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Abstract

Automated biodiversity monitoring is crucial for addressing the global decline in
insect populations. While most vision-based monitoring efforts analyze images of
individual specimens, large-scale monitoring efforts yield “bulk images” where
thousands of small insects are imaged in a single, high-resolution image. General
object detection and instance segmentation models struggle to localize these insects
due to the lack of discriminative visual features for tiny insects and the lack of
relevant pretraining data. In this work, we present a case study that explores the ef-
fectiveness of super-resolution (SR) as a preprocessing step for tiny insect detection.
We use the Mixed Arthropod Sample Segmentation and Identification (MassID45)
dataset as a testbed for this task. MassID4S5 is the first dataset of its kind to feature
high-resolution bulk images with instance segmentation and taxonomic classifica-
tion labels for thousands of small, densely-packed insects. Our experiments show
that the bilinear interpolation used in previous MassID45 baselines is suboptimal,
and that applying more sophisticated upsampling methods boosts performance
across multiple instance segmentation architectures. Leveraging several upsam-
pling methods, ranging from bicubic interpolation to more sophisticated GAN and
transformer-based SR models, we achieve an average precision score of 52.8% on
the MassID45 test set, representing an increase of 9.3 points from the previous
baseline. These performance gains are most pronounced for small objects, proving
that SR reconstructs visual details that aid in tiny object detection. Ultimately, our
work establishes SR as an important step for bulk image analyses and automated
biodiversity monitoring efforts.

1 Introduction and Background

Insects represent about half of all biodiversity on Earth [28]. Unfortunately, anthropogenic climate
change threatens insect populations worldwide [33, 3], and by extension, the ecosystems and food
webs that insects support [24]. A major bottleneck in understanding this crisis is the shortage of
taxonomic experts [36, 22]. Computer vision can address this limitation by automatically analyzing
images of bulk samples, where multiple specimens are imaged all at once. These images derived
from bulk samples are referred to as bulk images.

From a computer vision perspective, detecting and classifying insects from bulk images presents
several challenges. First, it is difficult to distinguish and localize small, densely-packed insects
from visually similar background debris, which can include loose insect parts. Moreover, a single
bulk image can contain several thousand specimens, each of which is only represented by a few
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Figure 1: Visual comparison of an example patch upscaled using bilinear interpolation (a) versus the
4 SR methods explored in this work (b-e). Bicubic interpolation (b) produces slightly clearer textures
but appears almost identical to bilinear interpolation (a). The deep SR methods — Real-ESRGAN
(c), SwinlR (d), and SwinIR-BIOSCAN (e) — generate visually sharp textures and contours, with
SwinlR producing more exaggerated textures than Real-ESRGAN and SwinIR-BIOSCAN. Best
viewed on a color display with zoom.

pixels. Insects in the resulting bulk image may appear blurry or lack clear morphological details,
complicating downstream tasks like detection and classification. To address these challenges, we
propose the use of super-resolution (SR), an image processing technique that reconstructs plausible
high-resolution details from low-resolution images [13]. While SR has shown promise for small
detection tasks in other fields like satellite imagery [25] and plant identification [13], its effectiveness
for bulk insect imagery remains unexplored.

Many large-scale insect monitoring efforts rely on bulk samples, as sorting and imaging the specimens
individually is labor-intensive. While many computer vision datasets have been developed for images
of single insect specimens, there is a significant domain shift between single-specimen images and the
bulk images from ecological studies (see Appendix A). To address this challenge, we perform a case
study using the Mixed Arthropod Sample Segmentation and Identification (MassID45) dataset, which
we introduced earlier in [21]. MassID45 is the first dataset of its kind to feature high-resolution bulk
images with instance segmentation and taxonomic annotations for thousands of small, densely-packed
insects. Through this work, we demonstrate that super-resolution preprocessing addresses the core
challenge of tiny arthropod detection in bulk imagery, establishing SR-enhanced pipelines as an
effective paradigm for microscopic biological specimen detection and significantly improving existing
instance segmentation benchmarks on MassID45.

