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ABSTRACT

In many domains, such as healthcare, time-series data is often irregularly sampled
with varying intervals between observations. This poses challenges for classical
time-series models that require equally spaced data. To address this, we propose a
novel time-series Transformer called Trajectory Generative Pre-trained Trans-
former (TrajGPT). TrajGPT employs a novel Selective Recurrent Attention (SRA)
mechanism, which utilizes a data-dependent decay to adaptively filter out irrelevant
past information based on contexts. By interpreting TrajGPT as discretized ordinary
differential equations (ODEs), it effectively captures the underlying continuous dy-
namics and enables time-specific inference for forecasting arbitrary target timesteps.
Experimental results demonstrate that TrajGPT excels in trajectory forecasting,
drug usage prediction, and phenotype classification without requiring task-specific
fine-tuning. By evolving the learned continuous dynamics, TrajGPT can interpolate
and extrapolate disease risk trajectories from partially-observed time series. The
visualization of predicted health trajectories shows that TrajGPT forecasts unseen
diseases based on the history of clinically relevant phenotypes (i.e., contexts).

1 INTRODUCTION

Time-series representation learning plays a crucial role in various domains, as it facilitates the
extraction of generalizable temporal patterns from large-scale, unlabeled data, which can then be
adapted for diverse tasks (Ma et al.,[2023). However, a major challenge arises when dealing with
irregularly-sampled time series, in which observations occur at uneven intervals (L1 & Marlin} 2020).
This irregularity poses challenges for classical time-series models that are restricted to regular
sampling (Ayala Solares et al., [2020; [Zhang et al., 2022). This issue is particularly significant in
the healthcare domain, since longitudinal electronic health records (EHRs) are updated sporadically
during outpatient visits or inpatient stays (Zhang et al.||2022). Moreover, individual medical histories
often span a limited timeframe due to a lack of historical digitization, incomplete insurance coverage,
and fragmented healthcare systems (Wornow et al.,[2023). These challenges make it difficult for time-
series models to capture the underlying trajectory dynamics (Amirahmadi et al.| [2023). Addressing
these challenges requires the development of novel representation learning techniques that can
extract generalizable temporal patterns from irregularly-sampled data through next-token prediction
pre-training. The pre-trained model is then applied to forecast trajectories based on the learned
transferable patterns, even when patient data is only partially observed.

Recent advances in modeling irregularly-sampled time series have been achieved through specialized
deep learning architectures (Che et al., [2018}; Horn et al., [2020; [Rubanova et al., 2019; Shukla &
Marlin, 2021} [Zhang et al., 2022). However, these models fall short in pre-training generalizable
representations. While time-series Transformer models have gained attention, they are primarily
designed for consecutive data and fail to account for irregular intervals between observations (Nie
et al., [2023; [Zhou et al., [2021; |Wu et al., |2021). To handle both regular and irregular time series,
TimelyGPT incorporates relative position embedding to capture positional information in varying time
gaps (Song et al.,|2024a). BiTimelyGPT extends this by pre-training bidirectional representations
for discriminative tasks (Song et al., 2024b). Despite these improvements, both models rely on a
data-independent decay, which is not content-aware and thus cannot fully capture complex temporal
dependencies in healthcare data. The key challenge remains to develop an effective representation
learning approach that extracts meaningful patterns from irregularly-sampled data.
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In this study, we propose Trajectory Generative Pre-trained Transformer (TrajGPT) for irregular
time-series representation learning. Our research offers four major contributions: First, it introduces
a Selective Recurrent Attention (SRA) mechanism with a data-dependent decay, enabling the
model to adaptively forget irrelevant past information based on contexts. Second, by interpreting
TrajGPT as discretized ODE:g, it effectively captures the continuous dynamics in irregularly-sampled
data; This enables TrajGPT to perform interpolation and extrapolation in both directions, allowing
for a novel time-specific inference for accurate forecasting. Third, TrajGPT demonstrates strong
zero-shot performance across multiple tasks, including trajectory forecasting, drug usage prediction,
and phenotype classification. Finally, TrajGPT offers interpretable health trajectory analysis, enabling
clinicians to align the extrapolated disease progression trajectory with underlying patient conditions.

2 RELATED WORKS

2.1 TIME-SERIES TRANSFORMER MODELS

Time-series Transformer models have demonstrated strong performance in modeling temporal de-
pendencies through attention mechanisms (Wen et al., 2023). Informer introduces ProbSparse
self-attention to extract key information by halving cascading layer input (Zhou et al., 2021). Aut-
oformer utilizes Auto-Correlation to capture series-wise temporal dependencies (Wu et al., 2021)).
FEDformer adopts Fourier-enhanced attention to capture frequency-domain relationships (Zhou
et al, 2022). PatchTST compresses time series into patches and forecasts all timesteps using a
linear layer (Nie et al.}[2023)). Despite their effectiveness, these methods fail to account for irregular
time intervals. TimelyGPT and BiTimelyGPT address this limitation by encoding irregular time
gaps with relative position embedding (Song et al., 2024ajb). However, these models rely on a
data-independent decay, whereas TrajGPT introduces a data-dependent decay to adaptively forget
irrelevant information based on contexts. PrimeNet designs a time-sensitive contrastive learning and
a masking-and-reconstruction task for irregular time-series representation learning (Chowdhury et al.|
2023). ContiFormer integrates ODEs into attention’s key and value matrices to model continuous
dynamics (Chen et al., 2024). However, it demands significantly more computing resources than
a standard Transformer with quadratic complexity, due to the slow process of solving ODEs. In
contrast, TrajGPT models continuous dynamics by pre-training on irregularly-sampled data with
efficient linear training complexity and constant inference complexity.

