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“The window to the right 
of the oven hood.”

“The laptop beside the 
floral-patterned chair.”

“The bookshelf second 
from the right. ”

“The chair backed to 
the window.”

“The closed door. Not the 
bathroom door. ”

“Select the couch 
that has an L shape.”
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Figure 1. Effectiveness of SeeGround: Different from previous SoTA, our method associates 2D visual cues – color, texture, viewpoint,
spatial position, orientation, and state – with 3D spatial text description to achieve precise scene understanding. Specifically, our method:
(a) identifies the floral chair by recognizing unique color and texture cues; (b) recognizes the couch by interpreting geometric shape;
(c) determines the right window by interpreting spatial relationships and perspective; (d) identifies the chair by discerning directional
alignment; (e) detects the closed door by visually interpreting its state; and (f) selects the bookshelf by understanding relative positioning.

Abstract

3D Visual Grounding (3DVG) aims to localize objects in 3D
scenes based on textual descriptions, enabling applications
in augmented reality and robotics. Traditional approaches
rely on annotated 3D datasets and predefined object cat-
egories, limiting scalability. We introduce SeeGround, a
zero-shot 3DVG framework leveraging 2D Vision-Language
Models (VLMs). We bridge 3D scenes and 2D-VLM in-
puts via a hybrid representation of query-aligned rendered
images and spatially enriched text. It introduces two key
modules: the Perspective Adaptation Module for dynamic
viewpoint selection, and the Fusion Alignment Module for
aligning visual and spatial features to enhance localization.
Extensive experiments on ScanRefer and Nr3D demonstrate
that our approach outperforms existing zero-shot methods
by large margins. Notably, we exceed weakly supervised
methods and rival some fully supervised ones, outperform-
ing previous SOTA by 7.7% on ScanRefer and 7.1% on
Nr3D, showcasing its effectiveness in complex 3DVG tasks.
The code will be made publicly available.

1. Introduction

3D Visual Grounding (3DVG) aims to localize target ob-
jects in 3D scenes based on textual descriptions, supporting
applications such as augmented reality [6, 40–42, 45, 60],
vision-language navigation [11, 14, 21], and robotic per-
ception [4, 7, 18, 28–34, 55, 76, 77]. Solving 3DVG re-
quires both language understanding and spatial reasoning in
complex environments. Most prior works train task-specific
models [6, 23, 50, 61, 70, 73, 74] on small-scale datasets,
limiting generalization. Scaling to real-world scenes is
costly [3, 12, 53]. Recent approaches [66, 71] reduce 3D
supervision by using LLMs [47, 48] to process reformat-
ted text, but overlook critical visual cues – such as color,
texture, viewpoint, and spatial layout – essential for precise
localization (see Fig. 1).

To address these gaps, we present SeeGround, a 3DVG
framework that leverages 2D Vision-Language Models
(VLMs) [16, 47, 57]. Trained on diverse image-text data,
2D-VLMs exhibit strong open-vocabulary understanding
and transferability to zero-shot 3DVG [25, 74]. However,
they cannot directly process 3D data. We thus propose a
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cross-modal alignment representation that bridges 3D and
2D modalities by combining rendered images with spatially
enriched text, enabling 2D-VLMs to reason over 3D scenes
without task-specific retraining [35]. Specifically, we repre-
sent each 3D scene using a query-driven 2D rendering and
structured 3D spatial descriptions. Compared to multi-view
or bird’s-eye strategies, our dynamic viewpoint captures
both spatial context and object-level details. Meanwhile,
the 3D text encodes accurate position and semantics from
precomputed object detection, enhancing grounding perfor-
mance. To associate image features with spatial descrip-
tions, we introduce a visual prompting mechanism that
highlights relevant objects in the rendered view. This helps
the 2D-VLM resolve ambiguities in multi-object scenes by
linking textual references to specific image regions, improv-
ing alignment and reducing distraction.