2 Dataset and Methods

2.1 MassID45 dataset

The MassID45 dataset addresses the challenge of analyzing dense, unsorted bulk insect samples
from real-world ecological surveys [21]. It provides 45 bulk arthropod samples collected with flight
interception traps from Sweden and Finland, resulting in 49 high-resolution bulk images with instance-
level segmentation masks and taxonomic labels for 17,937 arthropod specimens (see Appendix B
for details). In this work, we focus on the first stage of bulk image analyses: detecting insects
from background and debris. We frame this task as a single-class instance segmentation problem,
using the mask annotations to encode morphological information that can aid downstream tasks like
classification and biomass estimation [24, 6]. Given the abundance of small, nearly transparent insects
and their high density, MassID45 serves as a challenging benchmark for tiny instance segmentation.

2.2 Experimental setup

Due to the high resolution of the bulk images, processing entire images within GPU memory would
be infeasible. Thus, we adopt our same sliding window approach from [21] to divide the bulk images
into 512 x 512 pixel tiles. The data preprocessing, partitioning, and augmentation pipelines follow
our original study [21] and are described in Appendices C.1 — C.3.

Motivation for SR. The instance segmentation models we evaluate expect a fixed input size of 1024
x 1024 pixels. Thus, the 512 x 512 pixel tiles are upsampled by a factor of two during training
and inference, which we found to be the optimal upscaling factor for MassID45 [21]. We initially



Table 1: Comparison of instance segmentation performance for different detectors and upsampling
methods. For each metric, the performance change relative to its bilinear interpolation baseline is
shown in subscript (blue for improvement 1, orange for decline |). For each detector, the upsampling
method with the best performance is bolded, and the second-best is underlined for each AP metric.

Detector Upsampling Method ~ APs0.5.05 APso AP7s APSos.05 APM o5 APLys.0s
Mask R-CNN  Bilinear interpolation  42.5 83.1 36.6 20.0 41.6 70.4
Bicubic interpolation ~ 52.8t103 8431120 57.81212 3431143 53.5+119 77.216.80
Real-ESRGAN 49.8+730  82.1 52.2115.6 29.119.10 50.619.00 76.4+6.00
SwinIR 5241990 83.61050 58.01214 31.5¢1115 53.11115 77.7+7.30
SwinIR-BIOSCAN 52.11960  84.111.00  56.61200  32.0t120 53.4+118 76.015.60
Mask2Former  Bilinear interpolation  41.4 78.7 374 20.5 40.0 71.1
Bicubic interpolation ~ 48.74730  79.3t060  S51.11137 30.8110.3 48.4+8.40 78.1+7.00
Real-ESRGAN 46.61520  79.91120  46.018.60 27.116.60 45.1+15.10 76.8+5.70
SwinIR 50.5t9.10 81.61290 53.311509 31.8+113 50.7+10.7 78.317.20
SwinIR-BIOSCAN 49.41800 80.9t220 51.0t136  31.5t110 48.818.80 78.317.20
Mask DINO Bilinear interpolation ~ 43.5 80.9 40.1 21.1 43.5 73.1
Bicubic interpolation  51.34780  81.5t060  54.7+146 32.9+118 51.217.70 80.3+7.20
Real-ESRGAN 4931580  81.61070  50.019.90 28.917.80 49.516.00 77.614.50
SwinIR 51.5t300 82.5t160 55.41153 31.9+108 52.3+8.80 77.214.10
SwinIR-BIOSCAN 50.617.10  82.0t1.10  54.5t144  31.21101 52.218.70 77.514.40

performed upscaling with bilinear interpolation, the default method in Detectron2 [38]. However,
bilinear interpolation is limited; it is unable to reconstruct details lost during imaging as it computes
the linear average of neighbouring pixels, leading to blur in the boundaries of existing insect contours.
This is problematic for detecting small insects, which are already represented by a small number of
pixels. Moreover, image quality is limited by blur from the use of aperture 22, JPEG compression,
and other unknown degradations [21]. Thus, we investigate whether more advanced SR techniques
can recover these details to improve detection performance.

