
Under review as a conference paper at ICLR 2023

DIGEST: FAST AND COMMUNICATION EFFICIENT
DECENTRALIZED LEARNING WITH LOCAL UPDATES

Anonymous authors
Paper under double-blind review

ABSTRACT

Decentralized learning advocates the elimination of centralized parameter servers
(aggregation points) for potentially better utilization of underlying resources, de-
lay reduction, and resiliency against parameter server unavailability and catas-
trophic failures. Gossip based decentralized algorithms, where each node in a net-
work has its own locally kept model on which it effectuates the learning by talking
to its neighbors, received a lot of attention recently. Despite their potential, Gossip
algorithms introduce huge communication costs. In this work, we show that nodes
do not need to communicate as frequently as in Gossip for fast convergence; in
fact, a sporadic exchange of a global model is sufficient. Thus, we design a fast
and communication-efficient decentralized learning mechanism; DIGEST by par-
ticularly focusing on stochastic gradient descent (SGD). DIGEST is a decentral-
ized algorithm building on local-SGD algorithms, which are originally designed
for communication efficient centralized learning. We show through analysis and
experiments that DIGEST significantly reduces the communication cost without
hurting convergence time for both iid and non-iid data.

1 INTRODUCTION
Emerging applications such as Internet of Things (IoT), mobile healthcare, self-driving cars, etc. dic-
tates learning be performed on data predominantly originating at edge and end user devices (Gubbi
et al., 2013; Li et al., 2018a). A growing body of research work, e.g., federated learning (McMahan
et al., 2016; Kairouz et al., 2021; Konecný et al., 2015; McMahan et al., 2017; Li et al., 2020a;b) has
focused on engaging the edge in the learning process, along with the cloud, by allowing the data to
be processed locally instead of being shipped to the cloud. Learning beyond the cloud can be advan-
tageous in terms of better utilization of network resources, delay reduction, and resiliency against
cloud unavailability and catastrophic failures. However, the proposed solutions, like federated learn-
ing, predominantly suffer from having a critical centralized component referred to as the Parameter
Server (PS) organizing and aggregating the devices’ computations. Decentralized learning emerges
as a promising solution to this problem.

Decentralized algorithms have been extensively studied in the literature, with Gossip algorithms
receiving the lion’s share of research attention (Boyd et al., 2006b; Nedic & Ozdaglar, 2009a;
Koloskova et al., 2019; Aysal et al., 2009; Duchi et al., 2012a; Kempe et al., 2003; Xiao & Boyd,
2003; Boyd et al., 2006a). In Gossip algorithms, each node (edge or end user device) has its own
locally kept model on which it effectuates the learning by talking to its neighbors. This makes Gos-
sip attractive from a failure-tolerance perspective. However, this comes at the expense of a high
network resource utilization. As shown in Fig. 1a, all nodes in a Gossip algorithm in a synchronous
mode perform a model update and wait for receiving model updates from their neighbors. When a
node completes receiving all the updates from its neighbors, it aggregates the updates. As seen, there
should be data communication among all nodes after each model update, which is a significant com-
munication overhead. Furthermore, some nodes may be a bottleneck for the synchronization as these
nodes (which are also called stragglers) can be delayed due to computation and/or communication
delays, which increases the convergence time.

Asynchronous Gossip algorithms, where nodes communicate asynchronously and without waiting
for others are promising to reduce idle nodes and eliminate the stragglers, i.e., delayed nodes (Lian
et al., 2018; Li et al., 2018b; Avidor & Tal-Israel, 2022). Indeed, asynchronous algorithms signif-
icantly reduce the idle times of nodes by performing model updates and model exchanges simul-
taneously as illustrated in Fig. 1b. For example, node 1 can still update its model from x1

t to x1
t+1

and x1
t+2 while receiving model updates from its neighbors. When it receives from all (or majority)

1

Under review as a conference paper at ICLR 2023

node1

node3

node2

node1

node3

node2

node1

node3

node2

node1

node3

node2

Recv

Recv Recv

Recv Recv

Recv

Recv Recv

Recv Recv

Xmit

Xmit

Xmit

Xmit Xmit

Xmit

Recv Recv

Recv

Recv

A

A

AA

AA

A

A

A A

A A

A

A

A

Recv

A

Recv

A

Xmit

Xmit

A Xmit

(a) Sync-Gossip

node1

node3

node2

node1

node3

node2

node1

node3

node2

node1

node3

node2

Recv

Recv Recv

Recv Recv

Recv

Recv Recv

Recv Recv

Xmit

Xmit

Xmit

Xmit Xmit

Xmit

Recv Recv

Recv

Recv

A

A

AA

AA

A

A

A A

A A

A

A

A

Recv

A

Recv

A

Xmit

Xmit

A Xmit

(b) Async-Gossip

node1

node3

node2

node1

node3

node2

node1

node3

node2

node1

node3

node2

Recv

Recv Recv

Recv Recv

Recv

Recv Recv

Recv Recv

Xmit

Xmit

Xmit

Xmit Xmit

Xmit

Recv Recv

Recv

Recv

A

A

AA

AA

A

A

A A

A A

A

A

A

Recv

A

Recv

A

Xmit

Xmit

A Xmit

(c) Random-Walk

node1

node3

node2

node1

node3

node2

node1

node3

node2

node1

node3

node2

Recv

Recv Recv

Recv Recv

Recv

Recv Recv

Recv Recv

Xmit

Xmit

Xmit

Xmit Xmit

Xmit

Recv Recv

Recv

Recv

A

A

AA

AA

A

A

A A

A A

A

A

A

Recv

A

Recv

A

Xmit

Xmit

A Xmit

(d) DIGEST

Figure 1: DIGEST in perspective as compared to existing decentralized learning algorithms; (a) syn-
chronous Gossip, asynchronous Gossip, and random-walk. Note that “∇” represents a model update.
“Xmit” represents the transmission of a model from a node to one of its neighbors. “Recv” repre-
sents the communication duration while receiving model updates from all of a node’s neighbors. “A”
represents model aggregation. xv

t shows the local model of node v at iteration t. For random walk
algorithm, the global model iterates are denoted as xt.

of its neighbors, it performs model aggregation. However, asynchronous Gossip does not reduce
communication overhead as compared to synchronous Gossip. Furthermore, the delayed updates,
also referred as gradient staleness in asynchronous Gossip may lead to high error floors (Dutta et al.,
2021), or require very strict assumptions to converge to the optimum solution (Lian et al., 2018).

∇ ∇ ∇ . . . ∇ ∇ ∇ ∇ . . . ∇ . . .

xv
t = xτ

g xv
t+1 xv

t+2 xv
t+H xv

t′ = xτ
g xv

t′+1 xv
t′+2 xv

t′+H

PS

node v

xτ
g

xv
t+H

xτ+1
g

xv
t′+H

xτ+2
g

Figure 2: Local-SGD with H sequential SGD steps in node v.

If Gossip algorithms are
one side of the spectrum
of decentralized learning
algorithms, the other side
is random-walk based de-
centralized learning (Bert-
sekas, 1996; Ayache &
Rouayheb, 2021; Sun et al.,
2018; Needell et al., 2014). The random-walk algorithms advocate activating a node at a time, which
would update the global model with its local data as illustrated in Fig. 1c. Then, the node selects
one of its neighbors randomly and sends the updated global model. The selected neighbor becomes a
newly activated node, so it updates the global model using its local data. This continues until conver-
gence. Random-walk algorithms significantly reduce the communication cost as well as computation
and power utilization in the network with the cost of increased convergence time.

Our key intuitions in this work are that (i) nodes do not need to communicate as frequently as in
Gossipfor fast convergence; in fact, a sporadic exchange of a model is sufficient, and (ii) nodes do
not need to wait idle as in random walk. Thus, we design a fast and communication-efficient de-
centralized learning mechanism; DIGEST by particularly focusing on stochastic gradient descent
(SGD). DIGEST is a decentralized algorithm building on local-SGD algorithms, which are origi-
nally designed for communication efficient centralized learning (Stich, 2019; Wang & Joshi, 2021;
Lin et al., 2020). In local-SGD, each node performs multiple model updates before sending the
model to the PS as illustrated in Fig. 2. The PS aggregates the updates received from multiple nodes
and transmits the updated global model back to nodes. The sporadic communication between nodes
and the PS reduces the communication overhead. Our goal in this work is to exploit this idea for
decentralized learning. The following are our contributions.

• Design of DIGEST. We design a fast and communication-efficient decentralized learning mech-
anism; DIGEST by particularly focusing on stochastic gradient descent (SGD). DIGEST works
as follows. Each node keeps updating its local model all the time as in local-SGD. Meanwhile,
there is an ongoing stream of global model update among nodes, Fig. 1d. For example, node 1

2

Under review as a conference paper at ICLR 2023

starts transmitting the global model to node 2 at time t. When node 2 receives the global model
from node 1, it aggregates it with its local model. The aggregated global model is transmitted to
node 3 next. We note that the exchanged models are global models as each node adds its own
local updates to the received model. A node that has the global model selects the next node for
global model transmission randomly among its neighbors. After all the nodes update their mod-
els with a global model, DIGEST pauses global model exchange, while local SGD computations
still continue. The global model exchange is repeated at every H iterations. DIGEST reduces the
communication overhead as compared to both synchronous and asynchronous Gossip as there is
no need for exchanging models among all nodes after every model update. DIGEST improves the
convergence time as compared to random-walk as it eliminates idle times at nodes by employing
local-SGD updates. To summarize, DIGEST gets the best of both Gossip and random-walk algo-
rithms by exploiting local-SGD. Furthermore, DIGEST is designed to support both iid and non-iid
data distributed over nodes.

