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Abstract

Automated biodiversity monitoring is crucial for addressing the global decline in1

insect populations. While most vision-based monitoring efforts analyze images of2

individual specimens, large-scale monitoring efforts yield “bulk images” where3

thousands of small insects are imaged in a single, high-resolution image. General4

object detection and instance segmentation models struggle to localize these insects5

due to the lack of discriminative visual features for tiny insects and the lack of6

relevant pretraining data. In this work, we explore the effectiveness of super-7

resolution (SR) as a preprocessing step for tiny insect detection. We use the8

Mixed Arthropod Sample Segmentation and Identification (MassID45) dataset as9

a testbed for this task. MassID45 is the first dataset of its kind to feature high-10

resolution bulk images with instance segmentation and taxonomic classification11

labels for thousands of small, densely-packed insects. Our experiments show that12

the bilinear interpolation used in previous MassID45 baselines is suboptimal, and13

that applying more sophisticated upsampling methods boosts performance across14

multiple instance segmentation architectures. Leveraging several upsampling15

methods, ranging from bicubic interpolation to more sophisticated GAN and16

transformer-based SR models, we achieve an average precision score of 52.8% on17

the MassID45 test set, representing an increase of 9.3 points from the previous18

baseline. These performance gains are most pronounced for small objects, proving19

that SR reconstructs visual details that aid in tiny object detection. Ultimately, our20

work establishes SR as an important step for bulk image analyses and automated21

biodiversity monitoring efforts.22

1 Introduction and Background23

Insects represent about half of all biodiversity on Earth [28]. Unfortunately, anthropogenic climate24

change threatens insect populations worldwide [33, 3], and by extension, the ecosystems and food25

webs that insects support [24]. A major bottleneck in understanding this crisis is the shortage of26

taxonomic experts [36, 22]. Computer vision can address this limitation by automatically analyzing27

images of bulk samples, where multiple specimens are imaged all at once. These images derived28

from bulk samples are referred to as bulk images.29

From a computer vision perspective, detecting and classifying insects from bulk images presents30

several challenges. First, it is difficult to distinguish and localize small, densely-packed insects31

from visually similar background debris, which can include loose insect parts. Moreover, a single32

bulk image can contain several thousand specimens, each of which is only represented by a few33

pixels. Insects in the resulting bulk image may appear blurry or lack clear morphological details,34

complicating downstream tasks like detection and classification. To address these challenges, we35

propose the use of super-resolution (SR), an image processing technique that reconstructs plausible36

high-resolution details from low-resolution images [13]. While SR has shown promise for small37

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.



(c) Real-ESRGAN(b) Bicubic(a) Bilinear (d) SwinIR (e) SwinIR-BIOSCAN

Inputs

Figure 1: Visual comparison of an example patch upscaled using bilinear interpolation (a) versus the
4 SR methods explored in this work (b-e). Bicubic interpolation (b) produces slightly clearer textures
but appears almost identical to bilinear interpolation (a). The deep SR methods — Real-ESRGAN
(c), SwinIR (d), and SwinIR-BIOSCAN (e) — generate visually sharp textures and contours, with
SwinIR producing more exaggerated textures than Real-ESRGAN and SwinIR-BIOSCAN. Best
viewed on a color display with zoom.

detection tasks in other fields like satellite imagery [25] and plant identification [13], its effectiveness38

for bulk insect imagery remains unexplored.39

Many large-scale insect monitoring efforts rely on bulk samples, as sorting and imaging the specimens40

individually is labor-intensive. While many computer vision datasets have been developed for images41

of single insect specimens, there is a significant domain shift between single-specimen images and42

the bulk images from ecological studies (see Appendix A). To address this challenge, we leverage the43

Mixed Arthropod Sample Segmentation and Identification (MassID45) dataset [21], the first dataset of44

its kind to feature high-resolution bulk images with instance segmentation and taxonomic annotations45

for thousands of small, densely-packed insects. Through this work, we demonstrate that super-46

resolution preprocessing addresses the core challenge of tiny arthropod detection in bulk imagery,47

establishing SR-enhanced pipelines as an effective paradigm for microscopic biological specimen48

detection and significantly improving existing instance segmentation benchmarks on MassID45.49

