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Abstract Retrieval-Augmented Generation (RAG) pipelines are central to applying large language
models (LLMs) to proprietary or dynamic data. However, building effective RAG flows
is complex, requiring careful selection among vector databases, embedding models, text
splitters, retrievers, and synthesizing LLMs. The challenge deepens with the rise of agentic
paradigms. Modules like verifiers, rewriters, and rerankers—each with intricate hyperparam-
eter dependencies have to be carefully tuned. Balancing tradeoffs between latency, accuracy,
and cost becomes increasingly difficult in performance-sensitive applications.

We introduce syftr, a framework that performs efficient multi-objective search over a broad
space of agentic and non-agentic RAG configurations. Using Bayesian Optimization, syftr
discovers Pareto-optimal flows that jointly optimize task accuracy and cost. A novel early-
stopping mechanism further improves efficiency by pruning clearly suboptimal candidates.
Across multiple RAG benchmarks, syftr finds flows which are on average ~ 9x cheaper
while preserving most of the accuracy of the most accurate flows on the Pareto-frontier.
Furthermore, syftr’s ability to design and optimize also allows integrating new modules,

making it even easier and faster to realize high-performing generative Al pipelines. Q) Ccode
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Figure 1: Given a grounding corpus, syftr searches over more than 10%* unique RAG flows to find a
Pareto-frontier (optimal tradeoff curve) between task accuracy and cost.

1 Introduction

Recent advances in large language models (LLMs) have significantly expanded their capabilities
across a range of linguistic tasks. However, they still suffer from limitations such as hallucinations,
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outdated knowledge, and poor grounding in factual or domain-specific information [1, 2]. Retrieval-
Augmented Generation (RAG) addresses these challenges by dynamically integrating external
knowledge into model outputs, improving accuracy and reliability by grounding responses in
verifiable sources [3, 4].

To operationalize RAG, generative Al flows (or pipelines) orchestrate how LLMs interact with
external or evolving data—either through vector database retrieval or by directly injecting content
into large context LLMs’ prompts. These flows can range from static, imperative designs to dynamic,
agentic systems that adapt at runtime. A growing ecosystem of frameworks—such as LangChain
[5], AutoGen [6], Haystack [7], CrewAlI [8], and Llamalndex [9]—has emerged to support rapid
prototyping and deployment of such applications. Yet, with this abundance of tools and design
choices, developers face increasing complexity in selecting optimal configurations.
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Figure 2: In this simplified view of the canonical RAG flow we term as “vanilla RAG", the developer
has many choices for text splitter, embedding model, vector database, prompt type, and
synthesizing LLM. We show a few choices to elucidate the point but there are far more
choices available for each of these modules leading to hundreds of unique vanilla RAG flows
each with different latency, accuracy, and cost tradeofts.

To illustrate this challenge, we begin with the simplest RAG flow, illustrated in Fig. 2, which we
refer to as the “Vanilla RAG” flow [1]. A grounding dataset is split into chunks using a text splitter,
embedded into vectors via an embedding model, and stored in a vector database (VDB). At query
time, the user query is embedded using the same model, and the closest vectors from the VDB are
retrieved using an approximate or exact nearest-neighbor algorithm [10]. The corresponding text
is then appended as context to a prompt for a synthesizing LLM, which generates the final answer.

Even in this basic setup, there are numerous design choices across modules: embedding models
(e.g., see MTEB [11] for SOTA models by task and size), text splitters (e.g., Sentence, Recursive,
Token; see [12]), synthesizing LLMs (e.g., gpt-4o, gpt-40-mini, clause-3.5-sonnet,
Llama-3.3-70B), retrievers (e.g., sparse [13], dense [1], hybrid [14]), and VDBs (e.g., Pinecone
[15], FAISS [16], Neo4;j [17]). Each of these often requires tuning hyperparameters for optimal
performance. For example: with the Sentence splitter, what are the ideal chunk size and overlap?
For the hybrid retriever, how should weights be balanced between sparse and dense retrievals, and
how many nearest neighbors (k) should each return?

These choices are interdependent—e.g., large retrieval sizes may necessitate more capable LLMs,
affecting latency, accuracy, and cost. Even within this “vanilla” setup, the combinatorial explosion
of configurations across modules leads to hundreds of possible RAG flows.

In practice, modern RAG flows—both agentic [18] and non-agentic [19]—are often far more
complex, incorporating additional modules such as verifiers [20], rewriters [21], rerankers [22], and
iterative reasoning at inference time [23]. While these added components can enhance performance,
they also increase cost and latency, without guaranteeing better task accuracy.

This complexity raises several key questions for Al application development: (1) How should one
choose an appropriate flow for a given application? (2) Should the flow be agentic or non-agentic?



(3) Which embedding model and LLM should be used, and how should their hyperparameters be
tuned? (4) Is the flow’s latency acceptable for the use case? (5) What is the maximum achievable
accuracy within a fixed budget? (6) What is the minimum cost to meet a required accuracy? (7)
Within a flow, which components have the greatest influence on accuracy, latency, and cost?

To address these questions, we introduce syftr, a system that efficiently explores an enormous
space ( 10%%) of agentic and non-agentic RAG flows to identify a Pareto frontier—an optimal tradeoff
curve [24] between task accuracy and cost. To our knowledge, syftr is the first system to perform
multi-objective search over generative Al flows.

Unlike traditional multi-objective optimization, searching over Al flows is uniquely challenging
due to their compositional structure, complex module interactions, and the stochastic and costly
nature of LLM components. These factors create a high-dimensional, non-convex search space
requiring specialized techniques beyond standard optimization:

« For grounding datasets with labeled QA pairs, syftr uses multi-objective Bayesian Optimiza-
tion [25] to efficiently search both agentic and non-agentic flows.

+ A novel early-stopping mechanism halts flow evaluation when further improvement to the
Pareto frontier is unlikely.

« Compared to default flows in libraries like Llamalndex, syftr finds Pareto-dominant flows
that are on average 6% more accurate at the same baseline cost, conversely 37% cheaper for
the same baseline accuracy, across multiple RAG benchmarks.

« syftr supports holistic evaluation of modules, flows, embedding models, and LLMs—e.g.,
assessing a new LLM across diverse datasets and flows.

« When applied to a new grounding corpus, syftr can warm-start optimization using prior
trials, enabling faster convergence to near-optimal solutions.

2 Related Work

The field of AutoML [26] has made significant strides in automating the construction of machine
learning pipelines by searching over large combinatorial spaces of preprocessing, modeling, and
post-processing components [27, 28]. At the core of many AutoML systems lies hyperparameter
optimization (HPO), with Bayesian Optimization (BO) playing a particularly prominent role in
navigating complex search landscapes [25, 29]. Closely related, Neural Architecture Search (NAS)
extends the AutoML paradigm to learn model architectures optimized for both performance and
hardware constraints, balancing tradeoffs across accuracy, latency, and throughput [30, 31, 32].

Within the domain of retrieval-augmented generation (RAG), AutoRAG [33] is the most closely
related system to syftr. It employs greedy, module-wise optimization to tune flow components for
a single performance objective. In contrast, syftr performs global multi-objective search, capturing
dependencies between modules and avoiding performance degradation due to local optima [34, 35].

Other recent frameworks take alternative approaches to optimizing or constructing LLM-based
pipelines. DSPy [36] offers a declarative interface for authoring modular flows, where individual
components can be “compiled” through prompt tuning, though it does not address flow-level
search or optimization. Trace [37] and TextGrad [38] reframe flow construction as a program
synthesis task, using LLMs themselves as optimizers for non-differentiable programs [39]. syftr is
complementary to these systems: it provides a principled optimization layer that can evaluate and
improve entire flows, regardless of how they are constructed.

DocETL [40] represents a different branch of related work focused on constructing document-
centric ETL pipelines. It uses rule-based, agentic search techniques inspired by classical cascade
systems [41] to optimize data transformation for accuracy. While DocETL and syftr both explore
modular pipeline optimization, they differ substantially in both domain and methodology: DocETL



targets static ETL workflows and optimizes for accuracy alone, whereas syftr is designed for
dynamic RAG flows and jointly optimizes multiple competing objectives using probabilistic search.

