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Abstract

Performing eigendecomposition during neural network training is essential for
tasks such as dimensionality reduction, network compression, image denoising,
and graph learning. However, eigendecomposition is computationally expensive as
it is orders of magnitude slower than other neural network operations. To address
this challenge, we propose a novel approach called “amortized eigendecomposition”
that relaxes the exact eigendecomposition by introducing an additional loss term
called eigen loss. Our approach offers significant speed improvements by replacing
the computationally expensive eigendecomposition with a more affordable QR
decomposition at each iteration. Theoretical analysis guarantees that the desired
eigenpair is attained as optima of the eigen loss. Empirical studies on nuclear norm
regularization, latent-space principal component analysis, and graphs adversarial
learning demonstrate significant improvements in training efficiency while produc-
ing nearly identical outcomes to conventional approaches. This novel methodology
promises to integrate eigendecomposition efficiently into neural network training,
overcoming existing computational challenges and unlocking new potential for
advanced deep learning applications.

1 Introduction
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Figure 1: A comparison that illustrates the for-
ward execution time of three linear algebra op-
erations: qr, eigh, and svd, when performed
on a 10000× 10000 matrix using PyTorch and
JAX. The presented values represent the mean
ratios of the execution time relative to that of
matrix multiplication (matmul) of 100 runs.

Eigendecomposition is a fundamental technique in
linear algebra that finds applications across numer-
ous scientific domains ranging from quantum many-
body problems to multivariate statistical analysis.
In the context of deep learning, eigendecomposition
also plays a crucial role in tasks such as weights
normalization [8, 16, 41], dimensionality reduc-
tion [6, 44, 27, 38], network compression [17, 30],
image denoising [13, 12, 14], graph adversarial
learning [10, 18, 47]. By uncovering the struc-
ture of networks, eigendecomposition allows us
to enforce low-rankness, ensuring generalization,
robustness, and computational efficiency. Eigen-
decomposition is also instrumental in the spectral
analysis of graphs, where it can detect community
structure, which is essential in spectral graph neu-
ral networks. The ability of eigendecomposition
to detect the intrinsic matrix structures and prop-
erties makes it a valuable tool in various machine
learning tasks with neural networks.
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Despite its straightforward definition, the computation of eigenvalues is quite challenging. Eigende-
composition algorithms are inherently iterative, involving a sequence of expensive operations such as
Arnoldi iteration, QR iteration, and Rayleigh quotient Iteration [39]. Additionally, it usually takes
thousands of iterations to reach a desirable tolerance level. For instance, the locally optimal block
preconditioned conjugate gradient (LOBPCG) method [22]–a widely-used eigenvalue solver–often
requires dozens to hundreds of iterations to achieve convergence [22, 9]. Figure 1 presents a com-
parative analysis of the execution times for eigendecomposition and other computational operations
using PyTorch [33] and JAX [2]. The figure shows that the execution speeds for eigh and svd are
remarkably slower—by 4 to 5 orders of magnitude—relative to matrix multiplication. This substan-
tial disparity in execution speed indicates operations such as eigh and svd, once used, will be the
bottleneck of computation cost. Conversely, the QR decomposition, often employed for orthogonality,
is considerably less computationally expensive. This observation has motivated us to explore the
possibility of reducing the iterative computation of eigendecomposition with lower-cost operations.

When eigendecomposition is incorporated into the training of a neural network, a nested loop
scenario arises, where eigendecomposition acts as the inner loop and the neural network’s loss
minimization serves as the outer loop. Notably, it is not always easy to be aware of this inner loop of
eigendecomposition, as it is encapsulated by the high-level functions provided within deep learning
frameworks. However, in this context, this inner loop does not require full convergence during each
iteration, given that the remaining parameters have not reached optima. The inner loop can be relaxed
and optimized jointly with the training loss, allowing for a more flexible and efficient training process.
The key idea can be summarized as follows:

Eigendecomposition within a neural network does not have to reach full convergence during each
training step; it simply needs to contribute to the desired outcome by the end of the training process.

In this paper, we present a novel approach named “amortized eigendecomposition” for training
neural networks that require eigenvalues or eigenvectors. Instead of using computationally expensive
eigendecomposition decoupled with the training of neural networks, we proposed to relax it into an
unconstrained optimization problem on the Stiefel manifold by adding an eigen loss. This relaxation
only requires a QR decomposition at each iteration, thus is more efficient. Moreover, through
empirical observations, we have found that although the relaxed optimization problem with eigen
loss does not involve eigendecomposition in every iteration, the amortized optimization approach
consistently achieves the desired results. It achieves nearly identical performance to traditional
methods but with significantly improved speed.

2 Eigendecomposition in Neural Networks

In this paper, we consider a general class of neural networks that incorporate eigendecomposition.
We formulate this family of problems as a constrained optimization problem:

min
θ

f
(
hθ(X),V ,Λ

)
, s.t. V TΛV = A (1)

Here, the encoder hθ maps the data X ∈ Rn×p into a latent space. In addition to the latent
representation, the loss function f also incorporates the eigenpair Λ and V of a symmetric matrix A.
The matrix A can be constructed from hθ(X), such as a covariance matrix or a similarity matrix, or
it can depend solely on the parameters. Notably, A is subject to changes during network training due
to its dependency on θ. The computational graph for each iteration of such model structure can be
written as,

X −−−→ hθ(X)︸ ︷︷ ︸
encoding

−−−→ A −−−→ (V ,Λ)︸ ︷︷ ︸
eigendecomposition

−−−→ f
(
hθ(X),V ,Λ

)︸ ︷︷ ︸
downstream task

. (2)

The corresponding algorithm of the above computational graph is shown in Algorithm 1. Solving such
problems, however, is computationally expensive, since it requires preserving the eigendecomposition
constraint of A after each update of θ. This structure encompasses a wide range of learning problems.
We present several representative examples and investigate them in our numerical experiments next.