SR methods. We compare the baseline bilinear upsampling against bicubic interpolation, as well as
three SR methods designed to enhance real-world images with unknown degradations: Real-ESRGAN
[34], SwinIR [16], and SwinIR-BIOSCAN. SwinIR-BIOSCAN is a SwinIR model fine-tuned on
high-quality arthropod images from the BIOSCAN-5M dataset [8] (see Appendix C.4 for details).
Implementation details for these SR methods can be found in Appendix C.5, while their effects on a
sample image patch are visualized in Figure 1.

Detector architectures. We leverage the same supervised instance segmentation architectures from
[21]: Mask R-CNN [11], Mask2Former [4], and Mask DINO [15], improving upon these baselines by
incorporating image SR into the augmentation and preprocessing pipelines. Following our previous
work [21], we employ transfer learning to train our detectors, then use the SAHI algorithm [2] to
map the tiled predictions back to the bulk images. Training and inference details can be found in
Appendix C.6.

Evaluation metrics. We report COCO-style average precision (AP) metrics, consistent with our
experiments from [21]. This includes APs.s.95 (averaged over IoU thresholds from 50% to 95%),
APsg, AP;s, and APs.5.05 broken down by object size: AP35 o5 (small), AP - o~ (medium), and
APIg(): 5.95 (large), which are defined in Figure 5 in Appendix B. All evaluation metrics are reported
on the MassID4S5 test partition.

3 Results

3.1 Performance evaluation of SR models

As seen in Table 1, all of the tested SR methods achieve a higher APs.s.95 than bilinear interpolation,
irrespective of which detector is used. The top-performing combination is Mask R-CNN with bicubic
interpolation, which represents a 9.3% improvement in APsg.s.95 from the previous leader Mask
DINO.
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Figure 2: Average precision (AP) for each super-resolution method versus the bilinear interpolation
baseline. The AP metrics are averaged across the three detectors, where: a) shows AP at fixed loU
thresholds from 50% to 95% in increments of 5%, and b) shows the APs.5.95 for 56 logarithmically-
spaced area bins. Each bold line indicates the detector-averaged APs.s.95, while the thin lines indicate
the performance of individual detectors.
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Figure 3: APs.5.95 and average compute times for each pair of upsampling method and detector
model. The bilinear interpolation baselines from [21] are shown in gray. Average compute times were
computed on the MassID45 test partition (6 bulk images), including the time needed to upsample
images and perform inference using each detector. Differences in compute time between SwinIR and
SwinIR-BIOSCAN should be interpreted as noise.

We see the most dramatic improvements for AP7s, which only rewards highly precise predictions
(i.e., an IoU of > 75% agreement with the ground truth). For instance, Mask R-CNN and bicubic
interpolation raised AP75 by 21.4 points, from 36.6% to 58.0%. Thus, the SR methods used in this
work reconstruct insect contours more accurately than bilinear interpolation, allowing the instance
segmentation models to learn to predict tighter, more precise masks.

Precise instance mask predictions are particularly important for insects that are very small or have
fine morphological details like legs, wings, and antennae. We see comparatively smaller gains for
APs (i.e., an IoU of > 50% agreement with the ground truth), which rewards coarse detections and
is less sensitive to the vague boundaries produced by bilinear interpolation. The AP performance of
each upsampling method across varying IoU thresholds is shown in Figure 2a.