In summary, prior work has explored various forms of flow construction, optimization, and
compilation, from AutoML and NAS to LLM-driven pipeline synthesis. syftr builds on this
foundation by introducing a unified, multi-objective Bayesian optimization framework for RAG,
enabling efficient discovery of high-performing flows across diverse tradeoff surfaces.
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Figure 3: syftr RAG hierarchical search space includes 5 top-level flows — 4 agentic and 1 non-agentic
with a total of 10?® unique flows. The agentic flows use the RAG flow as a subroutine while
adding their own unique hyperparameters.

3 Search Space

The syftr search space (Fig. 3) consists of five top-level RAG flows: four agentic and a single non-
agentic (imperative) RAG flow. Once a flow is chosen, then further choices have to be made for each
of its modules. In turn, each module choice requires more choices to be made for hyperparameters
unique to that module. This results in a hierarchical search space containing 10?* unique flows.

The search space includes four Agentic flows: SubQuestion RAG Agent [42], Critique RAG
Agent [43], ReAct RAG Agent [44], and LATS RAG Agent [45]. These flows each have additional
hyperparameters (not shown) and use the RAG flow as a tool so their individual search spaces
subsumes that of the RAG flow. Major components of the search space include (1) Synthesizing LLMs:
We chose the list of LLMs in Table A2 to cover different prominent frontier model providers, both
closed and open weights, and a range of sizes from flash/mini to the largest ones. (2) Embedding
Models: We selected the top-performing models from the Massive Text Embedding Leaderboard
[11], focusing on those optimized for retrieval and with fewer than 500M parameters at the time of
writing. Each model is served via the autoscalable HuggingFace Dedicated Inference Service [46].
@ Other Modules: Components such as ReRanker, Retriever, Splitter, and HyDE are widely used
in modern RAG implementations. For detailed descriptions of these modules see Appendix Al.

This search space is challenging not only because of its large size, but also because evaluating
each candidate is computationally expensive. Each evaluation involves constructing the full flow and
running it on an evaluation dataset, making function evaluation costly in both time and resources.
Therefore, to make search as efficient as possible we leverage recent advances in multi-objective
Bayesian Optimization (BO) optimized for hierarchical search spaces [47, 48].



4 Multi-Objective Bayesian Optimization

The Pareto-frontier (or Pareto-front) represents the set of non-dominated solutions in a multi-
objective optimization problem. A solution is Pareto-optimal if no objective can be improved
without worsening at least one other objective [49]. Our aim is to efficiently search the hierarchical
space to identify a set of Pareto-optimal flows that tradeoff between multiple objectives. To do so,
we require an optimization method well suited for both hierarchical search and multi-objective
optimization. Multi-Objective Tree-of-Parzen Estimators (MO-TPE) [47, 48] satisfies these criteria.

The Tree-Structured Parzen Estimator (TPE) [50] introduced a novel approach to Bayesian
Optimization (BO). Instead of modeling the objective function directly, TPE models two conditional
densities: 1. I(x) likelihood of hyperparameters x leading to good performance and 2. g(x)
likelihood of hyperparameters x leading to poor performance. By dividing the observed data into
good and bad subsets based on a quantile threshold (e.g, top 25%) TPE transforms the optimization
into a density estimation problem. The method leverages tree-structured distributions to represent
hyperparameter spaces, allowing for better handling of complex and hierarchical search spaces
(also termed conditional hyperparameters in the literature).

Ozaki et al. [47] extended TPE to the multi-objective setting (MO-TPE) by approximating the
Pareto-frontier (a set of tradeoff solutions where no objective can be improved without worsening
another). MO-TPE uses a weighted linear scalarization approach to convert multiple objectives into
a single scalar objective for evaluation and an expected hypervolume improvement (EHVI)-based
strategy to guide the search. EHVI measures the contribution of a new sample to the hypervolume
dominated by the Pareto-frontier, ensuring exploration of the most promising regions. syftr uses
Optuna’s [51] MO-TPE implementation.

Once a candidate flow is constructed, it is evaluated on a set of evaluation question-answer
pairs. Evaluation sets often consist of thousands of question-answer pairs. This is time-consuming
and expensive, as calls are made to the embedding model, synthesizing LLM, and one or more
judge LLMs. We introduce Pareto-Pruner, a novel pruning technique that estimates the confidence
intervals around both task accuracy and cost and early stops evaluations once the confidence
interval bounding box drops below the current Pareto-frontier.

Specifically, during the evaluation phase of a trial, intermediate results are sent to the pruner.
The Pareto-Pruner evaluates whether the current point has a reasonable chance to improve the
current estimate of the Pareto-frontier if evaluation is continued. Pareto-Pruner computes the
upper-left corner p of the confidence interval bounding box shown in Fig. 4. If this point is above
the current Parto-frontier, then the evaluation continues. Conversely, if p falls below the current
Pareto-frontier, the trial already dominated by other Pareto-optimal solutions, and evaluation
resources can be safely spent elsewhere.

We model the uncertainty in accuracy and cost dimensions independently of each other: costs
are a right-tailed distribution that is bounded to the left by zero, while accuracy is bounded in [0, 1]
and is more centered, with some top-performing, some low-performing, and a lot of mediocre flows.
For a given dataset, to model costs, we fit a log-normal distribution and use the 90% confidence
interval (z = 1.645). For accuracy, we fit a normal distribution and use a confidence level of 90%.
Appendix A2 visualizes the accuracy and cost distributions fit to each of the datasets. Experiments
to assess the efficacy of the Pareto-Pruner may be found in Appendix A3.

Seeding the Optimizer: Given the sheer size of the search space, it is important to help the optimizer
bootstrap with informative priors via a seeding procedure. The goal of custom seeding is two-
fold: 1. To ensure that specific flows that are commonly used by the community are definitely
part of the search space that is evaluated and 2. To inject any domain-specific knowledge of the
search space so that the MO-TPE starts with a useful prior. syftr supports several types of custom
seeding routines which run before the optimization process starts: Static Seeding: syftr uses a
set of commonly-used "standard” flow configurations, obtained by systematically iterating over
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Figure 4: Pareto-Pruner estimates confidence intervals around task accuracy and cost for a given flow,
and will early-terminate flows whose upper-left confidence point (p) falls below the current
Pareto-frontier. c is the P80 cost, a is the average accuracy, L is the number of successful
evaluations, N is the number of total evaluations including errors caused by issues like
content filtering, endpoint rate limit hits and agentic flow failures due to improper tool usage.
o, is the standard deviation of the costs of the current evaluation, and z is the standard score
for a normal distribution and controls the sensitivity of the Pareto-Pruner.

key parameters such as the synthesizing LLM and embedding model. This ensures that the initial
search includes well-established baseline configurations. A complete list of these standard flows is
provided in Table A5. Random Seeding: flows are generated by randomly sampling from the search
space. Transfer Seeding: flows from a previous search can be used to jump-start the optimization
process as shown in Appendix A5. Unless otherwise specified, experiments in this paper use a mix
of random and static seeding before starting optimization.

5 Datasets and Evaluation Protocol

Datasets: We evaluate syftr across a set of RAG benchmarks, each partitioned into train, test,
and holdout sets. Flow optimization is always performed against the test partition, while the
train set may be used for dynamic prompting (via the Dynamic Few-Shot Retriever) and, in the
future, for LLM fine-tuning. The holdout set is reserved for final evaluation. Some datasets also
include a small sample partition for development. Each dataset includes a grounding corpus e.g.,
PDFs, HTML, or plain text which is used during retrieval.