DIGEST supports multiple streams of global model updates. For example, node 1 may transmit its
semi-global model to node 2 while node 3 transmits its semi-global model to node 6 as illustrated
in Fig. 3. We use the term semi-global model in the multi-stream DIGEST as the global model
can be obtained only after semi-global models are aggregated. The motivation behind introducing
multiple streams is to further improve the convergence time as compared to the single stream DI-
GEST. We note that the communication overhead increases when the number of streams increases,
and there is a nice convergence and communication overhead tread-off.

• Convergence analysis of DIGEST. We analyze the convergence of single- and multi-stream DI-
GEST, and prove that both algorithms approach to the optimal solution asymptotically. Our con-
vergence proof is novel in the sense that it removes symmetric communication capabilities among
nodes, which is needed for the Gossip convergence proof (Koloskova et al., 2020). Furthermore,
our convergence proof holds for any (i) any non-iid data distribution across nodes, (ii) any (and
possibly time-varying) network topology as long as the underlying graph is connected.

• Evaluation of DIGEST. We evaluate the performance of DIGEST for (i) two data sets; w8a (Platt,
1999) and MNIST (Lecun et al., 1998), (ii) iid and non-iid data, and (iii) network topologies with
different number of nodes. The simulation results confirm that the communication cost of DIGEST
is low as compared to the baselines, and it has nice convergence properties; i.e., its convergence
time is better than or comparable to the baselines.

2 RELATED WORK

node 1

node 2

node 5node 4

node 3
node 6

node 7

stream 1

stream 2

Figure 3: Example multi-stream DIGEST.

Decentralized optimization has been studied at least
since Tsitsiklis (1984). Decentralized optimization
algorithms are designed, where nodes interact with
their neighbors to solve an optimization problem
Nedic & Ozdaglar (2009b); Chen & Sayed (2012);
Duchi et al. (2012b). Despite their potential, these
algorithms suffer from a bias in non-iid data (Yuan
et al., 2016), and they require synchronization and
orchestration among nodes, which is costly in terms
of communication overhead.

Decentralized algorithms based on Gossip usually
involve a mixing step where nodes compute their
new models by mixing their own and neighbors’ models Koloskova et al. (2020); Scaman et al.
(2019); Xiao & Boyd (2003). However, this is costly in terms communication as every node requires
O(deg(G)) data exchange for every model update. Also, some existing Gossip-based approaches
require symmetrical data exchanges, i.e., if node i sends to node j, then node j should be able to
receive from node i, (Koloskova et al., 2020; Lian et al., 2018). Our goal in this paper is to reduce
the communication cost in decentralized learning for any network topology and data distribution.

It is discussed in Giaretta & Girdzijauskas (2019) that existing Gossip-based algorithms usually have
strong assumptions on data distribution, the communication power of the nodes, and the connectiv-
ity among them. Violation of these assumptions may lead to slow convergence and/or bias in the
final model Giaretta & Girdzijauskas (2019). To address such problems, Gossip SGD with periodic
global averaging is proposed in Chen et al. (2021), a method for accelerating convergence on large
and sparse networks by adding periodic global averaging into Gossip. For scenarios like wireless

3

Under review as a conference paper at ICLR 2023

sensor networks, where global averaging is prohibitively expensive, it is suggested to use multiple
Gossip communication steps in succession once in a while with no computations in between (Be-
rahas et al., 2019). An asynchronous decentralized parallel stochastic gradient descent algorithm is
designed in Lian et al. (2018), where nodes do not wait for all other nodes and only communicate in
a decentralized manner. However, it has the same limitations of Gossip-based algorithms as it uses
a similar model exchange policy as well as gradient staleness.

A random walk-based decentralized learning is proposed in Ayache & Rouayheb (2021), which is
similar to work on random walk data sampling for stochastic gradient descent, e.g., (Sun et al.,
2018; Needell et al., 2014). Reducing the global averaging rounds as compared to Gossip-based
mechanisms is considered in Spiridonoff et al. (2021) by one-shot averaging. However, the global
averaging rounds require long synchronization duration for large networks, which increases the
convergence time. Also, only iid data is considered Spiridonoff et al. (2021). As compared to this
line of work, DIGEST designs a communication efficient decentralized learning without hurting
convergence rate for both iid and non-iid data.

3 DESIGN OF DIGEST
3.1 PRELIMINARIES

Network Topology. We model the underlying network topology with a directed graph G = (V, E),
where V is the set of vertices (nodes) and E is the set of directed edges. The vertex set contains
V nodes, i.e., |V| = V , and |.| shows the size of the set. The computing capabilities of nodes are
arbitrary and heterogeneous. If node i is connected to node j through a communication link and can
transmit data, then link (i, j) is in the edge set, i.e., (i, j) ∈ E . The set of the nodes that node i is
connected to and can transmit data is called the neighbors of node i, and the neighbor set of node i
is denoted by Ni. We do not make any assumptions about the behavior of the communication links;
there can be an arbitrary, but finite amount of delay over the links.

Data. We consider a setup where nodes have access to a subset of data samples D. Each node v

has a local dataset Dv , where Dv = |Dv| is the size of the local dataset and D =
∑V

v=1 Dv . The
distribution of data across nodes is not identical and independently distributed (non-iid).

Stochastic Optimization. We assume that the nodes in the network jointly minimize a d-
dimensional function f : Rd → R. The goal of the nodes is to converge on a model x∗, which mini-
mizes the empirical loss over D samples, i.e., x∗ := argminx∈Rd

[
f(x) := 1

D

∑D
i=1 fi(x)

]
, where

fi(x) : Rd → R is the loss function of model x associated with the data sample i. The optimum solu-
tion is denoted by f∗. The loss function on local dataset Dv at node v is fv(x) = 1

Dv

∑
i∈Dv

fi(x).
We design DIGEST to solve x∗.

3.2 SINGLE-STREAM DIGEST

DIGEST has two functionalities; (i) local model update at each node, and (ii) global model update
and exchange among nodes. Next, we will first provide an overview of these functionalities and then
provide detailed descriptions of DIGEST algorithms.

3.2.1 OVERVIEW

Local Model Update. We assume that the time is slotted, and at each slot/iteration, a local model is
updated. However, a calculation of a gradient may take more than one slot, vary over time, or not fit
into slot boundaries. Thus, at each iteration t, any gradients which have been delayed up to iteration
t, and not used in previous local updates are used to update the local model. We note that time slots
across nodes do not need to be synchronized in DIGEST as each node can have its own iteration
sequence and update local and global models over its own sequence. The only assumption we make
is that the slot sizes are the same across nodes, which can be decided a priori.

Let us consider that Lv
T = {lvt }0≤t<T is the set of the delayed gradient calculations at node v,

where lvt shows that the local-SGD update of iteration t is delayed until iteration lvt . For instance,
lvt′ = t means that the local-SGD of iteration t′ is lagged behind and performed in iteration t,
t ≥ t′. Then, we define uv

t = {t′ | lvt′ = t} to show all the updates completed at iteration t
in node v. If we consider that there is no global update at node v, the local model is updated as
xv
t+1 = xv

t −
∑

z∈uv
t
ηz∇fivz (x

v
z), where ηz is the learning rate, ivz is a sample uniformly chosen

from Dv in iteration z, and ∇fivz (x
v
z) is the gradient. However, there may be global model updates

4

Under review as a conference paper at ICLR 2023

at node v, i.e., node v could receive a global model update from one of its neighbors at iteration t.
Such a global model reception should be reflected in local model updates, which we discuss next.

Global Model Update and Exchange. Let x̃t be the global model that is being transferred from
from one node to another at time slot t. If node v receives the global model x̃t from one of its
neighbors, a global model update indicator svt is set to svt = 1. Otherwise, i.e., when node v does
not receive the global model from its neighbors, the indicator is set to svt = 0.

If svt = 0, then node v updates its model locally according to the update mechanism presented
eaerlier in the “Local Model Update” section. If svt = 1, i.e., when a global model is received by
node v from one of its neighbors, then the global model should be incorporated in the calculations.
DIGEST sets the local model to the global model when there is a global model update as follows.

xv
t =

{
xv
t−1 −

∑
z∈uv

t−1
ηz∇fivz (x

v
z) if svt = 0

x̃t if svt = 1
(1)

The global model is updated as

x̃t = x̃t−1 +
Dv

D

((
xv
t−1 −

∑
z∈uv

t−1

ηz∇fivz (x
v
z)
)
− xv

τv
t−1

)
, (2)

where x̃t−1 is the global model received by node v at slot t−1. The global model, i.e., x̃t is updated
by using x̃t−1 as well as the local updates of node v. We use τvt to denote the last time slot up to t,
when node v’s model was updated with the global model, i.e., τvt = max{t′ | t′ ≤ t, svt′ = 1}. The
equivalent of (2) is x̃t = x0−

∑V
v=1

∑τv
t −1

t′=0

∑
z∈uv

t′

Dv

D ηz∇fivz (x
v
z), where x0 is the initial model.

As seen, the global model is updated across all nodes by taking into account all delayed gradient
calculations. We use Dv

D ratio to give more weight to the gradients with larger data sets. Now that
we provided an overview of DIGEST, we provide details on how DIGEST algorithms operate next.

3.2.2 ALGORITHM DESIGN

Algorithm 1 Local and global model update of DIGEST at node
v ∈ V .

1: Initialization: xv
0 = x0, xv

−1 = x0, x̃0 = x0, visited = {},
pre node = v, SvT = {0}0<t≤T , sv01 = 1.

2: for t in 0, ..., T − 1 do
3: Sample ivt uniformly from Dv .
4: Compute the gradient∇fivt (x

v
t).