Another key insight lies in the improvements seen when stratifying our performance evaluation by
object area. A breakdown of APs.5.95 by insect size is shown in Figure 2b, with the bilinear baseline
shown in gray. The general trend is that as the object size increases, APs.s.95 increases because the
ratio of border pixels (which are harder to classify) to total pixels decreases. Consequently, SR is
most beneficial for small insects, and least beneficial for larger insects. Interestingly, Real-ESRGAN
performs worse than the other SR methods for small and medium insects, while SwinIR excels on the
smallest insects (< 32 pixels). These results confirm that SR enhances tiny instance segmentation
through two mechanisms: traditional interpolation methods sharpen existing object boundaries, while
GAN-based approaches generate additional discriminative features that aid detection of objects
lacking clear visual characteristics.



Despite performing comparably to its pretrained counterpart, SwinIR-BIOSCAN does not surpass
the detection performance of SwinIR, which was trained on high-resolution images from various
contexts, like outdoor scenes [16, 1, 30]. This result may be due to the abundance of insects with
transparent parts in BIOSCAN-5M, particularly specimens of the order Diptera, which comprise
63% of the training data for SwinIR-BIOSCAN. Fine-tuning on Diptera may encourage SwinlR
to generate more transparent textures, which, while more biologically accurate, are harder to detect
due to their similarity to the background. Moreover, we did not filter out images where insects are
blurry or out of focus, which have been shown to produce misclassifications on BIOSCAN-1M [7].
As aresult, SwinIR-BIOSCAN produces contours and textures that are less sharp than SwinlIR, but
also reduces the prevalence of hallucinated or exaggerated textures (see Figure 1d-e). Future work
should explore how well SwinIR-BIOSCAN performs on downstream taxonomic classification tasks
compared to bicubic interpolation and the pretrained SR methods.

3.2 Performance—compute trade-off

We also evaluated the trade-off between total compute time and performance for each SR method and
detector (see Figure 3). We measured total compute times by recording the average upscaling time
and inference time per test partition image. We conducted this analysis for each combination of SR
method and detector, measuring the time needed for SR upscaling and model inference times using 1
NVIDIA A40 GPU. We used APsq.s.95 to measure the performance of each detector and SR method.

This analysis reveals that bicubic interpolation and Mask-RCNN achieve the best APsg.s.95 score,
while consuming significantly less compute than their deep SR counterparts, and only marginally
more compute than the bilinear interpolation baseline. For this dataset, bicubic upscaling is sufficient
as the insect localization task is essentially distinguishing foreground from background, which does
not require the fine texture details generated by the GAN-based SR methods. While SwinIR-based
methods achieve comparable gains as bicubic interpolation — and provide the best performance for
Mask DINO and Mask2Former — they require much higher computational resources. For large-scale
biodiversity monitoring efforts, the compute-efficient combination of Mask R-CNN and bicubic
interpolation is significantly more feasible, given the large number of bulk samples that would need
to be processed, and the potential lack of computational resources available, especially if the analysis
is to be performed at field research stations.

4 Conclusions

We addressed the challenge of tiny instance segmentation on the densely-packed bulk images of the
MassID45 dataset. We demonstrated that all tested SR methods, especially basic bicubic interpolation,
substantially improve upon the baseline performance we established in [21]. This improvement stems
from addressing the limitations of simple bilinear interpolation, which can blur edges and smooth
over visual details that are crucial for detection of tiny insects comprising only tens of pixels.

Our experiments showed that more sophisticated upsampling methods, ranging from bicubic inter-
polation to transformer-GAN models like SwinlR, can significantly improve detection performance
across several instance segmentation architectures. Replacing bilinear upsampling with the SR
methods explored in this work resulted in improved baselines for the MassID45 dataset, with the most
significant gains being observed for small insects and the AP75 metric. Additionally, we investigated
whether fine-tuning SR models on high-resolution insect images can improve detection performance.
Our fine-tuned SwinIR-BIOSCAN model achieved slightly worse performance than its pretrained
counterpart, but visually produced images with fewer hallucinated textures.