Our benchmark suite includes HotpotQA [52], a multi-hop QA dataset from Wikipedia; Fi-
nanceBench [53], a challenging financial QA dataset over SEC filings; CRAG [54], a broad RAG
benchmark derived from web data with questions spanning five topics; InfiniteBench [55], a long-
context reasoning dataset based on altered public domain books; and DRDocs, a synthetic QA
dataset built from DataRobot’s documentation. For preprocessing, we convert HTML and PDF
content to Markdown (e.g., using Aryn DocParse [56] and html2text [57]). Each dataset presents
different challenges—such as multi-hop reasoning, numeric computation, or retrieval over long con-
texts—enabling a robust evaluation of syftr across domains, model sizes, and flow configurations.
Dataset details are located in Appendix A6.

Evaluation Protocol: We use LLM-as-a-Judge [58] to evaluate flow-generated answers against
ground-truth dataset answers. Given known sensitivities of judge models to prompts, answer for-
matting, and model bias [59, 60], we conducted a study comparing various evaluator configurations
against human judgment on 447 responses generated by different flows across multiple datasets.
Based on this study, we selected the Random LLM evaluator configuration, which randomly selects
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a judge LLM for each evaluation, providing diverse assessments at reasonable cost. Details of this
study may be found in Appendix A7.

6 Results

We present several empirical studies demonstrating syftr’s capability to identify Pareto-optimal
solutions tailored to specific operational constraints.
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Figure 5: Multi-Dataset Study: Pareto-frontier for InfiniteBench; See Appendix A8 for other datasets.
Colored dots represent flows whose key components are described in the legend. Legend items
are sorted by descending accuracy, except for the flow denoted Baseline at the bottom, which
is a baseline RAG flow that is similar to Llamalndex default settings and uses gpt-40-mini
as the synthesizing LLM and bge-small-en-v1.5 embeddings. Note the x-axis is log scale.

Multi-Dataset Study: We run syftr on a space of relatively smaller LLMs in Table A2 containing
both agentic and non-agentic flows to find Pareto-frontier between accuracy and cost. Fig. 5 shows
the Pareto-frontiers found for all datasets described in Section 5. Key observations: (1) Non-agentic
RAG flows appear on the Pareto-frontier far more frequently than agentic RAG flows. Non-agentic
RAG flows are cheaper and faster to run, leading the optimizer to focus its exploration in this area.
(2) GPT-40-mini shows up frequently in Pareto-optimal flows on all of the datasets, indicating its
quality as a synthesizing LLM. (3) RAG enhancements such as HyDE and Reranking are occasionally
Pareto-optimal, indicating they are situationally beneficial. (4) Reasoning models such as 03-mini
provide superior performance on FinanceBench. We conjecture that due to the quantitative nature of
the dataset and multi-hop reasoning required to answer questions, GPT-03-mini does well here. (5)
All datasets show Pareto-frontiers that flatten out: large increases in cost bring diminishing returns in
accuracy after initial steep rise. We observe that often marginal accuracy is to be gained from orders
of magnitude increase in cost. This allows practitioners to pick appropriate points of operation.
(6) Compared to the default RAG flow in Llamalndex, (at the time of writing: gpt-40-mini as the
synthesizing LLM and bge-small-en-v1.5 as embedding model), syftr consistently finds flows
which are 6% more accurate while retaining identical costs, or conversely decrease costs by 37%
while retaining identical accuracy. (See Fig. A9 for details).

Agentic Study This study explores the space of agentic flows on the challenging FinanceBench
dataset. After evaluating 476 trials, we identified flows achieving over 70% accuracy on this difficult
benchmark. Notably, these high-performing solutions have significantly higher costs, with the
most accurate flows approaching $10 per call, and the total cost for this study surpassing $2000.
Therefore, in scenarios demanding high accuracy on complex tasks, agentic flows can deliver high
performance at the expense of increased cost and latency. When comparing different agentic flows,



the SubQuestion Agent dominates the high-cost, high-accuracy region, whereas the ReAct and
Critique RAG Agents offer Pareto-optimal solutions in lower-cost regimes.
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Figure 6: Agentic Study: Agents deliver high performance at the expense of additional cost and latency.

Large Models: To evaluate the potential benefits of larger LLMs, we selected Pareto-optimal
flows from the CRAG3 music dataset and upgraded their associated LLMs: GPT-40-mini to GPT-4o,
Gemini-Flash to Gemini-Pro, and Anthropic-haiku-35 to Anthropic-sonnet-35. These upgrades
were applied across all LLM-based components, such as synthesizing LLM and HyDE.

Table 1: Effects of upgrading LLM Size on Pareto-optimal CRAG3 music flows. On average, accuracy
increases by 17.3 percentage points and cost increases by a factor of 67.

Accuracy (%) Cost ($/call) Accuracy Cost

Type Small Large  Small Large  Delta (pp) Multiplier
RAG 55.8 67.6  0.000197 0.003214 11.7 16.3
RAG 67.6 73.5 0.000392 0.006585 5.8 16.7
RAG 70.5 85.2 0.000740 0.012132 14.7 16.3
RAG 82.3 85.2 0.007168 0.119495 2.9 16.6
Critique RAG Agent  50.0 90.6  0.000118 0.029929 40.6 253.6

ReAct RAG Agent 41.1 71.4  0.000099 0.000506 30.2 5.1

ReAct RAG Agent 58.8 73.5 0.000257 0.050662 14.7 197.1
RAG 73.5 91.1 0.004549 0.073003 17.6 16.0

As shown in Table 1, upgrading to larger LLMs consistently leads to significant accuracy
improvements, averaging 17.3%. However, this comes with a steep 67-fold increase in cost which is
particularly pronounced for agentic flows that involve multiple LLM calls per execution. These
results highlight the critical trade-off practitioners face when selecting more powerful LLMs:
meaningful accuracy improvements must be weighed against substantial operational cost increases.
Fig. 7 shows as the models are swapped with their larger variants how the Pareto-frontier shifts.
There are accuracy increases across the board but many flows on the original Pareto-frontier
fare no longer on the new Pareto-frontier showing that local optimizations alone are often not
Pareto-optimal.

Latency Optimization: syftr is capable of optimizing over a variety of objectives. To demonstrate,
we perform a multi-objective optimization over accuracy and latency objectives on the FinanceBench
dataset. Low latency is important for real time tasks such as RAG systems that would engage in
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live conversations with a user. Fig. 8 shows only the lowest-accuracy flows could achieve latencies
required for real time voice conversation (typically <400ms), with highest accuracy flows having
latencies of 30 seconds or more. A sweet spot emerges around 10 seconds of latency, where highly
accurate flows are already available. By having the entire Pareto-frontier of solutions, it’s possible
to quickly assess these tradeoffs and select a flow that fits requirements.
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Figure 8: Latency optimization for FinanceBench. Flows with Gemini-Flash as a response synthesizer
are fast but also have low accuracy on FinanceBench. Flows with the reasoning model
O3-Mini as synthesizer show the best accuracy for this challenging dataset. Flows with
GPT-40-Mini provide a good tradeoff between speed and accuracy. The horizontal lines are
the accuracies obtained by commercial third-party proprietary RAG solutions such as Azure
Assistant and Amazon Q. At the time of writing the accuracies obtained significantly lag
that of the best accuracies found by syftr.

Third-Party Comparisons: Amazon Q [61] uses models from Amazon Bedrock, primarily Amazon
Titan and GPT-based generative Al. Azure Assistant [62], built on Azure OpenAl Service, enables
developers to create goal-directed agents with persistent memory, tools, and function calling. We
evaluated both using their default configurations on FinanceBench: syftr achieves 77.6% accuracy
(Fig. 8), outperforming Azure Assistant (65.3%) and Amazon Q (59.2%). This gap is expected—third-
party assistants are built for broad use, while syftr is tuned to the dataset. Still, it highlights a key
insight: custom flows can significantly outperform off-the-shelf solutions!



7 Hardware and Costs

What are the costs associated with running an optimization? How should practitioners evaluate
whether to initiate an optimization, given uncertainty about whether it will yield a better-performing
flow? How long should an optimization be run? And what kind of hardware is required to execute
syftr effectively?