We evaluate our method on two benchmarks: it sur-
passes previous zero-shot baselines by 7.7% on ScanRe-
fer [6] and 7.1% on Nr3D [1], while approaching fully su-
pervised models. Moreover, it remains robust under incom-
plete textual input, leveraging visual cues for localization.
To sum up, the contributions of this work are as follows:
• We propose SeeGround, a training-free framework for

zero-shot 3DVG, reformulating 3D scenes into 2D-VLM-
compatible inputs using rendered views and spatial text.

• We design a query-guided viewpoint selection strategy to
capture object-specific details and spatial context.

• We introduce a visual prompting technique to align 2D
image features with 3D spatial descriptions, reducing
grounding ambiguity in cluttered scenes.

• Our method achieves state-of-the-art zero-shot perfor-
mance on ScanRefer and Nr3D, demonstrating strong
generalization without 3D-specific training.

2. Related Work
3D Visual Grounding. Supervised 3DVG methods, such
as ScanRefer [6] and ReferIt3D [1], align 3D scenes
with language via attention-based frameworks like 3DVG-
Transformer [73]. Recent works enhance multimodal
fusion: ViewRefer [15] integrates LLMs for semantic-
rich text; MVT [20] and LAR [2] use multi-view spa-
tial cues; SAT [68] introduces 2D-assisted learning; and
BUTD-DETR [23], ConcreteNet [56], and WS-3DVG [59]
adopt transformer-based or weakly supervised frameworks.
PQ3D [75] unifies multiple 3D-VL tasks. Despite strong
benchmark performance, these methods require heavy an-
notations. Zero-shot approaches like LLM-Grounder [66]
and ZSVG3D [71] avoid this but often miss visual cues vi-
tal for precise grounding.
3D Open-Vocabulary Understanding. Recent works en-
able open-vocabulary 3D understanding via 2D-3D align-
ment [8, 9, 39, 43, 65]. OpenScene [49] projects 2D
CLIP features into 3D for segmentation; LeRF [26] fuses

CLIP with NeRFs. OVIR-3D [44] and Agent3D-Zero [72]
enhance instance retrieval and QA via multi-view rea-
soning. Other approaches, like RegionPLC [67], Open-
Mask3D [54], and OpenIns3D [22], rely on image-driven
cues. SAI3D [69] uses 2D Semantic-SAM masks with 3D
graph fusion. These works highlight the utility of 2D fea-
tures in enriching 3D open-vocabulary tasks.
MLLMs for 3D Perception. Multimodal LLMs (MLLMs)
extend 2D language grounding to 3D understanding [27, 38,
63, 64]. Scene-LLM [13] and Uni3DL [36] support cap-
tioning and segmentation in 3D scenes. 3D-ViSTA [74] and
ConceptFusion [24] align 3D data with language through
transformers and concept-level knowledge. GLOVER [46]
enables 3D manipulation via language, while SceneV-
erse [25] provides annotated 3D environments for spatial
learning. RLHF-V [52] further supports task planning via
natural language. These advances show the potential of
MLLMs in 3D tasks. Our work builds upon this by enabling
zero-shot 3D grounding through multimodal alignment.

3. Methodology
Overview. The 3D visual grounding (3DVG) task aims to
localize a target object in a 3D scene S based on a tex-
tual query Q, by predicting its 3D bounding box: bbox =
3DVG(S,Q). We propose a novel 3DVG framework that
integrates 2D vision-language models (2D-VLMs) with
spatially enriched 3D representations. As conventional 3D
formats are incompatible with 2D-VLM inputs, we intro-
duce a hybrid representation that combines 2D rendered
images and text-based 3D spatial descriptions. This enables
2D-VLMs to jointly reason over visual and spatial informa-
tion without 3D-specific retraining.

Our approach comprises three modules: (1) a multi-
modal 3D representation (Sec. 3.1); (2) a Perspective Adap-
tation Module (Sec. 3.2); and (3) a Fusion Alignment Mod-
ule (Sec. 3.3). This design allows the 2D-VLM to accu-
rately interpret and localize objects in complex 3D scenes.
Fig. 2 provides an overview of our framework.