2.2 ALGORITHMS DESIGNED FOR IRREGULARLY-SAMPLED TIME SERIES

Various techniques have been developed to model irregular temporal dependencies through specialized
architectures. GRU-D captures temporal dependencies by applying exponential decay to hidden
states (Che et al., 2018). SeFT adopts a set function based approach, where each observation is
modeled individually and then pooled together (Horn et al.| |2020). RAINDROP captures irregular
temporal dependencies by representing data as separate sensor graphs (Zhang et al.,|2022)). mTAND
employs a multi-time attention mechanism to learn irregular temporal dependencies (Shukla &
Marlin} 2021)). In continuous-time approaches, neural ODEs use neural networks to model complex
ODEs, offering promising interpolation and extrapolation solutions (Chen et al. [2018). ODE-
RNN further enhances this by updating RNN hidden states with new observations (Rubanova et al.|
2019). HeTVAE addresses sparse input with an uncertainty-aware multi-time attention network and
represents variable uncertainty through a heteroscedastic output layer. (Shukla & Marlin, 2022).
MGP-TCN combines multi-task Gaussian Process to manage non-uniform sampling frequencies with
temporal convolution network to capture temporal dependencies (Moor et al., 2019)). However, these
methods lack a representation learning paradigm and often struggle to capture evolving dynamics in
partially-observed data. In contrast, our TrajGPT can be interpreted as discretized ODEs, allowing it
to learn continuous dynamics via large-scale pre-training. Moreover, TrajGPT utilizes interpolation
and extrapolation techniques from the neural ODE family to predict accurate trajectories.

3 METHODOLOGY

We denote an irregularly-sampled time series as = {(x1,¢1),..., (xn,tn)}, where N is the total
number of samples. Each sample (z,,, t,,) consists of an observation x,, (e.g., a structured diagnosis
code) and its associated timestamp ¢,,. The notations of variables are defined in Appendix. [A]
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Figure 1: TrajGPT overview. (a). TrajGPT processes irregularly-sampled time series by embedding
an input sequence with RoPE. (b). Each SRA layer comprises an SRA module and a feed-forward
layer, with the SRA module capable of operating in both recurrent and parallel forms.

3.1 TRAJGPT METHODOLOGY

In the TrajGPT architecture illustrated in Fig. [Tla, each input sequence x is first projected onto a
token embedding X € RN*d wwhere N and d denote the number of tokens and embedding size,
respectively. A Rotary Position Embedding (RoPE) is then added to the token embedding, encoding
relative positional information between tokens n and m (Su et al.| 2022). Specifically, RoPE handles
varying time intervals by encoding its relative distance t,, — t,,:

Qn = X, Woe''', Ky = Xy Wice 'V, = X Wy (1

The resulting input embedding is then passed through L SRA layers, each comprising an SRA module
and a feed-forward layer. SRA module operates in either parallel or recurrent forms. In the recurrent
forward pass, SRA computes the output representation O,, based on a state variable S

S, = ’VnSnfl + K:L—Vna 0, = QnS'm where Tn = SlngId(XnWj/—)% 2

The data-dependent decay ~y,, € (0,1] and learnable decay vector w, € R'*? enable SRA to
selectively forget irrelevant past information based on contexts. For chronic diseases, TrajGPT
assigns higher ,, values to slow down forgetting and capture long-term dependencies. Conversely,
lower -, values accelerate decay and prioritize recent events, making it more responsive to acute
conditions. To avoid rapid decay from small ,, values, we introduce a temperature parameter 7 = 20
to help preserve information over long sequences. Given an initial state Sy = 0, we can rewrite the
recurrent form in Eq. 2]in a parallel form as:

bn >m
— (QKT 0 D)V, D,,, = "= 3
0= (QK oDV, {0’ n<m ©)

where b,, = H?:l ~; indicates the cumulative decay term for token n, and b,, /b,,, captures the relative
decay between tokens n and m. We detail the equivalence between recurrence and parallelism in
Appendix [B] To capture a broader range of contexts, We extend the single-head SRA in Eq.[2]to a

multi-head SRA:
Oh = Q"8 §h =~hS! | + KTV, where 4! = Sigmoid(X,w! )7, )

n=n’

Head-specific decay 7/ adjusts the influence of past information based on contexts, with 'wQ’ encoding
different aspects of medical expertise.

3.2 TRAIGPT As DISCRETIZED ODESs

In this section, we establish theoretical connection between our proposed SRA module and ODEs.
The recurrent form of SRA in Eq. [2]is a discretization of continuous-time ODE using zero-order
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Figure 2: TrajGPT as discretized ODEs. (a). TrajGPT performs interpolation and extrapolation by
modeling continuous dynamics as discretized ODEs. (b). Time-specific inference directly predicts
irregular samples using previous hidden states and target timesteps.

hold (ZOH) rule (Gu et al., [2022). Appendix [C|provides a detailed proof establishing the theoretical
connection that our model represents a discretized ODE. Appendix [D] provides a mathematical
derivation of the ZOH discreization of continuous-time ODE, leading to our recurrent SRA module.