All experiments in this paper were conducted on a compute cluster equipped with 696 CPUs,
4 Nvidia A100 GPUs, and 4 Nvidia A6000 GPUs. The GPUs were primarily utilized for efficient
embedding computations. See Section A1.5 for additional implementation and scaling details.

Table 2 summarizes the computational outcomes and costs for the main studies. Each study
aimed for approximately 500 successful trials to ensure broad exploration of the search space across
varied datasets and flow types. However, execution encountered real-world challenges such as
LLM API rate limits, transient endpoint failures, and edge cases in the parameter space, which
contributed to the observed number of failed trials.

The cost of each study varied significantly—from $125 to over $2300—depending on the con-
figuration and complexity of the flow being optimized. Assessing the cost-effectiveness of syftr
requires context-specific considerations, including the application domain, dataset size, search
configuration, and available baselines. Given this variability, a general-purpose cost-effectiveness
analysis is beyond the scope of this paper. Nonetheless, our results show that syftr can consistently
discover high-performing flows across diverse tasks at a reasonable cost, underscoring its practical
utility for real-world deployment.

Table 2: Runtime and costs for the main studies.

Study Name Successful Failed Pruned Trials/hr Time/Trial Costs ($)
FinanceBench - Agents 549 5 60 33 1h07m 2310.30
InfiniteBench - Agents 406 8 87 87 0h32m 887.29
CRAG: Music 502 72 47 12 1h35m 380.91
CRAG: Sports 390 61 136 11 1h44m 629.67
DR Docs 525 30 69 33 0h58m 339.66
FinanceBench 506 76 84 19 1h13m 386.27
HotpotQA 503 17 204 33 0h50m 125.13
InfiniteBench 475 4 52 53 0h26m 764.99
FinanceBench - Latency 478 13 44 56 0h48m 1359.08

8 Discussion and Future Work

We introduced syftr, a system that efficiently explores a vast search space of 10?* flows to identify
Pareto-optimal solutions balancing accuracy and cost. Our results show that generative Al pipeline
performance depends heavily on dataset characteristics. Rather than replacing human expertise,
syftr empowers data scientists and engineers with a data-driven tool to rapidly navigate complex
design decisions and optimize performance on new datasets.

We are expanding syftr to support multi-agent workflows [63, 64], and plan to integrate
prompt optimization into the Bayesian search loop, given its major impact on performance [37, 36].
We believe tools like syftr will be essential for navigating the generative Al design space, enabling
tailored, cost-effective, and accurate solutions.
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A1 Search Space Details

Table Al: syftr choices for each module and their search spaces for the RAG workflow. For discrete
search spaces we use the convention [start:step:stop]. For example, [2:1:20] means the
set {2,3,4,...20}. logspace[start:stop] means the interval is sampled in log space. E.g.,
logspace[1:128] uses a log-uniform distribution over the interval which results in smaller
values are sampled more finely than larger values. The column Module lists the modules,
Module Space lists the choices for the module along with choice-specific hyperparameters.
In the Shared Space column the hyperparameters which apply to all choices for a particular
module are listed for brevity. For e.g., the choice of chunk-size applies to all choices for
the Splitter module.

Flow Module Module Space Shared
RAG Synthesizing LLM LLMs in Table A2
Reranker LLMs in Table A2
top-k ([2:1:20])
Embedding Model Models in Table A3
Splitter Recursive chunk-size
Token (logspace[256:4096])
Sentence chunk-overlap

([0.0:0.1:0.7])

HyDE LLMs in Table A2

Retriever Dense top-k ([2:1:20])
Sparse
Fusion
—num-queries [1:1:20]
—mode (4)
—bm25-weight [0.1:0.1:0.9]

Prompt Default
Concise
CoT

Dynamic Few-Shot Retriever top-k ([2:1:20])
Embedding Model Models in Table A3

Additional Context —num-nodes (logspace[2:20])

Tables A2 and A3 list the LLMs and embeddings models used in syftr search space. We
provide a brief overview of the function served by various module choices in the search space for
completeness.

ReRanker: Rerankers [65, 66] are optionally used in RAG pipelines to improve the quality of
retrieved information before it is added as additonal context to a synthesizing LLM. Rerankers
evaluate and reorder candidate chunks retrieved by an initial retriever. These models can leverage
contextual features, query-document relationships, or semantic understanding to assign scores
to documents, prioritizing those most relevant to the query. But at the same time reranking adds
additional complexity and increasingly synthesizing LLMs are increasing in base capability where
this may not be needed. By incorporating the use of rerankers into the search space, syftr surfaces
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Small LLMs Embedding Model Name

anthropic-claude-haiku-3.5@20241022 bge-small-en-v1.5
03-mini@2024-09-12 bge-large-en-v1.5
gpt-40-mini@2024-07-18 gte-large
gemini-flash-1.5-002 mxbai-embed-large-v1

UAE-Large-V1

Large LLMs GIST-large-Embedding-v0
anthropic-claude-sonnet-3.5-v2@20241022 blade-embed
mistral-large-2411 MUG-B-1.6
llama-3.3-70B-instruct all-MiniLM-L12-v2
gemini-pro-1.5-002 paraphrase-multilingual-mpnet-base-v2
gpt-40@2024-11-20 bge-base-en-v1.5

Table A2: List of small and large LLMs Table A3: List of Embedding models

flows where the use of rerankers is automatically decided. The list of LLMs in Table A2 are searched
over for use as rerankers.

A1.1 Retrievers

syftr searches over three kinds of retrievers 1. Dense 2. Sparse and 3. Fusion retrievers.

Dense retrievers represent queries and documents as dense vectors in a continuous vector
space, learned through neural embeddings. Techniques such as BERT-based models and contrastive
learning are often employed to optimize embeddings such that similar queries and documents are
mapped to proximate regions in the vector space. These retrievers leverage semantic matching,
enabling them to handle complex natural language queries effectively. Dense retrievers are espe-
cially advantageous when dealing with semantic nuances but can be computationally intensive due
to the need for vector indexing and similarity computation in high-dimensional spaces. In syftr
computing vector embeddings of queries and grounding datasets for dense retrieval is one of the
most expensive steps. The list of embedding models in Table A3 is searched over for creating VDBs
from grounding datasets and to embed the query during retrieval.

Sparse retrievers, like the widely used BM25 [13], represent documents and queries as sparse
vectors in a high- dimensional space. These models rely on keyword-based matching, prioritizing
exact term overlaps between queries and documents. Sparse retrievers are computationally efficient
and interpretable but may struggle with capturing semantic relationships between words, such as
synonyms. They excel in scenarios where precise keyword matches are crucial.

Fusion retrievers [14] combine the best of both worlds using both dense and sparse retrievers
and fusing the retrieval results using various schemes before presenting the combined context to
the synthesizing LLM. If the Fusion retriever is chosen, additionally hyperparameters specific to it
like top-k, mode and num queries have to be additionally sampled. The Fusion retriever breaks
down the original query into num queries and does retrieval with each query. It then fuses the
retrieved chunks of text across all queries using reciprocal rank scores.

A1.2 Prompt Strategies

syftr considers four discrete prompt strategies in its search space: Default, Concise, CoT and
Dynamic Few-Shot. See Table A4 for the exact prompt templates. The Default prompt is a generic
prompt while the Concise prompt asks the LLM to be succinct while answering. The CoT [67]
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Table A4: Prompt templates used in the search space of syftr. query_str is filled with the actual
query. few_shot_examples is dynamically filled with example query-answer pairs from a
predefined pool based on similarity to the query.

Variant Description

default You are a helpful assistant. Answer the provided question given the
context information and not prior knowledge. Question: {query_str}
Answer:

concise You are a helpful assistant. Answer the provided question given the

context information and not prior knowledge. Be concise! Question:

{query_str} Answer:

CoT You are a helpful assistant. Answer the provided question given the

context step-by-step. Question: {query_str} Answer:

dynamic-few-shot You are a helpful assistant. Answer the provided question given the
context information and not prior knowledge. Some examples are given

below. {few_shot_examples} Question: {query_str} Answer:

prompt uses the widely used chain-of-thought prompting technique to encourage the LLM to step
through a reasoning process before answering.