5: xv
t+1 = xv

t −
∑

z∈uv
t
ηz∇fivz (x

v
z) ▷ Local model update.

6: if Received new message from another node then
7: (x̃t, visited, pre node, 0)← message
8: svt+1 = 1

9: if svt+1 = 1 then
10: x̃t+1 = x̃t +

Dv

D (xv
t+1 − xv

−1)
11: xv

t+1 = x̃t+1 ▷ Local model is updated using global
model.

12: xv
−1 = xv

t+1
13: if mod (t,H) = 0 or visited ̸= V then
14: Send message = (x̃t+1, visited, pre node, 0)

to a neighbor node by calling Alg. 2
15: else
16: svt+2 = 1 ▷ Pause global model update and

exchange until mod (t,H) = 0 holds.

DIGEST is comprised of two
algorithms; (i) local and global
model update at node v, and (ii)
sending a global model from a
node to its neighbor.

Local and Global Model Up-
date. The local and global
model update of DIGEST is pre-
sented in Alg. 1. Every node v
keeps its local model xv

t as well
as xv

−1, which is a copy of the
local model in the latest global
model update at node v. x̃t is the
global model. All of these mod-
els are initialized with the same
initial model x0. We note that
only one of the nodes, let us say
node v0, has the global model x̃t

at the start of the algorithm.

We define visited as the set of
nodes that are recently visited
for the global model updates. It
is initialized as an empty set at
node v. We define a period of
time, during which all the nodes
in V are visited at least once, as a synchronization round. During a synchronization round, all nodes
update their local models with a global model as they are visited at least once. More details regarding
the visited set will be provided as part of Alg. 2.

5

Under review as a conference paper at ICLR 2023

The node that node v receives the global model from is defined by pre node, where its initial value
is set to v as there is no previous node at the start. The set of global model update indicators, i.e.,
SvT = {svt }0<t≤T is initialized as an empty set, where T is the number of slots that Alg. 1 runs.
Assuming that v0 is the node where the global model update starts, sv01 is set to 1, i.e., sv01 = 1.

Algorithm 2 Sending global model from node v ∈ V .
Input: message = (x̃t+1, visited, pre node, r)

1: if visited = V then
2: visited = {}
3: if v /∈ visited then
4: visited = visited ∪ {v}
5: pv = pre node

6: C = {v′ ∈ Nv | v′ /∈ visited}
7: if C ̸= ∅ then
8: select v′ randomly from C.
9: Send message = (x̃t+1, visited, v, r) to node v′.

10: else
11: Send message = (x̃t+1, visited, v, r) to node pv .

At every iteration t, node v first
gets one data sample from the local
dataset randomly (line 3), and com-
putes a stochastic local gradient (line
4) based on the selected data sample
and the current model at node v, i.e.,
xv
t . Then, node v uses all the gradi-

ents whose computations are delayed
until iteration t, and that are not used
in local model updates so far for the
local model update (line 5).

If node v receives a “message” from
one of its neighbors at slot t, then it
should update the global model. Each
message contains information on the
global model x̃t, the set of visited
nodes, i.e., visited, the id of the node that sends this message to node v, e.g., v′, and a parameter
r, which is always set to 0 in single-stream DIGEST, but may take different values for multi-stream
DIGEST. After the message is extracted (line 7), global model update indicator is set to 1 (line 8),
and global model is updated (lines 10 − 12). In particular, the global model is updated using the
most recent local model of node v (line 10). The local model is updated with the global model (line
11). The current local model is stored at node v and will be used in the next global update (line 12).

Algorithm 3 DIGEST on node v ∈ V with R synchronization
streams.

1: Initialization: xv
0 = x0, xv

−1 = x0, queue = ().
2: for r in 0, ..., R− 1 do
3: x̃0[r] = x0, x̃−1[r] = x0, visited[r] = {},

pre node[r] = v, SvT [r] = {0}0<t≤T , svr1 [r] = 1.
4: for t in 0, ..., T − 1 do
5: Sample ivt uniformly from Dv .
6: Start computing the gradient∇fivt (x

v
t).

7: xv
t+1 = xv

t −
∑

z∈uv
t
ηz∇fivz (x

v
z)

8: if queue ̸= () then
9: for any message in queue do

10: (x̃t[r], visited[r], pre node[r], r)← message
11: svt+1[r] = 1
12: Remove message from queue

13: for r in 0, ..., R− 1 do
14: if svt+1[r] = 1 then
15: x̃t+1[r] = x̃t[r] +

Dv

D (xv
t+1 − xv

−1)
16: xv

t+1 = xv
−1 + (x̃t+1[r]− x̃−1[r]) ▷ Local

model update.
17: xv

−1 = xv
t+1 ▷ Last updated model at node v

18: x̃−1[r] = x̃t+1[r] ▷ Last updated model at node
v corresponding to stream r

19: if mod (t,H) = 0 or visited[r] ̸= V then
20: Send message = x̃t+1[r] , visited[r] ,

pre node[r] , r to a neighboring node by calling Alg.2.
21: else
22: svt+2[r] = 1

If the global model is updated at
node v, i.e., if sv01 = 1, then
node v creates a message and
sends it to one of its neighbors
if (i) visited ̸= V: when not all
nodes are visited in the current
synchronization round; or (ii)
mod (t,H) = 0: this is an indi-
cator of the start of a new syn-
chronization round, which hap-
pens periodically at every H it-
erations. In other words, global
model synchronization continues
until all nodes in V are visited.
Then, global model update is
paused until a new synchroniza-
tion round (satisfied by line 16),
which starts at every H iteration.
We will describe how H should
be selected later in the paper as
part of our convergence analysis
and evaluations. If one of the con-
ditions in line 13 is satisfied, then
node v sends the global model
to one of its neighbors by calling
Alg. 2.

Sending Global Model. Alg. 2
describes the logic of DIGEST
at node v for sending a global
model to a neighboring node.
Alg. 2 implements a Depth-First

6

Under review as a conference paper at ICLR 2023

Search (DFS) to traverse all the nodes in the network in a synchronization round. If all nodes are
visited, i.e., at the end of a synchronization round, visited is set to an empty set (line 2). If v is not
visited before in this synchronization round, it is added to visited (line 4) and its parent node pv is
set to pre node (line 5). The parent node is the node that node v receives the global model from for
the first time in this synchronization round. C is a set of nodes that node v can possibly transmit. It
includes all of the neighboring nodes which are not in the visited set. If C is not empty, one of its
elements v′ is chosen randomly (line 8) and a message including the global model is transmitted
to node v′ from node v. If C is empty, i.e., all the neighbors of node v are visited in the current
synchronization round, the message is sent to the parent of node v (pv) (line 11). We note that if
all the nodes are visited in the network, Alg. 1 pauses global model update (line 16), and Alg. 2 is
not called. We also add that Alg. 2 and Alg. 1 operate simultaneously; one does not need to stop and
wait for the other as also illustrated in Fig. 1d.
3.3 MULTI-STREAM DIGEST
The extended version of the local and global model update algorithm of DIGEST supporting multiple
streams is summarized in Alg. 3. The following are the differences between Algs. 3 and 1.

There are multiple semi-global models in different streams, i.e., x̃t[r] corresponds to the semi-global
model in stream r out of R streams. There are R models stored in each node, i.e., x̃−1[r] to represent
the semi-global model corresponding to the last synchronization of stream r at node v. We define
visited[r], pre node[r], and svt [r] for each stream r.

Each node v has a queue to store all the messages that a node receives from its neighbors. It is
initialized as an empty queue at the start. Whenever node v receives a message from one of its
neighbors, it is added in the queue. Each node can receive up to R messages related to different
streams, so the size of the queue is R. In each message there is a stream index r (line 10).

Node v extracts all the messages in its queue (line 9-12). Then, it updates its semi-global and local
models as in Alg. 1 if svt+1[r] = 1. The semi-global models are accumulated in the local models and
add up to the global model. In particular, the local model is updated using semi-global models (line
16), and just one semi-global models is updated for every spesific local update (line 15).

4 CONVERGENCE ANALYSIS OF DIGEST
We use the following assumptions for the convergengence analysis of DIGEST.

1. Smooth local loss. The function fv is continuously differentiable and its gradient is L-Lipschitz
for 1 ≤ v ≤ V , i.e., ∥∇fv(y)−∇fv(x)∥ ≤ L∥y − x∥, ∀x,y ∈ Rd.

2. Convexity. The function f is µ-strongly convex, i.e., ∀x,y ∈ Rd, f(y) ≥ f(x) + ⟨∇f(x),y −
x⟩+ µ

2 ∥y − x∥2.
3. Bounded local variance. The variance of the stochastic gradient is bounded for all nodes, i.e.,

0 ≤ t < T , 1 ≤ v ≤ V , Eivt
∥∇fivt (x

v
t)−∇fv(xv

t)∥2 ≤ σ2.
4. Bounded second moment. The expected squared norm of the stochastic gradient is bounded,

i.e., Eivt
∥∇fivt (x

v
t)∥2 ≤ G2, 0 ≤ t < T, 1 ≤ v ≤ V

5. Bounded lag. We assume bounded lag, i.e., max{lvt − t} ≤ E, 0 ≤ t < T, 1 ≤ v ≤ V .
6. Bounded synchronization interval. We assume that the interval between two subsequent syn-

chronizations is bounded, i.e., gap(SvT) ≤ H , 1 ≤ v ≤ V , where gap(SvT) shows the maximum
of the gap between two subsequent 1s in SvT .

