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Abstract Retrieval-Augmented Generation (RAG) pipelines are central to applying large language 4

models (LLMs) to proprietary or dynamic data. However, building effective RAG flows 5

is complex, requiring careful selection among vector databases, embedding models, text 6

splitters, retrievers, and synthesizing LLMs. The challenge deepens with the rise of agentic 7

paradigms. Modules like verifiers, rewriters, and rerankers—each with intricate hyperparam- 8

eter dependencies have to be carefully tuned. Balancing tradeoffs between latency, accuracy, 9

and cost becomes increasingly difficult in performance-sensitive applications. 10

We introduce FlowGen, a framework that performs efficient multi-objective search over a 11

broad space of agentic and non-agentic RAG configurations. Using Bayesian Optimization, 12

FlowGen discovers Pareto-optimal flows that jointly optimize task accuracy and cost. A 13

novel early-stopping mechanism further improves efficiency by pruning clearly suboptimal 14

candidates. Across multiple RAG benchmarks, FlowGen improves accuracy at baseline cost 15

by 6% or reduces cost at baseline accuracy by 37% on average across 6 RAG benchmarks. 16

Without considering cost, FlowGen improves accuracy by 25% on average. Furthermore, 17

FlowGen’s ability to design and optimize also allows integrating new modules, making it 18

even easier and faster to realize generative AI pipelines that are high-performing and drive 19

value. 20

1 Introduction 21

Recent advances in large language models (LLMs) have significantly expanded their capabilities 22

across a range of linguistic tasks. However, they still suffer from limitations such as hallucinations, 23

outdated knowledge, and poor grounding in factual or domain-specific information [1, 2]. Retrieval- 24

Augmented Generation (RAG) addresses these challenges by dynamically integrating external 25

knowledge into model outputs, improving accuracy and reliability by grounding responses in 26

verifiable sources [3, 4]. 27

To operationalize RAG, generative AI flows (or pipelines) orchestrate how LLMs interact with 28

external or evolving data—either through vector database retrieval or by directly injecting content 29

into large context LLMs’ prompts. These flows can range from static, imperative designs to dynamic, 30

agentic systems that adapt at runtime. A growing ecosystem of frameworks—such as LangChain 31

[5], AutoGen [6], Haystack [7], CrewAI [8], and LlamaIndex [9]—has emerged to support rapid 32

prototyping and deployment of such applications. Yet, with this abundance of tools and design 33

choices, developers face increasing complexity in selecting optimal configurations. 34
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Figure 1: Given a grounding corpus, FlowGen searches over more than 1023 unique RAG flows to find
a Pareto-frontier (optimal tradeoff curve) between task accuracy and cost.
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Figure 2: In this simplified view of the canonical RAG flow we term as “vanilla RAG", the developer
has many choices for prompt, vector database, text splitter, retriever and synthesizing LLM.
We show a few choices to elucidate the point but there are far more choices available for
each of these modules leading to hundreds of unique vanilla RAG flows each with different
latency, accuracy, and cost tradeoffs.

We begin with the simplest RAG flow, illustrated in Fig. 2, which we refer to as the “Vanilla 35

RAG” flow [1]. A grounding dataset is split into chunks using a text splitter, embedded into vectors 36

via an embedding model, and stored in a vector database (VDB). At query time, the user query 37

is embedded using the same model, and the closest vectors from the VDB are retrieved using an 38

approximate or exact nearest-neighbor algorithm [10]. The corresponding text is then appended as 39

context to a prompt for a synthesizing LLM, which generates the final answer. 40

Even in this basic setup, there are numerous design choices across modules: embedding 41

models (e.g., see MTEB [11] for SOTA models by task and size), text splitters (e.g., Sentence, 42

Recursive, Token; see [12]), synthesizing LLMs (e.g., gpt-4o, gpt-4o-mini, clause-3.5-sonnet, 43

llama-3.3-70B), retrievers (e.g., sparse [13], dense [1], hybrid [14]), and VDBs (e.g., Pinecone 44

[15], FAISS [16], Neo4j [17]). Each of these often requires tuning hyperparameters for optimal 45
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performance. For example: with the Sentence splitter, what are the ideal chunk size and overlap? 46

For the hybrid retriever, how should weights be balanced between sparse and dense retrievals, and 47

how many nearest neighbors (k) should each return? 48

These choices are interdependent—e.g., large retrieval sizes may necessitate more capable LLMs, 49

affecting latency, accuracy, and cost. Even within this “vanilla” setup, the combinatorial explosion 50

of configurations across modules leads to hundreds of possible RAG flows. 51

In practice, modern RAG flows—both agentic [18] and non-agentic [19]—are often far more 52

complex, incorporating additional modules such as verifiers [20], rewriters [21], rerankers [22], and 53

iterative reasoning at inference time [23]. While these added components can enhance performance, 54

they also increase cost and latency, without guaranteeing better task accuracy. 55

This complexity raises several key questions for AI application development: 1 How should one 56

choose an appropriate flow for a given application? 2 Should the flow be agentic or non-agentic? 57

3 Which embedding model and LLM should be used, and how should their hyperparameters be 58

tuned? 4 Is the flow’s latency acceptable for the use case? 5 What is the maximum achievable 59

accuracy within a fixed budget? 6 What is the minimum cost to meet a required accuracy? 7 60

Within a flow, which components have the greatest influence on accuracy, latency, and cost? 61

To address these questions, we introduce FlowGen, a system that efficiently explores an enor- 62

mous space ( 1023) of agentic and non-agentic RAG flows to identify a Pareto frontier—an optimal 63

tradeoff curve [24] between task accuracy and cost. To our knowledge, FlowGen is the first system 64

to perform multi-objective search over generative AI flows. 65

Unlike traditional multi-objective optimization, searching over AI flows is uniquely challenging 66

due to their compositional structure, complex module interactions, and the stochastic and costly 67

nature of LLM components. These factors create a high-dimensional, non-convex search space 68

requiring specialized techniques beyond standard optimization: 69

• For grounding datasets with labeled QA pairs, FlowGen uses multi-objective Bayesian Opti- 70

mization [25] to efficiently search both agentic and non-agentic flows. 71

• A novel early-stopping mechanism halts flow evaluation when further improvement to the 72

Pareto frontier is unlikely. 73

• Compared to default flows in libraries like LlamaIndex, FlowGen finds Pareto-dominant flows 74

that are on average 6% more accurate at the same baseline cost, conversely 37% cheaper for 75

the same baseline accuracy, across multiple RAG benchmarks. 76

• FlowGen supports holistic evaluation of modules, flows, embedding models, and LLMs—e.g., 77

assessing a new LLM across diverse datasets and flows. 78

• When applied to a new grounding corpus, FlowGen can warm-start optimization using prior 79

trials, enabling faster convergence to near-optimal solutions. 80
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2 Related Work 81

AutoML [26] has evolved into a mature field, enabling automatic construction of predictive pipelines 82

from large search spaces involving data preprocessing, modeling, and post-processing [27, 28]. 83

Hyperparameter Optimization (HPO), especially via Bayesian Optimization (BO) [25, 29], has played 84

a central role in scaling these systems. 85

Neural Architecture Search (NAS) extends AutoML to discover hardware-aware architectures 86

that optimize tradeoffs between accuracy, latency, and throughput [30], advancing both edge [31] 87

and large-scale models [32]. 88

AutoRAG [33], closely related to FlowGen, uses greedy module-wise optimization for single 89

objectives. In contrast, FlowGen performs global multi-objective search, capturing dependencies 90

between modules and avoiding performance degradation due to local optima [34, 35]. 91

Recent frameworks have explored flow optimization from various angles. DSPy [36] focuses on 92

prompt-based declarative LLM flows; Trace [37] and TextGrad [38] leverage LLMs as optimizers 93

[39] for non-differentiable flows; and DocETL [40] targets ETL pipelines via rule-based agentic 94

search [41]. In contrast, FlowGen targets RAG flow optimization using multi-objective Bayesian 95

optimization over hierarchical spaces to balance latency, cost and accuracy. 96

While orthogonal to DSPy, Trace and TextGrad, FlowGen can complement them by optimizing 97

flows along the Pareto frontier (Section 7). Unlike DocETL, which focuses on ETL and uses rule- 98

based search solely for accuracy, FlowGen addresses RAG and crucially jointly optimizes latency, 99

cost and accuracy via hierarchical BO. 100
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Figure 3: FlowGen RAG hierarchical search space includes 5 top-level flows – 4 agentic and 1 non-
agentic with a total of 1023 unique flows. The agentic flows use the RAG flow as a subroutine
while adding their own unique hyperparameters.