In Dynamic Few-Shot prompting [68], instead of using a static set of examples, examples are
selected based on the query to dynamically select example question-answer pairs to construct a
prompt. The examples are selected from a pre-defined pool based on similarity to the query. The
idea is that since LLMs are good few-shot in-context learners [69], demonstrating how to do similar
tasks in the prompt itself results in better performance.

A1.3 Text Splitters

syftr searches over Recursive, Sentence and Token text splitters in its search space. For each
splitter two hyperparaters (chunk-size and chunk-overlap are also searched over.

Recursive splitter decomposes text iteratively by breaking it down into smaller and smaller
components, starting from larger linguistic units (e.g., paragraphs) and working toward finer
granularity (e.g., words). Token splitter segment text into tokens, which are the smallest meaningful
units, such as words, punctuation marks, or symbols.

Sentence splitter identifies and separates tokens into individual sentences, typically by detecting
punctuation markers (e.g., periods, question marks) and leveraging language-specific rules to handle
edge cases (e.g., abbreviations). We utilize the implementations of these splitters in the Llamalndex
library [9].

Al14 HyDE

Instead of directly retrieving the most relevant chunks from a VDB, HyDE [21] instead zero-shot
instructs a LLM to generate a hypothetical document. This document may contain false details. A
contrastively trained encoder encodes the document into an embedding vector. This embedding
vector of a hypothetical document is then used to search for real documents in the VDB. HyDE adds
significant complexity and latency to a RAG pipeline but often helps improve accuracy. But by
being part of the search space, syftr automatically helps decide if the additional complexity is
worth it.
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A1.5 Implementation Details and Infrastructure Challenges

Compute infrastructure: syftr requires significant infrastructure to scale up the search process.
One source of complication are the heterogeneous requirements needed for constructing different
flows. For example, if a flow uses a large embedding model, it will require a larger GPU with more
memory than a flow which utilizes a smaller embedding model. This step has to be repeated many
times for different flows. We build on top of Ray [70], leveraging its Ray Tune [71] integration
with Optuna [51]. Ray provides an easy-to-use scalable Pythonic language to scale up jobs across a
heterogeneous cluster of nodes with Nvidia GPUs.

For computing embeddings on large datasets with different embedding models, we uti-
lize HuggingFace Dedicated Inference endpoints [46]. This allows us to put smaller mod-
els such as BAAI/bge-small-en-v1.5 on Nvidia T4 GPUs, while larger models such as
BAAI/bge-large-en-v1.5 are put on L4 GPUs and so on. Each endpoint is set to autoscale to
5 replicas in our experiments.

Synthesizing LLMs: syftr utilizes the LLMs listed in Table A2, sourced from various API
endpoint providers such as Azure and Google Cloud Provider (GCP). As the search progresses,
traffic distribution across LLM endpoints varies dynamically. When the optimizer identifies effective
flows using a particular LLM, it prioritizes further exploration around that flow, leading to increased
demand on the corresponding LLM endpoint. This results in spiky, high-traffic usage of specific
models. To manage this variability, we leverage serverless elastic hosting from Azure and GCP,
enabling on-demand scaling based on usage. Despite this, large-scale concurrent trials can generate
hundreds of requests per minute and process millions of tokens, necessitating robust retry handling
to maintain stability. To accommodate different service-level agreements (SLAs) across model
providers, syftr is designed with a modular architecture, making it easy to integrate and manage
endpoints from diverse providers.

Scaling Challenges: While building syftr we faced significant challenges since this is quite a
novel system. We highlight a few of them below:

+ As mentioned in Section A1.5, each parallel trial can require different amounts of resources.
For example if a trial is tasked with constructing and executing a flow that uses a large
embedding model then it will require a bigger GPU and/or a larger fraction of a GPU
or even multiple GPUs for efficient embedding computation. This presents a significant
challenge even with mature distributed computing frameworks like Ray [70]. Our cluster
has relatively more CPUs (696) compared to GPUs (4 Nvidia A100 and 4 A6000 GPUs). We
had to manually tune the number of GPUs and CPUs we allocated to each trial to maximize
cluster utilization, experimented with CPU ONNX [72] backends for embedding models
which were unfortunately ~ 50X slower than GPUs. If we used only GPUs for embedding
models then jobs would get bottlenecked on the relatively small number of GPUs. We solved
this issue by utilizing HuggingFace Dedicated Inference Endpoints [46] which allowed us
to pick autoscalable GPU inference endpoints with different Nvidia GPUs per embedding
model based on model size.

« We also put in a robust timeout system on top of Ray which allowed us to free-up resources
from trials which were taking too long or in stalled state.

+ In order to distribute datasets across machines in the Ray cluster we use the HuggingFace
DataSets library, and an AWS S3 bucket. To minimize data transfer costs we are investigating
a robust thread-safe file caching system.

+ Due to different endpoint providers having different rate limits and quotas, we had to manage
encountering these limits using retry logic with exponential backoff with randomization.

« Different endpoint providers also have differing content filter implementations. We turn off
as many of these as we can to minimize losing requests during evaluation.
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A2 Pareto-Pruner Distributions

Average Cost Distribution for CRAG3 Music
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Figure A1l: Cost and accuracy distributions used by the Pareto-Pruner for various datasets.
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A3 Pareto-Pruner Ablation

We perform an ablation study to analyze the Pareto-Pruner (Section 4). The objective of this
study is to understand the extent to which the Pareto-Pruner saves cost and how it affects the
optimization process. Fig. A2 shows that for both datasets explored, the Pareto-Pruner was effective
at saving cost and speeding up exploration of the search space.
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Figure A2: Top-left: the Pareto-Pruner on the FinanceBench dataset reaches a fixed number of trials
for a lower cost (green) compared to a no-Pareto-Pruner baseline (blue) which performs
all 49 evaluations every trial. Top-right: for a fixed budget, the Pareto-Pruner (green)
generally produces a Pareto-curve that covers more of the Pareto-area than the baseline
(blue). Second row: same for the HotpotQA dataset that features 200 evaluations per trial
for the baseline, allowing Pareto-Pruner to complete a 300-trial study at a fraction of the
cost required without it.
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A4 Seeding the Optimizer

To initialize Bayesian optimization, we seed a trial with static flows, randomly selected flows, flows
from past optimizations via transfer learning, or a combination thereof. Table A5 enumerates the
standard flows used in static seeding.

Table A5: Static Seeding Flows: Selected parameters of static seeding flows for a RAG-optimization.

LLM RAG mode RAG method Template Splitter RAG embedding Few-shot embedding
gpt-40-mini rag dense default token BAAI/bge-small-en-v1.5

gpt-40-mini rag dense default sentence BAAI/bge-small-en-v1.5

gpt-40-mini rag sparse default sentence

gpt-4o-std rag dense default token BAAI/bge-small-en-v1.5

gpt-4o-std rag dense default sentence BAAI/bge-small-en-v1.5

gpt-4o-std rag sparse default sentence

gpt-35-turbo rag sparse default sentence

anthropic-sonnet-35 rag sparse default sentence

anthropic-haiku-35 rag sparse default sentence

llama-33-70B rag sparse default sentence

gemini-pro rag sparse default sentence

gemini-flash rag sparse default sentence

mistral-large rag sparse default sentence

gpt-4o-mini rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gpt-4o-std rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gpt-35-turbo rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
anthropic-sonnet-35 rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
anthropic-haiku-35 rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
llama-33-70B rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gemini-pro rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gemini-flash rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
mistral-large rag dense few-shot sentence BAAI/bge-small-en-v1.5 all-MiniLM-L12-v2
gpt-40-mini react-rag-agent dense default sentence BAAI/bge-small-en-v1.5

