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Abstract

Large language models (LLMs) incur catas-
trophic forgetting of previous tasks when they
overfit new tasks sequentially. Existing contin-
ual learning (CL) methods often require task-
specific memory, training paradigm continuity,
or architecture expansion. To minimize pri-
vacy, accessibility, overheads, and other prac-
tical concerns, this paper addresses a strict CL.
setting where only the latest model and data
are available and model capacity is fixed. We
propose Gradient Spectrum Rescaling (GSR),
a memory-free, plug-and-play, and in-place CL
approach that prioritizes under-utilized direc-
tions to mitigate forgetting of learned impor-
tant knowledge. Specifically, GSR adaptively
rescales the singular components of gradients
based on layerwise singular value decomposi-
tion (SVD). Experiments on 5 text generation
tasks demonstrate the forgetting mitigation abil-
ity and performance of GSR.

1 Introduction

Transformer-based LLMs (Almazrouei et al., 2023;
Grattafiori et al., 2024) can be further enhanced on
downstream tasks via supervised finetuning (SFT)
but often struggle with catastrophic forgetting (CF;
McCloskey and Cohen, 1989), where newly ac-
quired knowledge disrupts LLM’s performance on
previous tasks due to overfitting (Chen et al., 2023;
Dou et al., 2024). Continual learning (CL; Wu
et al., 2024; Yang et al., 2025) aims at mitigating
such forgetting in deep neural networks.
Conventionally, memory-based CL relies on stor-
ing and replaying data or embeddings from pre-
vious tasks (e.g., GEM, Lopez-Paz and Ranzato,
2017; MbPA++, de Masson d'Autume et al., 2019;
CLR/CTO, Scialom et al., 2022; Dynalnst, Mok
et al., 2023; ConPET, Song et al., 2023), but such
storage raises data privacy, resource, and scalabil-
ity concerns. As workarounds, some works instead
maintain a pool of task-specific prompts (e.g., L2P,
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Figure 1: Illustration of GSR. The spectrum compo-
nents of gradients are rescaled to prioritize minor direc-
tions, which correspond to task-specific information.

Wang et al., 2022; LFPT5, Qin and Joty, 2022;
ProgPrompt, Razdaibiedina et al., 2023) or adopt
other accumulation mechanisms (e.g., LAMOL,
Sun et al., 2020; DAS, Ke et al., 2023; SGP, Saha
and Roy, 2023). More recent works also maintain
memory based on previous models or gradients
(e.g., O-LoRA, Wang et al., 2023; InfLoRA, Liang
and Li, 2024; SLM, Peng et al., 2024; SAPT, Zhao
et al., 2024; LB-CL, Qiao and Mahdavi, 2024).
However, such dependence on memory or accumu-
lation requires the continuity of training paradigm
for all previous tasks. In most cases, pretrain-
ing and finetuning stages of LLMs are private or
proprietary, making it difficult or even impossible
to guarantee such continuity (Alexandrov et al.,
2024). Expansion-based or modularized CL (e.g.,
Lifelong-MoE, Chen et al., 2023; LoRAMoE, Dou
et al., 2024; DIKI, Tang et al., 2024) takes a more
different approach by expanding model architec-
tures. As it has been shown that LLMs implic-
itly store and retrieve knowledge in their weights
(Roberts et al., 2020; Jiang et al., 2020; Zhang et al.,
2023; Zheng et al., 2024; Dou et al., 2024; Qiao
and Mahdavi, 2024), we seek to instead extend the
parametric knowledge under fixed capacity. This is
commonly called regularization-based methods in
CL literature.

In this paper, we focus on a CL setting simi-
lar to but stricter than Ke et al.’s (2023), where



(a) none of the previous training data, models, or
paradigms are accessible; (b) the capacity of LLM
is fixed; (c) the task ID or boundary is unknown
during inference. These limitations are common
in practice, constraining the use of CL within the
realm of regularization-based approaches. To ad-
dress them, we conduct spectral analysis on LLM
weights and propose Gradient Spectrum Rescaling
(GSR), a novel memory-free, plug-and-play, and
regularization-based approach to mitigate forget-
ting in SFT.

2 Preliminaries

2.1 Singular Value Decomposition

The singular value decomposition (SVD) of a
weight matrix W € R%“*% with rank r <
min {dl, dg} is

.
W=USV' => ouv], (1)
i=1

where U € R X7 (V € R%*") has orthonormal
columns wu; (v;), called the left (right) singular vec-
tors; X € R"*" is diagonal with entries typically
arranged in a descending order, o; > 0,41 > 0,
called the singular values (or spectrum) of W.