Nuclear Norm Regularization The nuclear norm of a matrix is defined as the sum its the singular
values. Due to its convexity, regularization via the nuclear norm is employed to encourage low-rank
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structures within the learned parameters. This approach proves beneficial in a variety of applications,
such as matrix completion [5, 4], image denoising [13, 12, 14, 45]. Furthermore, eigendecomposition
and singular value decomposition are also used for pruning or compressing neural networks, by
decomposing the weight matrices of the network and approximating the original network with fewer
parameters [17, 30]. The objective function of this type of problem can be written as,

min
θ

f
(
hθ(X)

)
+ η∥θ∥∗ (3)

Here, η is a regularization coefficient that controls the rank of the parameter matrix. In classical
methods, the nuclear norm ∥θ∥∗ is usually calculated via singular value decomposition.

Whitening in Neural Networks Whitening is a transformation technique extensively utilized in
neural networks to standardize features by ensuring they have zero mean and unit variance, and are
decorrelated from each other. In neural network applications, whitening can be categorized into
parameter-space whitening and feature-space whitening. Parameter-space whitening, often achieved
through PCA/ZCA, is a prevalent method applied during neural network training to improve stability
and accelerate convergence [37, 41, 16, 8]. Feature-space whitening, in contrast, applies PCA to the
intermediate representations within the network. This process aligns features with the axes of greatest
variance, thereby facilitating dimensionality reduction [15, 42, 34, 25]. A concrete example of
feature-space whitening is its incorporation into an auto-encoder architecture, which can be expressed
mathematically as:

min
ω,θ

∥∥∥Decω(V V TEncθ(X)
)
−X

∥∥∥
F

(4)

where V is spanned by the first several largest eigenvectors of the covariance of Encθ(X) and θ, ω
represent the parameters of the decoder and encoder, respectively.

Graph Structure Learning Graph structure learning is an area of machine learning that aims to
deduce the latent structure of a graph or network from observed data [23]. This domain has significant
applications in graph adversarial learning, which seeks to bolster the robustness of graph neural
networks against adversarial attacks [10, 18, 47]. In such contexts, the adjacency matrix is usually
often compromised by adversarial modifications while feature matrix X remains unaffected. The
primary objective is to learn both a clean graph structure and perform accurate node classification.
From this perspective, we follow the approach proposed in [18] and the objective function can be
formulated as:

min
θ,L̂

∥∥GNNθ(X, L̂)− Y
∥∥
2
+ α

∥∥L̂∥∥∗ + β
∥∥L̂−L

∥∥2
F (5)

Here L̂ represents a low-rank Laplacian matrix that approximates the original graph Laplacian L.
The three parts of the loss function correspond to the node classification loss, low-rank constraint,
and unnoticeable adversarial attacks, respectively. However, this approach relies on singular value
decomposition at every iteration, which is computationally prohibitive for large-scale networks.

3 Differentiable Optimization for Eigendecomposition

Before introducing the proposed method, let’s begin by examining a more straightforward case:
determining the eigenvalues of a symmetric matrix A ∈ Rn×n through constrained optimization.1
The eigenvalues of A are denoted as λ1 ⩾ λ2 ⩾ · · · ⩾ λn. The largest eigenvalue of A can be
obtained by directly maximizing the Rayleigh quotient:

λ1 = max
u∈Rn

uTAu

uTu
. (6)

where the maximum value corresponds to the largest eigenvalue and the associated eigenvector is
given by the normalized u at the optimum. This method can be generalized to identifying the optimal
subspace, which is a common problem in dimensionality reduction and feature selection contexts.
The optimal subspace for a symmetric matrix is defined as the subspace spanned by its k largest
eigenvectors. This can be found by solving the constrained optimization problem:

max
U∈Un×k

tr(UTAU) (7)

1Although the findings in this paper can be readily extended to the complex space, we specifically focus on
the real space throughout our study.
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(c) Convex trace loss

Figure 2: An illustration on disrupting the rotational symmetry of the trace loss. We aim to solve

eigenvectors for a 2-dimensional symmetric matrix A =

(
0.8 0.2
0.2 0.4

)
with three loss functions. We

parameterize an orthonormal matrix U =

(
x y
−y x

)
, which is subject to the constraint x2 + y2 = 1.

The plot displays the contours of the landscapes of three different loss functions as they vary with x and
y: (a) trace loss tr(UAUT), (b) Brockett’s cost function tr(MUAUT) where M = diag(1, 0.2)

and (c) convex loss function tr(f(UAUT)) where f is an element-wise exponential function. The
feasible area of the constraint is depicted with a black circle. The red stars signify the optima of the
loss in the feasible area. The dashed grey lines represent the true eigenvector direction of A. We
see that, the trace loss results in infinitely many optimal solutions due to its rotational symmetry.
In contrast, both Brockett’s cost function and the convex loss function reshape the optimization
landscape, breaking this symmetry and leading to the identification of the correct eigenvectors.

where the Stiefel manifold Un×k = {U ∈ Rn×k | UTU = I} is the set of n × k matrices with
orthonormal columns. Maximizing this trace function yields the optimal subspace spanned by the
column vectors of U .

Rotational Symmetry It’s important to recognize, however, that the optimal U of the above
optimization problem does NOT represent the eigenvectors of A. This is due to the rota-
tional symmetry of the trace function that for any orthonormal matrix C ∈ Uk×k, the equation
tr(UTAU) = tr(CTUTAUC) always holds. As a result, there are an infinite number of solutions
to the optimization problem Eq. (7), all spanning the same subspace as the desired sets of eigenvectors.
A visual illustration is provided in Figure 2a.

To accurately obtain the eigenvalues and eigenvectors, it is necessary to refine the traditional trace loss
function. This paper introduces two approaches for achieving the correct eigendecomposition. The
first method utilizes Brockett’s cost function, which applies distinct weights to the diagonal elements
of the matrix product UTAU , effectively differentiating the importance of each eigenvalue. The
second method involves applying an element-wise convex function directly to the diagonal elements,
resulting in an exact eigendecomposition. We will now elaborate on these methods.