Theorem 4.1 (Asymptotic result for single-stream DIGEST). Let assumptions 1-6 hold, and the
learning rate be ηt = 4

µ(a+t) with a > max{ 16Lµ , H + E, 2}. The convergence rate of single-
stream DIGEST is

E f(x̂T)− f∗ ≤ O(
1

T
+

H + E

T 2
)ρσ2 +O(

(H + E)3

T 3
)∥x0 − x∗∥2 (3)

+O
(V ρ(H + E)2

T 2
(1 +

ln(T +H + E)

T
)
)
G2,

where x̂T = 1
DST

∑V
v=1

∑T−1
t=0 Dvωtx

v
t , ωt = (a+ t)2, ST =

∑T−1
t=0 ωt, and ρ =

∑V
v=1(

Dv

D)2.

Remark. The convergence rate to the optimum value f∗ is O(ρ
T) if H +E ≤ O(

√
T
V), and asymp-

totically approaches to zero, where ρ =
∑V

v=1(
Dv

D)2 is a data concentration coefficient that can take

7

Under review as a conference paper at ICLR 2023

values between 1
V ≤ ρ < 1. If all the nodes have the same amount of data, i.e., ρ = 1

V , then a linear
speedup in the convergence rate O(1

V T) is observed. On the other hand, in the extreme scenario that
ρ = 1, where one node has all the data, the speedup is O(1

T).

Sketch of Proof of Theorem 4.1. (The details of the proof is provided in the supplementary mate-
rial.) We define a virtual sequence {x̄t}t≥0 as x̄t = x0 −

∑V
v=1

∑t−1
z=0

Dv

D ηz∇fivz (x
v
z) following

a similar idea in Stich (2019). We also define gt =
∑V

v=1
Dv

D ∇fivt (x
v
t), ḡt =

∑V
v=1

Dv

D ∇f
v(xv

t),
g∗
t =

∑V
v=1

Dv

D ∇f(x
v
t). Let it = {i1t , ...iVt } denote the data samples selected randomly during time

slot t in all nodes. It can be seen that ḡt = Eit gt, and g∗
t is the real direction of optimal convergence

at every step. The virtual direction is updated as x̄t+1 = x̄t−ηtgt. We first illustrate how the virtual
sequence {x̄t}t≥0 approaches to the optimal solution in Lemma 4.2.

Lemma 4.2. If assumptions 1-2 hold, and ηt ≤ 1
4L , then E ∥x̄t+1 − x∗∥2 ≤ (1 + µ

5 ηt)(1 −
µηt)E ∥x̄t − x∗∥2 − ηt

2 (E f(x̄t) − f∗) + 2η2t E ∥gt − ḡt∥2 +
(
(1 + µ

5 ηt)2ηtL + (5µηt +

2η2)4L2
)∑V

v=1
Dv

D E ∥x̄t − xv
t ∥2.

Lemma 4.2 indicates how the convergence criteria; E f(x̄t) − f∗ is related to E ∥x̄t+1 − x∗∥2 and
E ∥x̄t − x∗∥2, which can be handled with some method like telescopic sum. E ∥gt − ḡt∥2 is related
to local variance and is bounded in Lemma 4.3. E ∥x̄t − xv

t ∥2 shows the deviation between virtual
and actual sequences and we find an upper-bound for this term in Lemma 4.4.

Lemma 4.3 (Bounding variance). If assumptions 3 holds, then E ∥gt − ḡt∥2 ≤ ρσ2.

Lemma 4.4 (Bounding deviation). If assumptions 4-6 hold, and ηt ≤ 2ηt+H+E for 0 ≤ t ≤ T − 1,
1 ≤ v ≤ V , then

∑V
v=1

Dv

D E ∥x̄t − xv
t ∥2 ≤ 64V ρη2t (H + E)2G2.

Now, we focus on the convergence of multi-stream DIGEST. We make the following assumptions.

7. Strongly bounded synchronization interval. We assume that the interval between two sub-
sequent synchronizations for all streams are bounded, i.e., gap(SvT [r]) ≤ H , 1 ≤ v ≤ V ,
1 ≤ r ≤ R. The duration between two subsequent synchronizations in node v by any two
streams is gap(∨1≤r≤RSvT [r]) ≤ H

R + δ where δ is a constant to handle special cases where the
duration is longer due to an uneven arrangement of streams. Note that ∨0≤i≤1Ai is defined as
logical or of all Ais element-wise.

8. Efficient covering. We assume that E
[∑R

r=1

∑
v′∈Bv

r (t)
(Dv′

D)2
]
≤ cρ, 0 ≤ t < T, 1 ≤ v ≤ V ,

where c is a constant. We define Bvr (t) = [v′ | sv′

t′ [r] = 1, τvt [r] ≤ t′ ≤ t] as the list of nodes
that are visited by stream r after the last visit of this stream at node v until t (repeated nodes may
appear in the list).

Theorem 4.5 (Asymptotic result for multi-stream DIGEST). Let assumptions 1-5 and 7-8 hold,
and the learning rate is ηt = 4

µ(a+t) with a > max{ 16Lµ , H + E, 2}. The convergence rate of both
multi-stream DIGEST (hence single-stream DIGEST as a special case) is

E f(x̂T)− f∗ ≤ O(
1

T
+

H + E

T 2
)ρσ2 +O(

(H + E)3

T 3
)∥x0 − x∗∥2 (4)

+O
(ρ(HR + δ + E)2(V + cRhmax)

T 2
(1 +

ln(T +H + E)

T
)
)
G2,

where hmax is the maximum value of h(u, v), which is defined as the expected number of steps for
random walk between u and v. The details of the proof is provided in the supplementary material.

Remark. The convergence rate to the optimum value f∗ with R streams is O(ρ
T) if H+R(E+δ) ≤

O(
√

TR2

V+cRhmax
), and asymptotically approaches to zero. Note that if cRhmax < O(V) we get

H+R(E+δ) ≤ O(
√

TR2

V) that provides a linear improvement in R, otherwise we get improvement

on the order of
√
R.

8

Under review as a conference paper at ICLR 2023

0 200 400 600 800 1000
Time/s

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Gl
ob

al
 lo

ss

Sync-Gossip / H=1
One link-Gossip
Uniform Random Walk
5 Multi-Gossip-PGA / P=5

Real Avg-Gossip-PGA / P=5
Async-Gossip
Sync-Gossip / H=200
DIGEST / H=200

(a) 10-nodes / iid / balanced

0 200 400 600 800 1000
Time/s

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Gl
ob

al
 lo

ss

Sync-Gossip / H=1
One link-Gossip
Uniform Random Walk
5 Multi-Gossip-PGA / P=5

Real Avg-Gossip-PGA / P=5
Async-Gossip
Sync-Gossip / H=200
DIGEST / H=200

(b) 10-nodes / non-iid / unbalanced

0 200 400 600 800 1000
Time/s

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.20

Gl
ob

al
 lo

ss

Sync-Gossip / H=1
One link-Gossip
Uniform Random Walk
5 Multi-Gossip-PGA / P=5

Real Avg-Gossip-PGA / P=5
Async-Gossip
Sync-Gossip / H=800
DIGEST / H=800

(c) 100-nodes / non-iid / unbalanced

Figure 4: Convergence results for w8a dataset in terms of global loss over wall-clock time.

5 EVALUATION OF DIGEST
We evaluate DIGEST in terms of convergence time as well as communication cost as compared to
the following baselines; (i) One link-Gossip (Koloskova et al., 2020): At every slot, only one di-
rected communication link is activated randomly, and a model is sent from a sender to a receiver.
The receiver’s model is updated with the received model; (ii) Uniform Random-Walk (URW) (Ay-
ache & Rouayheb, 2021): This is random walk-based learning algorithm described in Fig. 1c;(iii)
Real Avg-Gossip-PGA (Chen et al., 2021): It adds Periodic Global Averaging (PGA) to Gossip. To
perform one global averaging step, the whole graph is traversed twice, to get all the models first and
returning the averaged model. P is used to show the period, i.e., the global averaging happens every
P iterations; (iv) M Multi-Gossip-PGA Berahas et al. (2019): One global averaging step is imitated
via M multiple sequential Gossip steps; (v) Async-Gossip Lian et al. (2018).

0 200 400 600 800 1000
Time/s

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Gl
ob

al
 lo

ss

DIGEST / R=1
DIGEST / R=5
DIGEST / R=10

DIGEST / R=20
DIGEST / R=30
Async-Gossip

(a) Global loss

0 200 400 600 800 1000
Time/s

102

103

104

105

106

107

Gl
ob

al
 c

om
m

un
ica

tio
n

DIGEST / R=1
DIGEST / R=5
DIGEST / R=10

DIGEST / R=20
DIGEST / R=30
Async-Gossip

(b) Communication overhead

Figure 5: Convergence results and com-
munication overhead for MNIST dataset
in 100-nodes / non-iid / unbalanced set-
ting with multiple streams.

We examine the convergence perfor-
mance of logistic regression, i.e., f(x) =
1
D

∑D
i=1 CrossEntropy

(
softmax(xai), bi

)
+ λ

2 ∥x∥
2,

where ai ∈ Rd, and bi are the feature and label of the
data sample i. The regularization parameter is consid-
ered λ = 1

D . We consider two network topologies, an
Erdős–Rényi graph of V = 10 and V = 100 nodes with
0.3 as the probability of connectivity. We use datasets
w8a (Platt, 1999) and MNIST (Lecun et al., 1998).