Major and Minor Singular Components From
the sum form in Eq. (1), we have Wx =
> i1 0i (vi, ) u;. Thus, o; indicates the impact
or importance of corresponding vectors u;, v; in
the outputs of W. It has been observed in LLMs
that larger o;’s correspond to principal directions
and global knowledge, while smaller ones capture
local details and long-tail information (Wang et al.,
2024; Meng et al., 2024; Batazy et al., 2024; Wi
and Park, 2025).

By retaining only the top k singular components
asU, 3, V, reconstructing W =U3VT provides
the best rank-k approximation of W (Eckart and
Young, 1936; Chen et al., 2021; Saha and Roy,
2023; Meng et al., 2024; Wang et al., 2025). Con-
trariwise, retaining only minor components gen-
erally results in performance degradation (Meng
et al., 2024; Balazy et al., 2024).

Differential of Singular Components Let N =
UTdW V € R™*". Dieci and Eirola (1999, §2.3a)
showed that

do; = Ny = u] dWw;

dU =UH (2)

dV = VK

where both H, K € R"*" are skew-symmetric ma-
trices such that
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Typically, we set H;; = K;; = 0.

2.2 Self-Attention

Self-attention has been critical in LLMs due to
its ability to capture context dependencies. Mod-
ern LLMs commonly adopt multi-head attention
(Vaswani et al., 2017) or its variants, where differ-
ent “heads” attend to different representational sub-
spaces. Self-attention weights also contain param-
teric knowledge (Lin et al., 2024) of our interest.

Consider an input sequence X € R%*% of
length s. We define a set of H attention heads.
Each head h projects X into guery, key, and value
spaces and outputs

Qi = XWY,
K, = Xwg(h), VvV, = Xwg(h); @
O, = softmax(Q\;dEh-}l;) Vth,

where W&, Wg(h),W;)/(h),Wg are learned

weights; dy, is a scaling factor; ¢(h) is a mapping
for head sharing. Finally, the per-head outputs are
summed.

In common practice, projection matrices are
implemented with heads concatenated as W<,
WE WV and W9, We found in preliminary
experiments that applying SVD to the combined
weights leads to better performance than headwise
SVD. We suggest that this is because the com-
bined weights provide the overall information of
the learned subspaces.

3 Gradient Spectrum Rescaling

We seek to prioritize minor and under-utilized di-
rections, which prevents overwriting important fea-
tures learned from previous tasks, thereby mitigat-
ing forgetting. Based on this idea, GSR rescales
the singular gradient component V! in reverse of
the corresponding singular value o;.

'Instead of writing V£, we omit the loss function ¢
throughout this paper, as it is fixed for the current task.



By the first-order approximation of Eq. (2), as-
suming that optimization can be characterized pri-
marily by 0W = —nVw (n > 0), we can estimate
the actual change of singular values as

(2)
0o; ~ ’u,;!—(SWUi

T
= —nu; Vwv; &)
= _nvai

Hence, in order to promote minor directions, we

aim at rescaling V,, such that smaller singular
values are expected to gain more positive updates:

Ko <o, {Z doi' — (50/] >0
oo, [YVo - Vi | <0 6

Eq. (6) is satisfied if the rescaling function is non-
decreasing w.r.t. ¢;. On this basis, we further im-
pose constraints to preserve the sign and norm of
gradient components, so that the intended direction
and strength of optimization are respected.

3.1 Rescaling

A rescaling parametrization which meets the crite-
ria above is

Vo, =6i\/(1 )V +p Y Vil (D

Ei=€j

where ¢; = sgnV,, € {—1,0,1} is the origi-
nal sign; ¢; = afi/zei:q a;j; and p € [0,1]
controls the strength of rescaling. In effect, this
(a) promotes minor singular directions, satis-
fying Eq. (6) as p — 1, since o; — &£;,/¢; is
non-decreasing within each sign group, and so
is Vi, ; (b) preserves the sign of update, since
Vf,i = ¢g; - (positive term); and (c) preserves the
L,-norm of updates, since > V.2 = > V2
holds within each sign group, thus in total.

3.2 Recomposition

Other gradient components, Vy and Vv, can be
similarly computed from Egs. (2) and (3). By the
total differentiation of Eq. (1), GSR recomposes
the spectrally rescaled gradient as

Viv = VuIZV' + UVg VT + UZVE  (8)

T

where V&, = diag([V,,];_,). The recomposed

gradient is used for subsequent optimization.

The algorithm of GSR is described in Algo-
rithm 1.

Algorithm 1 Gradient Spectrum Rescaling.

Input: LLM M, task 7, optimizer (2, rescaling
factor p € [0, 1].