The Brockett’s Cost Function The first modification made to the trace loss is Brockett’s cost
function [3]. It enables the extraction of eigenvectors and eigenvalues by solving the following
optimization problem:

max
U∈Un×k

tr(MUTAU). (8)

Here M = diag(m1,m2, · · · ,mk) ∈ Rk×k is a diagonal weight matrix with distinct diagonal
elements. The matrix M is structured such that all its elements are distinct numbers. Specifically,
we can denote these elements as 0 < m1 < m2 < · · · < mk. This ordering allows M to
assign distinct weights to the diagonal elements of the product UTAU , effectively disrupting the
rotational invariance inherent in the trace loss and thus enabling the determination of eigenvalues
and eigenvectors through optimization. In fact, M can be any diagonal matrix with distinct diagonal
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elements. A practical choice could be mi = i/k or mi = i as suggested by [3]. The next theorem
illustrates why this approach can yield the exact eigendecomposition.
Theorem 1 (Trace inequality with weight matrix). Consider a n-dimensional symmetric matrix A.
Let M be a k-dimensional diagonal matrix with elements 0 < m1 < m2 · · · < mk. For an arbitrary
matrix U ∈ Un×k with orthogonal columns, the following inequality always holds:

k∑
i=1

mk−i+1λi ⩽ tr(MUTAU) ⩽
k∑

i=1

miλi. (9)

The equalities are achieved if and only if U contains the eigenvectors corresponding to the k largest
(smallest) eigenvalues of A.

This approach can be viewed as an extension of the trace inequalities originally put forward by
Von Neumann [40, 31] and further developed by Ruhe [35]. A detailed demonstration is available
in the seminal work by Brockett [3]. Additionally, we offer an alternative proof leveraging the
Cauchy–Schwarz inequality, which is presented in the Appendix for reference. A more generalized
version of this trace inequality is discussed in Liang et al. [26].

The Convex Trace Loss The second method employs a strictly monotonic convex function f ,
applied element-wise to the diagonal components of UTAU . This perturbation also disrupts the
rotational symmetry inherent in the trace loss. The convex nature of f alters the curvature of the loss
landscape, thereby ensuring a unique optimal solution corresponding to the eigenvectors. The convex
trace loss function, aimed at extracting the k largest eigenvalues, is expressed as:

max
U∈Un×k

trf(UTAU) (10)

The optimal U∗ that achieves the maximum in the above objective are the eigenvectors corresponding
to the k largest eigenvalues, and the eigenvalues can be obtained by the diagonal elements of UT

∗AU∗.
The next theorem provides a formal validation of this assertion.
Theorem 2 (Trace inequality with convex function). Let A be a given n-dimensional symmetric
matrix and let U be a matrix of size n×k that resides on the Stiefel manifold. Suppose f : R → R be
a monotonically increasing, convex function applied element-wise. The following inequalities hold:

k

(
f

(
1

k
tr(A)

))
⩽ tr

(
f
(
UTAU

))
⩽

k∑
i=1

f(λi), (11)

The rightmost inequality becomes an equality if and only if U comprises the eigenvectors of A that
correspond to the k largest eigenvalues, The leftmost inequality is met with equality when U is such
that all diagonal elements of the matrix UTAU are equal.

This theorem is established through the application of Jensen’s inequality. The detailed proof is
provided in the Appendix B.3 for reference. In the above objective, suitable choices of f include:
f(x) = exp(x) on R; f(x) = xα on R+ where α > 1; and f(x) = tan(x) on [0, π/2]. For finding
the k smallest eigenvalues, a simple modification can be made by replacing the function f with an
element-wise monotonically increasing concave function and then minimizing the trace loss. A visual
representation of the optimization process of the three trace losses is presented in Figure 2.

4 The Amortized Eigendecomposition Approach

The proposed amortized eigendecomposition approach aims to modify the eigendecomposition
operation within the neural network’s computational graph, as illustrated in Eq. (2). This replacement
involves two steps: First, the set of eigenvectors form a matrix on the Stiefel manifold reparameterized
through computationally efficient operations such as QR decomposition. Then, the loss function is
adjusted to ensure that its optimal solutions precisely correspond to the eigendecomposition. The
computational graph for this amortized eigendecomposition method is formulated as follows:

X −−→ hθ(X)︸ ︷︷ ︸
encoder

−−→ A −−→ fω
(
hθ(X),U ,Σ

)︸ ︷︷ ︸
model loss

+η g (U ,A)︸ ︷︷ ︸
eigen loss

←−− U
QR←−−−W︸ ︷︷ ︸

reparameterization

. (12)

In the computation graph, the eigendecomposition operation is circumvented and substituted with a
more efficient QR operation. The QR operation is employed to reparameterize the orthogonal matrix
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Algorithm 1 The conventional eigendecomposi-
tion in a neural network outlined in Eq. (2)
Input: Dataset X , encoder hθ , task fω;
1: Initialize model parameter θ and ω;
2: while not converged do
3: compute A from hθ(X);
4: V ,Λ = eigh(A);
5: compute fω(hθ(X),V ,Λ);
6: update θ, ω by gradient descent;
7: end while

Algorithm 2 The amortized eigendecomposition
technique outlined in Eq. (12)
Input: Dataset X , encoder hθ , task fω , and η;
1: Initialize model parameter θ, ω and W ;
2: while not converged do
3: compute A from hθ(X);
4: U = QR(W ), Σ = diag(UTAU);
5: compute fω(hθ(X),U ,Σ) + ηg(A,U);
6: update θ, ω, W by gradient descent;
7: end while

on the Stiefel Manifold, leading to a substantial acceleration at each iteration. Moreover, instead
of forcing the eigendecomposition constraint at each iteration, we relax it to an eigen loss which is
jointly optimized with the training loss of the neural network as a nested optimization loop. This
training process is outlined in Algorithm 2, where the key difference of our amortized optimization
for the eigendecomposition approach is highlighted in red background color.

Reparameterize the Stiefel Manifold There are three prevalent methods for reparameterizing an
orthogonal matrix: through the matrix exponential, the Cayley transform, and QR decomposition.
Due to the QR decomposition’s better numerical stability and efficiency for non-square matrices U ,
we employ it for reparameterizing a matrix with orthonormal columns:

U = QR(W ). (13)

In this formulation, W is dimensionally consistent with U . QR decomposition is more computa-
tionally efficient than eigendecomposition and singular value decomposition as shown in Fig. 1.
Additionally, the backward computation of the QR decomposition is well-defined and has been
efficiently optimized in modern deep learning frameworks, such as PyTorch and JAX. For details on
the back-propagation process of the QR decomposition, see [36].