We use two different data distribution over nodes: (i)
iid-balanced, and (ii) non-iid-unbalanced. In iid-balanced
case, data set is shuffled and equally divided over differ-
ent nodes. In non-iid-unbalanced, we first sort data sam-
ples based on their labels. Then, we follow a geomet-
ric series as the size of local datasets. For each run, we
measure the global loss f(x) during the optimization. We
calculate the loss for different weighted averages of the
models over iterations: the last model, the uniform av-
erage, the average with linear weights, and the average
with quadratic weights (such as in Theorem 4.1). Finally,
the minimum is reported. Practically speaking, the final
model could be adequate, but an auxiliary sequence might
simply track the weighted average of the iterations, with-
out having to store models in all previous iterations; some
examples can be seen in Table 1 of (Stich, 2019).

We run the optimization using ηt =
1

10+t/1000 . To derive
the plots of convergence over time, we assume that each
iteration of Local SGD takes 1 millisecond. The commu-
nication delay between every two neighbors is assumed
to have exponential distribution where its average is ran-
domly chosen from 0 to 10 milliseconds. The numeri-
cal experiments were run on Ubuntu 20.04 using 36 Intel
Core i9-10980XE processors. For each experiment, we repeat 50 times and present the error bars

9

Under review as a conference paper at ICLR 2023

associated with the randomness of the optimization. In every figure, we include the average and 3
standard deviation error bar.

Fig. 4 shows the convergence behavior of w8a dataset in 10-nodes and 100-nodes topologies. We
see that PGA algorithms do not perform well in such an environment, where global averaging and
several Gossip steps take a long time to complete. Sync-Gossip with H = 1 does not perform well
as performing Gossip communications every iteration increases communication cost, hence conver-
gence time. This observation is is supported by the fact that the results are significantly better when
we execute more local-SGDs by raising H to 200 in Sync-Gossip. One link-Gossip and and URW
have similar performance. This observation suggests that for w8a, performing simultaneous compu-
tations in all nodes (as in One link-Gossip) without a proper communication does not improve the
convergence speed. DIGEST, Sync-Gossip with H = 200, and Async-Gossip have similar perfor-
mance in Fig. 4a. On the other hand, we observe that Gossip based algorithms and URW are suffering
some slow convergence due to the data distribution in Figs. 4b, 4c, while DIGEST performs better
as it (i) supports non-iid data, and (ii) less communication overhead (so better convergence time in
wall-clock time), which is amplified in Fig. 4c where there are more nodes.

Fig. 5a demonstrates the convergence time for non-iid-unbalanced data distribution over 100-node
topology with MNIST dataset for multi-stream DIGEST. Using the multi-stream DIGEST Alg. 3,
we have simulated the results for different values of R, i.e., number of streams in the network. Note
that even after increasing number of streams, the overall communication overhead is still low as
illustrated in Fig. 5b thanks to local-SGD and periodic global model updates of DIGEST.

6 CONCLUSION
We designed a fast and communication-efficient decentralized learning mechanism; DIGEST by
particularly focusing on stochastic gradient descent (SGD). We designed single- and multi-stream
DIGEST to exploit the convergence rate and communication overhead tradeoff. We analyzed the
convergence of single- and multi-stream DIGEST, and proved that both algorithms approach to
the optimal solution asymptotically. The simulation results confirms that the communication cost
of DIGEST is low as compared to the baselines, and it has nice convergence properties; i.e., its
convergence time is better than or comparable to the baselines.

10

Under review as a conference paper at ICLR 2023

REFERENCES

Tomer Avidor and Nadav Tal-Israel. Locally asynchronous stochastic gradient descent for decen-
tralised deep learning. ArXiv, abs/2203.13085, 2022.

Ghadir Ayache and Salim El Rouayheb. Private weighted random walk stochastic gradient descent.
IEEE Journal on Selected Areas in Information Theory, 2(1):452–463, 2021. doi: 10.1109/JSAIT.
2021.3052975.

T. Aysal, Mehmet E. Yildiz, A. Sarwate, and A. Scaglione. Broadcast gossip algorithms for consen-
sus. IEEE Transactions on Signal Processing, 57:2748–2761, 2009.

Albert S. Berahas, Raghu Bollapragada, Nitish Shirish Keskar, and Ermin Wei. Balancing commu-
nication and computation in distributed optimization. IEEE Transactions on Automatic Control,
64(8):3141–3155, 2019. doi: 10.1109/TAC.2018.2880407.

Dimitri P. Bertsekas. A new class of incremental gradient methods for least squares problems. SIAM
J. Optim, 7:913–926, 1996.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE Transactions
on Information Theory, 52(6):2508–2530, 2006a. doi: 10.1109/TIT.2006.874516.

Stephen P. Boyd, Arpita Ghosh, B. Prabhakar, and D. Shah. Randomized gossip algorithms. IEEE
Transactions on Information Theory, 52:2508–2530, 2006b.

Jianshu Chen and Ali H. Sayed. Diffusion adaptation strategies for distributed optimization and
learning over networks. IEEE Transactions on Signal Processing, 60(8):4289–4305, 2012. doi:
10.1109/TSP.2012.2198470.

Yiming Chen, K. Yuan, Yingya Zhang, Pan Pan, Yinghui Xu, and Wotao Yin. Accelerating gossip
sgd with periodic global averaging. In ICML, 2021.

John C. Duchi, A. Agarwal, and M. Wainwright. Dual averaging for distributed optimization: Con-
vergence analysis and network scaling. IEEE Transactions on Automatic Control, 57:592–606,
2012a.

John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed optimiza-
tion: Convergence analysis and network scaling. IEEE Transactions on Automatic Control, 57(3):
592–606, 2012b. doi: 10.1109/TAC.2011.2161027.

Sanghamitra Dutta, Gauri Joshi, Soumyadip Ghosh, Parijat Dube, and Priya Nagpurkar. Slow and
stale gradients can win the race. IEEE Journal on Selected Areas in Information Theory, 2:1012–
1024, 2021.

L. Giaretta and S. Girdzijauskas. Gossip learning: Off the beaten path. In 2019 IEEE Inter-
national Conference on Big Data (Big Data), pp. 1117–1124, Los Alamitos, CA, USA, dec
2019. IEEE Computer Society. doi: 10.1109/BigData47090.2019.9006216. URL https:
//doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006216.

Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and Marimuthu Palaniswami. Internet of
things (iot): A vision, architectural elements, and future directions. Future generation computer
systems, 29(7):1645–1660, 2013.

Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurelien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
Adria Gascon, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He,
Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
Mikhail Khodak, Jakub Konecny, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Ozgur, Rasmus
Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramer, Praneeth Vepakomma,
Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
and open problems in federated learning. Foundations and Trends in Machine Learning, 14(1–2):
1–210, 2021.

11

https://doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006216
https://doi.ieeecomputersociety.org/10.1109/BigData47090.2019.9006216

Under review as a conference paper at ICLR 2023

David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate informa-
tion. In Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science,
FOCS ’03, pp. 482, USA, 2003. IEEE Computer Society. ISBN 0769520405.

Anastasia Koloskova, S. Stich, and M. Jaggi. Decentralized stochastic optimization and gossip
algorithms with compressed communication. ArXiv, abs/1902.00340, 2019.

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
theory of decentralized SGD with changing topology and local updates. In Hal Daumé III and
Aarti Singh (eds.), Proceedings of the 37th International Conference on Machine Learning, vol-
ume 119 of Proceedings of Machine Learning Research, pp. 5381–5393. PMLR, 13–18 Jul 2020.
URL https://proceedings.mlr.press/v119/koloskova20a.html.

Jakub Konecný, H. B. McMahan, and Daniel Ramage. Federated optimization: Distributed opti-
mization beyond the datacenter. ArXiv, abs/1511.03575, 2015.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recog-
nition. Proceedings of the IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791.

He Li, Kaoru Ota, and Mianxiong Dong. Learning iot in edge: Deep learning for the internet of
things with edge computing. IEEE network, 32(1):96–101, 2018a.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020a. doi:
10.1109/MSP.2020.2975749.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. ArXiv, abs/1907.02189, 2020b.

Youjie Li, Mingchao Yu, Songze Li, Amir Salman Avestimehr, Nam Sung Kim, and Alexander G.
Schwing. Pipe-sgd: A decentralized pipelined sgd framework for distributed deep net training.
ArXiv, abs/1811.03619, 2018b.

Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochastic
gradient descent. In Jennifer G. Dy and Andreas Krause (eds.), ICML, volume 80 of Proceedings
of Machine Learning Research, pp. 3049–3058. PMLR, 2018.

Tao Lin, Sebastian U. Stich, and Martin Jaggi. Don’t use large mini-batches, use local sgd. ArXiv,
abs/1808.07217, 2020.

H. B. McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In AISTATS, 2017.

H. Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Agüera y Arcas. Federated Learn-
ing of Deep Networks using Model Averaging. CoRR, abs/1602.05629, 2016.

A. Nedic and A. Ozdaglar. Distributed subgradient methods for multi-agent optimization. IEEE
Transactions on Automatic Control, 54:48–61, 2009a.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
tion. IEEE Transactions on Automatic Control, 54(1):48–61, 2009b. doi: 10.1109/TAC.2008.
2009515.

Deanna Needell, Nathan Srebro, and Rachel Ward. Stochastic gradient descent, weighted sampling,
and the randomized kaczmarz algorithm. In Proceedings of the 27th International Conference on
Neural Information Processing Systems - Volume 1, NIPS’14, pp. 1017–1025, Cambridge, MA,
USA, 2014. MIT Press.

John C. Platt. Fast Training of Support Vector Machines Using Sequential Minimal Optimization,
pp. 185–208. MIT Press, Cambridge, MA, USA, 1999. ISBN 0262194163.

Kevin Scaman, Francis Bach, Sébastien Bubeck, Yin Tat Lee, and Laurent Massoulié. Optimal
convergence rates for convex distributed optimization in networks. Journal of Machine Learning
Research, 20(159):1–31, 2019. URL http://jmlr.org/papers/v20/19-543.html.