Given a first-order ODE, we can derive our recurrent SRA (Eq.[2) using a ZOH discretization with a
discrete step size A:

S'(t)=AS(t)+ BX(t), O(t) = CS(t)
n(A¢)

—

where A = , B=A(* - I)"'K/, C = Q,, A, = diag(1,). )
This ODE naturally models the continuous dynamics underlying irregularly-sampled data, with A
corresponding to the varying time intervals between observations. Since the parameters (A, B, C)
depend on the ¢-th observation X (), this continuous-time model becomes a neural ODE, S’(t) =
f(S(t),t,0;), with a differentiable neural network f and data-dependent parameters 6; = (A, B, C)
(Chen et al.,|2018]). Consequently, a single-head SRA serves as a discretized ODE with data-dependent
parameters (i.e., neural ODE). TrajGPT with multi-head SRA operates as discretized ODEs, where
each head corresponds to its own ODE and captures distinct dynamics.

As illustrated in Fig. [2Ja, TrajGPT functions as discretized ODEs, enabling both interpolation
and extrapolation of irregular time-series data. By capturing the underlying continuous dynamics,
TrajGPT handles irregular input through discretization with varying step sizes. For interpolation, it
simply evolves the dynamics within the observed timeframe using a unit discretization step size. For
extrapolation, it evolves the dynamics forward or backward in time beyond the observed timeframe.
Additionally, TrajGPT estimates disease risk trajectories by computing token probabilities at specific
timesteps and evolving the dynamics through interpolation and extrapolation. A detailed trajectory
analysis is provided in Section[5.3]

At inference time, we explore two strategies for forecasting irregularly-sampled time series: auto-
regressive and time-specific inference (Fig. 2Jb). Auto-regressive inference, commonly used by
standard Transformer models, makes sequential predictions at equal intervals and selects the target
timesteps accordingly. Given that TrajGPT functions as discretized ODEs, we introduce a novel time-
specific inference to predict at arbitrary timesteps. To forecast a target time point (., , t,,/), TrajGPT
utilizes both the target timestep ¢, and the last observation (z,,, ¢,) to predict the corresponding
observation x,,. It calculates the target output representation O,,; = Q- S,,/, taking into account the
discrete step size At, , = t,» — t,, and the updated state S,,» = Dy , S, + KV,

3.3 COMPUTATIONAL COMPLEXITY

TrajGPT with its efficient SRA mechanism achieves linear training complexity of O(/N') and constant
inference complexity of O(1) with respect to sequence length N. In contrast, standard Trans-
former models incur quadratic training complexity of O(/N?) and linear inference complexity of
O(N) (Katharopoulos et al., 2020). This computational bottleneck arises from the vanilla self-
attention mechanism, where Attention(X ) = Softmax(QK7T)V, resulting in a training complexity
of O(N2d). When dealing with long sequences (i.e., N >> d), the quadratic term O(N?) becomes
a bottleneck for standard Transformer models.
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As a variant of linear attention (Katharopoulos et al., 2020), the SRA mechanism in TrajGPT
overcomes this quadratic bottleneck of standard Transformer, achieving linear training complexity for
long sequences. In recurrent SRA, O,, = Q,,S», Sy, = ¥ Sn_1 + K, V,,,both Q,,S,, and K, V,,
have O(d?) complexity. By recursively updating over N tokens, the total complexity becomes
O(Nd?). For inference, TrajGPT proposes auto-regressive and time-specific methods. The auto-
regressive inference sequentially generates sequences with equally spaced time intervals like the GPT
model, incurring linear complexity of O(/N). In contrast, time-specific inference directly predicts
the target time point with constant complexity of O(1). Thus, TrajGPT achieves O(N) training
complexity and O(1) inference complexity, making it computationally efficient for long sequences.

4 EXPERIMENTAL DESIGN

4.1 DATASET AND PRE-PROCESSING

Population Health Record (PopHR) database hosts massive amounts of longitudinal claim data from
the provincial government health insurer in Quebec, Canada on health service use (Shaban-Nejad
et al., 2016; [Yuan et al 2018). In total, there are approximately 1.3 million participants in the
PopHR database, representing a randomly sampled 25% of the population in the metropolitan area of
Montreal between 1998 and 2014. Cohort memberships are maintained dynamically by removing
deceased residents and actively enrolling newborns and immigrants. We extracted irregularly-sampled
time series from the PopHR database. Specifically, we converted ICD-9 diagnostic codes to integer-
level phenotype codes (PheCodes) using the Phe WAS catalog| (Denny et al., 2013;[2010). We selected
194 unique PheCodes, each with over 50,000 occurrences. We excluded patients with fewer than 50
PheCode records, resulting in a final dataset of 489,000 patients, with an average of 112 records per
individual. The dataset was then split into training (80%), validation (10%), and testing (10%) sets.