3 Search Space 101

The FlowGen search space (Fig. 3) consists of five top-level RAG flows: four agentic and a single non- 102

agentic (imperative) RAG flow. Once a flow is chosen, then further choices have to be made for each 103
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of its modules. In turn, each module choice requires more choices to be made for hyperparameters 104

unique to that module. This results in a hierarchical search space containing 1023 unique flows. 105

The search space includes four Agentic flows: SubQuestion RAG Agent [42], Critique RAG 106

Agent [43], ReAct RAG Agent [44], and LATS RAG Agent [45]. These flows each have additional 107

hyperparameters (not shown) and use the RAG flow as a tool so their individual search spaces 108

subsumes that of the RAG flow. Major components of the search space include Synthesizing LLMs: 109

We chose the list of LLMs in Table A2 to cover different prominent frontier model providers, both 110

closed and open weights, and a range of sizes from flash/mini to the largest ones. Embedding 111

Models: We selected the top-performing models from the Massive Text Embedding Leaderboard 112

[11], focusing on those optimized for retrieval and with fewer than 500M parameters at the time of 113

writing. Each model is served via the autoscalable HuggingFace Dedicated Inference Service [46]. 114

Other Modules: Components such as ReRanker, Retriever, Splitter, and HyDE are widely used in 115

modern RAG implementations. For detailed descriptions of these modules see Appendix A1. 116

This search space poses a challenge not only due to its sheer size but also because this is 117

a domain where “function evaluation” is expensive computationally, i.e., to evaluate each flow 118

requires constructing and running it on an evaluation dataset. We leverage recent advances in 119

multi-objective Bayesian Optimization (BO) optimized for hierarchical search spaces [47, 48] . 120

4 Multi-Objective Bayesian Optimization 121

The Pareto-frontier (or Pareto-front) represents the set of non-dominated solutions in a multi- 122

objective optimization problem. A solution is Pareto-optimal if no objective can be improved 123

without worsening at least one other objective [49]. Our aim is to efficiently search the hierarchical 124

space to identify a set of Pareto-optimal flows that tradeoff between multiple objectives. To do so, 125

we require an optimization method well suited for both hierarchical search and multi-objective 126

optimization. Multi-Objective Tree-of-Parzen Estimators (MO-TPE) [47, 48] satisfies these criteria. 127

The Tree-Structured Parzen Estimator (TPE) [50] introduced a novel approach to Bayesian 128

Optimization (BO). Instead of modeling the objective function directly, TPE models two conditional 129

densities: 1. 𝑙 (𝑥) likelihood of hyperparameters 𝑥 leading to good performance and 2. 𝑔(𝑥) 130

likelihood of hyperparameters 𝑥 leading to poor performance. By dividing the observed data into 131

good and bad subsets based on a quantile threshold (e.g, top 25%) TPE transforms the optimization 132

into a density estimation problem. The method leverages tree-structured distributions to represent 133

hyperparameter spaces, allowing for better handling of complex and hierarchical search spaces 134

(also termed conditional hyperparameters in the literature). 135

Ozaki et al. [47] extended TPE to the multi-objective setting (MO-TPE) by approximating the 136

Pareto-frontier (a set of tradeoff solutions where no objective can be improved without worsening 137

another). MO-TPE uses a weighted linear scalarization approach to convert multiple objectives into 138

a single scalar objective for evaluation and an expected hypervolume improvement (EHVI)-based 139

strategy to guide the search. EHVI measures the contribution of a new sample to the hypervolume 140
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dominated by the Pareto-frontier, ensuring exploration of the most promising regions. FlowGen 141

uses Optuna’s [51] MO-TPE implementation. 142

Pareto-Pruner: Once a candidate flow is constructed, it is evaluated on a set of evaluation question- 143

answer pairs. Evaluation sets often consist of thousands of question-answer pairs. This is time- 144

consuming and expensive, as calls are made to the embedding model, synthesizing LLM, and one 145

or more judge LLMs. We introduce Pareto-Pruner, a novel pruning technique that estimates 146

the confidence intervals around both task accuracy and cost and early stops evaluations once the 147

confidence interval bounding box drops below the current Pareto-frontier. 148

Specifically, during the evaluation phase of a trial, intermediate results are sent to the pruner. 149

The Pareto-Pruner evaluates whether the current point has a reasonable chance to improve the 150

current estimate of the Pareto-frontier if evaluation is continued. To do this, Pareto-Pruner 151

computes the upper-left corner 𝑝 of the confidence interval bounding box shown in Fig. 4. If this 152

point is above the current Parto-frontier, then the evaluation continues. Conversely, if 𝑝 falls below 153

the current Pareto-frontier, the trial already dominated by other Pareto-optimal solutions, and 154

evaluation resources can be safely spent elsewhere. 155

𝑐𝑐 − 𝑧
𝜎𝑐√
𝐿

𝑎

𝑎 + 𝑧

√︃
𝑎 (1−𝑎)

𝑁

𝑝

Cost

Task accuracy

Figure 4: Pareto-Pruner estimates confidence intervals around task accuracy and cost for a given flow,
and will early-terminate flows whose upper-left confidence point (𝑝) falls below the current
Pareto-frontier. 𝑐 is the P80 cost, 𝑎 is the average accuracy, 𝐿 is the number of successful
evaluations, 𝑁 is the number of total evaluations including errors caused by issues like
content filtering, endpoint rate limit hits and agentic flow failures due to improper tool usage.
𝜎𝑐 is the standard deviation of the costs of the current evaluation, and 𝑧 is the standard score
for a normal distribution and controls the sensitivity of the Pareto-Pruner.

We model the uncertainty in accuracy and cost dimensions independently of each other: costs 156

are a right-tailed distribution that is bounded to the left by zero, while accuracy is bounded in [0, 1] 157

and is more centered, with some top-performing, some low-performing, and a lot of mediocre flows. 158

For a given dataset, to model costs, we fit a log-normal distribution and use the 90% confidence 159

interval (𝑧 = 1.645). For accuracy, we fit a normal distribution and use a confidence level of 90%. 160

Appendix A2 visualizes the accuracy and cost distributions fit to each of the datasets. Experiments 161

to assess the efficacy of the Pareto-Pruner may be found in Appendix A3. 162
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Seeding the Optimizer: Given the sheer size of the search space, it is important to help the optimizer 163

bootstrap with informative priors via a seeding procedure. The goal of custom seeding is two-fold: 164

1. To ensure that specific flows that are commonly used by the community are definitely part of 165

the search space that is evaluated and 2. To inject any domain-specific knowledge of the search 166

space so that the MO-TPE starts with a useful prior. FlowGen supports two types of custom seeding 167

routines which run before the optimization process starts: Random Seeding: flows are generated by 168

randomly sampling from the search space. Static Seeding: FlowGen uses a set of commonly-used 169

"standard" flow configurations, obtained by systematically iterating over key parameters such as 170

the synthesizing LLM and embedding model. This ensures that the initial search includes well- 171

established baseline configurations. A complete list of these standard flows is provided in Table A5. 172

Experiments in this paper use a mix of random and static seeding before starting optimization. 173

5 Datasets and Evaluation Protocol 174

Datasets: We evaluate FlowGen across a set of RAG benchmarks, each partitioned into train, test, 175

and holdout sets. Flow optimization is always performed against the test partition, while the 176

train set may be used for dynamic prompting (via the Dynamic Few-Shot Retriever) and, in the 177

future, for LLM fine-tuning. The holdout set is reserved for final evaluation. Some datasets also 178

include a small sample partition for development. Each dataset includes a grounding corpus e.g., 179

PDFs, HTML, or plain text which is used during retrieval. 180

Our benchmark suite includes HotpotQA [52], a multi-hop QA dataset from Wikipedia; Fi- 181

nanceBench [53], a challenging financial QA dataset over SEC filings; CRAG [54], a broad RAG 182

benchmark derived from web data with questions spanning five topics; InfiniteBench [55], a long- 183

context reasoning dataset based on altered public domain books; and DRDocs, a synthetic QA 184

dataset built from <redacted-company-name>’s documentation. For preprocessing, we convert 185

HTML and PDF content to Markdown (e.g., using Aryn DocParse [56] and html2text [57]). Each 186

dataset presents different challenges—such as multi-hop reasoning, numeric computation, or re- 187

trieval over long contexts—enabling a robust evaluation of FlowGen across domains, model sizes, 188

and flow configurations. Dataset details are located in Appendix A6. 189

Evaluation Protocol: We use LLM-as-a-Judge [58] to evaluate flow-generated answers against 190

ground-truth dataset answers. Given known sensitivities of judge models to prompts, answer for- 191

matting, and model bias [59, 60], we conducted a study comparing various evaluator configurations 192

against human judgment on 447 responses generated by different flows across multiple datasets. 193

Based on this study, we selected the Random LLM evaluator configuration, which randomly selects 194

a judge LLM for each evaluation, providing diverse assessments at reasonable cost. Details of this 195

study may be found in Appendix A7. 196
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6 Results 197

We present several empirical studies demonstrating FlowGen’s capability to identify Pareto-optimal 198

solutions tailored to specific operational constraints. 199
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Retrieved Few-Shot Examples with BGE-Small-en
GPT-4o Mini RAG with Token Splitting, Sparse Retrieval, HyDE Gemini-Flash, and Reranking
GPT-4o Mini RAG with Sentence Splitting, Sparse Retrieval, HyDE-Enabled GPT-4o Mini Generative Model
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Gemini-Flash RAG with Sentence Splitting, Sparse Retrieval, MiniLM-L12-v2 Few-Shot Embeddings, and
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GPT-4o Mini RAG with Token Splitting, Sparse Retrieval, Haiku 3.5 HyDE Generation, and Default
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Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings

Figure 5: Multi-Dataset Study: Pareto-frontier for InfiniteBench; See Appendix A8 for other datasets.
Colored dots represent flowswhose key components are described in the legend. Legend items
are sorted by descending accuracy, except for the flow denoted Baseline at the bottom, which
is a baseline RAG flow that is similar to LlamaIndex default settings and uses gpt-4o-mini
as the synthesizing LLM and bge-small-en-v1.5 embeddings. Note the x-axis is log scale.