Relaxation with Eigen Loss Previously, we observed that optimizing the Brockett-type or convex
trace loss directly enables us to obtain precise eigenvalues and eigenvectors. For any loss function
that depends on the eigenvectors or eigenvalues, as specified in Eq.(1), we can transform this loss
into a regularized version incorporating the eigen loss. This relaxation allows us to forego the need
for explicit eigendecomposition at every iteration, while ultimately achieving equivalent outcomes.
We now examine several general scenarios that encompass the majority of cases and explore how to
implement this relaxation technique.

In the general case, the model loss in Eq. (1) depends on both the eigenvectors and eigenvalues. This
constrained optimization problem can be relaxed by introducing an eigen loss as a regularizer, which
is formulated as:

min
θ

f
(
hθ(X),V ,Λ

) (V ,Λ) is the k−−−−−−−−−→
largest eigenpair

min
θ,W

f
(
hθ(X),U ,Σ

)
− ηtr(MUTAθU). (14)

In this reformulation, U ∈ Un×k, is reparameterized via a QR operation as shown in Eq. (13). This
relaxation circumvents the need for eigendecomposition at each iteration by using the computationally
cheaper QR decomposition, while still ensuring that the optimal solution corresponds to the precise
eigendecomposition of the matrix Aθ.

The second type of optimization problem involves scenarios where the model loss is independent of the
eigenvalues and depends solely on the eigenvectors, such as in the latent-space PCA network expressed
in Eq. (4). To enhance the efficiency of the solution process, the problem can be reformulated to
include a trace penalty term, such as Brockett’s cost, which is given by

min
θ

f
(
hθ(X),V

) V is k largest−−−−−−−−→
eigenvectors

min
θ,W

f
(
hθ(X),U

)
− ηtr(MUTStopGrad(Aθ)U). (15)

In this formulation, a stop gradient operation is applied to A, since the eigen loss involves A which
relies on the parameter θ. By introducing the stop gradient operation, we prevent this regularization
term from propagating gradients back to θ.
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Figure 3: Convergence analysis on finding 50 largest eigenvalues on random 1000×1000-dimensional
symmetric matrices. (a): Convergence curves using Brockett’s cost and convex trace loss (f(x) =
x1.5). (b) The fine-tuning convergence on a series of similar matrices.

Besides the above relaxations, further simplification is possible if the loss function conforms to the
structure of Brockett’s cost function or a convex trace function. That is, when the model loss fω is a
non-uniform linear combination of the eigenvalues, or it is monotonic and convex (or concave) to
the eigenvalues, the trace penalty term is unnecessary. The loss function will inherently converge
to the correct eigendecomposition. This principle is exemplified in the context of the nuclear norm
regularization problem, which will be illustrated later. This can be formulated as:

min
θ

f
(
hθ(X),V ,Λ

) f is monotonic and concave w.r.t Λ−−−−−−−−−−−−−−−−−−−−−→
or a non-uniform linear combination of Λ

min
θ,W

f
(
hθ(X),U ,Σ

)
. (16)

5 Experiments

In this section, we present an evaluation of our approach, focusing on four specific tasks. Firstly, we
demonstrate the convergence properties of our method empirically. Next, we measure the efficacy
and efficiency of our amortized eigendecomposition technique over nuclear norm regularized auto-
encoder and latent-space PCA using the MNIST dataset. Lastly, we assess the effectiveness of our
approach in the context of graph adversarial learning tasks. We implement our approach with the deep
learning framework JAX [2]. All the experiments of our approach are conducted on a single NVIDIA
A100 GPU with 40GB memory. The two fundamental questions we investigate are as follows:

• Does our approach accurately identify the eigendecomposition and singular value decomposition?

• How does the efficiency of our method compare to that of traditional techniques?

5.1 Convergence

In this experiment, we evaluate the numerical error and convergence speed of our algorithm applied
to solving eigendecomposition. We randomly generate ten symmetric matrices of size 1000× 1000.
The first 50 eigenvalues of these matrices range from 1 to 50, while the remaining eigenvalues lie
between 0 and 1. Our objective is to compute the 50 largest eigenvalues by minimizing Brockett’s
cost function and convex trace loss (we adopt f(x) = x1.5 as the convex function). To achieve this,
we employ several optimization algorithms, including Adam [20], Adamax [20], Yogi [46], SGD, and
L-BFGS [28]. These algorithms are provided by the Optax and JAX-opt libraries [7]. We measure
the mean square error (MSE) of the eigenvalues to the number of training iterations. The results are
illustrated in Figure 3.
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Table 1: Evaluation of execution times per iteration on three tasks.

Task Dimension

Backbone
time (s/iter)

t0

Backbone+
eigh/svd

time (s/iter)
t1

Backbone+
our method
time (s/iter)

t2

Speed-up

t1−t0
t2−t0

Nuclear norm
regularization

128× 128 5.275E-2 8.323E-2 6.025E-2 4.06×
256× 256 5.600E-2 1.209E-1 6.080E-2 13.5×
512× 512 7.186E-2 2.616E-1 7.366E-2 105.4×

Latent-space
PCA

256× 2 4.178E-3 1.446E-2 1.117E-2 1.47×
512× 2 6.792E-3 2.918E-2 2.224E-2 1.45×
1028× 2 1.434E-2 7.018E-2 5.467E-2 1.39×

Low-rank
GCN

2708× 16 1.021E-3 1.769E-2 1.732E-3 23.4×
3312× 16 1.367E-3 2.825E-2 2.498E-3 23.7×
19717× 16 1.931E-2 4.941E+0 2.731E-2 615.2×

This result demonstrates that both loss functions are capable of identifying the correct eigenvalues
with a small numerical error of 10−9. However, there is a noticeable difference in convergence speed.
For both trace loss functions, the Adam and Adamax optimizers outperform the others, achieving
faster convergence rates. Brockett’s cost function, which introduces a linear combination of the
trace elements, is more numerically stable compared to the convex trace loss, resulting in faster
convergence. This experiment validates the efficiency of the differentiable optimization framework
for computing the k largest eigenvalues.