2 Dataset and Methods50

2.1 MassID45 dataset51

The MassID45 dataset addresses the challenge of analyzing dense, unsorted bulk insect samples from52

real-world ecological surveys. It provides 45 bulk arthropod samples collected with flight interception53

traps from Sweden and Finland [21], resulting in 49 high-resolution bulk images with instance-54

level segmentation masks and taxonomic labels for 17,937 arthropod specimens (see Appendix B55

for details). In this work, we focus on the first stage of bulk image analyses: detecting insects56

from background and debris. We frame this task as a single-class instance segmentation problem,57

using the mask annotations to encode morphological information that can aid downstream tasks like58

classification and biomass estimation [24, 6]. Given the abundance of small, nearly transparent insects59

and their high density, MassID45 serves as a challenging benchmark for tiny instance segmentation.60

2.2 Experimental setup61

Due to the high resolution of the bulk images, processing entire images within GPU memory would62

be infeasible. Thus, we adopt the same sliding window approach from [21] to divide the bulk images63

into 512× 512 pixel tiles. Our data preprocessing, partitioning, and augmentation pipelines follow64

the original study [21] and are described in Appendices C.1 – C.3.65

Motivation for SR. The instance segmentation models we evaluate expect a fixed input size of 102466

× 1024 pixels. Thus, the 512 × 512 pixel tiles are upsampled by a factor of two during training67

and inference. Upscaling was originally performed with bilinear interpolation in [21], the default68

method in Detectron2 [38]. However, bilinear interpolation is limited; it is unable to reconstruct69

details lost during imaging as it computes the linear average of neighbouring pixels, leading to blur in70

the boundaries of existing insect contours. This is problematic for detecting small insects, which are71

already represented by a small number of pixels. Moreover, image quality is limited by blur from the72
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Table 1: Comparison of instance segmentation performance for different detectors and upsampling
methods. For each metric, the performance change relative to its bilinear interpolation baseline is
shown in subscript (blue for improvement ↑, orange for decline ↓). For each detector, the upsampling
method with the best performance is bolded, and the second-best is underlined for each AP metric.

Detector Upsampling Method AP50:5:95 AP50 AP75 APS
50:5:95 APM

50:5:95 APL
50:5:95

Mask R-CNN Bilinear interpolation 42.5 83.1 36.6 20.0 41.6 70.4
Bicubic interpolation 52.8↑10.3 84.3↑1.20 57.8↑21.2 34.3↑14.3 53.5↑11.9 77.2↑6.80

Real-ESRGAN 49.8↑7.30 82.1↓1.00 52.2↑15.6 29.1↑9.10 50.6↑9.00 76.4↑6.00

SwinIR 52.4↑9.90 83.6↑0.50 58.0↑21.4 31.5↑11.5 53.1↑11.5 77.7↑7.30

SwinIR-BIOSCAN 52.1↑9.60 84.1↑1.00 56.6↑20.0 32.0↑12.0 53.4↑11.8 76.0↑5.60

Mask2Former Bilinear interpolation 41.4 78.7 37.4 20.5 40.0 71.1
Bicubic interpolation 48.7↑7.30 79.3↑0.60 51.1↑13.7 30.8↑10.3 48.4↑8.40 78.1↑7.00

Real-ESRGAN 46.6↑5.20 79.9↑1.20 46.0↑8.60 27.1↑6.60 45.1↑5.10 76.8↑5.70

SwinIR 50.5↑9.10 81.6↑2.90 53.3↑15.9 31.8↑11.3 50.7↑10.7 78.3↑7.20

SwinIR-BIOSCAN 49.4↑8.00 80.9↑2.20 51.0↑13.6 31.5↑11.0 48.8↑8.80 78.3↑7.20

Mask DINO Bilinear interpolation 43.5 80.9 40.1 21.1 43.5 73.1
Bicubic interpolation 51.3↑7.80 81.5↑0.60 54.7↑14.6 32.9↑11.8 51.2↑7.70 80.3↑7.20