The eICU Collaborative Research Database is a multi-center intensive care unit (ICU) database
containing over 200,000 admissions from ICUs monitored by eICU programs in the United States.
It offers de-identified EHR data, encompassing patient demographics, diagnoses, treatments, and
interventions. To extract irregularly-sampled time series, we convert ICD-9 codes to 288 integer-level
PheCodes. We harmonized drugs with the same identity but differing names and dosages, resulting in
228 unique drugs. We performed representation learning with a 15-minute interval for clinical events
(diagnosis and drug). This resulted in a final dataset of 139,367 patients, with an average of 19 drugs
and 3 ICD codes per patient.

4.2 POPHR EXPERIMENT DESIGN

Forecast irregular diagnostic codes We evaluated the long-term forecasting task using a look-up
window of 50 time points (e.g., diagnosis codes) to predict the remaining codes in the forecasting
windows. We measured model performance using the top-K recall with K = (5, 10, 15). This metric
mimics the behavior of doctors conducting differential diagnosis, where they list the most probable
diagnoses based on a patient’s symptoms [Choi et al.|(2016). Since next-token prediction is inherently
forecasting, TrajGPT enables zero-shot forecasting without requiring fine-tuning.

Drug usage prediction In this application, we predict whether each diabetic patient started insulin
treatment within 6 months of their initial diabetes diagnosis. Following the preprocessing from
previous work (Song et al., 2021}, we extracted 78,712 diabetic patients with PheCode 250, where
11,433 patients were labeled as positive. Due to class imbalance, we use the area under precision-
recall curve (AUPRC) as the evaluation metric. To avoid information leakage, we truncated sequence
representations at the first diabetes record. To assess generalizability, we performed zero-shot
classification, few-shot classification with 5 samples, and fine-tuning on the full dataset.

Phenotype classification PopHR database provides rule-based labels for congestive heart failure
(CHF), with 3.2% of the total population labeled as positive. Given the class imbalance, we utilize
the AUPRC metric to evaluate performance on the rare positive class. To assess the generalizability
of the pre-trained TrajGPT, we conducted zero-shot classification, few-shot classification with 5
samples, and fine-tuning on the entire dataset.
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4.3 EICU EXPERIMENT DESIGN

Forecast irregular diagnoses and drugs We conducted the forecasting task using a look-up window
of 10 time points to predict the remaining codes in the forecasting windows. We assessed forecasting
performance using the top- K recall with K = (10, 20).

Early Detection of Sepsis We defined a 72-hour observation period following ICU admission. We
identified patients without sepsis during the first 8 hours and predict sepsis onset in the remaining
windows. This task was performed using both zero-shot learning and fine-tuning on the full dataset.

4.4 BASELINES

For PopHR dataset, we compared our model against several time-series transformer baselines,

including TimelyGPT (Song et all [2024a), BiTimelyGPT (Song et al.| [2024b), Informer (Z
[2021)), Fedformer (Zhou et al., 2022)), AutoFormer (Wu et al., 2021), PatchTST m |QU_2_§[)

TimesNet (Wu et al.| [2023), ContiFormer (Chen et al.| 2024), PrimeNet (Chowdhury et al.| 2023), and
Mamba (Gu & Dao| [2024; |Dao & Gu, [2024). BiTimelyGPT and PatchTST are encoder-only models

that require fine-tuning for forecasting tasks, while other Transformer models with decoders can
forecast without additional fine-tuning. We also evaluated models designed for irregularly-sampled
time series, 1nclud1ng mTAND (Shukla & Marlin|, 2021)), GRU-D (Che et al.} 2018), RAINDROP
(Zhang et al.,[2022), SeFT (Horn et al., 2020), ODE-RNN (Rubanova et al., 2019), HeTVAE
2022), and MGP-TCN (Moor et all [2019). For eICU dataset, we compared TrajGPT
against efficient models from Section including TimelyGPT, PatchTST, TimesNet, ContiFormer,
PrimeNet, Mamba-2, MTand, and SeFT. Since these models do not have a pre-training method,
they were trained from scratch on the training set. We followed previous works to set Transformer
parameters to about 7.5 million (Table[5).

Transformer Pre-training paradigm With a cross-entropy loss, TrajGPT employs a next-token
prediction task to pre-train generalizable temporal representations from unlabeled data
2019). Given a sequence with a [SOS] token, TrajGPT predicts subsequent tokens by shifting
the sequence to the right. The output representation of each token is fed into a linear layer for
next-token prediction. For other models without an established pre-training paradigm, we employed a
masking-based method by randomly masking 40% of timesteps with zeros (Zerveas et al., 2021). All
Transformer models performed 20 epochs of pre-training with cross-entropy loss. When fine-tuning
was applicable, we performed 5 epochs of end-to-end fine-tuning on the entire model.

a. Visualization of learned token embedding and clusters b. Clustering of patients with Insulin usage
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Figure 3: Visualization of token embeddings and sequence representations. (a). Visualization of
token embeddings across 15 disease categories, where token nodes are colored and clustered by
categories. (b). Visualization of sequence representations for diabetic patients, highlighting insulin
usage within six months of diagnosis. The distinction of two classes enables zero-shot classification.
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5 RESULTS