gpt-40-mini critique-rag-agent dense default sentence BAAI/bge-small-en-v1.5

gpt-40-mini sub-question-rag dense default sentence BAAI/bge-small-en-v1.5

gpt-40-mini rag dense default sentence BAAI/bge-large-en-v1.5

gpt-40-mini rag dense default sentence thenlper/gte-large

gpt-40-mini rag dense default sentence mxbai-embed-large-v1

gpt-4o-mini rag dense default sentence WherelsAI/UAE-Large-V1

gpt-40-mini rag dense default sentence avsolatorio/GIST-large-Embedding-v0

gpt-40-mini rag dense default sentence w601sxs/blade-embed

gpt-40-mini rag dense default sentence Labib11/MUG-B-1.6

gpt-40-mini rag dense default sentence all-MiniLM-L12-v2

gpt-40-mini rag dense default sentence paraphrase-multilingual-mpnet-base-v2

gpt-40-mini rag dense default sentence BAAI/bge-base-en-v1.5

gpt-40-mini rag dense default sentence finance-embeddings-investopedia

gpt-40-mini rag dense default sentence stella-en-400M-v5-FinanceRAG-v2

gpt-40-mini rag dense default sentence Finance-embedding-large-en-V1.5

gpt-40-mini rag fusion default sentence BAAI/bge-small-en-v1.5

gpt-40-mini rag dense concise sentence BAAI/bge-base-en-v1.5

gpt-40-mini react-rag-agent dense concise sentence BAAI/bge-base-en-v1.5

gpt-40-mini critique-rag-agent dense concise sentence BAAI/bge-base-en-v1.5

gpt-40-mini sub-question-rag dense concise sentence BAAI/bge-base-en-v1.5

Table A6: Seeding Configurations in Experiments: Number of trials for each seeding type.

Experiment Dataset Random  Static = Transfer

Seeding Seeding Learning
1 RAG and Agents CRAG3 music 100 46 0
2 RAG and Agents CRAGS sports 100 46 0
3 RAG and Agents DRDocs 100 46 0
4 RAG and Agents FinanceBench 100 46 0
5 RAG and Agents HotpotQA 100 46 0
6 RAG and Agents InfiniteBench 60 46 0
1 Agents FinanceBench 100 3 0
2 Agents InfiniteBench 100 3 0
1 Seeding HotpotQA 46 0 0
2 Seeding HotpotQA 0 46 0
3 Seeding HotpotQA 0 0 46
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A5 Dynamic Transfer Seeding

The goal of transfer learning is to leverage experience of problem-solving on other datasets [73, 74]
to speed up the search process on a new dataset. Specifically, we extract the top k Pareto-optimal
flows from prior runs and compute their embeddings using the BAAI/bge-large-en-v1.5 text
embedding model. We then apply k-nearest neighbors (k-NN) clustering to group similar flows.
From these clusters, we select a total of N diverse configurations, ensuring that multiple flows from
the same cluster are not chosen together. This strategy maximizes diversity in the seeded flow pool
while leveraging past optimizations.

Specifically, we chose the HotpotQA dataset as the target and included the results from studies
conducted on the other datasets. As a baseline, we use the standard way of starting a search from
scratch: Optuna performs 10-trials of random seeding and then starts the optimization.

Fig. A3 shows a visualization of the clustering of top performining flows from these other
datasets, and highlights the flows which were selected to kick-start the optimization process on
HotpotQA. The results show that this form of transfer learning outperforms the static-seeding and
random-seeding baselines. This result illustrates the ability to incrementally add new datasets to
syftr and quickly find Pareto-optimal solutions by leveraging the results of past studies.
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Figure A3: Seeding Study: (Left) Both static seeding and transfer learning outperform random seeding
on HotpotQA dataset. Transfer learning from other datasets further improves latency
and cost compared to static seeding. (Right) t-SNE visualization of transfer learning flows
that were selected for inclusion in the HotpotQA optimization. The numbers in the dots
correspond to the Pareto-frontiers (1: actual frontier, 2: next frontier after the first is
removed, etc.). K-means clustering is applied followed by t-SNE dimensionality reduction.
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A6 Datasets

Dataset Sample Train Test Holdout
HotpotQA 20 7,305 500 7,836
FinanceBench 11 53 49 48
CRAG3 music 1 22 34 8
CRAGS3 sports 7 39 46 11
InfinityBench 5 116 115 115
DRDocs 5 10 80 10

Table A7: Datasets and its partition sizes.

Table A7 gives an overview of the various datasets and dataset partitions. All dataset have train,
test, and holdout partitions. During optimization, flows are evaluated against the question-answer
(QA) pairs in the test partition. When the Dynamic Few-Shot Retriever is enabled, the train
partition is used for finding similar examples to the query for dynamic prompt construction. Flow
evaluation during optimization always uses the test partition. In the future, the train partition
may also be used for LLM fine-tuning and other dynamic dataset adaptation tasks, avoiding target
leakage in the test set. Datasets may also have a sample partition for development and testing
purposes, which may be a separate partition or a sample drawn from the test set. We report
accuracy numbers for flows evaluated on the test set, and set aside the holdout partition for future
use.

Each dataset comes with a unique grounding data set, such as PDF, HTML, or text files which
are to be used for retrieval during execution of a RAG flow. When suitable, we generate multiple
partitions of the grounding data, ensuring that the required grounding data for each question is
present in the appropriate partition, alongside a significant amount of "distractor’ data. This reduces
the computational costs of building many large search indexes while still having a challenging
retrieval problem.

HotpotQA: HotpotQA [52] is a large-scale question-answering dataset designed to promote
research in multi-hop reasoning. It contains approximately 113,000 QA pairs, where answering
each question requires synthesizing information from multiple documents. The dataset emphasizes
diverse reasoning skills, including multi-hop reasoning, comparison, and causal inference, making
it a valuable benchmark for RAG flows. Each QA pair comes with one or more Wikipedia page
fragments, which are used as grounding data.

We use the train-hard subset of HotpotQA, which has 15, 661 of the toughest questions and
is split into separate sample, train, test, and holdout partitions with 20, 7305, 500, and 7836 QA
pairs, respectively.

FinanceBench: FinanceBench [53] is a difficult RAG-QA dataset in the financial domain. The
public test set includes 150 questions of varying difficulty, from single-hop qualitative lookup
questions to multi-hop questions requiring complex numeric computations. It also includes 368
PDF files containing SEC filing documents from 43 companies over a seven year timespan. An-
swering questions using this dataset typically requires retrieving specific facts and metrics from
the appropriate document by company, filing type, and time period. This is an important dataset,
as it combines real-world use cases of computer-assisted financial analysis and challenges of pre-
cise information retrieval from semi-structured PDF documents, with the challenges of complex
information retrieval and reasoning systems. These aspects are ubiquitous across enterprises today.

We split the dataset into roughly equal-sized train, test, and holdout partitions (53, 49, and 48
QA pairs, respectively), with each partition having roughly equal number of companies represented.
The PDFs are also split by these partitions based on the company, so that each partition only has
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PDFs from companies in the question set. This allows us to reduce the amount of grounding data
in each partition, lowering the cost of optimization, while each partition still contains a significant
amount of “distractor” data. The sample partition is drawn from the test partition and contains 11
QA pairs about PepsiCo. The PDF files were converted into markdown format using Aryn DocParse
[56].

CRAG: The CRAG (Comprehensive RAG) benchmark dataset from Meta [54] was introduced for
KDD Cup 2024. The Alcrowd [75] challenge contains three tasks - Task 1: retrieval summarization,
Task 2: knowledge graph and web retrieval, and Task 3: end-to-end RAG. We use the Task 3 dataset
only, as this is the closest task to the RAG task syftr is built to optimize. CRAG Task 3 (CRAG3)
contains 4, 400 QA pairs on a variety of topics. The official Task 3 is to perform RAG over 50 web
pages fetched from an Internet search engine for each question. We attempted a different task,
which is to perform RAG over all of the web pages included in the dataset. To reduce the size of the
data required for embedding and evaluation, we split the dataset into five datasets according to the
five question topics - finance, movies, music, sports, and open-domain. We further partitioned each
dataset into sample, train, test, and holdout partitions containing 5%, 42.5%, 42.5%, and 10% of
the QA pairs, respectively.