Multi-Dataset Study: We run FlowGen on a space of relatively smaller LLMs in Table A2 containing 200

both agentic and non-agentic flows to find Pareto-frontier between accuracy and cost. Fig. 5 shows 201

the Pareto-frontiers found for all datasets described in Section 5. Key observations: 1 Non-agentic 202

RAG flows appear on the Pareto-frontier far more frequently than agentic RAG flows. Non-agentic 203

RAG flows are cheaper and faster to run, leading the optimizer to focus its exploration in this area. 204

2 GPT-4o-mini shows up frequently in Pareto-optimal flows on all of the datasets, indicating its 205

quality as a synthesizing LLM. 3 RAG enhancements such as HyDE and Reranking are occasionally 206

Pareto-optimal, indicating they are situationally beneficial. 4 Reasoning models such as o3-mini 207

provide superior performance on FinanceBench. We conjecture that due to the quantitative nature of 208

the dataset and multi-hop reasoning required to answer questions, GPT-o3-mini does well here. 5 209

All datasets show Pareto-frontiers that flatten out: large increases in cost bring diminishing returns in 210

accuracy after initial steep rise. We observe that often marginal accuracy is to be gained from orders 211

of magnitude increase in cost. This allows practitioners to pick appropriate points of operation. 212

6 Compared to the default RAG flow in LlamaIndex, (at the time of writing: gpt-4o-mini as the 213

synthesizing LLM and bge-small-en-v1.5 as embedding model), FlowGen consistently finds flows 214

which are 6% more accurate while retaining identical costs, or conversely decrease costs by 37% 215

while retaining identical accuracy. (See Fig. A9 for details). 216

Large Models: To evaluate the potential benefits of larger LLMs, we selected Pareto-optimal 217

flows from the CRAG3 music dataset and upgraded their associated LLMs: GPT-4o-mini to GPT-4o, 218

8



Gemini-Flash to Gemini-Pro, and Anthropic-haiku-35 to Anthropic-sonnet-35. These upgrades 219

were applied across all LLM-based components, such as synthesizing LLM and HyDE. 220

As shown in Table A9, upgrading to larger LLMs consistently leads to significant accuracy 221

improvements, averaging 17.3%. However, this comes with a steep 67-fold increase in cost which is 222

particularly pronounced for agentic flows that involve multiple LLM calls per execution. These 223

results highlight the critical trade-off practitioners face when selecting more powerful LLMs: 224

meaningful accuracy improvements must be weighed against substantial operational cost increases. 225

LatencyOptimization: FlowGen is capable of optimizing over a variety of objectives. To demonstrate, 226

we perform amulti-objective optimization over accuracy and latency objectives on the FinanceBench 227

dataset. Low latency is important for real time tasks such as RAG systems that would engage in 228

live conversations with a user. Figure A12 shows only the lowest-accuracy flows could achieve 229

latencies required for real time voice conversation (typically <400ms), with highest accuracy flows 230

having latencies of 30 seconds or more. A sweet spot emerges around 10 seconds of latency, where 231

highly accurate flows are already available. By having the entire Pareto-frontier of solutions, it’s 232

possible to quickly assess these tradeoffs and select a flow that fits requirements. 233

Third-Party Comparisons: Amazon Q [61] uses models from Amazon Bedrock, primarily Amazon 234

Titan and GPT-based generative AI. Azure Assistant [62], built on Azure OpenAI Service, enables 235

developers to create goal-directed agents with persistent memory, tools, and function calling. 236

We evaluated both using their default configurations on FinanceBench: FlowGen achieves 77.6% 237

accuracy (Fig. A12), outperforming Azure Assistant (65.3%) and Amazon Q (59.2%). This gap is 238

expected—third-party assistants are built for broad use, while FlowGen is tuned to the dataset. Still, 239

it highlights a key insight: custom flows can significantly outperform off-the-shelf solutions! 240

7 Discussion and Future Work 241

We introduced FlowGen, a system that efficiently explores a vast search space of 1023 flows to 242

identify Pareto-optimal solutions balancing accuracy and cost. Our results show that generative AI 243

pipeline performance depends heavily on dataset characteristics, reinforcing that no universally 244

optimal “silver-bullet” flow exists (see Fig. A8). Rather than replacing human expertise, FlowGen 245

empowers data scientists and engineers with a data-driven tool to rapidly navigate complex design 246

decisions and optimize performance on new datasets. 247

Appendix A5 shows FlowGen ’s use of transfer learning for efficient optimization, while Ap- 248

pendix A9 analyzes agentic-only flows, highlighting when agents boost performance—albeit with 249

higher costs. 250

We are expanding FlowGen to support multi-agent workflows [63, 64], and plan to integrate 251

prompt optimization into the Bayesian search loop, given its major impact on performance [37, 36]. 252

We believe tools like FlowGen will be essential for navigating the generative AI design space, 253

enabling tailored, cost-effective, and accurate solutions. 254
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A1 Search Space Details 448

Table A1: FlowGen choices for each module and their search spaces for the RAG workflow. For discrete
search spaces we use the convention [start:step:stop]. For example, [2:1:20] means the
set {2, 3, 4, . . . 20}. logspace[start:stop] means the interval is sampled in log space. E.g.,
logspace[1:128] uses a log-uniform distribution over the interval which results in smaller
values are sampled more finely than larger values. The columnModule lists the modules,
Module Space lists the choices for the module along with choice-specific hyperparameters.
In the Shared Space column the hyperparameters which apply to all choices for a particular
module are listed for brevity. For e.g., the choice of chunk-size applies to all choices for
the Splitter module.

Flow Module Module Space Shared

RAG Synthesizing LLM LLMs in Table A2
Reranker LLMs in Table A2

top-k ([2:1:20])
Embedding Model Models in Table A3
Splitter Recursive

Token
Sentence

chunk-size
(logspace[256:4096])
chunk-overlap
([0.0:0.1:0.7])

HyDE LLMs in Table A2
Retriever Dense

Sparse
Fusion
–num-queries [1:1:20]
–mode (4)
–bm25-weight [0.1:0.1:0.9]

top-k ([2:1:20])

Prompt Default
Concise
CoT

Dynamic Few-Shot Retriever top-k ([2:1:20])
Embedding Model Models in Table A3

Additional Context –num-nodes (logspace[2:20])

Tables A2 and A3 list the LLMs and embeddings models used in FlowGen search space. We 449

provide a brief overview of the function served by various module choices in the search space for 450

completeness. 451

ReRanker: Rerankers [65, 66] are optionally used in RAG pipelines to improve the quality of 452

retrieved information before it is added as additonal context to a synthesizing LLM. Rerankers 453

evaluate and reorder candidate chunks retrieved by an initial retriever. These models can leverage 454

contextual features, query-document relationships, or semantic understanding to assign scores 455

to documents, prioritizing those most relevant to the query. But at the same time reranking adds 456
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Small LLMs

anthropic-claude-haiku-3.5@20241022
o3-mini@2024-09-12
gpt-4o-mini@2024-07-18
gemini-flash-1.5-002
Large LLMs

anthropic-claude-sonnet-3.5-v2@20241022
mistral-large-2411
llama-3.3-70B-instruct
gemini-pro-1.5-002
gpt-4o@2024-11-20

Table A2: List of small and large LLMs

Embedding Model Name

bge-small-en-v1.5
bge-large-en-v1.5
gte-large
mxbai-embed-large-v1
UAE-Large-V1
GIST-large-Embedding-v0
b1ade-embed
MUG-B-1.6
all-MiniLM-L12-v2
paraphrase-multilingual-mpnet-base-v2
bge-base-en-v1.5

Table A3: List of Embedding models

additional complexity and increasingly synthesizing LLMs are increasing in base capability where 457

this may not be needed. By incorporating the use of rerankers into the search space, FlowGen 458

surfaces flows where the use of rerankers is automatically decided. The list of LLMs in Table A2 459

are searched over for use as rerankers. 460

A1.1 Retrievers 461

FlowGen searches over three kinds of retrievers 1. Dense 2. Sparse and 3. Fusion retrievers. 462