1: for all trainable W € M do

2: > Headwise if W is in an attention layer:

32 Store U, 3,V < svD(W);

4: for (X, Y:) ~ 7 do

5 Gt < BACKPROP({(M;—1(X+), Y2));

6 for vW,t € Gy do

7 Compute Vy ¢, Vg, 1, Vv i from

Egs. (2) and (3);

Rescale V,, ¢ as Vi, with Eq. (7);

Recompose Vy ; as V’W7t with

Eq. (8);

10: Wi, Qp +— O (V’Wﬂf, Wt—l);

o x

4 Experiments

We sequentially finetuned a pretrained LLM on
different tasks with different methods. All exper-
iments were conducted on NVIDIA® H800 GPUs
with Falcon-3 1B Instruct (Falcon-LLM Team,
2024; Almazrouei et al., 2023). For fair compari-
son, common hyperparameters (3 epochs; learning
rate 3 x 10~° with 5% warmup steps; batch size
512) and optimizer (AdamW) were kept identical
across all tasks and methods.

4.1 Tasks and Datasets

We collected 4 distinct and diverse tasks across
different fields, languages, and levels of difficulty
under CC-BY-4.0 license:

(A) Math: Sampled from OpenMathlnstruct-2
(Toshniwal et al., 2024). This includes math
word problems in English.

(B) Chinese medical Q&A: Sampled from Med-
QA (Jin et al., 2021). This includes questions
from Chinese medical exams.

(C) Code generation: Sampled from MBPP
(Austin et al., 2021), APPS (Hendrycks et al.,
2021a), and code_instructions_120k>.

(D) Chemical reaction standardization: Sampled
from USPTO-LLM (Yuan et al., 2024a).
This involves representing the textual descrip-
tion of a reaction procedure in the standard
SMILES notation.

(E) Cuneiform translation: Sampled from the
training dataset® of CuneiformTranslators

ZAvailable at https://huggingface.co/datasets/
iamtarun/python_code_instructions_18k_alpaca.
3Available  at https://github.com/praeclarum/
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MMLU A B C D E
Accuracy 1 Pass@1 1 BLEU 1 F.Ra | AP 1
Pretrained 43.02% 14.94% 30.94% 33.54% 5.700% 0.316% / 21.409%
SeqFT 43.04% 14.62% 30.68% 33.54% 5.549% 0.310% | 1.779% 21.290%
PSP 43.53% 15.80% 30.79% 33.54% 5.529% 0.309% | 1.752% 21.583%
SR 4298% 14.89% 32.14% 28.39% 6.140% 0.529% | 3.218% 20.845%
GSR (Ours) 43.51% 17.05% 30.85% 33.54% 5.532% 0.322% | 1.090% 21.801%
PerFT: A 36.85% 22.01% 30.88% 33.54% 5.512% 0.323% / 21.519%
PerFT: B 4427% 13.47% 32.19% 32.37% 5.519% 0.290% / 21.352%
PerFT: C 43.02% 18.76% 30.36% 34.32% 5391% 0.168% / 22.003%
PerFT: D 4424% 18.92% 30.74% 33.93% 6.811% 0.231% / 22.479%
PerFT: E 4351% 15.82% 31.09% 28.97% 5.474%  0.577% / 20.907%
MTL (Upper bound) 43.65% 22.12% 31.52% 34.06% 4.816% 0.532% [ 22.783%

Table 1: Forgetting rate and average performance of sequential training with different baseline methods (§4.2).
Alphabets A—E correspond to 5 tasks in §4.1. “+” indicates the training sequence.

(Krueger, 2023). This involves translating
from either Akkadian or Sumerian to English.

We kept the number of sampled training tokens
near 4M tokens across all tasks. We also tested
on MMLU (Hendrycks et al., 2021b) for world
knowledge preservation.

4.2 Baselines

We compare GSR with SeqFT (sequential finetun-
ing) and the following baselines available in our
setting.

* PSP (Principal Subspace Preserving; Franke
et al., 2024) projects the gradient onto the trun-
cated subspace of minor singular components.
We set k = [0.47] as in the original paper.

* SR (Spectral Regularization; Lewandowski
et al., 2025) adds a regularization loss which
boosts the largest singular value towards 1.
We swept over A € {1073,1076,107°} and
set A = 1077,

We also compare with PerFT (per-task finetun-
ing, training on only one task) and MTL (multi-
task learning; simultaneously training on all tasks),
which serve as the per-task and overall upper
bounds of SFT.

4.3 Metrics

We measure the performance with the following
metrics (Zhao et al., 2024). Let a;(:) € [0,1]
denote the performance on the test set of task
immediately after training on task j.