12

https://proceedings.mlr.press/v119/koloskova20a.html
http://jmlr.org/papers/v20/19-543.html

Under review as a conference paper at ICLR 2023

Artin Spiridonoff, Alexander Olshevsky, and Ioannis Paschalidis. Communication-efficient SGD:
From local SGD to one-shot averaging. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://
openreview.net/forum?id=UpfqzQtZ58.

Sebastian U. Stich. Local sgd converges fast and communicates little. ArXiv, abs/1805.09767, 2019.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. In Proceedings of the 32nd
International Conference on Neural Information Processing Systems, NIPS’18, pp. 9918–9927,
Red Hook, NY, USA, 2018. Curran Associates Inc.

John N. Tsitsiklis. Problems in decentralized decision making and computation. PhD thesis, Mas-
sachusetts Institute of Technology, 1984.

Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified framework for the design and analysis of
local-update sgd algorithms. Journal of Machine Learning Research, 22(213):1–50, 2021. URL
http://jmlr.org/papers/v22/20-147.html.

Lin Xiao and Stephen P. Boyd. Fast linear iterations for distributed averaging. 42nd IEEE Inter-
national Conference on Decision and Control (IEEE Cat. No.03CH37475), 5:4997–5002 Vol.5,
2003.

Kun Yuan, Qing Ling, and Wotao Yin. On the convergence of decentralized gradient descent. SIAM
Journal on Optimization, 26(3):1835–1854, 2016. doi: 10.1137/130943170. URL https://
doi.org/10.1137/130943170.

13

https://openreview.net/forum?id=UpfqzQtZ58
https://openreview.net/forum?id=UpfqzQtZ58
http://jmlr.org/papers/v22/20-147.html
https://doi.org/10.1137/130943170
https://doi.org/10.1137/130943170

Under review as a conference paper at ICLR 2023

7 APPENDIX: NOTATION TABLE AND PROOF OF THEOREMS 4.1 AND 4.5

7.1 NOTATIONS

G = (V, E) Graph representing the network
V Number of nodes
D The whole dataset in the network with size D
Dv Subset of D at node v with size Dv

fi(x) Loss function of model x associated with the data sample i
f(x) Global loss function of model x
fv(x) Local loss function of model x at node v
f∗ minx∈Rd f(x)
x∗ argminx∈Rd f(x)
x0 Initial model
ηt Learning rate at iteration t
lvt Completion time of local-SGD update started at t
Lv
T Set of {lvt }0≤t<T

xv
t Local model in node v at t

svt Binary variable that shows if node v receives the global model at t in
single-stream DIGEST

SvT Set of {svt }0<t≤T

svt [r] Binary variable that shows id node v receives the semi-global model at t
from stream r in multi-stream DIGEST

SvT [r] {svt [r]}0<t≤T

visited Set of nodes that are visited for the global model update in the most recent
synchronization round for single-stream DIGEST

visited[r] Set of nodes that are visited for the semi-global model update in the most
recent synchronization round in stream r for multi-stream DIGEST

x̃t The global model received by node v at t in single-stream DIGEST
x̃t[r] The semi-global model received by node v at t from stream r in

multi-stream DIGEST
pre node The node that node v receives the global model from in single-stream

DIGEST
pre node[r] The node that node v receives the semi-global model from in stream r for

multi-stream DIGEST
pv The node that node v receives the (semi-)global model from for the first

time in the current synchronization round
h(u, v) The expected number of steps for the random walk between u and v
hmax Maximum value of h(u, v) over all ordered pairs of nodes
δ Constant that bounds the intervals between two subsequent visits of a node

by all streams
c Constant that determines how efficiently the multiple streams are covering

the whole network
Bvr (t) List of nodes that stream r visits after the last visit of node v until t

7.2 SINGLE-STREAM DIGEST

Motivated by Stich (2019), a virtual sequence {x̄t}t≥0 is defined as follows.

x̄t = x0 −
V∑

v=1

t−1∑
z=0

Dv

D
ηz∇fivz (x

v
z). (5)

We do not need to calculate this sequence in the algorithm explicitly and it is only used for the sake
of the analysis. We also define

gt =

V∑
v=1

Dv

D
∇fivt (x

v
t), ḡt =

V∑
v=1

Dv

D
∇fv(xv

t), g∗
t =

V∑
v=1

Dv

D
∇f(xv

t), (6)

14

Under review as a conference paper at ICLR 2023

where f(x), fv(x) are global loss function and local loss function in node v, respectively.

Let us introduce it = {i1t , ...iVt } to denote the data samples selected randomly during time slot t in
all nodes. Then, observe that ḡt = Eit gt. g∗

t is the real true direction to go in opposite of in each
step. We have x̄t+1 = x̄t − ηtgt.

First, we illustrate how the virtual sequence, {x̄t}t≥0, approaches to the optimal in Lemma 1, and 2.
Second, we depict in Lemma 3 that there is a little deviation from the virtual sequence in the actual
iterates, xv

t . Finally, the convergence rate is proved in 7.2.1.
Lemma 7.1. If f is L-smooth and µ-strongly convex and ηt ≤ 1

4L , then

E ∥x̄t+1 − x∗∥2 ≤ (1 +
µ

5
ηt)(1− µηt)E ∥x̄t − x∗∥2 − ηt

2
(E f(x̄t)− f∗) (7)

+ 2η2t E ∥gt − ḡt∥2 +
(
(1 +

µ

5
ηt)2ηtL+ (

5

µ
ηt + 2η2)4L2

) V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2.

Proof. We have
∥x̄t+1 − x∗∥2 = ∥x̄t − ηtgt − x∗∥2 = ∥x̄t − ηtgt − x∗ − ηtg

∗
t + ηtg

∗
t ∥2 (8)

= ∥x̄t − ηtg
∗
t − x∗∥2 + η2t ∥gt − ḡt + ḡt − g∗

t ∥2 + 2ηt⟨x̄t − x∗ − ηtg
∗
t ,g

∗
t − gt⟩ (9)

= ∥x̄t − ηtg
∗
t − x∗∥2 + 2η2t

(
∥gt − ḡt∥2 + ∥ḡt − g∗

t ∥2
)
+ 2ηt⟨x̄t − x∗ − ηtg

∗
t ,g

∗
t − gt⟩, (10)

where (10) is based on the following inequality.

∥
n∑

i=1

ai∥2 ≤ n

n∑
i=1

∥ai∥2. (11)

Then we apply expectation to get Ei0,...,it ∥x̄t+1 − x∗∥2. Based on the law of total expectation,
for every two random variables α, β and a function y, Eα y(α) = Eβ Eα[y(α)|β]. Considering
α = i0, ..., it and β = i0, ..., it−1, we get that
Ei0,...,it⟨x̄t − x∗ − ηtg

∗
t ,g

∗
t − gt⟩ = Ei0,...,it−1 Ei0,...,it [⟨x̄t − x∗ − ηtg

∗
t ,g

∗
t − gt⟩|i0, ..., it−1]

(12)
= Ei0,...,it−1

⟨x̄t − x∗ − ηtg
∗
t ,g

∗
t − Eit gt⟩ (13)

= Ei0,...,it⟨x̄t − x∗ − ηtg
∗
t ,g

∗
t − Eit gt⟩ (14)

= Ei0,...,it⟨x̄t − x∗ − ηtg
∗
t ,g

∗
t − ḡt⟩. (15)

In (13), we used the fact that once we know i0, ..., it−1, the value of xv
t , 1 ≤ v ≤ V , and therefore

x̄t and g∗
t are not random any more. From now on, we drop the subscript i0, ..., it for the ease of

notation. Thus,

E ∥x̄t+1 − x∗∥2 ≤(1 + µ

5
ηt)E ∥x̄t − ηtg

∗
t − x∗∥2 + 2η2t E ∥gt − ḡt∥2 (16)

+ (
5

µ
ηt + 2η2)E ∥ḡt − g∗

t ∥2,

where we used (15) in (10) and the fact that for λ > 0,

2⟨a, b⟩ ≤ λ∥a∥2 + 1

λ
∥b∥2. (17)

We obtain
∥x̄t − ηtg

∗
t−x∗∥2 = ∥x̄t − x∗∥2 + η2t ∥g∗

t ∥2 − 2ηt⟨x̄t − x∗,g∗
t ⟩ (18)

= ∥x̄t − x∗∥2 + η2t ∥g∗
t ∥2 − 2ηt

V∑
v=1

Dv

D
⟨x̄t − xv

t + xv
t − x∗,∇f(xv

t)⟩ (19)

= ∥x̄t − x∗∥2 + η2
V∑

v=1

Dv

D
∥∇f(xv

t)∥2 − 2ηt

V∑
v=1

Dv

D
⟨xv

t − x∗,∇f(xv
t)⟩ (20)

−2η
V∑

v=1

Dv

D
⟨x̄t − xv

t ,∇f(xv
t)⟩,

15

Under review as a conference paper at ICLR 2023

Where in (20) we have used the convexity of ∥.∥2 that

η2∥g∗
t ∥2 ≤ η2

V∑
v=1

Dv

D
∥∇f(xv

t)∥2 (21)

By L-smoothness we have

∥∇f(xv
t)−∇f(x∗)∥2 ≤ 2L(f(xv

t)− f∗). (22)

So we can rewrite the second term in (20) as

η2
V∑

v=1

Dv

D
∥∇f(xv

t)∥2 ≤ η22L

V∑
v=1

Dv

D
(f(xv

t)− f∗) (23)

µ-strong convexity provides us with

−⟨xv
t − x∗,∇f(xv

t)⟩ ≤ −(f(xv
t)− f∗)− µ

2
∥xv

t − x∗∥2. (24)

Following (17) to bound the last term in (20), we have

−2⟨x̄t − xv
t ,∇f(xv

t)⟩ ≤ 2L∥x̄t − xv
t ∥2 +

1

2L
∥∇f(xv

t)−∇f(x∗)∥2 (25)

≤ 2L∥x̄t − xv
t ∥2 + (f(xv

t)− f∗), (26)

where (22) is used in (26).