5.2 Nuclear Norm Regularization

In this experiment, we apply the amortized eigendecomposition approach to the nuclear norm
regularization problem, as outlined in Eq. (3). The experimental framework entails training an
auto-encoder on the MNIST dataset by minimizing the reconstruction loss with a nuclear norm
regularizer applied to the weight matrix θ ∈ Rn×k of the encoder’s last layer. We employ a relaxation
technique to the original problem defined in Eq. (16), which can be expressed as:

min
ω,θ

∥∥∥Decω(Encθ(X)
)
−X

∥∥∥
F
+η∥θ∥∗ −−→ min

ω,θ,W

∥∥∥Decω(Encθ(X)
)
−X

∥∥∥
F
+η

k∑
i=1

∥∥θui

∥∥
2

(17)

where ui’s are the orthogonal column vectors of U , which are parameterized by W through Eq. (13).
The architectures of the encoder and the decoder are constructed as a 2-layer MLP with hidden layer
dimensions of D = 128, 256, and 512. For comparison, we also implement the approach based on
singular value decomposition (using the svd function). It should be noted that in the current versions
of JAX, both the eigh and svd functions are limited to operations on full matrices.

The average execution time per iteration for the baseline backbone with only reconstruction loss, the
backbone with svd, i.e. LHS of Eq. (17), and the backbone utilizing amortized eigendecomposition,
i.e. RHS of Eq. (17) are reported in Table 1. We denote these execution times as t0, t1, and t2
respectively, and define the speed-up ratio for our approach relative to the svd as:

speed-up =
t1 − t0
t2 − t0

. (18)

This ratio represents the improvement in execution speed of our eigendecomposition method com-
pared to the standard svd, relative to the baseline backbone performance.

5.3 Latent-space Principle Component Analysis

We investigate the effectiveness of our approach for the latent-space PCA method, as described in
Eq. (4), using the MNIST dataset. Computing the eigenvectors of the large-scale covariance matrix
in each iteration significantly increases the computation overhead, while our method amortizes this
cost by jointly minimizing an additional loss. Moreover, we also aim to ensure that the first two
eigenvalues are significantly larger than the subsequent ones. In the following objective function, the
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Figure 4: A comparison of scaling in the latent PCA task using the Celeb-A-HQ (256x256) dataset.
The backbone autoencoders used in this study consist entirely of fully-connected layers with ReLU
activation, all maintaining the same dimensions. Between the encoder and decoder, we applied both
an eigen solver from the JAX eigh function and our amortized eigendecomposition method. We
varied the depth of the autoencoders across 8, 16, 32, and 64 layers, and explored dimensionalities of
128, 256, 512, 1024, 2048, and 4096. The results present the average execution time per iteration over
100 runs. Notably, the largest model tested, featuring an autoencoder with 64 layers and a dimension
of 4096, comprises up to 1.0 billion parameters.

additional term resembles Brockett’s cost function while the trace of the covariance matrix ensures
homogeneity:

min
ω,θ,W

∥∥∥Decω(UUTEncθ(X)
)
−X

∥∥∥
F
− η

tr(MUTcov(hθ(X))U)

tr(cov(hθ(X)))
, (19)

where cov represents the covariance function. The architecture for both the encoder and decoder
mirrors that of the nuclear norm regularization model, with the exception that there is a linear
projection aligning with the direction of the principal components. The average execution times are
reported in Table 1. More results and analysis are provided in Appendix A.2. The experimental results
demonstrate that our approach achieves an average training speed improvement of 40% compared to
the conventional eigendecomposition approach.

Additionally, we conducted a scalability study, with the results presented in Figure 4. This study
examined the scaling behavior of latent PCA on the Celeb-A-HQ (256x256) dataset [29] by varying
both the depth and width of the backbone autoencoder, with average execution time per iteration
reported. The largest model in our tests, a 64-layer autoencoder with a 4096-dimensional latent space,
contains over 1 billion parameters. From these results, we draw two main conclusions. First, our
amortized eigen loss substantially reduces the eigendecomposition training time without significantly
increasing the computational load of the backbone, as evidenced by the close alignment of the red
(backbone) and green (backbone + our approach) lines. In contrast, the traditional eigendecomposition
approach (blue line) scales steeply with increasing dimensionality, whereas our approach exhibits
a much slower growth rate. Second, eigendecomposition emerges as the primary computational
bottleneck within these neural network architectures, while the fully-connected layer computation
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remains minor, particularly at large widths (>2000). This is reflected in the widening gap between
the backbone (red line) and backbone + eigh (blue line) as dimensionality increases. Notably,
increasing the depth of the backbone while keeping the hidden dimension constant results in minimal
change in execution time, indicating that the cost of fully-connected layers is small relative to
eigendecomposition—further underscoring the results shown in Figure 1.

5.4 Adversarial Attacks on Graph Convolutional Networks

In this study, we explore the robustness of graph convolutional networks (GCNs) [21] by implementing
adversarial attacks on graph structures. The objective of this problem is described in Eq. (5). Our
approach simplifies the attainment of a low-rank structure by optimizing:

min
θ,W

∥∥GCNθ(X, L̂)− Y
∥∥
2
− ηtr(MUTLU), (20)

where L̂ = UTdiag(UTLU)U , with U being parameterized by Eq. (13). The motivation for this
formulation is that at optimum, the columns of U correspond to the top-k eigenvectors of L. Then L̂
becomes the best rank k approximation of L under the Frobenius norm which corresponds to the
terms

∥∥L̂∥∥∗,∥∥L̂−L
∥∥2

F in Eq. (5). This formulation allows the GNN to operate on a low-rank graph
L̂, which has been shown to enhance robustness against adversarial attacks on the graph structure.

Our architecture consists of a three-layer GCN, which is utilized for semi-supervised node classifica-
tion tasks on several citation networks, namely Cora, Citeseer, and Pubmed. Each layer has a hidden
dimension of 32. The dropout rates are set to 0.4 for Cora and Citeseer, and to 0.1 for Pubmed, to
prevent overfitting. For optimization, we employ the Adam algorithm with a learning rate of 10−3.

The adversarial attacks are executed by perturbing the graph structure through the random addition
and deletion of edges in the adjacency matrix. We quantify the extent of these perturbations using a
contamination rate, which is defined as the ratio of the altered edge count to the total node pairs.

Additionally, we propose a graph modification based on the original objective, as detailed in Eq. (5).
The graph Laplacian is represented by a symmetric matrix, on which the eigh function is applied to
compute the eigenvalues. The corresponding execution times are documented in Table 1. For a more
comprehensive experiment results and analysis of our findings, please refer to the Appendix A.3.