Dense retrievers represent queries and documents as dense vectors in a continuous vector 463

space, learned through neural embeddings. Techniques such as BERT-based models and contrastive 464

learning are often employed to optimize embeddings such that similar queries and documents are 465

mapped to proximate regions in the vector space. These retrievers leverage semantic matching, en- 466

abling them to handle complex natural language queries effectively. Dense retrievers are especially 467

advantageous when dealing with semantic nuances but can be computationally intensive due to 468

the need for vector indexing and similarity computation in high-dimensional spaces. In FlowGen 469

computing vector embeddings of queries and grounding datasets for dense retrieval is one of the 470

most expensive steps. The list of embedding models in Table A3 is searched over for creating VDBs 471

from grounding datasets and to embed the query during retrieval. 472

Sparse retrievers, like the widely used BM25 [13], represent documents and queries as sparse 473

vectors in a high- dimensional space. These models rely on keyword-based matching, prioritizing 474

exact term overlaps between queries and documents. Sparse retrievers are computationally efficient 475

and interpretable but may struggle with capturing semantic relationships between words, such as 476

synonyms. They excel in scenarios where precise keyword matches are crucial. 477

Fusion retrievers [14] combine the best of both worlds using both dense and sparse retrievers 478

and fusing the retrieval results using various schemes before presenting the combined context to 479

the synthesizing LLM. If the Fusion retriever is chosen, additionally hyperparameters specific to it 480

like top-k, mode and num queries have to be additionally sampled. The Fusion retriever breaks 481
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down the original query into num queries and does retrieval with each query. It then fuses the 482

retrieved chunks of text across all queries using reciprocal rank scores. 483

Table A4: Prompt templates used in the search space of FlowGen. query_str is filled with the actual
query. few_shot_examples is dynamically filled with example query-answer pairs from a
predefined pool based on similarity to the query.

Variant Description

default You are a helpful assistant. Answer the provided question given the
context information and not prior knowledge. Question: {query_str}
Answer:

concise You are a helpful assistant. Answer the provided question given the
context information and not prior knowledge. Be concise! Question:
{query_str} Answer:

CoT You are a helpful assistant. Answer the provided question given the
context step-by-step. Question: {query_str} Answer:

dynamic-few-shot You are a helpful assistant. Answer the provided question given the
context information and not prior knowledge. Some examples are given
below. {few_shot_examples} Question: {query_str} Answer:

A1.2 Prompt Strategies 484

FlowGen considers four discrete prompt strategies in its search space: Default, Concise, CoT and 485

Dynamic Few-Shot. See Table A4 for the exact prompt templates. The Default prompt is a generic 486

prompt while the Concise prompt asks the LLM to be succinct while answering. The CoT [67] 487

prompt uses the widely used chain-of-thought prompting technique to encourage the LLM to step 488

through a reasoning process before answering. 489

In Dynamic Few-Shot prompting [68], instead of using a static set of examples, examples are 490

selected based on the query to dynamically select example question-answer pairs to construct a 491

prompt. The examples are selected from a pre-defined pool based on similarity to the query. The 492

idea is that since LLMs are good few-shot in-context learners [69], demonstrating how to do similar 493

tasks in the prompt itself results in better performance. 494

A1.3 Text Splitters 495

FlowGen searches over Recursive, Sentence and Token text splitters in its search space. For each 496

splitter two hyperparaters (chunk-size and chunk-overlap are also searched over. 497

Recursive splitter decomposes text iteratively by breaking it down into smaller and smaller 498

components, starting from larger linguistic units (e.g., paragraphs) and working toward finer 499

granularity (e.g., words). Token splitter segment text into tokens, which are the smallest meaningful 500

units, such as words, punctuation marks, or symbols. 501
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Sentence splitter identifies and separates tokens into individual sentences, typically by detecting 502

punctuation markers (e.g., periods, question marks) and leveraging language-specific rules to handle 503

edge cases (e.g., abbreviations). We utilize the implementations of these splitters in the LlamaIndex 504

library [9]. 505

A1.4 HyDE 506

Instead of directly retrieving the most relevant chunks from a VDB, HyDE [21] instead zero-shot 507

instructs a LLM to generate a hypothetical document. This document may contain false details. A 508

contrastively trained encoder encodes the document into an embedding vector. This embedding 509

vector of a hypothetical document is then used to search for real documents in the VDB. HyDE adds 510

significant complexity and latency to a RAG pipeline but often helps improve accuracy. But by 511

being part of the search space, FlowGen automatically helps decide if the additional complexity is 512

worth it. 513
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A1.5 Implementation Details and Infrastructure Challenges 514

Compute infrastructure: FlowGen requires significant infrastructure to scale up the search process. 515

One source of complication are the heterogeneous requirements needed for constructing different 516

flows. For example, if a flow uses a large embedding model, it will require a larger GPU with more 517

memory than a flow which utilizes a smaller embedding model. This step has to be repeated many 518

times for different flows. We build on top of Ray [70], leveraging its Ray Tune [71] integration 519

with Optuna [51]. Ray provides an easy-to-use scalable Pythonic language to scale up jobs across a 520

heterogeneous cluster of nodes with Nvidia GPUs. 521

For computing embeddings on large datasets with different embedding models, we uti- 522

lize HuggingFace Dedicated Inference endpoints [46]. This allows us to put smaller mod- 523

els such as BAAI/bge-small-en-v1.5 on Nvidia T4 GPUs, while larger models such as 524

BAAI/bge-large-en-v1.5 are put on L4 GPUs and so on. Each endpoint is set to autoscale to 525

5 replicas in our experiments. 526

Synthesizing LLMs: FlowGen utilizes the LLMs listed in Table A2, sourced from various API 527

endpoint providers such as Azure and Google Cloud Provider (GCP). As the search progresses, 528

traffic distribution across LLM endpoints varies dynamically. When the optimizer identifies effective 529

flows using a particular LLM, it prioritizes further exploration around that flow, leading to increased 530

demand on the corresponding LLM endpoint. This results in spiky, high-traffic usage of specific 531

models. To manage this variability, we leverage serverless elastic hosting from Azure and GCP, 532

enabling on-demand scaling based on usage. Despite this, large-scale concurrent trials can generate 533

hundreds of requests per minute and process millions of tokens, necessitating robust retry handling 534

to maintain stability. To accommodate different service-level agreements (SLAs) across model 535

providers, FlowGen is designed with a modular architecture, making it easy to integrate and manage 536

endpoints from diverse providers. 537

Scaling Challenges: While building FlowGen we faced significant challenges since this is quite 538

a novel system. We highlight a few of them below: 539

• As mentioned in Section A1.5, each parallel trial can require different amounts of resources. 540

For example if a trial is tasked with constructing and executing a flow that uses a large 541

embedding model then it will require a bigger GPU and/or a larger fraction of a GPU 542

or even multiple GPUs for efficient embedding computation. This presents a significant 543

challenge even with mature distributed computing frameworks like Ray [70]. Our cluster 544

has relatively more CPUs (696) compared to GPUs (4 Nvidia A100 and 4 A6000 GPUs). We 545

had to manually tune the number of GPUs and CPUs we allocated to each trial to maximize 546

cluster utilization, experimented with CPU ONNX [72] backends for embedding models 547

which were unfortunately ∼ 50× slower than GPUs. If we used only GPUs for embedding 548

models then jobs would get bottlenecked on the relatively small number of GPUs. We solved 549

this issue by utilizing HuggingFace Dedicated Inference Endpoints [46] which allowed us 550
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to pick autoscalable GPU inference endpoints with different Nvidia GPUs per embedding 551

model based on model size. 552

• We also put in a robust timeout system on top of Ray which allowed us to free-up resources 553

from trials which were taking too long or in stalled state. 554

• In order to distribute datasets across machines in the Ray cluster we use the HuggingFace 555

DataSets library, and an AWS S3 bucket. To minimize data transfer costs we are investigating 556

a robust thread-safe file caching system. 557

• Due to different endpoint providers having different rate limits and quotas, we had to manage 558

encountering these limits using retry logic with exponential backoff with randomization. 559

• Different endpoint providers also have differing content filter implementations. We turn off 560

as many of these as we can to minimize losing requests during evaluation. 561
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A2 Pareto-Pruner Distributions 562
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Figure A1: Cost and accuracy distributions used by the Pareto-Pruner for various datasets.
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A3 Pareto-Pruner Ablation 563

We perform an ablation study to analyze the Pareto-Pruner (Section 4). The objective of this 564

study is to understand the extent to which the Pareto-Pruner saves cost and how it affects the 565

optimization process. Figure A2 shows that for both datasets explored, the Pareto-Pruner was 566

effective at saving cost and speeding up exploration of the search space. 567
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Figure A2: Top-left: the Pareto-Pruner on the FinanceBench dataset reaches a fixed number of trials
for a lower cost (green) compared to a no-Pareto-Pruner baseline (blue) which performs
all 49 evaluations every trial. Top-right: for a fixed budget, the Pareto-Pruner (green)
generally produces a Pareto-curve that covers more of the Pareto-area than the baseline
(blue). Second row: same for the HotpotQA dataset that features 200 evaluations per trial
for the baseline, allowing Pareto-Pruner to complete a 300-trial study at a fraction of the
cost required without it.
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A4 Seeding the Optimizer 568

To initialize Bayesian optimization, we seed a trial with static flows, randomly selected flows, flows 569

from past optimizations via transfer learning, or a combination thereof. Table A5 enumerates the 570

standard flows used in static seeding. 571

Table A5: Static Seeding Flows: Selected parameters of static seeding flows for a RAG-optimization.