We obtain the following result by applying these three estimates to (20):

∥x̄t − ηtg
∗
t − x∗∥2 ≤ ∥x̄t − x∗∥2 + 2ηtL

V∑
v=1

Dv

D
∥x̄t − xv

t ∥2 (27)

+2ηt

V∑
v=1

Dv

D

(
(ηtL−

1

2
)(f(xv

t)− f∗) +
−µ
2
∥xv

t − x∗∥2
)
.

we have (ηtL− 1
2) ≤ −

1
4 as we assumed ηt ≤ 1

4L . Using concavity of α(f(xv
t)−f∗)+β∥xv

t −x∗∥2
for α, β ≤ 0, we get

2ηt

V∑
v=1

Dv

D

(
(ηtL−

1

2
)(f(xv

t)− f∗) +
−µ
2
∥xv

t − x∗∥2
)
≤ −ηt

2
(f(x̄t)− f∗)− µηt∥x̄t − x∗∥2

(28)

By Applying the last inequality in (27),

∥x̄t − ηtg
∗
t − x∗∥2 ≤ (1− µηt)∥x̄t − x∗∥2 + 2ηtL

V∑
v=1

Dv

D
∥x̄t − xv

t ∥2 −
ηt
2
(f(x̄t)− f∗). (29)

16

Under review as a conference paper at ICLR 2023

We obtain

∥ḡt − g∗
t ∥2 = ∥

V∑
v=1

Dv

D
(∇fv(xv

t)−∇f(xv
t))∥2 (30)

= ∥
V∑

v=1

Dv

D
(∇fv(xv

t)−∇fv(x̄t) +∇fv(x̄t)−∇f(xv
t))∥2 (31)

≤ 2(∥
V∑

v=1

Dv

D
(∇fv(xv

t)−∇fv(x̄t))∥2 + ∥
V∑

v=1

Dv

D
(∇fv(x̄t)−∇f(xv

t))∥2) (32)

≤ 2(∥
V∑

v=1

Dv

D
(∇fv(xv

t)−∇fv(x̄t))∥2 + ∥
V∑

v=1

Dv

D
(∇f(x̄t)−∇f(xv

t))∥2) (33)

≤ 2

V∑
v=1

Dv

D
∥∇fv(xv

t)−∇fv(x̄t)∥2 + 2

V∑
v=1

Dv

D
∥∇f(xv

t)−∇f(x̄t)∥2 (34)

≤ 2L2
V∑

v=1

Dv

D
∥xv

t − x̄t∥2 + 2L2
V∑

v=1

Dv

D
∥xv

t − x̄t∥2 (35)

= 4L2
V∑

v=1

Dv

D
∥xv

t − x̄t∥2, (36)

where in (32), we use (11). In (33) we have used the fact that
∑V

v=1
Dv

D fv(x) = f(x). (34), and
(35) are due to the convexity of ∥.∥2 and L-smoothness, respectively.

Taking expectation of (29), and (36) and applying them into (16) provides

E ∥x̄t+1−x∗∥2 ≤ (1 +
µ

5
ηt)(1− µηt)E ∥x̄t − x∗∥2 − ηt

2
(E f(x̄t)− f∗) (37)

+ 2η2t E ∥gt − ḡt∥2 +
(
(1 +

µ

5
ηt)2ηtL+ (

5

µ
ηt + 2η2)4L2

) V∑
v=1

Dv

D
E ∥x̄t − xv

t ∥2.

Lemma 7.2 (Bounding variance). If Eivt
∥∇fivt (x

v
t) − ∇fv(xv

t)∥2 ≤ σ2 for 0 ≤ t ≤ T − 1,
1 ≤ v ≤ V , then E ∥gt − ḡt∥2 ≤ ρσ2.

Proof. We have by definition that

E ∥gt − ḡt∥2 = E ∥
V∑

v=1

Dv

D
(∇fivt (x

v
t)−∇fv(xv

t))∥2 (38)

=

V∑
v=1

(
Dv

D
)2 E ∥(∇fivt (x

v
t)−∇fv(xv

t)∥2 (39)

= σ2
V∑

v=1

(
Dv

D
)2 (40)

≤ ρσ2, (41)

where (39) is based on the fact that variance of the sum of independent random variables equals sum
of their variances.

Lemma 7.3 (Bounding deviation single-stream). If gap(SvT) ≤ H , max{lvt − t} ≤ E,
Ei ∥∇fi(xv

t)∥2 ≤ G2, and ηt ≤ 2ηt+H+E for 0 ≤ t ≤ T − 1, 1 ≤ v ≤ V , then∑V
v=1

Dv

D E ∥x̄t − xv
t ∥2 ≤ 64V ρη2t (H + E)2G2.

17

Under review as a conference paper at ICLR 2023

Proof. For every v there exist a τvt , such that xv
τv
t
= x̃τv

t
. Considering τ0 = min{τvt , ..., τVt }, we

have t− τ0 ≤ H . we know that all the updates of all of the nodes up to iteration τ0, are aggregated
in x̃t. We have

x̃τv
t
= ˜̃xτ0 −

∑
h∈Hv

τh
t −1∑

t′=τ0

∑
z∈uv

t′

Dh

D
ηz∇fihz (x

h
z), (42)

whereHv = {h | τht ≤ τvt }, and ˜̃xτ0 = x0 −
∑V

v=1

∑τ0−1
t′=0

∑
z∈uv

t′

Dv

D ηz∇fivz (x
v
z).

Lets use (11) to decompose the the deviation term as depicted in the following:

∥x̄t − xv
t ∥2 ≤ 4(∥xv

t − x̃τv
t
∥2 + ∥x̃τv

t
− x̃τ0∥2 + ∥x̄τ0 − x̃τ0∥2 + ∥x̄t − x̄τ0∥2). (43)

based on the fact that t− τvt ≤ H , we can obtain

E ∥xv
t − x̃τv

t
∥2 = E ∥xv

t − xv
τv
t
∥2 (44)

= E ∥
t−1∑

t′=τv
t

∑
z∈uv

t′

ηz∇fihz (x
h
z)∥2 (45)

= E ∥
∑

z∈∪t−1

t′=τv
t
uv
t′

ηz∇fihz (x
h
z)∥2 (46)

≤ η2τv
t −E | ∪t−1

t′=τv
t
uv
t′ |

∑
z∈∪t−1

t′=τv
t
uv
t′

E ∥∇fivz (x
v
z)∥2 (47)

≤ η2τv
t −E(t− (τvt − E))2G2 (48)

≤ η2τ0−E(H + E)2G2, (49)

where we have used ητv
t −E ≤ ητ0−E . For the second term, using the same approach, we have

E ∥x̃τv
t
− x̃τ0∥2 = E ∥

∑
h∈Hv

τh
t −1∑

t′=τ0

∑
z∈uv

t′

Dh

D
ηz∇fihz (x

h
z)∥2 (50)

≤ |Hv|
∑
h∈Hv

(
Dh

D
)2 E ∥

τv
t −1∑

t′=τ0

∑
z∈uv

t′

ηz∇fihz (x
h
z)∥2 (51)

≤ |Hv|
∑
h∈Hv

(
Dh

D
)2η2τ0−E(H + E)2G2 (52)

≤ η2τ0−E(H + E)2G2V

V∑
v=1

(
Dv

D
)2 (53)

≤ η2τ0−E(H + E)2G2V ρ (54)

18

Under review as a conference paper at ICLR 2023

The third term can be bounded like

E ∥x̄τ0 − x̃τ0∥2 = E ∥
V∑

v=1

τ0−1∑
z=0

Dv

D
ηz∇fivz (x

v
z)−

V∑
v=1

τ0−1∑
t′=0

∑
z∈uv

t′

Dv

D
ηz∇fivz (x

v
z)∥2 (55)

≤ E ∥
V∑

v=1

∑
z/∈∪τ0−1

t′=0

Dv

D
ηz∇fivz (x

v
z)∥2 (56)

≤ V

V∑
v=1

(
Dv

D
)2 E ∥

∑
z/∈∪τ0−1

t′=0

ηz∇fivz (x
v
z)∥2 (57)

≤ V

V∑
v=1

(
Dv

D
)2η2τ0−EE

∑
z/∈∪τ0−1

t′=0

E ∥∇fivz (x
v
z)∥2 (58)

≤ η2τ0−EE
2G2V ρ. (59)

For the last term, using the same logic, we can obtain
∥x̄t − x̄τ0∥2 ≤ η2τ0H

2G2V ρ (60)
Considering that ητ0−E ≤ 2ηt and adding up the previous four estimates, we have

∥x̄t − xv
t ∥2 ≤ 64V ρη2t (H + E)2G2. (61)

Observe, that Lemmas 7.1 and 7.2 hold regardless of how to synchronize the nodes. Lemma 7.4,
that limits how far the local sequences can deviate from the virtual average, is also still valid for the
multiple synchronization streams. This is obvious in the first sight as having multiple streams helps
further reduce the gap between the local sequences and the virtual iterates (∥x̄t − xv

t ∥2).