Real-ESRGAN 49.3↑5.80 81.6↑0.70 50.0↑9.90 28.9↑7.80 49.5↑6.00 77.6↑4.50

SwinIR 51.5↑8.00 82.5↑1.60 55.4↑15.3 31.9↑10.8 52.3↑8.80 77.2↑4.10

SwinIR-BIOSCAN 50.6↑7.10 82.0↑1.10 54.5↑14.4 31.2↑10.1 52.2↑8.70 77.5↑4.40

use of aperture 22, JPEG compression, and other unknown degradations [21]. Thus, we investigate73

whether more advanced SR techniques can recover these details to improve detection performance.74

SR methods. We compare the baseline bilinear upsampling against bicubic interpolation, as well as75

three SR methods designed to enhance real-world images with unknown degradations: Real-ESRGAN76

[34], SwinIR [16], and SwinIR-BIOSCAN. SwinIR-BIOSCAN is a SwinIR model fine-tuned on77

high-quality arthropod images from the BIOSCAN-5M dataset [8] (see Appendix C.4 for details).78

Implementation details for these SR methods can be found in Appendix C.5, while their effects on a79

sample image patch are visualized in Figure 1.80

Detector architectures. We leverage the same supervised instance segmentation architectures from81

[21]: Mask R-CNN [11], Mask2Former [4], and Mask DINO [15], improving upon these baselines82

by incorporating image SR into the augmentation and preprocessing pipelines. Following [21], we83

employ transfer learning to train our detectors, then use the SAHI algorithm [2] to map the tiled84

predictions back to the bulk images. Training and inference details can be found in Appendix C.6.85

Evaluation metrics. We report COCO-style average precision (AP) metrics, consistent with [21].86

This includes AP50:5:95 (averaged over IoU thresholds from 50% to 95%), AP50, AP75, and AP50:5:9587

broken down by object size: APS
50:5:95 (small), APM

50:5:95 (medium), and APL
50:5:95 (large), which are88

defined in Figure 5 in Appendix B. All evaluation metrics are reported on the MassID45 test partition.89

3 Results90

3.1 Performance evaluation of SR models91

As seen in Table 1, all of the tested SR methods achieve a higher AP50:5:95 than bilinear interpolation,92

irrespective of which detector is used. The top-performing combination is Mask R-CNN with bicubic93

interpolation, which represents a 9.3% improvement in AP50:5:95 from the previous leader Mask94

DINO.95

We see the most dramatic improvements for AP75, which only rewards highly precise predictions96

(i.e., an IoU of ≥ 75% agreement with the ground truth). For instance, Mask R-CNN and bicubic97

interpolation raised AP75 by 21.4 points, from 36.6% to 58.0%. Thus, the SR methods used in this98

work reconstruct insect contours more accurately than bilinear interpolation, allowing the instance99

segmentation models to learn to predict tighter, more precise masks.100

Precise instance mask predictions are particularly important for insects that are very small or have101

fine morphological details like legs, wings, and antennae. We see comparatively smaller gains for102
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Figure 2: Average precision (AP) for each super-resolution method versus the bilinear interpolation
baseline. The AP metrics are averaged across the three detectors, where: a) shows AP at fixed IoU
thresholds from 50% to 95% in increments of 5%, and b) shows the AP50:5:95 for 56 logarithmically-
spaced area bins. Each bold line indicates the detector-averaged AP50:5:95, while the thin lines indicate
the performance of individual detectors.
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Figure 3: AP50:5:95 and average compute times for each pair of upsampling method and detector
model. The bilinear interpolation baselines from [21] are shown in gray. Average compute times were
computed on the MassID45 test partition (6 bulk images), including the time needed to upsample
images and perform inference using each detector. Differences in compute time between SwinIR and
SwinIR-BIOSCAN should be interpreted as noise.