3.1. Multimodal 3D Representation
We leverage 2D-VLMs pretrained on large-scale image-text
data to enable open-set understanding of novel objects and
scenes. However, conventional 3D representations – point
clouds [17, 49], voxels [37], and implicit fields [26] – are
incompatible with 2D-VLM input. To bridge this gap, we
propose a hybrid representation that combines 2D rendered
images with text-based 3D spatial descriptions.
Text-based 3D Spatial Descriptions. We first detect all
objects in the scene using an open-vocabulary 3D detec-
tor: (bbox, sem)Ni=1 = OVDet(S), where bbox and
sem are each object’s 3D bounding box and semantic label.
These are converted to text and stored in an object lookup
table (OLT) for reuse: OLT = {(bbox, sem)}Ni=1 . Here,
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Answer: The object 1
is located on a table, 
to the right of the 
chair with a floral 
pattern. It is a laptop 
with a dark screen.

Ground Target

You're an assistant for 
object recognition. 
The image displays a room. 
Identify objects by their ID. 
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Language
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Perspective
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Pos: (0.5m, -1.2m, 1.8m)
Ori: (Pitch: 5°, Yaw: 45°, Roll: 0°)
Intrinsic: 35mm, (30px, 20px) 

Select Perspective:

Rendered Image

[anchor]

Fusion Alignment Module

Image-Text 
Association

Labeled Image
The Reference

Coordinate System

Parse Landmark

Parsed result:
Target: laptop
Anchor: chair

Description: 
Find the laptop by 
the chair with the 
floral pattern.

Instruction:
Your task is to parse 
the description to 
[target] and [anchor].  
Here are some 
examples… Coordinate

Transformation

Occlusion 
Filtering

Lookup Table
* obj 1: laptop, 
( x, y, z, w, h, l )
* obj 2: laptop, 
( x, y, z, w, h, l )

Object 
Retrieval

Identify
Bonding

* …

2D Id Coord
* obj 1: (u, v)
* obj 2: (u, v)

Query: Find the laptop by the 
chair with the floral pattern.

Instruction:

Figure 2. Overview of the SeeGround framework. We first use a 2D-VLM to interpret the query, identifying both the target object (e.g.,
“laptop”) and a context-providing anchor (e.g., “chair with a floral pattern”). A dynamic viewpoint is then selected based on the anchor’s
position, enabling the capture of a 2D rendered image that aligns with the query’s spatial requirements. Using the Object Lookup Table
(OLT ), we retrieve the 3D bounding boxes of relevant objects, project them onto the 2D image, and apply visual prompts to mark visible
objects, filtering out occlusions. The image with prompts, along with the spatial descriptions and query, is then input into the 2D-VLM for
precise localization of the target object. Finally, the 2D-VLM outputs the target object’s ID, which is then used to retrieve its 3D bounding
box from the OLT , providing the final, accurate 3D position in the scene.
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Figure 3. Illustrative example of different perspective selection
strategies. Our “Query-Aligned” method dynamically adapts the
viewpoint to match the spatial context of the query, enhancing de-
tail and relevance of visible objects compared to static methods.

OLT supports efficient spatial reasoning and avoids redun-
dant computation across multiple queries.
Hybrid 3D Scene Representation. Text captures 3D lay-
out and semantics, but lacks fine visual cues. To comple-

ment this, we render a 2D image aligned with the query:
(I, T ) = F(S,Q,OLT ), where I is the rendered image and
T is the textual spatial description. Combined, I and T al-
low 2D-VLM to access both visual appearance (e.g., color,
texture, shape) and accurate 3D spatial semantics, enabling
comprehensive scene understanding.