5.1 QUALITATIVE ANALYSIS OF EMBEDDINGS

In this section, we provided a qualitative analysis of the token embeddings and sequence represen-
tations learned by our TrajGPT on the PopHR database (Fig. [3). We applied Uniform Manifold
Approximation and Projection (UMAP) to visualize the global token embedding, with nodes colored
and clustered by disease categories. The results reveal 12 clearly separated clusters. Some nodes
are projected into other categories but still reflect meaningful clinical relationships; for instance, the
mental disorders cluster (in green color) includes a black dot representing adverse drug events and
drug allergies, implying high risk of opioid usage among the psychiatric group (Zhu et al.| [2021]).
Related disease categories with clinical relevance tend to cluster near each other. For example, mental
disorders are closely clustered with neurological diseases, and circulatory diseases are adjacent to
endocrine/metabolic diseases. We visualized the projected head-specific decay vectors w’v” in Eq.@
using the UMAP techniques (Fig. ??). It shows that the eight decay vectors are projected into distinct
2-D vectors, indicating that they capture different patterns.

In Fig.[3]b, we visualize the sequence representations to demonstrate TrajGPT’s ability to perform
zero-shot classification of initial insulin usage among diabetic patients. To prevent information
leakage, the sequence representations were truncated at the first diabetes record. These sequence
representations were projected onto the same scale as the token embeddings in Fig. [3]a, allowing for
direct comparison with the disease clusters. Patients taking future insulin treatment have embeddings
closely aligned with the endocrine/metabolic cluster, indicating a strong association with diabetes-
related conditions. In contrast, non-insulin patients are dispersed across various clusters, suggesting
less severe diabetes histories. The clear separation between these groups highlights TrajGPT’s ability
to perform zero-shot classification, showcasing the generalizability of its learned representations.

5.2 QUANTITATIVE RESULTS ON POPHR DATASET

TrajGPT with time-specific inference achieves the highest recall at K = 10 and K = 15, with scores
of 71.7% and 84.1%, respectively (Table[T). At K’ = 5, TrajGPT achieves the second-highest recall
with 57.4%. Notably, time-specific inference outperforms the auto-regressive inference approach,
demonstrating its effectiveness in forecasting based on the learned continuous dynamics. These
results highlight TrajGPT’s strength in pre-training on underlying dynamics from sparse and irregular
time-series data, facilitating accurate trajectory forecasting over irregular time intervals.

We then examined the distributions of top-10 recall across three forecast windows, comparing the two
inference methods of TrajGPT as well as TimelyGPT, PatchTST, and mTAND (Fig.[6). TrajGPT’s
time-specific inference consistently outperforms auto-regressive inference as the forecasting window
increases, as it accounts for evolving states and query timesteps over irregular intervals. As expected,
all models experience a performance decline as the forecast window increases, reflecting the increased
uncertainty in long-term trajectory prediction. Despite this, TrajGPT achieves superior and more
stable performance within the first 100 steps. In comparison, PatchTST shows a drastic decline as
the window size increases, reflecting its difficulty with extrapolation. Therefore, TrajGPT excels in
forecasting health trajectories through its time-specific inference.

We evaluated two classification tasks—insulin usage prediction and CHF phenotype classification—
under three settings: zero-shot learning, few-shot learning with S' = 5 samples, and fine-tuning on the
entire dataset. Notably, non-Transformer models designed for irregularly-sampled time series (i.e., the
last five methods in Table. 1)) were trained from scratch. The results are summarized in Table. |1} For
classification tasks, TrajGPT achieves the highest zero-shot results, with 67.2% for insulin and 72.8%
for CHF. This success can be attributed to TrajGPT’s ability to learn distinct clusters of sequence
representations, as discussed in Section For 5-shot classification, TrajGPT achieves the second-
best performance in both tasks. For fine-tuning, it obtains the second best performance of 83.9% in
insulin prediction, only 0.3% behind the best-performing BiTimelyGPT. We also compared TrajGPT
with algorithms specifically designed for irregularly-sampled time series. These methods generally
perform worse in insulin usage prediction, likely due to their difficulty in capturing meaningful
temporal dependencies from truncated sequences. However, mTAND outperforms all models in the
CHEF task, achieving the best result at 85.4%.
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Table 1: The quantitative results on the diagnosis forecasting, insulin usage, and CHF classification.
performance on PopHR dataset. Metrics are reported as average (standard error) from a bootstrap
evaluation of variance. The bold and underline indicate the best and second best results, respectively.
S indicates the number of few-shot examples. — indicates non-applicable.

Forecasting Diabetes-Insulin CHF
K=5 10 15 S=0 5 all S=0 5 all

574(32) 71.7(2.6) 84.1(24)|672(3.1) 702(3.0) 75.5(2.6) | 72.8 (24) 759 (2.1) 83.9(2.0)
533(39) 655(34) 77227 — — — —

Methods / Tasks (%)

TrajGPT (Time-specific)
TrajGPT (Auto-regressive)