AP50 (i.e., an IoU of ≥ 50% agreement with the ground truth), which rewards coarse detections and103

is less sensitive to the vague boundaries produced by bilinear interpolation. The AP performance of104

each upsampling method across varying IoU thresholds is shown in Figure 2a.105

Another key insight lies in the improvements seen when stratifying our performance evaluation by106

object area. A breakdown of AP50:5:95 by insect size is shown in Figure 2b, with the bilinear baseline107

shown in gray. The general trend is that as the object size increases, AP50:5:95 increases because the108

ratio of border pixels (which are harder to classify) to total pixels decreases. Consequently, SR is109

most beneficial for small insects, and least beneficial for larger insects. Interestingly, Real-ESRGAN110

performs worse than the other SR methods for small and medium insects, while SwinIR excels on the111

smallest insects (<32 pixels). These results confirm that SR enhances tiny instance segmentation112

through two mechanisms: traditional interpolation methods sharpen existing object boundaries, while113

GAN-based approaches generate additional discriminative features that aid detection of objects114

lacking clear visual characteristics.115

Despite performing comparably to its pretrained counterpart, SwinIR-BIOSCAN does not surpass116

the detection performance of SwinIR, which was trained on high-resolution images from various117

contexts, like outdoor scenes [16, 1, 30]. This result may be due to the abundance of insects with118

transparent parts in BIOSCAN-5M, particularly specimens of the order Diptera, which comprise119

63% of the training data for SwinIR-BIOSCAN. Fine-tuning on Diptera may encourage SwinIR to120

generate more transparent textures, which, while more biologically accurate, are harder to detect due121

to their similarity to the background. However, we did observe that SwinIR-BIOSCAN produces122
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qualitatively fewer hallucinated or exaggerated textures than SwinIR (see Figure 1). Future work123

should explore how well SwinIR-BIOSCAN performs on downstream taxonomic classification tasks124

compared to bicubic interpolation and the pretrained SR methods.125

3.2 Performance–compute trade-off126

We also evaluated the trade-off between total compute time and performance for each SR method and127

detector (see Figure 3). We measured total compute times by recording the average upscaling time128

and inference time per test partition image. We conducted this analysis for each combination of SR129

method and detector, measuring the time needed for SR upscaling and model inference times using 1130

NVIDIA A40 GPU. We used AP50:5:95 to measure the performance of each detector and SR method.131

This analysis reveals that bicubic interpolation and Mask-RCNN achieve the best AP50:5:95 score,132

while consuming significantly less compute than their deep SR counterparts, and only marginally133

more compute than the bilinear interpolation baseline. For this dataset, bicubic upscaling is sufficient134

as the insect localization task is essentially distinguishing foreground from background, which does135

not require the fine texture details generated by the GAN-based SR methods. While SwinIR-based136

methods achieve comparable gains as bicubic interpolation — and provide the best performance for137

Mask DINO and Mask2Former — they require much higher computational resources. For large-scale138

biodiversity monitoring efforts, the more compute-efficient combination of Mask R-CNN and bicubic139

interpolation is strongly preferred, given the large number of bulk samples that would need to be140

processed.141

4 Conclusions142

We addressed the challenge of tiny instance segmentation on the densely-packed bulk images of the143

MassID45 dataset. We demonstrated that all tested SR methods, especially basic bicubic interpolation,144

substantially improve upon the baseline performance established by [21]. This improvement stems145

from addressing the limitations of simple bilinear interpolation, which can blur edges and smooth146

over visual details that are crucial for detection of tiny insects comprising only tens of pixels.147

Our experiments showed that more sophisticated upsampling methods, ranging from bicubic inter-148

polation to transformer-GAN models like SwinIR, can significantly improve detection performance149

across several instance segmentation architectures. Replacing bilinear upsampling with the SR150

methods explored in this work resulted in improved baselines for the MassID45 dataset, with the most151

significant gains being observed for small insects and the AP75 metric. Additionally, we investigated152

whether fine-tuning SR models on high-resolution insect images can improve detection performance.153

