets. Both output logit f(x; θ)
and output logit fi(x; θ) for a specific label y = i are compared.

Method CIFAR-100 SVHN

fi(x; θ) f(x; θ) fi(x; θ) f(x; θ)
Vanilla Model 0.218 0.511 0.163 0.531
Score-Matching Reg. 0.203 0.523 0.322 0.496
InputGrad Reg. 0.345 0.538 0.419 0.570
Our Reg. 0.372 0.557 0.339 0.570
Our Reg. (Efficient) 0.378 0.554 0.470 0.590

(a) Relative Gradient Robustness.

Σ

(b) Relative Density Robustness.

Figure 8: Robustness comparison against perturbation in input gradients and density on ResNet-18 trained on CIFAR-
100. (a)-(b) Relative gradient robustness and relative density robustness against uniform noise with increasing devia-
tion are shown respectively. Lower curves indicate better results.

A.5 ROBUSTNESS AGAINST INPUT GRADIENT AND DENSITY PERTURBATIONS

In this section, we present additional results regarding the robustness of models against Gaussian noise δ with the
increasing standard deviation in both input gradients and density on the CIFAR-100 dataset. We compare the robust-
ness of the vanilla ResNet-18 model and models trained with three regularizations: Score-Matching regularization,
InputGrad regularization and our proposed regularization. Figure 8(a) shows the relative gradient robustness, denoted
as ||∇xf(x+ δ; θ)−∇xf(x; θ)||2/||∇xf(x; θ)||2. We can observe that our proposed regularization method not only
achieves comparable results but also surpasses other methods by a significant margin. In Figure 8(b), we present the
robustness comparison of the relative density through

∑C
i=1 e

f(x+δ;θ)/ef(x;θ). Notably, our regularization technique
leads to a high level of robustness against perturbations in density. The ability to maintain relative density robustness
is closely associated with the strong generative capabilities of the models. Moreover, more visualization results by
maximizing the activations are provided in Appendix A.6.

A.6 ACTIVATION VISUALIZATION

In this section, we present visualization samples generated by applying gradient ascent on random inputs. We com-
pare the visualization results of different regularizations on both WideResNet-28 (Zagoruyko & Komodakis, 2016) and
ResNet-18 models trained on CIFAR-10 and CIFAR-100 respectively. Figure 9 displays the visualization results for
WideResNet-28, while Figure 10 presents the results for ResNet-18. The visualization results obtained from the model
using our regularization exhibit reduced noise and present more interpretable patterns. The improvement in visualiza-
tion quality serves as evidence that our technique enhances the interpretability of the underlying features learned by
the models. Our method is effective in enhancing the interpretability and clarity of the learned representations. The
reduction of noise and the emergence of more interpretable patterns contribute to a better understanding of the model’s
decision-making process and aid in capturing relevant features for the respective classes.
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(a) WideResNet-28
(b) WideResNet-28 with 

InputGrad Reg.

(c) WideResNet-28 with 

Score-Matching Reg.

(d) WideResNet-28 with 

Our Reg.

Figure 9: Visualization samples are generated by applying gradient ascent on random inputs using WideResNet-28
trained on CIFAR-10. The visualization results show nine different classes in CIFAR-10. Our method demonstrates
superior performance by exhibiting reduced noise and more interpretable patterns in the visualization results.

(a) ResNet-18
(b) ResNet-18 with 

InputGrad Reg.

(c) ResNet-18 with 

Score-Matching Reg.

(d) ResNet-18 with 

Our Reg.

Figure 10: Visualization samples are generated by applying gradient ascent on random inputs using ResNet-18 trained
on CIFAR-100. The visualization results show nine different classes in CIFAR-100. Our method demonstrates superior
performance by exhibiting reduced noise and more interpretable patterns in the visualization results.

A.7 ATTRIBUTION MAPS AND INSERTION GAMES

In this section, we present additional results of attribution maps and insertion games. In Figure 11, Figure 12 and Fig-
ures 13, we generate attribution maps using the Integrated Gradients method (Sundararajan et al., 2017) and compute
the area under the curve (AUC) of the insertion games for representative samples from BlockMNIST, CelebA and
Waterbirds datasets.

The attribution maps demonstrate the effectiveness of our regularization method in suppressing the feature leakage
problem on BlockMNIST. The lower values of feature leakage observed in the attribution maps indicate that our
approach successfully mitigates the issue of irrelevant or misleading features being attributed to certain classes. Sim-
ilarly, the attribution maps generated for input from CelebA and Waterbirds dataset show improved interpretability.
Moreover, corresponding insertion games are performed to evaluate the model robustness of their highly attributed
features. Specifically, the pixels will be interactively inserted in a zero input by their attributions computed by Inte-
grated Gradients. The AUC of the fractional output change with increasing inserted pixels is calculated. For ease of
comparison, we sort the output changes of samples in CelebA and Waterbirds datasets.

These results highlight the benefits of our regularization technique, both in terms of improving interpretability and
enhancing the model’s performance in detecting objects. The results provide additional evidence of the efficacy of our
approach in achieving superior performance and robustness.
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Figure 11: Attribution maps generated by Integrated Gradients and the area under the curve (AUC) of the insertion
games for representative samples from BlockMNIST. As compared to the vanilla model and the model with Input
Gradient regularization, our regularization leads to interpretable attribution maps with reduced feature leakage and
fewer spurious correlations, while also achieving higher AUC for the insertion game.