LLM RAG mode RAG method Template Splitter RAG embedding Few-shot embedding

gpt-4o-mini rag dense default token BAAI/bge-small-en-v1.5
gpt-4o-mini rag dense default sentence BAAI/bge-small-en-v1.5
gpt-4o-mini rag sparse default sentence
gpt-4o-std rag dense default token BAAI/bge-small-en-v1.5
gpt-4o-std rag dense default sentence BAAI/bge-small-en-v1.5
gpt-4o-std rag sparse default sentence
gpt-35-turbo rag sparse default sentence
anthropic-sonnet-35 rag sparse default sentence
anthropic-haiku-35 rag sparse default sentence
llama-33-70B rag sparse default sentence
gemini-pro rag sparse default sentence
gemini-flash rag sparse default sentence
mistral-large rag sparse default sentence
gpt-4o-mini rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gpt-4o-std rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gpt-35-turbo rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
anthropic-sonnet-35 rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
anthropic-haiku-35 rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
llama-33-70B rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gemini-pro rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gemini-flash rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
mistral-large rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gpt-4o-mini react-rag-agent dense default sentence BAAI/bge-small-en-v1.5
gpt-4o-mini critique-rag-agent dense default sentence BAAI/bge-small-en-v1.5
gpt-4o-mini sub-question-rag dense default sentence BAAI/bge-small-en-v1.5
gpt-4o-mini rag dense default sentence BAAI/bge-large-en-v1.5
gpt-4o-mini rag dense default sentence thenlper/gte-large
gpt-4o-mini rag dense default sentence mxbai-embed-large-v1
gpt-4o-mini rag dense default sentence WhereIsAI/UAE-Large-V1
gpt-4o-mini rag dense default sentence avsolatorio/GIST-large-Embedding-v0
gpt-4o-mini rag dense default sentence w601sxs/b1ade-embed
gpt-4o-mini rag dense default sentence Labib11/MUG-B-1.6
gpt-4o-mini rag dense default sentence all-MiniLM-L12-v2
gpt-4o-mini rag dense default sentence paraphrase-multilingual-mpnet-base-v2
gpt-4o-mini rag dense default sentence BAAI/bge-base-en-v1.5
gpt-4o-mini rag dense default sentence finance-embeddings-investopedia
gpt-4o-mini rag dense default sentence stella-en-400M-v5-FinanceRAG-v2
gpt-4o-mini rag dense default sentence Finance-embedding-large-en-V1.5
gpt-4o-mini rag fusion default sentence BAAI/bge-small-en-v1.5
gpt-4o-mini rag dense concise sentence BAAI/bge-base-en-v1.5
gpt-4o-mini react-rag-agent dense concise sentence BAAI/bge-base-en-v1.5
gpt-4o-mini critique-rag-agent dense concise sentence BAAI/bge-base-en-v1.5
gpt-4o-mini sub-question-rag dense concise sentence BAAI/bge-base-en-v1.5
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Table A6: Seeding Configurations in Experiments: Number of trials for each seeding type.

Experiment Dataset Random Static Transfer
Seeding Seeding Learning

1 RAG and Agents CRAG3 music 100 46 0
2 RAG and Agents CRAG3 sports 100 46 0
3 RAG and Agents DRDocs 100 46 0
4 RAG and Agents FinanceBench 100 46 0
5 RAG and Agents HotpotQA 100 46 0
6 RAG and Agents InfiniteBench 60 46 0

1 Agents FinanceBench 100 3 0
2 Agents InfiniteBench 100 3 0

1 Seeding HotpotQA 46 0 0
2 Seeding HotpotQA 0 46 0
3 Seeding HotpotQA 0 0 46
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A5 Dynamic Transfer Seeding 572

The goal of transfer learning is to leverage experience of problem-solving on other datasets [73, 74] 573

to speed up the search process on a new dataset. Specifically, we extract the top 𝑘 Pareto-optimal 574

flows from prior runs and compute their embeddings using the BAAI/bge-large-en-v1.5 text 575

embedding model. We then apply k-nearest neighbors (k-NN) clustering to group similar flows. 576

From these clusters, we select a total of 𝑁 diverse configurations, ensuring that multiple flows from 577

the same cluster are not chosen together. This strategy maximizes diversity in the seeded flow pool 578

while leveraging past optimizations. 579

Specifically, we chose the HotpotQA dataset as the target and included the results from studies 580

conducted on the other datasets. As a baseline, we use the standard way of starting a search from 581

scratch: Optuna performs 10-trials of random seeding and then starts the optimization. 582

Figure A3 shows a visualization of the clustering of top performining flows from these other 583

datasets, and highlights the flows which were selected to kick-start the optimization process on 584

HotpotQA. The results show that this form of transfer learning outperforms the static-seeding and 585

random-seeding baselines. This result illustrates the ability to incrementally add new datasets to 586

FlowGen and quickly find Pareto-optimal solutions by leveraging the results of past studies. 587
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Figure A3: Seeding Study: (Left) Both static seeding and transfer learning outperform random seeding
on HotpotQA dataset. Transfer learning from other datasets further improves latency
and cost compared to static seeding. (Right) t-SNE visualization of transfer learning flows
that were selected for inclusion in the HotpotQA optimization. The numbers in the dots
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A6 Datasets 588

Dataset Sample Train Test Holdout

HotpotQA 20 7, 305 500 7, 836
FinanceBench 11 53 49 48
CRAG3 music 1 22 34 8
CRAG3 sports 7 39 46 11
InfinityBench 5 116 115 115
DRDocs 5 10 80 10

Table A7: Datasets and its partition sizes.

Table A7 gives an overview of the various datasets and dataset partitions. All dataset have train, 589

test, and holdout partitions. During optimization, flows are evaluated against the question-answer 590

(QA) pairs in the test partition. When the Dynamic Few-Shot Retriever is enabled, the train 591

partition is used for finding similar examples to the query for dynamic prompt construction. Flow 592

evaluation during optimization always uses the test partition. In the future, the train partition 593

may also be used for LLM fine-tuning and other dynamic dataset adaptation tasks, avoiding target 594

leakage in the test set. Datasets may also have a sample partition for development and testing 595

purposes, which may be a separate partition or a sample drawn from the test set. We report 596

accuracy numbers for flows evaluated on the test set, and set aside the holdout partition for future 597

use. 598

Each dataset comes with a unique grounding data set, such as PDF, HTML, or text files which 599

are to be used for retrieval during execution of a RAG flow. When suitable, we generate multiple 600

partitions of the grounding data, ensuring that the required grounding data for each question is 601

present in the appropriate partition, alongside a significant amount of ’distractor’ data. This reduces 602

the computational costs of building many large search indexes while still having a challenging 603

retrieval problem. 604

HotpotQA: HotpotQA [52] is a large-scale question-answering dataset designed to promote 605

research in multi-hop reasoning. It contains approximately 113, 000 QA pairs, where answering 606

each question requires synthesizing information from multiple documents. The dataset emphasizes 607

diverse reasoning skills, including multi-hop reasoning, comparison, and causal inference, making 608

it a valuable benchmark for RAG flows. Each QA pair comes with one or more Wikipedia page 609

fragments, which are used as grounding data. 610

We use the train-hard subset of HotpotQA, which has 15, 661 of the toughest questions and 611

is split into separate sample, train, test, and holdout partitions with 20, 7305, 500, and 7836 QA 612

pairs, respectively. 613

FinanceBench: FinanceBench [53] is a difficult RAG-QA dataset in the financial domain. The 614

public test set includes 150 questions of varying difficulty, from single-hop qualitative lookup 615

questions to multi-hop questions requiring complex numeric computations. It also includes 368 616
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PDF files containing SEC filing documents from 43 companies over a seven year timespan. An- 617

swering questions using this dataset typically requires retrieving specific facts and metrics from 618

the appropriate document by company, filing type, and time period. This is an important dataset, 619

as it combines real-world use cases of computer-assisted financial analysis and challenges of pre- 620

cise information retrieval from semi-structured PDF documents, with the challenges of complex 621

information retrieval and reasoning systems. These aspects are ubiquitous across enterprises today. 622

We split the dataset into roughly equal-sized train, test, and holdout partitions (53, 49, and 48 623

QA pairs, respectively), with each partition having roughly equal number of companies represented. 624

The PDFs are also split by these partitions based on the company, so that each partition only has 625

PDFs from companies in the question set. This allows us to reduce the amount of grounding data 626

in each partition, lowering the cost of optimization, while each partition still contains a significant 627

amount of “distractor” data. The sample partition is drawn from the test partition and contains 11 628