The web page results for the QA pairs in each dataset and partition were used as the grounding
data for RAG. Text from the provided HTML files was converted to Markdown format using the
“html2text” [57] library.

The questions in CRAG typically contain challenging trivia about specific celebrities, events, or
media, often requiring multi-hop lookup and linguistic or numerical reasoning.

Note that our task setting differs significantly from that of the official CRAG3 benchmark. We
don’t enforce a maximum generation time, don’t restrict ourselves to Llama-based models only,
and perform RAG over the entire corpus of grounding data rather than the 50 web results specific
to each QA pair. Due to this, our accuracy and latency results cannot be directly compared to the
contest submissions.

InfiniteBench: InfiniteBench [55] is a long-context reasoning benchmark dataset, containing
a number of tasks including summarization, free-form QA, needle-in-a-haystack retrieval, and
identification of bugs in large code repositories. We used the En. QA task only, which is free-form
question answering based on 63 synthetically altered public domain books where character names
are changed from the original. Each book consists of an average of 192, 600 tokens, for a total of
12.1M tokens of grounding data. The official task of En.QA is to answer questions given the entire
book as context, but we use it for executing RAG over multiple books.

InfiniteBench is partitioned into sample, train, test, and holdout partitions, containing 5, 116,
115, and 115 QA pairs from 1, 22, 22, and 23 books, respectively.

DRDocs: The DRDocs dataset contains QA pairs about the DataRobot product suite, including
GUI, AP, and SDK usage, and it contains a snapshot of the entire DataRobot documentation
codebase. The dataset contains 100 QA pairs, split into train, test, and holdout and sample
partitions of 10, 80, 10 and 5 questions each.
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A7 Detailed Evaluation Protocol

syftr uses LLM-as-a-Judge [58] to evaluate answers generated by flows and compute the accuracy
of a flow during search. The LLM-as-a-Judge compares the generated answer to groundtruth or
reference answers provided in a dataset. Accuracy is a crucial metric for syftr, so it is important
to understand the behavior of this evaluator since LLM-as-a-Judge can be quite sensitive to the
judge prompt [58] and QA formats, often preferring outputs from their own family of models [59],
simply ignoring the factual evidence and score based on the sentiment expressed in the generated
answer (“vibes”), or only focusing on the final answer ignoring logical fallacies in intermediate
reasoning [60]. Any such biases and variances in the LLM-as-a-Judge can be amplified when used
to feedback an optimizer like MO-TPE [438].

Initially, we started by using the Llamalndex CorrectnessEvaluator [76] with its default
prompt. Here a LLM is asked to grade an answer on a scale from 1 to 5, where 4 or above is
considered a passing score, and anything below 4 is failing. But due to the issues mentioned above,
we decided to deeply investigate the behavior of this and other judge configurations against human
judgments.

Data Generation: We generated 49-50 responses from each of the three datasets - CRAG
open-domain, FinanceBench, and HotpotQA, using three different flows: 1. Dynamic Few-Shot
prompted LLM (No-RAG flow), 2. a basic RAG flow, and 3. a ReAct RAG Agent. This generated a total
of 447 individual flow responses.

We provided the query, ground truth answer, and flow response to human labelers (the authors
of this work served as labelers), and asked them to evaluate the response from 1-5, where a score
greater than 4 is considered a “passing” score.

The labelers were asked to prioritize accuracy relative to the provided ground truth answer
from the dataset, rather than the “true” answer, in the event the provided answer differed. We do
not want our judges to add their own knowledge and biases to the judgment when possible - the
judges are not provided with the RAG context information and may not be aware of dataset-specific
reasons for the ground-truth answer to be “wrong”. The human labels were reviewed for consistent
application of evaluation criteria, and several labels were modified.

Evaluator Configurations: We then generated evaluations for the same 447 flow responses
using 10 different evaluator configurations. We used the Llamalndex CorrectnessEvaluator, with
both the default prompt and a modified prompt (see Appendix A7.1 for the templates), and tried
three different LLMs with each - gpt-4o-mini, gpt-o03-mini, and anthropic-sonnet-35. This
results in 6 configurations.

We also introduced a Random LLM mode and a Consensus mode. With two prompt templates
each this results in 4 configurations. In Random LLM mode, each response evaluation is performed
with a random selection of one of the three LLMs listed above. In Consensus mode, all three LLMs
are queried and the response is labeled as “passing” if a majority of the LLMs give it a passing grade
(4 or above).

Table A8 shows various statistics of the 10 different judge configurations. The experiments in
Section 6 use the Default-Prompt Random LLM estimator to gain exposure to a diversity of judge
LLMs without incurring the extra cost of the Consensus estimator.

A7.1 Prompt Variations for LLM-as-a-Judge Configurations
A7.2 Default Template

Evaluation Guidelines for a Question Answering Chatbot
You are an expert evaluation system for a question answering chatbot. Your task involves the
following:
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Table A8: Evaluator Performance Metrics relative to human judgment. The Random LLM evaluator
with the default prompt template was chosen for its diversity of judges and low cost. Mean
Acc Difference is the average difference in average flow accuracy for each dataset using the
configured evaluator versus a human judge.

Template  Evaluator Name LLM Pearson Cohen’s Mean Acc  Mean Acc
Correlation Kappa Difference Diff Std
gpt-4o0-mini 0.90 0.44 -0.03 0.05
Correctness gemini-pro 0.76 0.20 0.09 0.08
Default sonnet-35 0.86 0.29 -0.05 0.06
Random LLM any 0.84 0.29 0.00 0.04
Consensus all 0.90 0.44 0.00 0.05
gpt-4o0-mini 0.87 0.49 -0.01 0.06
Correctness gemini-pro 0.74 0.20 0.13 0.07
Modified sonnet-35 0.86 0.41 -0.08 0.07
Random LLM any 0.83 0.39 0.01 0.06
Consensus all 0.88 0.48 -0.01 0.05

Information Provided

+ A user query.
+ A generated answer.
« Optionally, a reference answer for comparison.

Evaluation Task

Your job is to judge the relevance and correctness of the generated answer. Based on your
evaluation:

+ Output a single score representing a holistic evaluation.

+ Your score should be on a line by itself.

+ Provide your reasoning for the score on a separate line.

Scoring Guidelines

+ The score should be between 1 and 5, where:
— 1: The generated answer is not relevant to the user query.
— 2-3: The generated answer is relevant but contains mistakes.
— 4-5: The generated answer is relevant and fully correct.
« If the generated answer is irrelevant, give a score of 1.
« If the generated answer is relevant but contains mistakes, give a score of 2 or 3.
« If the generated answer is relevant and fully correct, give a score of 4 or 5.

Example Response

4.0
The generated answer has the exact same metrics as the reference answer,
but it is not as concise.

A7.3 Modified Template

Evaluation Guidelines for a Question Answering Chatbot
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You are an expert evaluation system for a question answering chatbot. Your task involves the
following:

Information Provided

+ A user query.
+ A generated answer.
« Optionally, a reference answer for comparison.

Evaluation Task

Your job is to judge the relevance and correctness of the generated answer. Based on your
evaluation:

« Output a single score representing a holistic evaluation.

« Your score should be on a line by itself.

+ Provide your reasoning for the score on a separate line.

Scoring Guidelines

+ The score should be between 1 and 5, where:
-1
« The generated answer mentions that the provided context does not contain all
necessary information, or some important data is missing.
+ The generated answer is not relevant to the user query.
— 2-3: The generated answer is relevant but contains mistakes.
— 4-5: The generated answer is relevant and fully correct.

Example Response

4.0
The generated answer has the exact same metrics as the reference answer,
but it is not as concise.
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A8 Multi-Dataset Study Details

The following figures provide additional details on the Pareto-frontiers for the multi-dataset study.
Fig.A4 provides a compact visualization of the Pareto-frontiers found for all datasets, while Figures

A5 and A6 show expanded views of each Pareto-frontier with additional flow information.
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Figure A4: Multi-Dataset Study Pareto-Frontiers for all datasets.
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Figure A5: On DRDocs, Phi-4 open-weights model shows strong performance at various points along
the Pareto-frontier, representing a notable and affordable alternative to closed weights
models. On CRAG3 music, the baseline flow with GPT-40-mini as the response synthesizer
has already a good performance but there is still considerable potential to find higher
accuracy or lower cost flows. On CRAGS3 sports, the baseline is clearly dominated by the
Pareto-flows with the potential to choose flows with roughly twice the accuracy.