TimelyGPT 58.2(3.7) 70.3(3.1) 82.1(2.5)|58.2(2.8) 64.4(2.5) 70.7(2.6)|66.9(23) 71.0(2.2) 81.2(2.0)
BiTimelyGPT 482(33) 63.3(32) 70.5(2.8)|653(3.1) 70.8(2.9) 75.8(3.0) | 70.4 (2.4) 745(2.3) 83.8(2.1)
Informer 46.4(2.9) 60.1(2.8) 71.2(2.6) | 62.1(4.6) 66.2(4.5) 71.5(3.8)|62.9(@42) 67.4(3.9) 80.8(3.5)
Autoformer 429(29) 574(2.7) 68.6(24)|635(3.8) 66.8(3.6) 72.7(3.4)|653(3.5) 69.6(3.7) 81.6(3.2)
Fedformer 433(27) 583(2.5) 69.6(2.4)|642(4.3) 68.4(42) 73.1(3.8)|68.2(3.8) 69.8(3.5) 81.9(2.9)
PatchTST 482(27) 65.5(2.4) 733(22) | 66.8(2.6) 69.7(27) 75.1(24)|722(2.3) 763 (1.9) 842 (2.1)
TimesNet 46.5(3.7) 64.3(3.0) 71.5(2.5)| 642 (3.2) 67.9(2.8) 72.8(2.9)|67.8 (3.1) 72.5(3.0) 82.6(2.8)
ContiFormer 52.8(3.1) 67.2(2.8) 76.9(2.5)|63.5(3.3) 68.0(3.1) 75.0(2.9)|68.4(24) 74.9(2.2) 83.1(2.3)
PrimeNet 52.5(32) 69.7(2.8) 81.8(2.3)|65.6(3.0) 69.5(2.9) 73.8(27)|71.5(27) 75.5(2.9) 84.0(2.4)
Mamba-1 46.5(3.6) 624(3.1) 73.6(2.6) | 61.5(3.6) 67.4(32) 72.5(3.0)|652(3.1) 70.1(2.9) 81.4(2.4)
Mamba-2 514 (32) 69.8(2.9) 80.7(2.5)|64.6(3.1) 69.9(2.8) 74.8(2.4)|69.6(2.7) 73.9(2.8) 83.4(2.3)
MTand 52.6(2.8) 702(2.5) 83.7(1.9)| — —  7463.1)| — —  854(25)
GRU-D 542(4.0) 69.5(3.4) 805(3.1)| — —  n1362| — 79927
RAINDROP 46.5(2.9) 67225 12222)| — — 705028 | — 82404
SeFT 493 (2.6) 68.1(22) 794(1.7)| — —  MIQe| — —  834(23)
ODE-RNN 547(42) 70.6(3.5) 78.6(2.8)| — — 13536 — —  829(3.0)
HeTVAE 51.1(3.9) 70.1(34) 832(32)| — — 71436 — — 81632
MGP-TCN 435(3.5) 572(3.0) 69.1(29)| — — 73936 — —  824(35)

5.3 TRAJECTORY ANALYSIS

In this analysis, we aimed to demonstrate TrajGPT’s effectiveness in trajectory modeling and provide
insights into its classification performance. To achieve this, we conducted case studies on two patients:
one diagnosed with diabetes and another with CHF. We visualized the observed and predicted disease
trajectories for both patients, along with estimated risk trajectories over their lifetimes. As discussed
in Section[3.2] we interpolated risks within the observed timeframe and extrapolated beyond it in both
directions, computing risk as the token probability at each timestep. We also calculated risk growth
by comparing each timestep to the previous one, identifying the ages with high risk growth as well
as the associated phenotypes. By comparing disease and risk trajectories, we evaluated phenotype
progression, disease comorbidity, and long-term risk development.

In Fig.[]a, TrajGPT with time-specific inference achieves a top-10 recall of 90.1% for this diabetic
patient. TrajGPT accurately predicts most diseases in the endocrine/metabolic and circulatory systems.
Although this patient has no prior diabetes diagnosis in the observed data, TrajGPT successfully
forecasts diabetes onset by identifying related metabolic and circulatory symptoms. Fig. b illustrates
the predicted risk trajectory for this patient, indicating a gradual increase in diabetes risk with age.
We highlight specific phenotypes that contribute to the noticeable high risk growth between ages
59 and 62, including chronic IHD, hypothyroidism, obesity, and arrhythmia (Biondi et al., 2019).
These conditions are common comorbidities of diabetes, substantially elevating the likelihood of
diabetes onset over time. In Fig.@]c, we visualize the disease trajectory of a CHF patient, for whom
TrajGPT produces a top-10 recall of 84.7%. TrajGPT accurately predicts a broad range of circulatory,
respiratory, and endocrine/metabolic diseases. Despite the absence of prior CHF diagnosis, TrajGPT
successfully predicts the onset of CHF based on a series of related circulatory conditions |Correale
et al] (2020). In Fig.[]d, the predicted risk trajectory reveals two spikes in risk growth at ages 65 and
74, corresponding to successive occurrences of circulatory diseases (Khan et al.,[2020). This analysis
demonstrates TrajGPT’s ability to forecast unseen phenotypes based on disease comorbidity and the
risking risk with age. As a result, TrajGPT’s ability to model health trajectories and capture disease
progression enhances its classification performance.