Our fine-tuned SwinIR-BIOSCAN model achieved slightly worse performance than its pretrained154

counterpart, but visually produced images with fewer hallucinated textures.155

Most importantly, our analysis showed that simply replacing bilinear interpolation with bicubic156

interpolation was sufficient to achieve performance gains, and that deep SR methods did not provide157

a sufficient benefit to justify the additional compute cost. In fact, the performance gains from bicubic158

interpolation were most significant for Mask R-CNN, the most compute-efficient model. This result159

points to the viability of low-compute upscaling and detection methods for vision-based ecological160

monitoring efforts.161

Our work establishes SR preprocessing as an effective approach for tiny instance segmentation162

tasks where object detail preservation is critical. The consistent improvements across multiple163

architectures and SR methods suggest this approach could benefit other domains involving small-164

scale object detection, such as medical imaging, satellite imagery analysis, and automated quality165

control in manufacturing. For biodiversity monitoring specifically, the enhanced detection accuracy166

demonstrated here could enable more reliable automated species counting and distribution mapping167

in field-collected samples, reducing the manual annotation burden that currently limits large-scale168

ecological studies.169
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Appendices290

In these appendices, we review related insect datasets, provide dataset details for MassID45, and291

further outline our experimental procedures. The appendices are summarized below.292

• Appendix A. Literature review of related insect datasets.293

• Appendix B. Additional details about the MassID45 dataset, including summary statistics.294

• Appendix C. Additional details about our experimental procedures, including data pre-295

processing, data partitioning, data augmentations, training details for SwinIR-BIOSCAN,296

implementation details for the different SR methods, and our training and inference pipelines297

for the instance segmentation models.298

A Review of related insect datasets299

The threat to insect populations globally has prompted the development of image datasets to support300

insect monitoring, primarily through taxonomic classification. We review several of these datasets,301

focusing on their suitability for bulk insect detection and the gaps addressed by MassID45 [21]. Early302

efforts included the IP102 dataset [37], which featured 75,000 images for identifying agricultural303

pests. To facilitate the training of foundation models for insect understanding, significantly larger304

datasets were introduced, including Insect-1M, [20], BIOSCAN-1M [7], and BIOSCAN-5M [8],305

the latter derived from a raw dataset of 5.6 million Keyence microscope images paired with DNA306

barcodes [27]. The BIOSCAN datasets are unique in their use of DNA barcoding, a molecular307

technique that uses short genetic sequences to identify species with high accuracy. In the absence308

of distinguishing morphological features from images, DNA barcoding enables the development of309

more accurate multi-modal models for taxonomic classification [10, 8]. These large-scale datasets are310

crucial for advancing taxonomic studies. However, they only contain images of individual specimens311

and do not address the challenges associated with bulk images, where insects must first be localized.312

As mentioned previously, there is a domain shift between single-specimen images and the bulk313

images produced by large-scale ecological monitoring programs. To address this gap, Schneider314

et al. [24, 23] compiled ALUS, the first dataset containing bulk imagery with individual annota-315

tions for taxonomic classification and biomass estimation. However, they did not provide box or316

instance mask annotations, instead using the watershed algorithm to localize insects in their bulk317

images. [31] provided a dataset with both bounding box and taxonomic annotations, addressing the318

localization problem by training an object detection model. Their dataset consisted of arthropod319

images taken in the wild, with some images containing very tiny, densely clustered insects. Similarly,320

the ArTaxOr dataset [19] provided in-the-wild images with annotations for object detection and321

taxonomic classification. The taxonomic labels were limited to eight relatively balanced orders,322

avoiding the long-tailed nature of most taxonomic classification problems [7], but also limiting its323

value for ecological studies. To facilitate automatic insect monitoring, AMI-Traps [12] introduced a324

dataset of expert-annotated images taken using insect camera traps. While a custom object detection325

model was developed to crop moths and other insects from the trap images using synthetic data, no326

object detection benchmarks were reported, and the predicted boxes were ultimately reviewed and327

corrected by annotators. Additionally, fine-grained taxonomic labels were only assigned to insects328

that annotators identified as moths [12].329

A step towards automated insect detection was made by [29], which proposed flatbug, a dataset330

and YOLOv8 model for counting arthropods in images taken from diverse lab or field-based imaging331

setups. Focusing on class-agnostic instance segmentation and object detection, flatbug [29] was332

trained on arthropod images from 23 arthropod image datasets, some of which were re-annotated to333

include instance masks. The sub-datasets comprised images taken from the previously mentioned334