6 Discussion and Conclusion

In this study, we address a class of deep learning problems that incorporate eigendecomposition within
their constraints or objective functions. Such problems are prevalent in applications like nuclear-norm
regularized denoising, network compression, graph structure learning, and whitening normalization.
The traditional approach requires performing eigendecomposition or singular value decomposition
within the computational graph, which becomes the bottleneck in the training process. To circumvent
this computation overhead, we introduce an amortized eigendecomposition framework integrating a
relaxation eigen loss into the learning objective, which relies on a set of orthonormal vectors. These
vectors are reparameterized efficiently through QR decomposition, thereby substantially reducing
the computational cost of eigendecomposition in each iteration. Furthermore, the differentiable
nature of QR decomposition allows for its seamless incorporation into the neural network training
workflow. Our experimental results demonstrate that, when applied to network tasks, our algorithm
not only accelerates the process but also maintains the precision of the conventional method with
eigendecomposition. The method proves particularly beneficial as a differentiable top k eigensolver
in environments where the backward gradient computation for top k eigendecomposition, such as in
JAX or PyTorch, is not well-supported. Consequently, our approach provides a viable alternative for
integrating top k eigendecomposition into neural networks.

Limitations. While our method excels in scenarios where eigendecomposition operations on large
matrices are embedded within neural networks, it is important to note that when employed as a pure
numerical eigensolver, it does not offer any speed or precision advantages over conventional methods.
Thus, its suitability is specifically aligned with applications where eigendecomposition is a substantial
component of the neural network training process.
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Appendix A More Experimental Results

A.1 Nuclear Norm Regularization
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Figure 5: The convergence curve of the singular values.

In this experiment, we present the convergence analysis of our amortized eigendecomposition
approach concerning the accurate estimation of singular values. We tackle the nuclear norm reg-
ularization problem outlined in Eq. (17). In each iteration, we compare the diagonal elements of
UTθTθU with the exact singular values of θ. We conducted tests on θ of sizes 128×128, 256×256
and 512× 512. The mean square error (MSE) is depicted in Figure 5.

The results indicate that initially, the singular values obtained by our approach do not match the
correct singular values within a small error. However, within just a few iterations, our approach rapidly
converges to the correct values, demonstrating the effectiveness of the loss function in accurately
estimating singular values.

A.2 Latent-space Principle Component Analysis

In this task, we evaluate the latent-space PCA method as outlined in Eq. (19) using the MNIST dataset.
The architecture for both the encoder and decoder mirrors that of the nuclear norm regularization
model, with the exception that there is a linear projection UUT aligning with the direction of the
principal components. We aim to extract the first two principal components in the latent space.

The experimental outcomes are depicted in Figure 6. Specifically, Figure 6 (a) displays the conver-
gence trajectories for both the reconstruction loss and the eigenvalue loss as defined in Eq. (19). It is
observed that the reconstruction loss curves for the conventional eigh function and our amortized
eigendecomposition strategy are nearly indistinguishable. However, for the eigen-loss, our method
initially registers lower values compared to the eigh function but eventually converges to equivalent
values. This demonstrates the efficacy of the amortized optimization approach.

Figure 6(b) illustrates the distribution of features in the latent space along the two principal compo-
nents for cases where η = 0 and η = 1. The eigenvalues correspond to the total variance across the
feature dimensions. Without regularization (when η = 0), the scales of the principal component axes
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Figure 6: Experimental results of Latent-space PCA on MNIST dataset. (a) Convergence curves.
First column: Convergence curve of reconstruction loss. Second column: Convergence curve of eigen
loss. (b) Principle components in latent space: The two principle components of features in latent
space for η = 0 and η = 1. (c) The sparsity of the network structure. The weight matrices of the
second layer of the encoder. The color indicates the scale of the absolute values of the weight matrix
ranging from 0 to 1.

can vary significantly. However, when regularization is applied (with η = 0), the distribution of the
embedding becomes more uniform, indicating a more even spread across the principal components.

The regularization applied to the eigenvalues also influences the sparsity of the network’s architecture.
This effect is depicted in Figure 6(c), which shows the weight matrix of the last layer in the encoder.
When η = 0, the network prioritizes learning weights that optimally reconstruct the images, resulting
in a relatively dense weight configuration. Conversely, when η = 0, the eigenvalues corresponding
to the principal components are encouraged to concentrate on the first few, leading to a decline in
variance for the subsequent components. This, in turn, promotes sparsity in the weight matrix, as the
network assigns less importance to the less variable components.

A.3 Adversarial Attacks on Graph Convolutional Networks

This study investigates the robustness of graph convolutional networks (GCNs) [21] by conducting
adversarial attacks on graph structures. These attacks involve perturbing the graph structure by
randomly adding or removing edges in the adjacency matrix. To measure the magnitude of these
perturbations, we introduce a contamination rate, which represents the ratio of the number of modified
edges to the total number of node pairs.

For each adversarial scenario, we commence by randomly determining a contamination rate within
the range of [0, 0.02] for the Cora and Citeseer datasets, and [0, 0.001] for the PubMed dataset. This
rate dictates the proportion of edges to be randomly added or removed from the graph. A greater
contamination rate signifies a more severe attack. The nodes are partitioned randomly into training,
validation, and test sets with respective proportions of 60%, 20%, and 20%. The classification
accuracy on the test set is then recorded.

The robustness of the GCN when subjected to graph contamination is illustrated in Figure 7. Each
data point on the graph corresponds to a specific attack instance and its resultant test accuracy.
Additionally, we have applied a polynomial regression with a 5th-degree basis to model the general
trend of the relationship between the contamination rate and the test accuracy. The findings indicate
that the graph convolutional network exhibits enhanced robustness when convolutions are applied to
graph signals of a lower rank.
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Appendix B Proofs

In this section, we provide the proofs for our theoretical findings.

B.1 Preliminaries

Lemma 1 (Jensen’s inequality for convex functions). For a convex function f , given n real numbers
x1, . . . , xn and non-negative weights w1, . . . , wn such that

∑n
i=1 wi = 1, Jensen’s inequality is

expressed as:

f

(
n∑

i=1

wixi

)
⩾

n∑
i=1

wif (xi) . (21)

The equality holds if and only if one of the following conditions is satisfied:

1. f is linear;

2. xi’s are equal;

3. one of wi’s is one and the rest are zero.