The ability to forecast diagnostic codes highlights the potential of Transformer models for health
trajectory analysis. These codes can serve a broad range of administrative purposes, such as estimating
the diagnostic related group (DRG) for inpatients to improve the efficiency and quality of inpatient
care (Renc et al.}[2024)). They also hold significant potential for informing clinical care, including
directing the need for preventive care and identifying potential complications (Shankar et al.| |2023)).
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Figure 4: Predicted health trajectories for a diabetic patient (top) and a CHF patient (bottom). Panels
(a) and (b) show the inferred disease trajectories with look-up and forecast windows. Matched
predictions (solid circles) occur when the top 10 predicted PheCodes match the ground-truth. Larger
solid circles indicate correctly predicted diabetes or CHF. Panels (c¢) and (d) display the predicted
risk trajectories, showing increasing risks with age. For a target disease, TrajGPT computes risk as the
token probability at each timestep and calculates risk growth as the difference between consecutive
values. We highlight key timesteps to indicate significant risk growth and the associated phenotypes.

Table 2: We evaluate TrajGPT and baselines on the eICU dataset for the event forecasting and sepsis
prediction. TrajGPT achieves top performance in both clinical event forecasting tasks and zero-shot
classification of sepsis. Metrics are reported as average (standard error) from a bootstrap evaluation
of variance. The bold and underline indicate the best and second best results, respectively. S indicates
the number of few-shot examples. — indicates non-applicable.

Methods / Tasks (%) K j;gecasnngzo =0 Sepsis All

TrajGPT (Time-specific) 57.8(29) 69.3(2.1) | 451 (2.7) 51.3(2.4)
TrajGPT (Auto-regressive) 54.1(3.2) 649 (2.3) — —

TimelyGPT 56.9(32) 67.1(24) | 42.0(2.5) 48.5(2.2)
PatchTST 552 (2.7 66.0(1.7) | 4452.2) 51.8(1.8)
TimesNet 529 (3.1) 603((2.3) | 41.2(3.1) 47.5(2.6)
ContiFormer 57.1(2.2) 66.8((22) | 41.7(2.5) 50.6(2.8)
PrimeNet 534(2.3) 6752.0) | 44.023) 51.2(1.9)
Mamba-2 55.7(2.8) 652(2.3) | 43.6(2.8) 49.5(2.3)
MTand 53924) 674 (1.6) — 52.5(2.1)
ODE-RNN 55.7(34) 67.8(2.8) — 49.2 (2.9)

5.4 QUANTITATIVE RESULTS ON EICU DATASET

For the eICU datasets, we evaluated TrajGPT on irregular clinical event forecasting (diagnoses and
drugs) and early detection of sepsis, with results summarized in Table. 2} Note that the recall values
for the joint prediction of diagnoses and drugs are lower due to the larger hypothesis space for this
task [Choi et al| (2016)). Despite the increased complexity compared to predicting diagnoses alone,
TrajGPT with time-specific inference achieved superior performance over baseline models, resulting
in a top-10 recall of 57.8% and a top-20 recall of 69.3%. This superior performance can be attributed
to the effectiveness of time-specific inference, which improve top-10 and top-20 recall rates by 3.7%
and 4.4% respectively, compared to auto-regressive inference. The representation learning methods
designed specifically for irregularly-sampled time series demonstrated better overall performance.
Additionally, ODE-RNN achieves the second-best performance with a top-20 recall of 67.8%. These
findings highlight that both TrajGPT’s time-specific inference and ODE-RNN leverage the strengths
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Table 3: Ablation results of TrajGPT by selectively removing components and comparing inference
methods. Performance is evaluated on forecasting task with a the of top-10 recall.

Forecast irregular diagnosis codes (K=10)  Time-specific inference = Auto-regressive inference

TrajGPT 71.7 65.5
w/o decay gating (i.e., fixed ) 70.3 64.0
w/o RoPE (i.e., absolute PE) 67.8 63.2
w/o linear attention (i.e., GPT-2) — 61.2

TrajGPT (without Pre-training) 67.1 ?

of modeling underlying dynamics to enhance forecasting accuracy. For the sepsis prediction task,
TrajGPT outperforms all baselines in the zero-shot setting, achieving an AUPRC of 45.1%. While
MTand performs best when trained from scratch, its reliance on a bespoke shallow model targeting
a single outcome limits its scalability and applicability in clinical settings. In summary, TrajGPT
leverages pre-trained generalizable patterns to enable zero-shot learning, effectively detecting early
sepsis without additional training.

5.5 ABLATION STUDY

To evaluate the contributions of key components in TrajGPT, we performed ablation studies by
selectively removing components such as decay gating, RoPE, and the linear attention module. We
compared the time-specific inference and auto-regressive inference under different ablation setups.
Notably, removing all components results in a vanilla GPT-2, which can only perform auto-regressive
inference. The ablation studies were assessed on the forecasting task using the top-10 recall metric.

As shown in Table[3] removing the data-dependent decay and RoPE results in performance declines
of 1.4% and 2.5%, respectively. This highlights the critical role of these modules in handling irregular
time intervals by prioritizing recent data while attenuating the influence of distant ones. Replacing
time-specific inference with auto-regressive inference leads to performance drops ranging from 4.6%
to 6.2%, with the most significantly drop in TrajGPT. Furthermore, vanilla GPT-2 with auto-regressive
inference produces the lowest performance, falling behind TrajGPT with time-specific inference
by 10.5%. Time-specific inference uses varied time intervals for a single inference, reducing both
computational steps and error accumulation for better performance.