ALUS [24], BIOSCAN [7, 8], AMI [12], and ArTaxOr [19] datasets. Unlike MassID45, which335

contains an average of 366 insects per bulk image [21], the majority of these datasets do not have a336

comparable density. Only two of the 23 sub-datasets (totaling 81 images) used in flatbug [29] are337

considered “high” or “very high” density.338

Among the datasets above, only [31], flatbug [29], and, to a limited extent, AMI-Traps [12] contain339

ground-truth annotations suiTable for training and evaluating detection models on bulk images. Of340

these, only flatbug [29] provides instance mask annotations. However, flatbug [29] incorporates341
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a b

Figure 4: (a) Imaging setup used to capture bulk images of the MassID45 dataset, including the
positioning of the camera, light cube and ring light sources. (b) A representative image captured
using the described imaging setup, with the sides trimmed, showcasing the high density of the insect
specimens. Images are reproduced from [21].

insect images from multiple domains and/or imaging setups, including some individual specimen342

images. We avoid these domain shifts, restricting our analyses to bulk images obtained from a343

standardized imaging and annotation protocol (Malaise traps).344

The MassID45 dataset [21] was created to address these gaps, providing much-needed training data345

for localizing small insects from bulk images. MassID45 also provides DNA barcoding information346

similar to [7] and [8], although we do not leverage genetic information in this work. We opt to347

perform insect localization using the instance mask annotations provided by MassID45, as they have348

several benefits compared to bounding boxes. These include encoding morphological information349

that may be useful for downstream classification tasks, and enabling biomass estimation [24, 6].350

B MassID45 dataset details351

The imaging equipment and one example bulk image are shown in Figure 4. Detailed data collection352

and annotation procedures can be found in the original work [21].353

The 49 annotated bulk images contain masks for 17,937 arthropods, with mask areas ranging between354

15.1 and 83,182.4 pixels. Each bulk image contains an average of 366 insect instances, with the most355

densely-packed bulk image having 3,228 insects. The mean mask area is 1,152.2 pixels, while the356

median is 343.4 pixels. Figure 5 shows a detailed breakdown of the distribution of insect mask areas.357

The insect masks are split into 3 categories based on their area. Under the MS-COCO definition of358

small objects (<32× 32 pixels in area) [17], 76.5% of the MassID45 insects would be considered as359

“small”. To increase the granularity in our performance evaluations for different object sizes, we used360

area thresholds from iSAID [35]. We define “small” as <144 pixels, “medium” as ≥144 but <1024361

pixels, and “large” as ≥1024 pixels.362
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Small (98.75 sq.px)
Small (98.75 px)

Medium (336.1 sq.px)
Medium (336.1 px)

Large (2521 sq.px)
Large (2,521 px)

Figure 5: Distribution of insect mask areas in MassID45 [21]. The insect masks are split into 3
groups based on area: “small” (< 144 pixels), “medium” (≥ 144 but < 1024 pixels), and “large”
(≥1024 pixels) insects. Counts are adjusted such that the area of a bar is proportional to the count in
that bin. The three images show the median masks for small, medium, and large insects, all at the
same magnification. Figure is reproduced from [21].