3.2. Perspective Adaptation Module

Existing view selection strategies often misalign with the
query’s perspective. For example, LAR [2] renders object-
centric multi-views but lacks scene context, while bird’s-
eye view (BEV) provides global coverage but loses height
information, leading to occlusions (see Fig. 3(a)). Multi-
view or multi-scale methods [22] expand coverage (see
Fig. 3(b)-(d)), but still rely on fixed viewpoints. More-
over, 2D-VLMs often misinterpret scenes when the ren-
dered view does not reflect the query perspective. To ad-
dress this, we propose a query-driven dynamic rendering
method that aligns the viewpoint with the query, capturing
more relevant details (see Fig. 3(e)).
Dynamic Perspective Selection. Given a query Q, the
2D-VLM extracts an anchor object A and candidate tar-
gets O(C) using example prompts E(E):

(
A,O(C)

)
=

VLM
(
Q, E(E)

)
. The viewpoint is placed at the scene cen-

ter, facing A, and then shifted backward and upward to ex-
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Table 1. Evaluations of 3DVG on ScanRefer [6] validation set. Results are reported for “Unique” (scenes with a single target object) and
“Multiple” (scenes with distractors of the same class) subsets, along with overall performance. * indicates results on selected 250 samples.

Method Venue Supervision Agent Unique Multiple Overall
Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5 Acc@0.25 Acc@0.5

ScanRefer [6] ECCV’20 Fully - 67.6 46.2 32.1 21.3 39.0 26.1
InstanceRefer [70] ICCV’21 Fully - 77.5 66.8 31.3 24.8 40.2 32.9

3DVG-T [73] ICCV’21 Fully - 77.2 58.5 38.4 28.7 45.9 34.5
BUTD-DETR [23] ECCV’22 Fully - 84.2 66.3 46.6 35.1 52.2 39.8

EDA [61] CVPR’23 Fully - 85.8 68.6 49.1 37.6 54.6 42.3
3D-VisTA [74] ICCV’23 Fully - 81.6 75.1 43.7 39.1 50.6 45.8

G3-LQ [58] CVPR’24 Fully - 88.6 73.3 50.2 39.7 56.0 44.7
MCLN [50] ECCV’24 Fully - 86.9 72.7 52.0 40.8 57.2 45.7

ConcreteNet [56] ECCV’24 Fully - 86.4 82.1 42.4 38.4 50.6 46.5

WS-3DVG [59] ICCV’23 Weakly - - - - - 27.4 22.0

LERF [26] ICCV’23 Zero-Shot CLIP [51] - - - - 4.8 0.9
OpenScene [49] CVPR’23 Zero-Shot CLIP [51] 20.1 13.1 11.1 4.4 13.2 6.5

LLM-G [66] ICRA’24 Zero-Shot GPT-3.5 [48] - - - - 14.3 4.7
LLM-G [66] ICRA’24 Zero-Shot GPT-4 turbo [47] - - - - 17.1 5.3

ZSVG3D [71] CVPR’24 Zero-Shot GPT-4 turbo [47] 63.8 58.4 27.7 24.6 36.4 32.7
VLM-Grounder* [62] CoRL’24 Zero-Shot GPT-4V [47] 66.0 29.8 48.3 33.5 51.6 32.8

SeeGround Ours Zero-Shot Qwen2-VL-72b [57] 75.7 68.9 34.0 30.0 44.1 39.4

Table 2. Performance on Nr3D [1] validation set. Queries are la-
beled as “Easy” (one distractor) or “Hard” (multiple distractors),
and as “View-Dependent” or “View-Independent” based on view-
point requirements for grounding.