A.8 EXPERIMENTAL SETUP

In this section, we provide details regarding the datasets, models, and the experimental platform employed in our
experiments.

A.8.1 DATASETS

BlockMNIST. BlockMNIST dataset (Shah et al., 2021) is an extension of the MNIST dataset (LeCun et al., 1998).
Each sample in BlockMNIST is derived from an original MNIST sample by adding a null block, which contains
non-informative features, randomly positioned at the top or bottom of the image. During the training process, each
BlockMNIST sample is generated by randomly attaching the null block to MNIST samples. In the testing process,
models are evaluated on the same test samples with fixed-placed null blocks.

CelebA. Liu et al. (2015) introduced the CelebA dataset for facial attribute recognition. Sagawa et al. (2019) further
constructed the training set consisting of 162,770 training samples. The smallest group within this dataset comprises
male celebrities with blond hair, containing 1,387 samples. In our experiment, we adopt the same dataset configuration,
with hair color (blond & dark) as the target attribute and gender (male & female) as the spurious correlated features.

Waterbirds. Waterbirds dataset (Sagawa et al., 2019) is constructed by combining the CUB-200-2011 (Wah et al.,
2011) and Places datasets (Zhou et al., 2017). Specifically, the bird images from CUB-200-2011 are cropped using
segmentation annotations and then positioned on backgrounds from the Places dataset, which consists of land or water
scenes. The placement of the bird images on the backgrounds is determined by the category of the birds, i.e., whether
they are land or water birds. Consistent with the settings in (Sagawa et al., 2019), we follow the same approach of
placing 95% of all waterbirds against a water background and the remaining 5% against a land background.

CIFAR-10 and CIFAR-100. CIFAR-10 and CIFAR-100 datasets (Krizhevsky et al., 2009) are widely utilized for
evaluating the recognition capabilities of various models. The CIFAR-10 dataset consists of 60,000 images, each with
dimensions of 32×32×3, and is divided into 10 different classes, with 6,000 images per class. The dataset is further
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Figure 12: Attribution maps generated by Integrated Gradients and the area under the curve (AUC) of the insertion
games for representative samples from CelebA. As compared to the vanilla model and the model with Input Gradient
regularization, our regularization leads to lower feature leakage while also achieving higher AUC for the insertion
game.

partitioned into a training set containing 50,000 samples and a separate test set comprising 10,000 samples. Similarly,
CIFAR-100 also comprises 60,000 images, but it offers a more fine-grained classification task with 100 distinct classes.

SVHN. SVHN dataset (Netzer et al., 2011) is a collection of real-world images depicting house numbers captured
from street views. It contains a training set of 73,257 images and a test set of 26,032 images. The dataset exhibits
diverse variations in lighting conditions, viewpoints, and digit appearances, reflecting the challenges encountered in
real-world scenarios.

A.8.2 MODELS

MLP. We train two-hidden-layer MLPs using different techniques and regularizations on the BlockMNIST dataset for
80 epochs with a learning rate of 0.0001. In our experiments, two L∞ adversarially trained models are compared. To
augment the training samples, we generated perturbations using PGD-3 (Madry et al., 2018) and FGSM (Goodfellow
et al., 2015) attacks separately. For PGD adversarial accuracy, we test all models under L∞ and L2 threats. We employ
steps of α = 0.2 and α = 0.01, within the perturbation budgets of ϵ = 0.3 and ϵ = 1.0. Regarding FGSM accuracy,
we generated L2 adversarial perturbations using a step size of α = 0.25 and a budget of ϵ = 0.2.

ResNet. In CelebA and Waterbirds datasets, we train ResNet-34 models (He et al., 2016) with different regularizations
for 50 epochs and 300 epochs separately. Vanilla ResNet-34 and ResNet-34 with GroupDRO (Sagawa et al., 2019)
are trained with a learning rate of 0.0001 and all compared models with different regularizations are trained with a
learning rate decayed by 10. In the training process, each batch of training samples is re-weighted to have the same
number of samples in each group. In CIFAR-10 and CIFAR-100 dataset, we train ResNet-18 for 200 epochs with a
learning rate of 0.01 decayed by 10 in the 100-th and 175-th epochs.

WideResNet. To perform activation visualization, WideResNet-28 (Zagoruyko & Komodakis, 2016) is also trained
in CIFAR-10 for 200 epochs with a learning rate of 0.01 decayed by 10 in the 100-th and 175-th epochs.

VGGNet. We trained VGG11 models (Simonyan & Zisserman, 2015) on the BlockMNIST dataset using various
techniques and regularizations. The training process involved 80 epochs with a fixed learning rate of 0.0001.
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Figure 13: Attribution maps generated by Integrated Gradients and the area under the curve (AUC) of the insertion
games for representative samples from Waterbirds. As compared to the vanilla model and the model with Input
Gradient regularization, our regularization leads to lower feature leakage while also achieving higher AUC for the
insertion game.

A.8.3 EXPERIMENTAL PLATFORM

All experiments were performed on a Linux machine equipped with an NVIDIA GTX 3090Ti GPU featuring 24GB
of memory. The machine also consisted of a 16-core 3.9GHz Intel Core i9-12900K CPU and 128GB of main memory.
The models were tested and trained using the PyTorch deep learning framework (v1.12.1) in the Python programming
language.
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