C Experiments — additional details363

C.1 Data preprocessing364

Instance segmentation models require systematic preprocessing to handle the large, complex bulk365

images in MassID45. Due to the large number of specimens, each bulk image was split into 4 × 4366

equally-sized sub-images during the annotation process, with overlapping borders to ensure complete367

arthropod coverage. Following [21], we first mapped sub-image annotations back to the original bulk368

image coordinates, then used the Shapely library [9] to correct geometric artifacts. Self-intersecting369

polygons (where annotation boundaries cross themselves) were repaired, and internal holes within370

insect masks—such as gaps between legs—were filled to create single concave hulls. This hole-filling371

prevents models from incorrectly learning that arthropods should contain background regions and372

makes the learning task easier. Each bulk image was manually cropped to remove areas without373

specimens, reducing computational overhead while preserving all annotated insects.374

The resulting images remained too large for direct processing on available GPU hardware, requiring375

a tiling strategy, similar to [32] and [2]. We divided bulk images into 512 × 512 pixel tiles using a376

sliding window with the same 60% overlap as [21], ensuring that insects truncated at tile boundaries377

appear complete in adjacent tiles. Following [5], we retained partially visible annotations only when378

more than 10% of the original specimen area remained within the tile boundary.379

C.2 Dataset partitions380

We adopted the train/validation/test split defined in [21] for the 49 bulk images (see Table 2). To381

prevent data leakage, all image tiles derived from a single bulk image are assigned to the same split.382

Insect counts include instances that were partially split across tiles.383

Table 2: Dataset partitioning and composition. The “# Insects” column denotes the number of insects
in each partition after tiling.

Partition # Bulk Images % Bulk Images # Tiled Images # Insects
Training 40 81.6% 17,062 110,520
Validation 3 6.1% 1,244 5,867
Testing 6 12.2% 1,586 6,241

Total 49 100% 19,892 122,628
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Table 3: Geometric and color-based data augmentations used for the training data, where p denotes
the probability of applying each transformation. Adapted from [21].

Category Augmentation Parameters
Geometric Random horizontal flip p = 0.5

Random rotation {0°, 90°, 180°, 270°}, p = 0.25 each

Color Random brightness Uniform in range [−15%,+15%]
Random contrast Uniform in range [−10%,+10%]
Random saturation Uniform in range [−15%,+15%]

C.3 Data augmentations384

All experiments are conducted on the 512 × 512 pixel tiles extracted from the bulk images. To385

improve generalization, we employ the same data augmentation scheme as [21], implementing386

geometric and colour transforms aimed at improving robustness to insects in different orientations387

and lighting conditions. These data augmentations are detailed in Table 3.388

C.4 Fine-tuning SwinIR on BIOSCAN-5M389

We investigated whether an SR model fine-tuned on arthropod images could reconstruct visual details390

from our insects more accurately than pretrained SR models. Leveraging our best deep learning-based391

SR method, SwinIR (see Table 1), we performed fine-tuning on the BIOSCAN-5M dataset, which392

contains high-quality Keyence images of single arthropod specimens [8].393

To ensure the training images from BIOSCAN-5M were taxonomically relevant to the insects in394

MassID45, we selected a subset of images that matched the range of taxonomic labels in the MassID45395

train partition. We performed this matching using the train partition of BIOSCAN-5M, which396

only contains specimens with complete taxonomic labels. Some taxonomic labels in MassID45397

corresponded to intermediate ranks not present in BIOSCAN-5M, such as superfamily. For such cases,398

we resolved the label to the next-highest parent rank (e.g., resolving superfamily Ichneumonoidea to399

its parent order, Hymenoptera). Moreover, each labelled insect in MassID45 could be represented400

by several taxonomic labels, some being high-confidence and some being low-confidence [21]. We401

aggregated all taxonomic labels from the MassID45 insects in the training partition into a flat list of402

target labels that could be used to find matching specimen images from BIOSCAN-5M. For each403

target label, we randomly selected 5 specimen images from BIOSCAN-5M matching that taxonomic404

target label without replacement. This matching process yielded a training dataset (40,540 images;405

90%) and validation dataset (4504 images; 10%) that could be used for fine-tuning SwinIR.406