Method Easy Hard Dep. Indep. Overall

Supervision: Fully Supervised
ReferIt3DNet [1] 43.6 27.9 32.5 37.1 35.6

TGNN [19] 44.2 30.6 35.8 38.0 37.3
InstanceRefer [70] 46.0 31.8 34.5 41.9 38.8

3DVG-T [73] 48.5 34.8 34.8 43.7 40.8
BUTD-DETR [23] 60.7 48.4 46.0 58.0 54.6

MiKASA [5] 69.7 59.4 65.4 64.0 64.4
ViL3DRel [10] 70.2 57.4 62.0 64.5 64.4

Supervision: Weakly Supervised
WS-3DVG [59] 27.3 18.0 21.6 22.9 22.5

Supervision: Zero-Shot
ZSVG3D [71] 46.5 31.7 36.8 40.0 39.0

SeeGround 54.5 38.3 42.3 48.2 46.1

pand coverage. If no anchor is found (e.g., query describes
multiple similar objects), a placeholder anchor is used – set
to the centroid of O(C) – and the same strategy applies.
Query-Aligned Image Rendering. Given the selected
viewpoint, the function look-at-view-transform computes
rotation Rc and translation Tc relative to A. The 2D ren-
dered image is obtained via: I = Render(S,Rc,Tc). This
generates a query-aligned image that preserves relevant vi-
sual details while filtering distractions, thereby improving
2D-VLM localization accuracy (see Fig. 3(e)).

3.3. Fusion Alignment Module
Although 2D images and spatial descriptions offer rich
cues, directly feeding them into 2D-VLM may fail to as-
sociate visual features with 3D semantics, especially in

scenes with similar objects (e.g., multiple chairs), leading to
grounding errors. We propose a Fusion Alignment Module
to explicitly align 2D visual features with text descriptions.
Depth-Aware Visual Prompting. Given the rendered im-
age I, we retrieve the 3D points of each object in the scene
from OLT , then project them to 2D using Rc and Tc.
To address occlusion, we compare point depths with the
depth map and retain only visible points. For each ob-
ject o, a visual prompt Mo is placed at the center of its
visible projections. The prompted image is computed as:
Im = I ⊙

(
1− 1Pvisible(o)

)
+ Mo ⊙ 1Pvisible(o), where

1Pvisible(o) indicates visible pixels of object o.
Object Prediction with 2D-VLM. Finally, given the query
Q, prompted image Im, and spatial text T , the 2D-VLM
predicts the referred object: ô = VLM(Q | Im, T ) . By ex-
plicitly aligning visual and spatial cues, this module reduces
ambiguity and enhances localization in cluttered scenes.

4. Experiments
4.1. Experimental Settings
Datasets. We evaluate on two standard 3DVG bench-
marks. ScanRefer [6] offers 51, 500 descriptions across
800 ScanNet scenes, with queries labeled as “Unique” or
“Multiple” based on distractor presence. Nr3D [1], part
of ReferIt3D, contains 41, 503 two-player game queries,
split into “Easy”/“Hard” (by distractor count) and “View-
Dependent”/“View-Independent” (by viewpoint reliance).
ScanRefer emphasizes sparse point cloud grounding, while
Nr3D provides full 3D box annotations.
Implementation Details. We use Qwen2-VL-72B [57] as
the backbone VLM. Ablation studies are conducted on the
Nr3D validation set. Images are rendered at 1000×1000
resolution, excluding the top 0.3m to align with closed-
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room setups. For object detection, we follow ZSVG3D [71]
and use Mask3D [54] to ensure consistent evaluation.

4.2. Comparative Study
On ScanRefer, we achieve 75.7% / 68.9% (Acc@0.25/0.5)
on “Unique”, and 34.0% / 30.0% on “Multiple”, surpass-
ing all zero-shot and weakly supervised baselines [59, 66,
71], and approaching fully supervised methods [50, 56]. On
Nr3D, it attains 46.1% overall accuracy, outperforming the
previous zero-shot SOTA by +7.1% [71], and remains ro-
bust across “Easy”/“Hard” (54.5% / 38.3%) and “View-
Dependent”/“View-Independent” (42.3% / 48.2%) subsets,
closing the gap with fully supervised methods [23].

4.3. Ablation Study
Effect of Architecture Design. We begin by evaluating the
effectiveness of each module in the proposed architecture.
The experimental results are presented in Tab. 3.
• Layout of the Scene. Using only 3D coordinates (37.7%,

Tab. 3(a)) provides the basic location of objects but
achieves low accuracy. Adding layout (39.7%, Tab. 3(b)),
which renders 3D boxes in 2D without color/texture, im-
proves accuracy by providing spatial context that helps
the model understand object positions and sizes.