B.2 Proof of Theorem 1

Theorem 1 (Trace inequality with weight matrix) Consider a n-dimensional symmetric matrix A.
Let M be a k-dimensional diagonal matrix with elements 0 < m1 < m2 · · · < mk. For an arbitrary
matrix U ∈ Un×k with orthogonal columns, the following inequality always holds:

k∑
i=1

mk−i+1λi ⩽ tr(MUTAU) ⩽
k∑

i=1

miλi. (22)

The equalities are achieved if and only if U contains the eigenvectors corresponding to the k largest
(smallest) eigenvalues of A.

Proof. We can consider the case where A has all nonnegative eigenvalues εj ⩾ 0, without loss of
generality, as we can always shift the diagonal elements of A to meet this condition:

tr
(
MUTAU

)
= tr

(
MUT (A+ αI)U

)
− α

k∑
i=1

mi (23)

Let uij be the i, j-th entry of U . The Right-hand-side (RHS) of the leftmost inequality can be
expressed as,

RHS = tr(MUTAU) =

k∑
i=1

n∑
l=1

n∑
j=1

miajlujiuli (24)

We denote the actual eigenvectors of A as V with entries {νjl}, and {λs}, s = 1, . . . , n as the
eigenvalues, we have:

ajl =

n∑
s=1

λsνjsνls (25)

Substituting this into (24), we obtain:

RHS =

k∑
i=1

n∑
l=1

n∑
j=1

mi

(
n∑

s=1

λsνjsνls

)
ujiuli (26)

=

k∑
i=1

n∑
s=1

miλs

n∑
j=1

νjsuji

n∑
l=1

νlsuli (27)

=

k∑
i=1

n∑
s=1

miλs

(
νT
sui

)
νT
sui (28)
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We define
gsi = νT

sui (29)

then the RHS becomes,

RHS =

k∑
i=1

n∑
s=1

miλsg
2
si (30)

and,
0 ⩽ g2si ⩽ 1. (31)

It’s worth noting that for any s,
n∑

s=1

g2si =

n∑
s=1

uT
i νsν

T
sui (32)

= tr
(
uT
i V V Tui

)
= 1 (33)

Thus we have,

RHS =

k∑
i=1

mi

(
n∑

s=1

λsg
2
si

)(
n∑

s=1

g2si

)
(34)

Applying the Cauchy-Schwartz inequality, we get,

RHS ⩾
k∑

i=1

mi

(
n∑

s=1

√
λsg

2
si

)2

(35)

The equality holds if and only if for all s and a fixed l,

λsg
2
si

g2si
= const. (36)

or
g2si = 0 (37)

This is only true when gsi are either 0 or 1, with at most one non-zero value for each s and i. In
other words, G = {gsi} must be a permutation matrix. This implies that U is equivalent to the
eigenvectors of V , albeit with a possible permutation.

Thus this inequality reaches a minimum if we rearrange the indices of the eigenvalues:

RHS ⩾
k∑

i=1

miλσ(i) ⩾
k∑

i=1

mk−i+1λi (38)

The last inequality is a result of the rearrangement inequality. This completes the proof of the first
inequality.

For the upper bound of Eq. (22), we apply the Cauchy-Schwartz inequality to Eq. (30) and obtain,

LHS ⩽
k∑

i=1

mi

√√√√ n∑
s=1

λ2
sg

2
si

n∑
s=1

g2si (39)

=

k∑
i=1

mi

√√√√ n∑
s=1

λ2
sg

2
si (40)

⩽
k∑

i=1

miλσ(s). (41)
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Here again, the Cauchy-Schwartz inequality achieves the maximum when U is equivalent to the
eigenvectors of V , up to a possible permutation. By applying the rearrangement inequality, we
further obtain the final bound:

LHS ⩽
k∑

i=1

miλi. (42)

This yields the desired upper bound for the second inequality of the main result.

B.3 Proof of Theorem 2

Theorem 2 (Trace inequality with convex function) Let A be a given n-dimensional symmetric
matrix and let U be a matrix of size n×k that resides on the Stiefel manifold. Suppose f : R → R be
a monotonically increasing, convex function applied element-wise. The following inequalities hold:

k

(
f

(
1

k
tr(A)

))
⩽ tr

(
f
(
UTAU

))
⩽

k∑
i=1

f(λi), (43)

The rightmost inequality becomes an equality if and only if U comprises the eigenvectors of A that
correspond to the k largest eigenvalues, The leftmost inequality is met with equality when U is such
that all diagonal elements of the matrix UTAU are equal.

Proof. The rightmost inequality We first focus on the rightmost inequality, which provides an upper
bound for the convex trace loss.

To establish the rightmost inequality, let us consider the left-hand side (LHS) of the equation. Let’s
denote the diagonal elements of A as {ajj}. Consider the eigendecomposition of A as in Eq. (25),
we can rewrite ajj in terms of the eigenvalues and eigenvectors:

ajl =

k∑
i=1

λiνjiνli (44)

where νji is the (j, i) entry of its eigenvectors V . The diagonal elements of the matrix product
UTAU can then be written as: (

UTAU
)
ss

=

n∑
l=1

n∑
j=1

ajlulsujs (45)

Substituting this result back into the LHS, we have

RHS =

n∑
s=1

f
((

UTAU
)
ss

)
(46)

=

n∑
s=1

f

 n∑
l=1

n∑
j=1

ajlulsujs

 (47)

=

n∑
s=1

f

 n∑
l=1

n∑
j=1

k∑
i=1

λiνjiνliulsujs

 (48)

=

n∑
s=1

f

 k∑
i=1

λi

n∑
l=1

n∑
j=1

νjiνliulsujs

 (49)

We can express the summation of the elements in vector form as follows:

k∑
i=1

n∑
l=1

n∑
j=1

νjiνliulsujs =

k∑
i=1

uT
s viv

T
i us (50)

= tr(uT
sV V Tus) = 1 (51)
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For all indices j, l and s, all the addends satisfy:

0 ⩽
n∑

l=1

n∑
j=1

νjiνliulsujs ⩽ 1, (52)

which allows us to treat
∑n

l=1

∑n
j=1 νjiνliulsujs as a set of weights. By applying Jensen’s inequality

to the equation previously labeled as Eq. (49), we obtain:

LHS ⩽
k∑

i=1

f (λi)

n∑
s=1

n∑
l=1

n∑
j=1

νjiνliulsujs (53)

Equality holds if and only if all the eigenvalues {λi} are identical, which is generally not the case for
an arbitrary symmetric matrix A, or for each index s, there exists an index i such that,

(uT
s vi)

2 = 1, (54)

with all other terms being zero. Therefore, U must be a permutation of V :

us = vσ(i) (55)

Substituting this result back into Eq. (53), we obtain:

k∑
i=1

f (λi)

n∑
s=1

n∑
l=1

n∑
j=1

νjiνliulsujs ⩽
k∑

i=1

f
(
λσ(i)

)
⩽

k∑
i=1

f (λi) (56)

With this, we conclude the derivation of the first inequality.