Most importantly, our analysis showed that simply replacing bilinear interpolation with bicubic
interpolation was sufficient to achieve performance gains, and that deep SR methods did not provide
a sufficient benefit to justify the additional compute cost. In fact, the performance gains from bicubic
interpolation were most significant for Mask R-CNN, the most compute-efficient model. This result
points to the viability of low-compute upscaling and detection methods for vision-based ecological
monitoring efforts, where access to intensive computational resources may not be possible.

Our work establishes SR preprocessing as an effective approach for tiny instance segmentation
tasks where object detail preservation is critical. The consistent improvements across multiple
architectures and SR methods suggest this approach could benefit other domains involving small-



scale object detection, such as medical imaging, satellite imagery analysis, and automated quality
control in manufacturing. For biodiversity monitoring specifically, the enhanced detection accuracy
demonstrated here could enable more reliable automated species counting and distribution mapping
in field-collected samples, reducing the manual annotation burden that currently limits large-scale
ecological studies.
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Appendices

In these appendices, we review related insect datasets, provide dataset details for MassID45, and
further outline our experimental procedures. The appendices are summarized below.

* Appendix A. Literature review of related insect datasets.
* Appendix B. Additional details about the MassID45 dataset, including summary statistics.

* Appendix C. Additional details about our experimental procedures, including data pre-
processing, data partitioning, data augmentations, training details for SwinIR-BIOSCAN,
implementation details for the different SR methods, and our training and inference pipelines
for the instance segmentation models.

A Review of related insect datasets

The threat to insect populations globally has prompted the development of image datasets to support
insect monitoring, primarily through taxonomic classification. We review several of these datasets,
focusing on their suitability for bulk insect detection and the gaps addressed by MassID45 [21]. Early
efforts included the IP102 dataset [37], which featured 75,000 images for identifying agricultural
pests. To facilitate the training of foundation models for insect understanding, significantly larger
datasets were introduced, including Insect-1M, [20], BIOSCAN-1M [7], and BIOSCAN-5M [§],
the latter derived from a raw dataset of 5.6 million Keyence microscope images paired with DNA
barcodes [27]. The BIOSCAN datasets are unique in their use of DNA barcoding, a molecular
technique that uses short genetic sequences to identify species with high accuracy. In the absence
of distinguishing morphological features from images, DNA barcoding enables the development of
more accurate multi-modal models for taxonomic classification [10, 8]. These large-scale datasets are
crucial for advancing taxonomic studies. However, they only contain images of individual specimens
and do not address the challenges associated with bulk images, where insects must first be localized.

As mentioned previously, there is a domain shift between single-specimen images and the bulk
images produced by large-scale ecological monitoring programs. To address this gap, Schneider
et al. [24, 23] compiled ALUS, the first dataset containing bulk imagery with individual annota-
tions for taxonomic classification and biomass estimation. However, they did not provide box or
instance mask annotations, instead using the watershed algorithm to localize insects in their bulk
images. [31] provided a dataset with both bounding box and taxonomic annotations, addressing the
localization problem by training an object detection model. Their dataset consisted of arthropod
images taken in the wild, with some images containing very tiny, densely clustered insects. Similarly,
the ArTaxOr dataset [19] provided in-the-wild images with annotations for object detection and
taxonomic classification. The taxonomic labels were limited to eight relatively balanced orders,
avoiding the long-tailed nature of most taxonomic classification problems [7], but also limiting its
value for ecological studies. To facilitate automatic insect monitoring, AMI-Traps [12] introduced a
dataset of expert-annotated images taken using insect camera traps. While a custom object detection
model was developed to crop moths and other insects from the trap images using synthetic data, no
object detection benchmarks were reported, and the predicted boxes were ultimately reviewed and
corrected by annotators. Additionally, fine-grained taxonomic labels were only assigned to insects
that annotators identified as moths [12].