• Visual Clues. We find that adding color/texture (39.5%,
Tab. 3 (c)) helps the model distinguish between similar
objects, like “the white keyboard” versus “the black key-
board” (Fig. 4 (a)). This setup tends to improve accuracy
over layout alone by offering object-specific visual cues.

• Fusion Alignment Module. As shown in Tab. 3 (d), our
proposed Fusion Alignment Module provides a signifi-
cant increase in accuracy (43.3%) by associating 2D im-
ages with text descriptions.

• Perspective Adaptation Module. Perspective Adaptation
Module (45.0%, Tab. 3 (e)) further improves accuracy
by aligning the scene’s viewpoint with the query’s spa-
tial context (Fig. 4 (b)), helping the model understand the
positional context and reducing ambiguity.

• Full Configuration. We observe that the highest ac-
curacy (46.1%) is achieved with the full configuration
(Tab. 3 (f)). This further validates the effectiveness and
efficiency of the proposed SeeGround framework.

Ours vs. Prior Art. ZSVG3D [71] projects object centers
onto a 2D image and uses predefined functions to infer spa-
tial relations, but this approach lacks flexibility, omits visual
cues, and ignores contextual objects, risking misidentifica-
tion if detection fails (Fig. 6). Fig. 5a compares the VLM
version of ZSVG3D’s projection, showing only target and
anchor centers, with no background or visual detail. In con-
trast, our method captures full images, and allows inference
of undetected objects via contextual cues, as in Fig. 6.
Qwen2-VL vs. GPT-4. To ensure wider applicability, cost-
effectiveness, and reproducibility, we use the open-source

Table 3. Ablation study on different components in our frame-
work on Nr3D [1]. “3D Pos.”: 3D object coordinates; “Layout”:
Scene layout; “Texture”: Object color/texture; “FAM”: Fusion
Alignment Module; and “PAM”: Perspective Adaptation Module.

# 3D Pos. Layout Texture FAM PAM Overall

(a) ✓ ✗ ✗ ✗ ✗ 37.7
(b) ✓ ✓ ✗ ✗ ✗ 39.7
(c) ✓ ✗ ✓ ✗ ✗ 39.5
(d) ✓ ✓ ✓ ✓ ✗ 43.3
(e) ✗ ✓ ✓ ✓ ✓ 45.0

(f) ✓ ✓ ✓ ✓ ✓ 46.1

(a) the black keyboard, not 
white, that is place on the table.

(b) When you are facing the 
door, it’s the couch on the left.

Figure 4. Qualitative Results. Rendered images are presented,
including the incorrectly identified objects (Orange) and correctly
identified objects (Green). Key visual cues are underlined.
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Figure 5. Ablation study on using (a) different projection meth-
ods (ours vs. ZSVG3D [71]); and (b) different language agents
(GPT-4 [47] vs. Qwen2-VL [57]). The results are from Nr3D [1].

model Qwen2-VL [57] in our method. To ensure fairness,
we re-evaluate ZSVG3D [71] with Qwen2-VL instead of
GPT-4 [47], as shown in Fig. 5b, enabling direct compari-
son with our method. Using the same model, our approach
outperforms ZSVG3D across all difficulty levels, confirm-
ing its effectiveness independently of model choice. We
use ZSVG3D’s program generation prompt with Qwen2-
VL, keeping other steps identical.
Effect of View Selection Strategy. Tab. 4 highlights the
benefits of our query-driven perspective alignment (see
Fig. 3) over static strategies. Fixed views – Center2Corner,
Edge2Center, Corner2Center – lack adaptability, while
Bird’s Eye View, though global, misses critical spatial cues
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Table 4. Performance comparison of different perspective selec-
tion strategies. Our method results in consistently higher accuracy
across all difficulty levels on Nr3D [1] validation set.