The leftmost inequality. For the leftmost inequality,

RHS =

k∑
i=1

f

 n∑
l=1

n∑
j=1

ajluliuji

 (57)

= k
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ajluliuji

 (58)
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 (Jensen) (59)

= kf

(
1

k
tr
(
UTAU

))
(60)

= kf

(
1

k
tr (A)

)
(61)

the equality holds if and only if
∑

j u
∗
ijuijajj equals for all i.

A similar result for finding the k smallest eigenvalues can be obtained. The next corollary states the
results

Corollary (Trace inequality with concave function) Let A be a given n-dimensional symmetric
matrix and let U be a matrix of size n× k that resides on the Stiefel manifold. Suppose f : R → R
be a monotonically increasing, concave function applied element-wise. The following inequalities
hold:

k∑
i=1

f(λi) ⩽ tr

(
f
(
UTAU

))
⩽ k

(
f

(
1

k
tr(A)

))
, (62)

The rightmost inequality becomes an equality if and only if U comprises the eigenvectors of A that
correspond to the k smallest eigenvalues.
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Appendix C Further Extensions

C.1 Related Work

Eigensolver in numerical linear algebra Large-scale eigensolvers in numerical linear algebra
usually involve two stages [39]. In the first stage, depending on whether the matrix is symmetric or
not, either Arnoldi or Lanczos iteration is applied to reduce it into a matrix of smaller scale. Then,
classical iteration methods such as power, inverse, and Rayleigh quotient iterations are applied to
extract the eigensystem of the small-scale matrix. Compared to iterative solvers, our method is more
easy to be integrated into the network training procedure.

Eigendecomposition via manifold optimization In the optimization community, especially man-
ifold optimization [1], identifying the eigen-subspace or solving for eigendecomposition is often
achieved by optimizing the original trace loss function in Eq. 6 or the Brockett’s cost function in Eq.
8 respectively. Instead of parametrizing the matrix U via QR decomposition, one usually solves the
constraint optimization via gradient descent with retraction. Namely, in each iteration, one firstly
performs one step of gradient descent from a U on the Stiefel manifold and then uses a retraction
to correct it back to the manifold. Some convergence guarantees to the critical point and linear
convergence rate can be established under certain assumptions [1, 43]. Various methods exist, such
as [24] introducing the splitting method and [43] proposing a Crank-Nicolson-like update scheme to
preserve the orthogonal constraints. No matter which method is used, the computation bottleneck lies
in preserving the orthogonal constraints similar to our amortized method.

Spectral normalization Spectral normalization is frequently added to improve the generalization
ability of the neural network, i.e. CNN [11, 19] and GAN [32]. Compared to nuclear-norm regular-
ization, spectral regularization only penalizes the largest absolute value of the eigenvalue so that the
network outputs depend continuously on the input. Therefore no orthogonal constraint is enforced
and the spectral norm can be more efficiently estimated based on the power iteration on a randomly
initialized vector as in [32, 11].

C.2 Extensions on the Amortized Eigendecomposition Approach

Singular Value Decomposition Problem The singular value decomposition of a rectangular matrix
A ∈ Rm×n can be achieved by solving the following objective:

max
U∈Un×k

∥AUM∥F (63)

where ∥ · ∥F represent the Frobenius norm. The i-th largest singular values can be obtained by
σi = ∥Aui∥2 with ui the i-th column of optimal U .

Generalized Eigendecomposition Problem Generalized eigendecomposition is an extension
of conventional eigendecomposition to a pair of matrices, rather than just a single matrix. The
generalized eigendecomposition can be formulated as follows:

Au = εBu (64)

where A and B are square matrices of same dimensions in the complex field Cn×n. The vector u
represents the eigenvector, and the scalar ε denotes the corresponding eigenvalue. Together, (ε,u)
constitute the eigenpair of the generalized eigenvalue problem of the matrix pair (A,B). In a
manner akin to prior problems, the resolution to this generalized version can be achieved through the
optimization of the following objective function:

max
U∈Un×k

k∑
i=1

mi
uT
i Aui

uT
i Bui

. (65)

where mi’s are the weights as defined previously and ui’s are the orthonormal column vectors of U .
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The main claims consist of theoretical analysis of the loss functions which is
stated in Thm. 1 and Thm. 2 and verifications of our method in numerical experiments are
done in Sec. 5.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We show in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: All the assumptions are stated in Thm. 1 and Thm. 2 respectively and the
proof is put in Sec. B.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This is included in this paper in Sec. 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: Our code will be released upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This is included in this paper in the Experiment section and Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The statistical significance may not be the primary focus. The evaluation and
validation of our method rely on other metrics, such as accuracy and convergence rate.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We have indicated the type of GPU in the Experiment section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: this paper is conducted with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is a pure theoretic paper instead of an application, thus no societal
impacts is involved.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: Not relevant to our research.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have done this. CC-BY 4.0
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have done this.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

27


	Introduction
	Eigendecomposition in Neural Networks
	Differentiable Optimization for Eigendecomposition
	The Amortized Eigendecomposition Approach
	Experiments
	Convergence
	Nuclear Norm Regularization
	Latent-space Principle Component Analysis
	Adversarial Attacks on Graph Convolutional Networks

	Discussion and Conclusion
	More Experimental Results
	Nuclear Norm Regularization
	Latent-space Principle Component Analysis
	Adversarial Attacks on Graph Convolutional Networks

	Proofs
	Preliminaries
	Proof of Theorem 1
	Proof of Theorem 2

	Further Extensions
	Related Work
	Extensions on the Amortized Eigendecomposition Approach