QA pairs about PepsiCo. The PDF files were converted into markdown format using Aryn DocParse 629

[56]. 630

CRAG: The CRAG (Comprehensive RAG) benchmark dataset fromMeta [54] was introduced for 631

KDD Cup 2024. The AIcrowd [75] challenge contains three tasks - Task 1: retrieval summarization, 632

Task 2: knowledge graph and web retrieval, and Task 3: end-to-end RAG. We use the Task 3 dataset 633

only, as this is the closest task to the RAG task FlowGen is built to optimize. CRAG Task 3 (CRAG3) 634

contains 4, 400 QA pairs on a variety of topics. The official Task 3 is to perform RAG over 50 web 635

pages fetched from an Internet search engine for each question. We attempted a different task, 636

which is to perform RAG over all of the web pages included in the dataset. To reduce the size of the 637

data required for embedding and evaluation, we split the dataset into five datasets according to the 638

five question topics - finance, movies, music, sports, and open-domain. We further partitioned each 639

dataset into sample, train, test, and holdout partitions containing 5%, 42.5%, 42.5%, and 10% of 640

the QA pairs, respectively. 641

The web page results for the QA pairs in each dataset and partition were used as the grounding 642

data for RAG. Text from the provided HTML files was converted to Markdown format using the 643

“html2text” [57] library. 644

The questions in CRAG typically contain challenging trivia about specific celebrities, events, or 645

media, often requiring multi-hop lookup and linguistic or numerical reasoning. 646

Note that our task setting differs significantly from that of the official CRAG3 benchmark. We 647

don’t enforce a maximum generation time, don’t restrict ourselves to Llama-based models only, 648

and perform RAG over the entire corpus of grounding data rather than the 50 web results specific 649

to each QA pair. Due to this, our accuracy and latency results cannot be directly compared to the 650

contest submissions. 651

InfiniteBench: InfiniteBench [55] is a long-context reasoning benchmark dataset, containing 652

a number of tasks including summarization, free-form QA, needle-in-a-haystack retrieval, and 653

identification of bugs in large code repositories. We used the En.QA task only, which is free-form 654
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question answering based on 63 synthetically altered public domain books where character names 655

are changed from the original. Each book consists of an average of 192, 600 tokens, for a total of 656

12.1M tokens of grounding data. The official task of En.QA is to answer questions given the entire 657

book as context, but we use it for executing RAG over multiple books. 658

InfiniteBench is partitioned into sample, train, test, and holdout partitions, containing 5, 116, 659

115, and 115 QA pairs from 1, 22, 22, and 23 books, respectively. 660

DRDocs: The DRDocs dataset contains QA pairs about the <name-redacted-for-double-blind- 661

review> product suite, including GUI, API, and SDK usage, and it contains a snapshot of the entire 662

<redacted> documentation codebase. The dataset contains 100 QA pairs, split into train, test, and 663

holdout and sample partitions of 10, 80, 10 and 5 questions each. 664
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A7 Detailed Evaluation Protocol 665

FlowGen uses LLM-as-a-Judge [58] to evaluate answers generated by flows and compute the accuracy 666

of a flow during search. The LLM-as-a-Judge compares the generated answer to groundtruth or 667

reference answers provided in a dataset. Accuracy is a crucial metric for FlowGen, so it is important 668

to understand the behavior of this evaluator since LLM-as-a-Judge can be quite sensitive to the 669

judge prompt [58] and QA formats, often preferring outputs from their own family of models [59], 670

simply ignoring the factual evidence and score based on the sentiment expressed in the generated 671

answer (“vibes”), or only focusing on the final answer ignoring logical fallacies in intermediate 672

reasoning [60]. Any such biases and variances in the LLM-as-a-Judge can be amplified when used 673

to feedback an optimizer like MO-TPE [48]. 674

Initially, we started by using the LlamaIndex CorrectnessEvaluator [76] with its default 675

prompt. Here a LLM is asked to grade an answer on a scale from 1 to 5, where 4 or above is 676

considered a passing score, and anything below 4 is failing. But due to the issues mentioned above, 677

we decided to deeply investigate the behavior of this and other judge configurations against human 678

judgments. 679

Data Generation: We generated 49-50 responses from each of the three datasets - CRAG 680

open-domain, FinanceBench, and HotpotQA, using three different flows: 1. Dynamic Few-Shot 681

prompted LLM (No-RAG flow), 2. a basic RAG flow, and 3. a ReAct RAG Agent. This generated a total 682

of 447 individual flow responses. 683

We provided the query, ground truth answer, and flow response to human labelers (the authors 684

of this work served as labelers), and asked them to evaluate the response from 1-5, where a score 685

greater than 4 is considered a “passing” score. 686

The labelers were asked to prioritize accuracy relative to the provided ground truth answer 687

from the dataset, rather than the “true” answer, in the event the provided answer differed. We do 688

not want our judges to add their own knowledge and biases to the judgment when possible - the 689

judges are not provided with the RAG context information and may not be aware of dataset-specific 690

reasons for the ground-truth answer to be “wrong”. The human labels were reviewed for consistent 691

application of evaluation criteria, and several labels were modified. 692

Evaluator Configurations: We then generated evaluations for the same 447 flow responses 693

using 10 different evaluator configurations. We used the LlamaIndex CorrectnessEvaluator, with 694

both the default prompt and a modified prompt (see Appendix A7.1 for the templates), and tried 695

three different LLMs with each - gpt-4o-mini, gpt-o3-mini, and anthropic-sonnet-35. This 696

results in 6 configurations. 697

We also introduced a Random LLM mode and a Consensus mode. With two prompt templates 698

each this results in 4 configurations. In Random LLM mode, each response evaluation is performed 699

with a random selection of one of the three LLMs listed above. In Consensus mode, all three LLMs 700

are queried and the response is labeled as “passing” if a majority of the LLMs give it a passing grade 701

(4 or above). 702
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Table A8 shows various statistics of the 10 different judge configurations. The experiments in 703

Section 6 use the Default-Prompt Random LLM estimator to gain exposure to a diversity of judge 704

LLMs without incurring the extra cost of the Consensus estimator. 705

Table A8: Evaluator Performance Metrics relative to human judgment. The Random LLM evaluator
with the default prompt template was chosen for its diversity of judges and low cost. Mean
Acc Difference is the average difference in average flow accuracy for each dataset using the
configured evaluator versus a human judge.

Template Evaluator Name LLM Pearson Cohen’s Mean Acc Mean Acc
Correlation Kappa Difference Diff Std

Default
Correctness

gpt-4o-mini 0.90 0.44 -0.03 0.05
gemini-pro 0.76 0.20 0.09 0.08
sonnet-35 0.86 0.29 -0.05 0.06

Random LLM any 0.84 0.29 0.00 0.04
Consensus all 0.90 0.44 0.00 0.05

Modified
Correctness

gpt-4o-mini 0.87 0.49 -0.01 0.06
gemini-pro 0.74 0.20 0.13 0.07
sonnet-35 0.86 0.41 -0.08 0.07

Random LLM any 0.83 0.39 0.01 0.06
Consensus all 0.88 0.48 -0.01 0.05

A7.1 Prompt Variations for LLM-as-a-Judge Configurations 706

A7.2 Default Template 707

Evaluation Guidelines for a Question Answering Chatbot 708

You are an expert evaluation system for a question answering chatbot. Your task involves the 709

following: 710

Information Provided 711

• A user query. 712

• A generated answer. 713

• Optionally, a reference answer for comparison. 714

Evaluation Task 715

Your job is to judge the relevance and correctness of the generated answer. Based on your 716

evaluation: 717

• Output a single score representing a holistic evaluation. 718

• Your score should be on a line by itself. 719

• Provide your reasoning for the score on a separate line. 720
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Scoring Guidelines 721

• The score should be between 1 and 5, where: 722

– 1: The generated answer is not relevant to the user query. 723

– 2–3: The generated answer is relevant but contains mistakes. 724

– 4–5: The generated answer is relevant and fully correct. 725

• If the generated answer is irrelevant, give a score of 1. 726

• If the generated answer is relevant but contains mistakes, give a score of 2 or 3. 727

• If the generated answer is relevant and fully correct, give a score of 4 or 5. 728

Example Response 729

4.0 730

The generated answer has the exact same metrics as the reference answer, 731

but it is not as concise. 732

A7.3 Modified Template 733

Evaluation Guidelines for a Question Answering Chatbot 734

You are an expert evaluation system for a question answering chatbot. Your task involves the 735

following: 736

Information Provided 737

• A user query. 738

• A generated answer. 739

• Optionally, a reference answer for comparison. 740

Evaluation Task 741

Your job is to judge the relevance and correctness of the generated answer. Based on your 742

evaluation: 743

• Output a single score representing a holistic evaluation. 744

• Your score should be on a line by itself. 745

• Provide your reasoning for the score on a separate line. 746

Scoring Guidelines 747

• The score should be between 1 and 5, where: 748

– 1: 749

∗ The generated answer mentions that the provided context does not contain all 750

necessary information, or some important data is missing. 751
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∗ The generated answer is not relevant to the user query. 752