30



100%

80% -

60% -

40% -

Accuracy (%)

20% -

0%

80% -

70% 7

60%

50% -

40%

Accuracy (%)

30% -

20% -

10%

100 10t 10
Cost (¢ per 100 calls)

103

0%

80% 1

70% 1

60%

Accuracy (%)
B w
o o
X X
A A

30%

20% -

10%

10° 10! 102 10°

Cost (¢ per 100 calls)

104

Azure Assistant (GPT-40)

Amazon Q

Azure Assistant (GPT-40-Mini)

0%

10! 102 10°
Cost (¢ per 100 calls)

10*

HotpotQA - Workflows
All Trials
Pareto-Frontier
@ 03-Mini RAG with Sentence Splitting, UAE-Large-V1 Embeddings, and Finance Few-Shot Retrieval

o 03-Mini RAG with Recursive Splitting, MXBAI-Embed-Large Few-Shot Retrieval, Sparse Retrieval, and
CoT Prompting

@ 03-Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, and Neighboring Retrieval Results

® GPT-40 Mini RAG with Sentence Splitting, BGE-small-en Embeddings, Query Decomposition, and Distance-
Based Scoring

GPT-40-Mini RAG with HyDE Retrieval, Token Splitting, UAE-Large-V1 Embeddings, and Reciprocal Rerank
@ iybrid Retrieval

@ GPT-40 Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, Hybrid Retrieval, and CoT Prompting

GPT-40 Mini RAG with Token Splitting, Hybrid Reciprocal Rerank Retrieval, Blade-Embed and BGE-small-
en Few-shot Retrieval with HyDE Phi-4

Py Phi-4 RAG with Recursive Splitting, MXBAI-Embed-Large Embeddings, Hybrid Retrieval, and Neighboring
Results

) Gemini-Flash RAG with Token Splitting, BGE-Large-en Embeddings, HyDE Retrieval via Llama 33-70B, and
Few-Shot Retrieval of 9 Examples with BGE-Small-en Embeddings

Q@ Phi-4 RAG with HTML Splitting, Mixedbread Large Embeddings, and Neighboring Retrieval Results

o) Gemini-Flash RAG with Recursive Splitting, Blade-Embed Dense Retrieval, HyDE Mistral-Large, and BGE-
small-en Few-Shot Retrieval

15 Gemini-Flash RAG with Recursive Splitting, GTE-Large Embeddings, and HyDE Retrieval via Llama 3.3
708

@ Gemini-Flash RAG with HyDE Haiku-35, Token Splitting, MiniLM-L12-v2 Embeddings, and Concise Template
[ Baseline: GPT-40 Mini RAG with Token Splitting and BGE-small-en Embeddings

InfiniteBench - Workflows
All Trials
Pareto-Frontier

° 03-Mini RAG with Token Splitting, Blade-Embed Dense Retrieval, CoT Template, and MUG-B-1.6 Few-Shot
Retrieval with Haiku-35 HyDE

o GPT-40 Mini RAG with Sentence Splitting, Sparse Retrieval, HyDE-Enabled Generative Queries, and
Concise Template

GPT-40 Mini RAG with Token Splitting, BGE-Large-en Embeddings, Reranked Retrieval, and Dynamically
Retrieved Few-Shot Examples with BGE-Small-en

© GPT-40 Mini RAG with Token Splitting, Sparse Retrieval, HyDE Gemini-Flash, and Reranking
@ GPT-40 Mini RAG with Sentence Splitting, Sparse Retrieval, HyDE-Enabled GPT-40 Mini Generative Model

) Gemini-Flash RAG with Recursive Splitting, Sparse Retrieval, HyDE 03-Mini, and Finance-Expert
Template

° Gemini-Flash RAG with Sentence Splitting, Sparse Retrieval, MiniLM-L12-v2 Few-Shot Embeddings, and
Concise Template

@ Gemini-Flash RAG with Recursive Splitting, BGE-large-en Embeddings, and HyDE 03-mini Retrieval

Gemini-Flash RAG with Token Splitting, GTE-Large Embeddings, Hybrid Reciprocal Reranking, and
O Finance Expert Template

o Gemini-Flash RAG with Recursive Splitting, Hybrid Retrieval using BGE-small-en and BM25, MUG-B-1.6
Few-Shot Retrieval, and GPT-40-Mini HyDE

© GPT-40 Mini RAG with HyDE Gemini-Flash, Recursive Splitting, Blade-Embed, and CoT Prompting

) GPT-40 Mini RAG with Token Splitting, Sparse Retrieval, Haiku 3.5 HyDE Generation, and Default
Template

[] Baseline: GPT-40 Mini RAG with Token Splitting and BGE-small-en Embeddings

FinanceBench - Workflows

All Trials

Pareto-Frontier

03-Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, Hybrid Retrieval, HyDE Phi-4, and CoT
Template

GPT-40 Mini RAG with Sentence Splitting, BGE-small-en Embeddings, and Reranking

Mistral-Large ReAct RAG Agent with Sentence Splitting, GTE-Large Embeddings, Hybrid Retrieval, and
CoT Template

GPT-40 Mini RAG with HTML Splitting, Finance-Embeddings-Investopedia, Hybrid Reciprocal Reranking,
and Few-Shot Retrieval Using BGE-Base-en

GPT-40 Mini RAG with Sentence Splitting, Hybrid Reciprocal Rerank Retrieval, and BGE-large-en
Embeddings

GPT-40 Mini RAG with HTML Splitting, MUG-B-1.6 Embeddings, and Neighboring Retrieval

Phi-4 RAG with Recursive Splitting, BGE-base-en Embeddings, HyDE Retrieval via GPT-40-Mini, and CoT
Template

GPT-40 Mini RAG with Recursive Splitting and BGE-small-en Embeddings

GPT-40 Mini RAG with Sentence Splitting, BGE-small-en Embeddings, and Few-Shot Retrieval Using
MiniLM-L12-v2

Phi-4 RAG with Sentence Splitting, Hybrid Reciprocal Rerank Retrieval, and BGE-small-en Embeddings
Gemini-Flash RAG with HyDE 03-Mini, HTML Splitting, and GIST-large Embeddings
Baseline: GPT-40 Mini RAG with Token Splitting and BGE-small-en Embeddings

;e0c® 2@ 00 O OOCe@

Figure A6: On HotpotQA, we see plenty of flows with a good accuracy but hugely different costs. On
InfiniteBench and FinanceBench we see a wide variety of accuracies and costs spanning

three orders of magnitude.
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Figure A7: Parameter Appearance: shows the percentage of times a particular component is part
of a Pareto-frontier flow across all datasets. Some insights: Non-agentic RAG flow is
Pareto-optimal in 88% of Pareto-flows. Neighboring retrieval results is enabled in 73% of
Pareto-flows. Query decompostion appears in 81% of Pareto-flows. We caution, that while
such component-wise insights are useful, how these components are wired together as part
of a larger flow matters as there are higher-order interaction effects amongst components.
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Figure A8: Rank correlation (Kendall-7) of flow accuracy across different datasets. The low correlation
suggests the lack of "silver-bullet" flows that consistently perform well across diverse
datasets. We hypothesize that performance of flows is highly dependent on the specific
dataset characteristics, and a flow that excels on one dataset may not necessarily perform
well on another. The block box indicates the highest correlation for each row.
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Figure A9: Baseline Comparison: across datasets syftr is able to identify flows that increase accuracy
by 6% while retaining identical costs, or conversely decrease costs by 37% while retaining
identical accuracy. If cost is no consideration, an average accuracy increase of 25% is
achieved.
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