CuneiformTranslators/tree/main/data.

Forgetting rate (F.Ra, |) € [—1, 1] measures CF
as the average maximum performance drop:

Average performance (AP, 1) < [0, 1] is

1 T
Ar = ;aT(z‘) (10)

5 Discussion & Conclusion

The results of our experiments are presented in
Table 1 (see Appendix A for full results). GSR
achieves the lowest forgetting rate and best average
performance after sequential training on all tasks,
compared to baseline methods and vanilla SFT.

We propose Gradient Spectrum Rescaling as a
simple and effective method for sequential finetun-
ing.

Limitations

The process of SVD in GSR introduces the main
computational overhead. We could trade numer-
ical accuracy for better speed by using approxi-
mate methods, e.g., randomized SVD (Halko et al.,
2011). Moreover, SVD is conducted before train-
ing, unaware of the current task. We can poten-
tially improve GSR by adapting data-aware or task-
aware methods, e.g., ASVD (Yuan et al., 2024b).

GSR also lacks variants for parameter-efficient
finetuning (e.g., LoRA; Hu et al., 2022). We leave
them as future works.
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A Full Results

Full results of all experiments are shown in Table 2.
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MMLU A B C D E
Accuracy T Pass@1 1 BLEU t F.Ra | AP 1
Pretrained 43.02% 14.94% 30.94% 33.54% 5.700% 0.316% / 21.409%
SeqFT
A 36.85% 22.01% 30.88% 33.54% 5512% 0.323% / 21.519%
A+B 44.03% 21.40% 30.59% 34.06% 5.546% 0.318% | -0.200% 22.657%
A+B+C 43.49% 20.22% 30.82% 33.54% 5.536% 0.307% | 0.700% 22.319%
A+B+C+D 43.14% 18.12% 30.76% 33.93% 5.532% 0.309% | 1.112% 21.965%
A+B+C+D+E  43.04% 14.62% 30.68% 33.54% 5.549% 0.310% | 1.779% 21.290%
PSP
A 42.28% 23.61% 30.62% 33.54% 5523% 0.311% / 22.647%
A+B 44.25% 22.57% 30.85% 33.54% 5.530% 0.314% | -0.095% 22.842%
A+B+C 44.12% 21.00% 31.00% 33.54% 5.538% 0311% | 0.863% 22.585%
A+B+C+D 43.78% 18.78% 30.62% 33.54% 5.549% 0.302% | 1.420% 22.095%
A+B+C+D+E  43.53% 15.80% 30.79% 33.54% 5.529% 0.309% | 1.752% 21.583%
SR
A 36.68% 21.85% 29.80% 36.33% 8.169% 0.186% / 22.169%
A+B 43.97% 22.23% 32.84% 36.20% 8.430% 0.189% | -0.665% 23.976%
A+B+C 43.46% 20.14% 32.81% 36.52% 8.153% 0.175% | 0.877% 23.543%
A+B+C+D 43.15% 17.85% 32.98% 32.50% 4.932% 0.143% | 2.270% 21.926%
A+B+C+D+E  4298% 14.89% 32.14% 28.39% 6.140% 0.529% | 3.218% 20.845%
GSR (Ours)
A 40.89% 22.23% 30.74% 33.54% 5.523% 0.316% / 22.206%
A+B 44.00% 21.53% 30.82% 33.54% 5.542% 0.326% | -0.140% 22.626%
A+B+C 43.79% 20.01% 30.65% 33.54% 5519% 0.304% | 0.867% 22.302%
A+B+C+D 43.82% 18.73% 30.79% 33.54% 5.522% 0.310% | 0.928% 22.119%
A+B+C+D+E  4351% 17.05% 30.85% 33.54% 5.532% 0.322% | 1.090% 21.801%
PerFT (Single-Task Upper Bound)
A 36.85% 22.01% 30.88% 33.54% 5512% 0.323% / 21.519%
B 44.27% 13.47% 32.19% 32.37% 5519% 0.290% / 21.352%
C 43.02% 18.76% 30.36% 34.32% 5391% 0.168% / 22.003%
D 44.24% 18.92% 30.74% 33.93% 6.811% 0.231% / 22.479%
E 43.51% 15.82% 31.09% 28.97% 5474%  0.577% / 20.907%
MTL (Overall Upper Bound)
ABCDE 43.65% 22.12% 31.52% 34.06% 4.816% 0.532% / 22.783%

Table 2: Full results of sequential training with different baseline methods (§4.2). Alphabets A—E correspond to 5
tasks in §4.1. “+” indicates the training sequence.
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