A step towards automated insect detection was made by [29], which proposed flatbug, a dataset
and corresponding YOLOv8 model for counting arthropods in images taken from diverse lab or
field-based imaging setups. Focusing on class-agnostic instance segmentation and object detection,
flatbug [29] was trained on arthropod images from 23 arthropod image datasets, some of which
were re-annotated to include instance masks. The sub-datasets comprised images taken from the
previously mentioned ALUS [24], BIOSCAN [7, 8], AMI [12], and ArTaxOr [19] datasets. Unlike
MassID45, which contains an average of 366 insects per bulk image [21], the majority of these
datasets do not have a comparable density. Only two of the 23 sub-datasets (totaling 81 images) used
in flatbug [29] are considered “high” or “very high” density.

Among the datasets above, only [31], flatbug [29], and, to a limited extent, AMI-Traps [12] contain
ground-truth annotations suitable for training and evaluating detection models on bulk images. Of
these, only flatbug [29] provides instance mask annotations. However, f1atbug [29] incorporates
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Figure 4: (a) Imaging setup used to capture bulk images of the MassID45 dataset, including the
positioning of the camera, light cube and ring light sources. (b) A representative image captured
using the described imaging setup, with the sides trimmed, showcasing the high density of the insect
specimens. Images are reproduced from [21].

insect images from multiple domains and/or imaging setups, including some individual specimen
images. We avoid these domain shifts, restricting our analyses to bulk images obtained from a
standardized imaging and annotation protocol (flight interception traps).

In [21], we introduced the MassID45 dataset to address these gaps, providing much-needed training
data for localizing small insects from bulk images. MassID45 also provides DNA barcoding informa-
tion similar to [7] and [8], although we do not leverage genetic information in this work. We opted to
perform insect localization using the instance mask annotations provided by MassID45, as they have
several benefits compared to bounding boxes. These include encoding morphological information
that may be useful for downstream classification tasks, and enabling biomass estimation [24, 6].

B MassID45 dataset details

The imaging equipment and one example bulk image are shown in Figure 4. Detailed data collection
and annotation procedures can be found in our previous work [21].

The 49 annotated bulk images contain masks for 17,937 arthropods, with mask areas ranging between
15.1 and 83,182.4 pixels. Each bulk image contains an average of 366 insect instances, with the most
densely-packed bulk image having 3,228 insects. The mean mask area is 1,152.2 pixels, while the
median is 343.4 pixels. Figure 5 shows a detailed breakdown of the distribution of insect mask areas.
The insect masks are split into 3 categories based on their area. Under the MS-COCO definition of
small objects (<32 x 32 pixels in area) [17], 76.5% of the MassID45 insects would be considered as
“small”. To increase the granularity in our performance evaluations for different object sizes, we used
area thresholds from iSAID [35]. We define “small” as < 144 pixels, “medium” as > 144 but < 1024
pixels, and “large” as > 1024 pixels.
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Figure 5: Distribution of insect mask areas in MassID45 [21]. The insect masks are split into 3
groups based on area: “small” (< 144 pixels), “medium” (> 144 but < 1024 pixels), and “large”
(>1024 pixels) insects. Counts are adjusted such that the area of a bar is proportional to the count in
that bin. The three images show the median masks for small, medium, and large insects, all at the
same magnification. Figure is reproduced from [21].

C Experiments — additional details

C.1 Data preprocessing

Instance segmentation models require systematic preprocessing to handle the large, complex bulk
images in MassID45. Due to the large number of specimens, each bulk image was split into 4 x 4
equally-sized sub-images during the annotation process, with overlapping borders to ensure complete
arthropod coverage. Following our methodology from [21], we first mapped sub-image annotations
back to the original bulk image coordinates, then used the Shapely library [9] to correct geometric
artifacts. Self-intersecting polygons (where annotation boundaries cross themselves) were repaired,
and internal holes within insect masks—such as gaps between legs—were filled to create single
concave hulls. This hole-filling prevents models from incorrectly learning that arthropods should
contain background regions and makes the learning task easier. Each bulk image was manually
cropped to remove areas without specimens, reducing computational overhead while preserving all
annotated insects.