– 2–3: The generated answer is relevant but contains mistakes. 753

– 4–5: The generated answer is relevant and fully correct. 754

Example Response 755

4.0 756

The generated answer has the exact same metrics as the reference answer, 757

but it is not as concise. 758
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A8 Multi-Dataset Study Details 759

The following figures provide additional details on the Pareto-frontiers for the multi-dataset study. 760

Figure A4 provides a compact visualization of the Pareto-frontiers found for all datasets, while 761

Figures A5 and A6 show expanded views of each Pareto-frontier with additional flow information. 762
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Figure A4: Multi-Dataset Study Pareto-Frontiers for all datasets.
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DRDocs - Workflows
All Trials
Pareto-Frontier
GPT-4o Mini RAG with Sentence Splitting, B1ade-Embed Dense Retrieval, BGE-small-en Few-Shot
Retrieval, and CoT Prompting
GPT-4o Mini RAG with Recursive Splitting, Hybrid Retrieval, HyDE Llama 33-70B, and BGE-small-en
Embeddings
GPT-4o Mini RAG with Sentence Splitting and Sparse Retrieval
Phi-4 RAG with Recursive Splitting, Sparse Retrieval, HyDE Llama 33-70B, and CoT Prompting
GPT-4o Mini RAG with Recursive Splitting and BGE-small-en Embeddings
Phi-4 RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
Phi-4 RAG with Token Splitting, Sparse Retrieval, BGE-base-en Embeddings, and 19 Dynamically
Retrieved Few-shot Examples
Phi-4 RAG with HyDE Gemini-Flash, Sparse Retrieval, HTML Splitting, and CoT Prompting
Gemini-Flash RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
Phi-4 RAG with Sparse Retrieval, HTML Splitting, and Concise Template
Phi-4 RAG with HTML Splitting, Sparse Retrieval, HyDE o3-mini, and GPT-4o-mini Query Decomposition
Gemini-Flash RAG with HTML Splitting, MUG-B-1.6 Embeddings, and CoT Prompting
Gemini-Flash RAG with HTML Splitting, GIST-large Embeddings, Sparse Retrieval, and CoT Prompting
Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings
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CRAG3 Music - Workflows
All Trials
Pareto-Frontier
GPT-4o Mini RAG with Sparse Retrieval, Sentence Splitting, and Default Template
GPT-4o Mini RAG with Sentence Splitting, GIST-large Embeddings, CoT Template, and UAE-Large Few-Shot
Retrieval
GPT-4o Mini RAG with Recursive Splitting and BGE-small-en Embeddings
GPT-4o Mini RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
GPT-4o Mini ReAct RAG Agent with Finance Expert Template, Sentence Splitting, MiniLM-L12-v2 Hybrid
Retrieval, and Llama 33 70B Subquestion Engine
Gemini-Flash RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
Gemini-Flash Critique RAG Agent with Sentence Splitting, BGE-large-en Embeddings, Haiku-35 HyDE
Retrieval, and Mistral-Large Reranking
GPT-4o Mini RAG with Recursive Splitting, Sparse Retrieval, and Default Template
Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings
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CRAG3 Sports - Workflows
All Trials
Pareto-Frontier
GPT-4o Mini RAG with Token Splitting, Hybrid Retrieval using B1ade-Embed and BM25, Haiku-35
Reranking, CoT Template, and GTE-Large Few-Shot Retrieval
O3-Mini Critique RAG Agent with Token Splitting, Sparse Retrieval, and Anthropics Haiku 3.5 for
Subquestion Synthesis
GPT-4o Mini Subquestion RAG with Sentence Splitting, Sparse Retrieval, Multilingual MPNet Few-Shot
Embeddings, and CoT Template
O3-Mini Critique RAG Agent with Recursive Splitting, Sparse Retrieval, Gemini-Flash Reranker, and
Mistral-Large Reflection Agent
O3-Mini Subquestion RAG with Token Splitting, MUG-B-1.6 Few-Shot Retrieval, GPT-4o-Mini Subquestion
Engine, and Finance-Expert Template
GPT-4o Mini ReAct RAG Agent with Recursive Splitting, Sparse Retrieval, Phi-4 Subquestion Engine,
and Mistral-Large Subquestion Synthesizer
GPT-4o Mini RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
Phi-4 RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
Gemini-Flash RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings

Figure A5: On DRDocs, Phi-4 open-weights model shows strong performance at various points along
the Pareto-frontier, representing a notable and affordable alternative to closed weights
models. On CRAG3 music, the baseline flow with GPT-4o-mini as the response synthesizer
has already a good performance but there is still considerable potential to find higher
accuracy or lower cost flows. On CRAG3 sports, the baseline is clearly dominated by the
Pareto-flows with the potential to choose flows with roughly twice the accuracy.
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HotpotQA - Workflows
All Trials
Pareto-Frontier
O3-Mini RAG with Sentence Splitting, UAE-Large-V1 Embeddings, and Finance Few-Shot Retrieval
O3-Mini RAG with Recursive Splitting, MXBAI-Embed-Large Few-Shot Retrieval, Sparse Retrieval, and
CoT Prompting
O3-Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, and Neighboring Retrieval Results
GPT-4o Mini RAG with Sentence Splitting, BGE-small-en Embeddings, Query Decomposition, and Distance-
Based Scoring
GPT-4o-Mini RAG with HyDE Retrieval, Token Splitting, UAE-Large-V1 Embeddings, and Reciprocal Rerank
Hybrid Retrieval
GPT-4o Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, Hybrid Retrieval, and CoT Prompting
GPT-4o Mini RAG with Token Splitting, Hybrid Reciprocal Rerank Retrieval, Blade-Embed and BGE-small-
en Few-shot Retrieval with HyDE Phi-4
Phi-4 RAG with Recursive Splitting, MXBAI-Embed-Large Embeddings, Hybrid Retrieval, and Neighboring
Results
Gemini-Flash RAG with Token Splitting, BGE-Large-en Embeddings, HyDE Retrieval via Llama 33-70B, and
Few-Shot Retrieval of 9 Examples with BGE-Small-en Embeddings
Phi-4 RAG with HTML Splitting, Mixedbread Large Embeddings, and Neighboring Retrieval Results
Gemini-Flash RAG with Recursive Splitting, B1ade-Embed Dense Retrieval, HyDE Mistral-Large, and BGE-
small-en Few-Shot Retrieval
Gemini-Flash RAG with Recursive Splitting, GTE-Large Embeddings, and HyDE Retrieval via Llama 3.3
70B
Gemini-Flash RAG with HyDE Haiku-35, Token Splitting, MiniLM-L12-v2 Embeddings, and Concise Template
Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings

100 101 102 103 104

Cost (¢ per 100 calls)

0%

10%

20%

30%

40%

50%

60%

70%

80%

Ac
cu

ra
cy

 (
%

)

InfiniteBench - Workflows
All Trials
Pareto-Frontier
O3-Mini RAG with Token Splitting, B1ade-Embed Dense Retrieval, CoT Template, and MUG-B-1.6 Few-Shot
Retrieval with Haiku-35 HyDE
GPT-4o Mini RAG with Sentence Splitting, Sparse Retrieval, HyDE-Enabled Generative Queries, and
Concise Template
GPT-4o Mini RAG with Token Splitting, BGE-Large-en Embeddings, Reranked Retrieval, and Dynamically
Retrieved Few-Shot Examples with BGE-Small-en
GPT-4o Mini RAG with Token Splitting, Sparse Retrieval, HyDE Gemini-Flash, and Reranking
GPT-4o Mini RAG with Sentence Splitting, Sparse Retrieval, HyDE-Enabled GPT-4o Mini Generative Model
Gemini-Flash RAG with Recursive Splitting, Sparse Retrieval, HyDE o3-Mini, and Finance-Expert
Template
Gemini-Flash RAG with Sentence Splitting, Sparse Retrieval, MiniLM-L12-v2 Few-Shot Embeddings, and
Concise Template
Gemini-Flash RAG with Recursive Splitting, BGE-large-en Embeddings, and HyDE o3-mini Retrieval
Gemini-Flash RAG with Token Splitting, GTE-Large Embeddings, Hybrid Reciprocal Reranking, and
Finance Expert Template
Gemini-Flash RAG with Recursive Splitting, Hybrid Retrieval using BGE-small-en and BM25, MUG-B-1.6
Few-Shot Retrieval, and GPT-4o-Mini HyDE
GPT-4o Mini RAG with HyDE Gemini-Flash, Recursive Splitting, Blade-Embed, and CoT Prompting
GPT-4o Mini RAG with Token Splitting, Sparse Retrieval, Haiku 3.5 HyDE Generation, and Default
Template
Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings
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FinanceBench - Workflows
All Trials
Pareto-Frontier
O3-Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, Hybrid Retrieval, HyDE Phi-4, and CoT
Template
GPT-4o Mini RAG with Sentence Splitting, BGE-small-en Embeddings, and Reranking
Mistral-Large ReAct RAG Agent with Sentence Splitting, GTE-Large Embeddings, Hybrid Retrieval, and
CoT Template
GPT-4o Mini RAG with HTML Splitting, Finance-Embeddings-Investopedia, Hybrid Reciprocal Reranking,
and Few-Shot Retrieval Using BGE-Base-en
GPT-4o Mini RAG with Sentence Splitting, Hybrid Reciprocal Rerank Retrieval, and BGE-large-en
Embeddings
GPT-4o Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, and Neighboring Retrieval
Phi-4 RAG with Recursive Splitting, BGE-base-en Embeddings, HyDE Retrieval via GPT-4o-Mini, and CoT
Template
GPT-4o Mini RAG with Recursive Splitting and BGE-small-en Embeddings
GPT-4o Mini RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2
Phi-4 RAG with Sentence Splitting, Hybrid Reciprocal Rerank Retrieval, and BGE-small-en Embeddings
Gemini-Flash RAG with HyDE o3-Mini, HTML Splitting, and GIST-large Embeddings
Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings

Figure A6: On HotpotQA, we see plenty of flows with a good accuracy but hugely different costs. On
InfiniteBench and FinanceBench we see a wide variety of accuracies and costs spanning
three orders of magnitude.
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Parameter Pareto Appearance Rates (Across 6 Studies) grouped by Study Name

Figure A7: Parameter Appearance: shows the percentage of times a particular component is part
of a Pareto-frontier flow across all datasets. Some insights: Non-agentic RAG flow is
Pareto-optimal in 88% of Pareto-flows. Neighboring retrieval results is enabled in 73% of
Pareto-flows. Query decompostion appears in 81% of Pareto-flows. We caution, that while
such component-wise insights are useful, how these components are wired together as part
of a larger flow matters as there are higher-order interaction effects amongst components.
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Figure A8: Rank correlation (Kendall-𝜏 ) of flow accuracy across different datasets. The low correlation
suggests the lack of "silver-bullet" flows that consistently perform well across diverse
datasets. We hypothesize that performance of flows is highly dependent on the specific
dataset characteristics, and a flow that excels on one dataset may not necessarily perform
well on another. The block box indicates the highest correlation for each row.
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Figure A9: Baseline Comparison: across datasets FlowGen is able to identify flows that increase ac-
curacy by 6% while retaining identical costs, or conversely decrease costs by 37% while
retaining identical accuracy. If cost is no consideration, an average accuracy increase of
25% is achieved.
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A9 Agentic Study 763

This study explores the space of agentic flows on the challenging FinanceBench dataset. After 764

evaluating 476 trials, we identified flows achieving over 70% accuracy on this difficult benchmark. 765

Notably, these high-performing solutions have significantly higher costs, with the most accurate 766

flows approaching $10 per call, and the total cost for this study surpassing $2000. Therefore, in 767

scenarios demanding high accuracy on complex tasks, agentic flows can deliver high performance at 768

the expense of increased cost and latency. When comparing different agentic flows, the SubQuestion 769

Agent dominates the high-cost, high-accuracy region, whereas the ReAct and Critique RAG Agents 770

offer Pareto-optimal solutions in lower-cost regimes. 771
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GPT-4o Mini Subquestion RAG with HTML Splitting, BGE-large-en Embeddings, and Haiku 3.5 for
Subquestion Engine
O3-Mini Subquestion RAG with Recursive Splitting, MUG-B-1.6 Embeddings, Gemini-Flash HyDE, and
GPT-4o-Mini for Query Decomposition and Subquestion Synthesis
GPT-4o-Mini Subquestion RAG with Recursive Splitting, UAE-Large-V1 Embeddings, Haiku 3.5 Subquestion
Engine, and Gemini-Flash Synthesizer
Gemini-Flash Subquestion RAG with Sentence Splitting, Finance2 Embeddings, CoT Template, Haiku 3.5
for Subquestion Engine, and GPT-4o-Mini for Subquestion Responses
GPT-4o Mini Subquestion RAG with HTML Splitting, MUG-B-1.6 Embeddings, Haiku 3.5 Subquestion Engine,
and Gemini-Flash Subquestion Synthesizer
Gemini-Flash Subquestion RAG with HTML Splitting, Hybrid Retrieval using BGE-base-en Embeddings, and
Haiku 3.5 for Subquestion Generation
GPT-4o Mini ReAct RAG Agent with Finance Expert Template, HTML Splitting, MUG-B-1.6 Hybrid
Retrieval, and BGE-base Few-Shot Examples
Gemini-Flash Subquestion RAG with Recursive Splitting, BGE-small-en Embeddings, Haiku 3.5 for
Subquestion Engine, and Finance-Expert Template
Gemini-Flash ReAct RAG Agent with HTML Splitting, Finance2 Embeddings, HyDE Retrieval via
GPT-4o-Mini, and CoT Template
Gemini-Flash ReAct RAG Agent with HTML Splitting, MXBAI-Embed-Large Hybrid Retrieval, and Finance-
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HyDE o3-Mini
Gemini-Flash Critique RAG Agent with Sparse Retrieval, HTML Splitting, and HyDE Generation

Figure A10: Agentic Study Pareto-frontier.
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A10 Study Statistics 772

Figure A11: Study statistics for the main studies reported in this paper. This table details the com-
putational outcomes for the primary studies herein. We aimed for approximately 500
successful trials per study for search space exploration across diverse flows and datasets.
Execution faced challenges like LLM API rate limits, endpoint unavailability, and parame-
ter space edge cases, resulting in “Failed” trials. Search costs varied substantially ( $125
to $2300) depending on configuration. Trials could also be “Pruned” based on predic-
tive cost/time thresholds or Pareto-pruning to optimize search resources. Assessing the
cost-effectiveness of the FlowGen approach requires careful consideration of the specific
application, dataset, search setup, and relevant comparison points. Given this high degree
of situational dependency, a generalized cost-effectiveness analysis is beyond the scope of
this general overview.
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A11 Latency Optimization 773
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Shot Retrieval with MUG-B-1.6
O3-Mini RAG with Token Splitting, GTE-Large Embeddings, HyDE Retrieval via GPT-4o-Mini, and
MiniLM-L12-v2 Few-Shot Retrieval
O3-Mini RAG with Hybrid Retrieval, Token Splitting, Multilingual MPNet Embeddings, HyDE-Enhanced
Few-Shot Retrieval, and CoT Prompting
Claude Haiku 3.5 RAG with Token Splitting, GTE-Large Embeddings, Hybrid Retrieval, and Finance-
Expert Template
GPT-4o Mini RAG with Sentence Splitting, B1ade-Embed Dense Retrieval, and Multilingual Few-Shot
Retrieval Using Paraphrase-MPNet
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GPT-4o Mini RAG with Sentence Splitting, BGE-small-en Embeddings, HyDE Retrieval, and GIST-large
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Gemini-Flash RAG with Recursive Splitting, Sparse Retrieval, HyDE o3-Mini, and Concise Template
Baseline: GPT-4o Mini RAG with Token Splitting and BGE-small-en Embeddings

Figure A12: Latency optimization for FinanceBench. Flows with Gemini-Flash as a response synthe-
sizer are fast but also have low accuracy on FinanceBench. Flows with the reasoning
model O3-Mini as synthesizer show the best accuracy for this challenging dataset. Flows
with GPT-4o-Mini provide a good tradeoff between speed and accuracy. The horizontal
lines are the accuracies obtained by commercial third-party proprietary RAG solutions
such as Azure Assistant and Amazon Q. At the time of writing the accuracies obtained
significantly lag that of the best accuracies found by FlowGen.
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A12 Large Model Study 774

Table A9: Effects of upgrading LLM Size on Pareto-optimal CRAG3 music flows. On average, accuracy
increases by 17.3 percentage points and cost increases by a factor of 67.

Accuracy (%) Cost ($/call) Accuracy Cost
Type Small Large Small Large Delta (pp) Multiplier

RAG 55.8 67.6 0.000197 0.003214 11.7 16.3
RAG 67.6 73.5 0.000392 0.006585 5.8 16.7
RAG 70.5 85.2 0.000740 0.012132 14.7 16.3
RAG 82.3 85.2 0.007168 0.119495 2.9 16.6

Critique RAG Agent 50.0 90.6 0.000118 0.029929 40.6 253.6
ReAct RAG Agent 41.1 71.4 0.000099 0.000506 30.2 5.1
ReAct RAG Agent 58.8 73.5 0.000257 0.050662 14.7 197.1

RAG 73.5 91.1 0.004549 0.073003 17.6 16.0
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Figure A13: Effects of upgrading LLM size on CRAG3 music: The original Pareto-frontier shown in
gray is shifted up and to the right, reflecting the increased accuracy and cost. Even though
accuracy increases across the board, not all flows on the original Pareto-frontier remain
on the new Pareto-frontier, indicating that component-wise optimizations are not always
Pareto-optimal.
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