Following previous work from [34], we then generated high-resolution (HR) and low-resolution (LR)407

image pairs for training. We obtained these training pairs “on-the-fly” using the degradation models408

from [34, 39], which applies various image degradations at random to simulate real-world image409

artifacts. Such degradations included 2× down-sampling, as well as random amounts of Gaussian410

noise, blur, and/or JPEG compression. We trained the SwinIR-BIOSCAN model to perform 2×411

upscaling, initializing the network with the pretrained weights from the 2× SwinIR model. During412

training, unsharp masking (USM) was applied to the ground truth images to improve the visual413

sharpness of the reconstructed images, similar to [34]. The SwinIR model was fine-tuned for 5000414

iterations, using a batch size of 32, a learning rate of 1× 10−4, and the Adam optimizer [14]. The415

training was performed using 4 NVIDIA RTX6000 GPUs.416

We then performed inference on the degraded validation images. We report validation results417

for the SwinIR-BIOSCAN model, including common SR metrics like Peak-Signal-to-Noise Ratio418

(PSNR) and Structural Similarity Index Measure (SSIM), in Table 4. The fine-tuning process yields419

considerable improvements in PSNR and SSIM, although these are not necessarily indicative of420

superior instance segmentation performance on the MassID45 data, which we assess in Section 3.1421

above.422
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Table 4: Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) metrics
for the finetuned SwinIR model on a validation set of 4504 images from the BIOSCAN-5M dataset.

Model PSNR (dB) SSIM

SwinIR 29.52 0.8759
SwinIR-BIOSCAN 31.43 0.8942

C.5 SR implementation details423

For Real-ESRGAN, we used the pretrained RealESRGAN_x2plus.pth checkpoint [34], and for SwinIR,424

we used the 003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x2_GAN.pth checkpoint [16].425

Bicubic and bilinear interpolation could be directly applied to the full bulk images, yielding images 2× larger426

in height and width. For these two interpolation methods, we used a CPU with 8 cores. We used 1 NVIDIA427

A40 GPU when performing inference with the Real-ESRGAN, SwinIR, and SwinIR-BIOSCAN models. Due to428

GPU computing limitations, however, the Real-ESRGAN and SwinIR models could not ingest full bulk images.429

When upscaling with Real-ESRGAN or SwinIR, the bulk images were divided into 512× 512 shards, then 2×430

SR was performed on each shard.431

Real-ESRGAN and SwinIR used different strategies for stitching the shards to form 2× upscaled bulk images.432

Real-ESRGAN processed shards that were larger than 512× 512, allowing the SR model to see context beyond433

the shard. When stitching the patches back together, only the output corresponding to the original shard434

boundaries was retained, with the processed padded regions being discarded. Conversely, SwinIR only processed435

the regions within the shards, but added overlap between the shards. When stitching the upscaled shards back436

together, SwinIR averaged the outputs in the overlapping regions between the shards.437

For Real-ESRGAN, the shard context was increased to 308 pixels to avoid stitching artifacts. For SwinIR and438

SwinIR-BIOSCAN, an overlap of 32 pixels between shards was sufficient to avoid stitching artifacts. Once the439

2× upscaled bulk images were obtained, they were then split into 1024 × 1024 pixel tiles with 60% overlap440

for training and inference. These 1024 × 1024 pixel tiles contained the same image content as the original441

512× 512 tiles, but now upscaled by a factor of 2. Inference with the deep SR models was performed using 1442

NVIDIA A40 GPU.443

C.6 Detector training and inference details444

Training details. All supervised models were implemented using the Detectron2 library [38]. To harness transfer445

learning, each model was initialized with weights from a ResNet-50 backbone pre-trained on the MS-COCO446

dataset [17]. We fine-tuned each model for 15,000 iterations with a batch size of 8, using the AdamW optimizer447

[18] and a one-cycle cosine-annealed learning rate scheduler [26] with a peak learning rate of 5× 10−5 and a448

warm-up period of 4,500 iterations. Training was performed using 4 NVIDIA RTX6000 GPUs.449

Inference details. Following [21], we used the SAHI algorithm [2] to aggregate the tiled predictions and map450

them back to the original bulk image during inference. We only merged predictions that had an intersection-over-451

union (IoU) of at least 50% and confidence greater than 25%. After upscaling, the predictions were made on 2×452

larger tiles; thus, the 2D polygon coordinates of the predicted masks were divided by 2 to match the original453

scale of the ground truth annotations.454
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