The resulting images remained too large for direct processing on available GPU hardware, requiring
a tiling strategy, similar to [32] and [2]. We divided bulk images into 512 x 512 pixel tiles using a
sliding window with the same 60% overlap as [21], ensuring that insects truncated at tile boundaries
appear complete in adjacent tiles. Following [5], we retained partially visible annotations only when
more than 10% of the original specimen area remained within the tile boundary.

C.2 Dataset partitions

We adopted the same train/validation/test splits we defined in [21] for the 49 bulk images (see Table 2).
To prevent data leakage, all image tiles derived from a single bulk image are assigned to the same
split. Insect counts include instances that were partially split across tiles.

Table 2: Dataset partitioning and composition. The “# Insects” column denotes the number of insects
in each partition after tiling.

Partition # Bulk Images % Bulk Images # Tiled Images # Insects

Training 40 81.6% 17,062 110,520
Validation 3 6.1% 1,244 5,867
Testing 6 12.2% 1,586 6,241
Total 49 100 % 19,892 122,628
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Table 3: Geometric and color-based data augmentations used for the training data, where p denotes
the probability of applying each transformation. Adapted from [21].

Category  Augmentation Parameters

Geometric Random horizontal flip p = 0.5
Random rotation {0°,90°, 180°, 270°}, p = 0.25 each

Color Random brightness Uniform in range [—15%, +15%]
Random contrast Uniform in range [—10%, +10%]
Random saturation Uniform in range [—15%, +15%]

C.3 Data augmentations

All experiments are conducted on the 512 x 512 pixel tiles extracted from the bulk images. To
improve generalization, we employ our data augmentation scheme from [21], implementing geometric
and colour transforms aimed at improving robustness to insects in different orientations and lighting
conditions. These data augmentations are detailed in Table 3.

C.4 Fine-tuning SwinIR on BIOSCAN-5M

We investigated whether an SR model fine-tuned on arthropod images could reconstruct visual details
from our insects more accurately than pretrained SR models. Leveraging our best deep learning-based
SR method, SwinlR (see Table 1), we performed fine-tuning on the BIOSCAN-5M dataset, which
contains high-quality Keyence images of single arthropod specimens [8].

To ensure the training images from BIOSCAN-5M were taxonomically relevant to the insects in
MassID45, we selected a subset of images that matched the range of taxonomic labels in the MassID45
train partition. We performed this matching using the train partition of BIOSCAN-5M, which
only contains specimens with complete taxonomic labels. Some taxonomic labels in MassID45
corresponded to intermediate ranks not present in BIOSCAN-5M, such as superfamily. For such cases,
we resolved the label to the next-highest parent rank (e.g., resolving superfamily Ichneumonoidea to
its parent order, Hymenoptera). Moreover, each labelled insect in MassID45 could be represented
by several taxonomic labels, some being high-confidence and some being low-confidence [21]. We
aggregated all taxonomic labels from the MassID45 insects in the training partition into a flat list of
target labels that could be used to find matching specimen images from BIOSCAN-5M. For each
target label, we randomly selected 5 specimen images from BIOSCAN-5M matching that taxonomic
target label without replacement. This matching process yielded a training dataset (40,540 images;
90%) and validation dataset (4504 images; 10%) that could be used for fine-tuning SwinIR.

Following previous work from [34], we then generated high-resolution (HR) and low-resolution (LR)
image pairs for training. We obtained these training pairs “on-the-fly” using the degradation models
from [34, 39], which applies various image degradations at random to simulate real-world image
artifacts. Such degradations included 2x down-sampling, as well as random amounts of Gaussian
noise, blur, and/or JPEG compression. We trained the SwinIR-BIOSCAN model to perform 2x
upscaling, initializing the network with the pretrained weights from the 2 x SwinIR model. During
training, unsharp masking (USM) was applied to the ground truth images to improve the visual
sharpness of the reconstructed images, similar to [34]. The SwinIR model was fine-tuned for 5000
iterations, using a batch size of 32, a learning rate of 1 x 10, and the Adam optimizer [14]. The
training was performed using 4 NVIDIA RTX6000 GPUs.