Type Easy Hard Dep. Indep. Overall

Center2Corner 49.5 31.4 35.1 42.9 40.2
Edege2Center 51.0 32.7 36.6 44.2 41.5
Corner2Center 49.8 33.4 35.5 44.5 41.3

Bird’s Eye View 53.4 33.9 36.9 46.8 43.3
Query-aligned 54.5 38.3 42.3 48.2 46.1

Object ID: 2
Reason: 
Object 2 is the pillow located on 
the right side of the bed, which is 
adjacent to the small brown night 
table with the chest on it. 
Therefore, Object 2 is the correct 
match for the given description.

Scene description:
Object 1 and object 2 are pillows.

Query: 
A pillow on the side of the bed 
next to the small brown night 
table with the chest on it.

1 2

object 1, cabinet, position …, 
object 2, cabinet, position …

* 'printers' and 'counter' 
is missing from the text.

Image Input:
("Missing anchor prompt")

Text Input: 
("Missing anchor description")

Prediction: 

“ object 1 ”

“ object 2 ”

Vison
Language
Model

“object 1 is pillow, object 2 is 
pillows, please find the cabinet 
above the printers on the counter.”

Query: please find the cabinet above the printers on the counter.

Large
Language
Model

object 3, printer,  position … "LLM fails to ground 
object due to missing 
anchor information."

"VLM successfully 
identifies ‘cabinet’ using 
visual cues from image." 

Figure 6. An example of the robustness of the proposed frame-
work in identifying the ‘cabinet’ by leveraging visual context, even
when key information (‘printers’ and ‘counter’) is missing from
text input – an issue that commonly arises in scenarios with detec-
tion errors or omissions. Our method is more robust than prior art.

like orientation and height. Our dynamic strategy yields
consistent gains, notably on “Hard” (+4.4%) and “Depen-
dent” (+5.7%) queries, demonstrating the importance of
flexible, context-aware viewpoint selection for 3DVG.
Robustness Evaluation with Incomplete Textual De-
scriptions. As shown in Fig. 6, we tested our approach’s
robustness with incomplete textual information, simulating
common misdetection scenarios. By omitting an anchor ob-
ject from the text while retaining the target, our model uses
visual cues to compensate, achieving accurate localization.
In contrast, LLM performance degrades without the anchor.
These results demonstrate that our method maintains high
accuracy with partial text, underscoring the importance of
integrating visual and textual data for more reliable 3DVG.
Type-Wise Error Analysis. We analyzed 185 randomly
sampled cases from 10 rooms to identify common failure
modes (Fig. 7). The reduction in localization and identifi-
cation errors underscores the benefit of visual input for spa-
tial understanding. However, errors involving spatial rela-
tionships remain frequent (19%), suggesting challenges in
precise spatial reasoning. Incorporating dedicated reason-
ing modules may help. Our current viewpoint selection also
struggles with complex references like “when the window is

43%

24%

12%

12%

9%

Rel. Cls. View Loc.

Correct

(a) Text-Only Method

54%

19%

12%

10%
5%

Rel. Cls. View Loc.

Correct

(b) Our Method

Figure 7. Error distributions between the Text-Only Method (a)
and Our Method (b), based on four error types: Relation Errors
(Rel., spatial relationship misunderstandings like “next to” or “on
the corner”), Classification Errors (Cls., object category misiden-
tifications), Viewpoint Errors (View, errors in interpreting specific
observation viewpoints), and Localization Errors (Loc., errors in
pinpointing the target object within the scene).

on the left” or “upon entering from the door”. Additionally,
rendering quality affects object distinction; due to reliance
on dataset-provided point clouds, our renderings lack fine
texture and boundary details. Future improvements may in-
clude higher-fidelity rendering for clearer visual cues.

5. Conclusion
In this paper, we presented SeeGround, a zero-shot 3D
visual grounding framework that bridges 3D data and 2D
VLMs via query-aligned rendered images and spatial de-
scriptions. Our Perspective Adaptation Module aligns
views with the query, while the Fusion Alignment Mod-
ule integrates visual and spatial cues for robust localization.
Experiments on the ScanRefer and Nr3D datasets show that
our method outperforms prior zero-shot methods and rivals
supervised approaches without 3D-specific training.
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