7.2.1 COMPLETING THE PROOF OF THEOREM 4.1

By replacing results of lemmas 7.2, and 7.4 in lemma 7.1, we obtain

E ∥x̄t+1 − x∗∥2 ≤ (1 +
µ

5
ηt)(1− µηt)E ∥x̄t − x∗∥2 − ηt

2
(E f(x̄t)− f∗) +A1η

2
t +A2η

3
t +A3η

4
t ,

(62)

where A1 = 2ρσ2, A2 = 128V ρL(H+E)2G2(1+ 10L
µ), and A3 = 128V ρL(H+E)2G2(µ5 +4L).

Observe that
ωt

ηt
(1 +

µ

5
ηt)(1− µηt) =

µ

4

(
(a+ t)3 − 16

5
(a+ t)2 − 16

5
(a+ t)

)
(63)

≤ µ

4

(
(a+ t)3 − 3(a+ t)2 + 3(a+ t)− 3

)
(64)

=
ωt−1

ηt−1
, (65)

where (64) is correct for a ≥ 2. By multiplication of (62) and ωt

ηt
, and using the last inequality we

have
ωt

ηt
E ∥x̄t+1 − x∗∥2 ≤ ωt−1

ηt−1
E ∥x̄t − x∗∥2 − ωt

2
(E f(x̄t)− f∗) +A1ωtηt +A2ωtη

2
t +A3ωtη

3
t .

(66)
So we can recursively substitute the first term of the right hand side of the inequality to get

ωT−1

ηT−1
E ∥x̄T+1 − x∗∥2 ≤ ω0

η0
(1 +

µ

5
η0)(1− µη0)∥x̄0 − x∗∥2 −

T−1∑
t=0

ωt

2
(E f(x̄t)− f∗) (67)

+A1

T−1∑
t=0

ωtηt +A2

T−1∑
t=0

ωtη
2
t +A3

T−1∑
t=0

ωtη
3
t .

19

Under review as a conference paper at ICLR 2023

By rearranging the terms and considering that (1 + µ
5 η0)(1− µη0) ≤ 1, we have

T−1∑
t=0

ωt(E f(x̄t)− f∗) ≤ 2ω0

η0
∥x̄0 − x∗∥2 + 2A1

T−1∑
t=0

ωtηt + 2A2

T−1∑
t=0

ωtη
2
t + 2A3

T−1∑
t=0

ωtη
3
t .

(68)

Based on the convexity of f we have

E f(x̂T)− f∗ ≤ 1

ST

T−1∑
t=0

ωt(E f(x̄t)− f∗) (69)

≤ 2ω0

ST η0
∥x̄0 − x∗∥2 + 2A1

ST

T−1∑
t=0

ωtηt +
2A2

ST

T−1∑
t=0

ωtη
2
t +

2A3

ST

T−1∑
t=0

ωtη
3
t . (70)

We next aim to bound the terms on the right hand side of the inequality:

T−1∑
t=0

ωtηt =

T−1∑
t=0

4(a+ t)

µ
=

2T (2a+ T − 1)

µ
(71)

T−1∑
t=0

ωtη
2
t =

T−1∑
t=0

16

µ2
=

16T

µ2
(72)

T−1∑
t=0

ωtη
3
t =

T−1∑
t=0

64

µ3(a+ t)
≤ 64

µ3

∫ T−2

−1

dt

(a+ t)
≤ 64

µ3
ln(a+ T − 2) (73)

ST =

T−1∑
t=0

ωt =
T

6
(2T 2 + 6aT − 3T + 6a2 − 6a+ 1) ≥ T 3

3
, (74)

Where (74) is correct due to a ≥ 2. Using the above bounds we can write (70) as

E f(x̂T)− f∗ ≤ 3µa3

2T 3
∥x̄0 − x∗∥2 + 12(2a+ T − 1)

µT 2
A1 +

96

T 2µ2
A2 +

384 ln(T + a− 2)

µ3T 3
A3.

(75)

This completes the proof of Theorem 4.1.

7.3 MULTI-STREAM DIGEST

Notice that Lemmas 7.1 and 7.2 hold for the multi-stream scenario. Hence, we need a modified
version of Lemma 7.4 which limits how far local sequences can depart from the virtual in the multi-
stream DIGEST.

Lemma 7.4 (Bounding deviation multi-stream). If gap(SvT [r]) ≤ H , gap(∨1≤r≤RSvT [r]) ≤ H
R + δ,∑R

r=1

∑
v′∈Bv

r (t)
(Dv′

D)2 ≤ cρ, max{lvt − t} ≤ E, Ei ∥∇fi(xv
t)∥2 ≤ G2, and ηt ≤ 2ηt+H+E for

0 ≤ t ≤ T−1, 1 ≤ v ≤ V , 1 ≤ r ≤ R, then
∑V

v=1
Dv

D E ∥x̄t−xv
t ∥2 ≤ 4(HR +δ+E)2η2tG

2ρ(6V +
8cRhmax).

Proof. We use τvt [r] to denote the last time slot up to t, when node v’s model was updated with
stream r, i.e., τvt [r] = max{t′ | t′ ≤ t, svt′ [r] = 1}. Lets use (11) to decompose the the deviation
term as depicted in the following:

∥x̄t − xv
t ∥2 ≤ 2(∥xv

t −
R∑

r=1

x̃τv
t [r][r]− (R− 1)x0∥2 + ∥x̄t −

R∑
r=1

x̃τv
t [r][r]− (R− 1)x0∥2).

(76)

Lets assume τvl (t) = max{τvt [1], ..., τVt [R]}. For the first term we can obtain

20

Under review as a conference paper at ICLR 2023

E ∥xv
t −

R∑
r=1

x̃τv
t [r][r]− (R− 1)x0∥2 = E ∥

t−1∑
t′=τv

l

∑
z∈uv

t′

ηz∇fihz (x
h
z)∥2 (77)

≤ (
H

R
+ δ + E)2η2τv

l (t)−EG
2 (78)

≤ (
H

R
+ δ + E)2η2t−H−EG

2 (79)

For the second term in (76) we again use (11) to expand it to two terms as

∥x̄t −
R∑

r=1

x̃τv
t [r][r]− (R− 1)x0∥2 ≤ 2

(
∥x̄t −

R∑
r=1

x̃t[r]− (R− 1)x0∥2 (80)

+∥
R∑

r=1

(x̃t[r]− x̃τv
t [r][r])∥2

)
.

Now we bound two terms on the right hand side of (80) in the following. The first term shows the
difference between the virtual sequence and the sum of the updates in all nodes aggregated in global
models. In fact, the difference shows all the updates that has not been seen by any stream pulse the
updates that are lagged. we difine τ0 = min{τvl (t), ..., τvl (t)}.

E ∥x̄t −
R∑

r=1

x̃t[r]− (R− 1)x0∥2 = E ∥
V∑

v=1

t−1∑
t′=τv

l (t)

∑
z∈uv

t′

Dv

D
ηz∇fihz (x

h
z)∥2 (81)

≤ (
H

R
+ δ + E)2η2τ0−EG

2V ρ (82)

≤ (
H

R
+ δ + E)2η2t−H−EG

2V ρ, (83)

Where (83) can be found with the same approach as (54). Here we define Bvr (t) = [h | svt′ [r] =
1, τvt [r] ≤ t′ ≤ t], as the list of nodes that are visited by stream r after node v (Repeated nodes may
appear in the list). Note that E |Bvr (t)| ≤ 2hmax.

E ∥
R∑

r=1

(x̃t[r]− x̃τv
t [r][r])∥2 ≤ RE

R∑
r=1

∥x̃t[r]− x̃τv
t [r][r]∥2 (84)

≤ RE
R∑

r=1

∥
∑

h∈Bv
r (t)

τh
t [r]∑

τh
l (τh

t [r])

∑
z∈uh

t′

Dh

D
ηz∇fihz (x

h
z)∥2 (85)

≤ 2Rhmax E
R∑

r=1

∑
Bv

r (t)

∥
τh
t [r]∑

τh
l (τh

t [r])

∑
z∈uv

t′

Dh

D
ηz∇fihz (x

h
z)∥2 (86)

≤ 2Rhmax(
H

R
+ δ + E)2 E

R∑
r=1

∑
Bv

r (t)

∥Dh

D
ηz∇fihz (x

h
z)∥2 (87)

≤ 2Rhmax(
H

R
+ δ + E)2η2t−H−E E

R∑
r=1

∑
Bv

r (t)

∥Dh

D
∇fihz (x

h
z)∥2

(88)

≤ 2Rhmax(
H

R
+ δ + E)2η2t−H−EG

2 E
R∑

r=1

∑
Bv

r (t)

(
Dh

D
)2 (89)

≤ 2Rhmax(
H

R
+ δ + E)2η2t−H−EG

2cρ, (90)

21

Under review as a conference paper at ICLR 2023

where (84,85,86,87) are based on (11) and the fact that the duration between two subsequent visit pf
node v from different streams is at most H

R + δ. (90) follows from the assumption of not too many
streams in companions to V .

By using (79,80,83,90) in (76) we get

∥x̄t − xv
t ∥2 ≤ (

H

R
+ δ + E)2η2t−H−EG

2ρ(6V + 8cRhmax) (91)

≤ 4(
H

R
+ δ + E)2η2tG

2ρ(6V + 8cRhmax) (92)

22

	Introduction
	Related work
	Design of DIGEST
	Preliminaries
	Single-Stream DIGEST
	Overview
	Algorithm Design

	Multi-Stream DIGEST

	Convergence Analysis of DIGEST
	Evaluation of DIGEST
	Conclusion
	Appendix: Notation table and proof of Theorems 4.1 and 4.5
	Notations
	Single-stream DIGEST
	Completing the proof of Theorem 4.1

	Multi-stream DIGEST