We then performed inference on the degraded validation images. We report validation results
for the SwinIR-BIOSCAN model, including common SR metrics like Peak-Signal-to-Noise Ratio
(PSNR) and Structural Similarity Index Measure (SSIM), in Table 4. The fine-tuning process yields
considerable improvements in PSNR and SSIM, although these are not necessarily indicative of
superior instance segmentation performance on the MassID45 data, which we assess in Section 3.1
above.
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Table 4: Peak-Signal-to-Noise Ratio (PSNR) and Structural Similarity Index Measure (SSIM) metrics
for the finetuned SwinIR model on a validation set of 4504 images from the BIOSCAN-5M dataset.

Model PSNR (dB) SSIM

SwinlR 29.52 0.8759
SwinIR-BIOSCAN 31.43 0.8942

C.5 SR implementation details

For Real-ESRGAN, we used the pretrained RealESRGAN_x2plus.pth checkpoint [34], and for SwinIR,
we used the 003_realSR_BSRGAN_DFO_s64w8_SwinIR-M_x2_GAN.pth checkpoint [16].

Bicubic and bilinear interpolation could be directly applied to the full bulk images, yielding images 2 x larger
in height and width. For these two interpolation methods, we used a CPU with 8 cores. We used 1 NVIDIA
A40 GPU when performing inference with the Real-ESRGAN, SwinIR, and SwinIR-BIOSCAN models. Due to
GPU computing limitations, however, the Real-ESRGAN and SwinIR models could not ingest full bulk images.
When upscaling with Real-ESRGAN or SwinIR, the bulk images were divided into 512 x 512 shards, then 2 x
SR was performed on each shard.

Real-ESRGAN and SwinlR used different strategies for stitching the shards to form 2x upscaled bulk images.
Real-ESRGAN processed shards that were larger than 512 x 512, allowing the SR model to see context beyond
the shard. When stitching the patches back together, only the output corresponding to the original shard
boundaries was retained, with the processed padded regions being discarded. Conversely, SwinlR only processed
the regions within the shards, but added overlap between the shards. When stitching the upscaled shards back
together, SwinIR averaged the outputs in the overlapping regions between the shards.

For Real-ESRGAN, the shard context was increased to 308 pixels to avoid stitching artifacts. For SwinIR and
SwinIR-BIOSCAN, an overlap of 32 pixels between shards was sufficient to avoid stitching artifacts. Once the
2x upscaled bulk images were obtained, they were then split into 1024 x 1024 pixel tiles with 60% overlap
for training and inference. These 1024 x 1024 pixel tiles contained the same image content as the original
512 x 512 tiles, but now upscaled by a factor of 2. Inference with the deep SR models was performed using 1
NVIDIA A40 GPU.

C.6 Detector training and inference details

Training details. All supervised models were implemented using the Detectron2 library [38]. To harness transfer
learning, each model was initialized with weights from a ResNet-50 backbone pre-trained on the MS-COCO
dataset [17]. We fine-tuned each model for 15,000 iterations with a batch size of 8, using the AdamW optimizer
[18] and a one-cycle cosine-annealed learning rate scheduler [26] with a peak learning rate of 5 X 107° and a
warm-up period of 4,500 iterations. Training was performed using 4 NVIDIA RTX6000 GPUs.

Inference details. Following our methodology from [21], we used the SAHI algorithm [2] to aggregate the tiled
predictions and map them back to the original bulk image during inference. We only merged predictions that
had an intersection-over-union (IoU) of at least 50% and confidence greater than 25%. After upscaling, the
predictions were made on 2 X larger tiles; thus, the 2D polygon coordinates of the predicted masks were divided
by 2 to match the original scale of the ground truth annotations.
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