6 CONCLUSION AND FUTURE WORK

The current paradigm in clinical practice relies on bespoke shallow models targeting single outcomes,
highlighting the need for models capable of predicting diverse patient outcomes with minimal or
no refinement (Moor et al., [2023)). Developing such models for healthcare has to account for the
irregular sampling of medical records, as improper modeling can lead to faculty inferences (Agniel
et al.,[2018). Our research proposes a novel architecture, TrajGPT, designed for irregular time-series
representation learning and health trajectory analysis. To achieve this, TrajGPT introduces an SRA
mechanism with a data-dependent decay, allowing the model to selectively forget irrelevant past
information based on contexts. By interpreting TrajGPT as discretized ODEs, it effectively captures
the continuous dynamics underlying irregularly-sampled time series, enabling both interpolation
and extrapolation. For the forecasting task, TrajGPT provides an effective time-specific inference
by evolving the dynamics according to varying time intervals. TrajGPT demonstrates strong zero-
shot performance across multiple tasks, including diagnosis forecasting, drug usage prediction, and
phenotype classification. TrajGPT also provides interpretable trajectory analysis, aiding clinicians in
understanding the extrapolated disease progression along with risk growth.

To further validate generalizability, we will compare TrajGPT with foundation LLMs, such as GPT-
based (Wang et al.,[2024)) and Llama-based (Rasul et al., 2024) models. Our work currently focuses
on irregularly-sampled time series with discrete data (i.e., diagnoses and drugs); we plan to expand
this to continuous multivariate time series, such as ICU measurements [Johnson et al.| (2023)). While
we focus on in-domain data, we will explore representation learning and trajectory analysis on
out-of-distribution data as future works.
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A DENOTATIONS OF VARIABLES

Table 4: Notations in TrajGPT

Notations Descriptions Notations Descriptions

z = {(z1,t1),...,(@n,tn)} | Anirregularly-sample time series || N Number of tokens

Tn, An observation tn Corresponding timestamp

X e RV A sequence of tokens d Hidden dimension

L Number of layers H Number of Heads

Q K,V e RVxd Query, key, value matrices Wo, Wi, Wy € R4 | Projection matrices for Q, K,V
O ¢ RVxd Output embedding S € Rixd State variable

0 Rotary angle hyperparameter ~v € (0,1] Data-dependent decay

w, € RX1 Decay weight vector T =20 Temperature term

b =10 7t Cumulative decay D e RVXN Decay matrix

B DERIVATION OF SRA LAYER

Starting from the recurrent form of the TrajGPT model in Eq. [2] we derive the state variable S by

assuming Sy = 0:
Sn=TSn-1+ K, V,
S =K'V,
Sy =K Vi+ KV,
Ss =737 K Vi + 7K, V, + K V3

S, = Z ( H %> K;LVm = Z <£ >KILVm, where b,, = H’Yt,
m t=1

m=1 \t=m+1 m=1

(6)

where we get the generalized updates of .S, using the cumulative decay term b,, = H?:l ~¢. We can

compute the output representation O,, using Q,, and Sy,

m=1 m

N

To represent Eq. [7] in matrix form, we introduce a causal decay matrix D, where each element

D, = Ht m1 7t represents the decay relationship between two tokens n and m:

w0 .- 0 1 0 ... 0
b b
oo L P ;
. : . : N- . . .
% gix Ht;zpyt 1

®)

Using this decay matrix D, we give the matrix form of the recurrent updates of O,, in Eq.

T
n —Qn § Danm m

= Qn(DanlT Vit + DK, Vo + Dypi1 K Vi1 + -+ Doy KL V)
N—— N———

0 0
= (Q.K")®D,)V.

To express the computation of all tokens, we obtain the parallel form of SRA as follows:

= (QKT @D)V7 Dnm = {Obm’

n<m’
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C TRAIJGPT AS SSM AND NEURAL ODE

The continuous-time SSM defines a linear mapping from an ¢-step input signal X (¢) to output O(t)
via a state variable S(t). It is formulated as a first-order ODE:
S'(t)=AS(t)+ BX(t), O(t) = CS(t), (11)

where A, B, C denote the state matrix, input matrix, and output matrix respectively. Since data in
real-world is typically discrete instead of continuous, continuous-time SSMs require discretization
process to align with the sample rate of the data. With the discretization via zero-order hold (ZOH)
rule (Gu et al.,|2022), this continuous-time SSM in Eq. becomes a discrete-time model:

St == AS’Fl + BXt, Ot == CSt

A=e¢r4 B= (2 -1)A'B, (12)
where A and B are the discretized matrices and A is the discrete step size. We provide a detailed
derivation of ZOH discretization in Appendix

Here, we show that a single-head SRA module is a special case of the discrete-time SSM defined in
Eq. and then we derive its corresponding continuous-time SSM. To achieve it, we first rewrite the
recurrent SRA (Eq. [2) as follows:

S, =ASi—1 + K, Vi,
= Q:St, (13)

where A; = diag(1vy,) is a diagonal matrix with all diagonal elements equal to ;. In this way,
the recurrent form of SRA in Eq.[I3]corresponds to the discrete-time SSM defined in Eq.[12} with
(A,B,C) = (A, K,',Q;). Assuming ZOH discretization, the parameters for the corresponding
continuous-tlme SSM defined in Eq. [IT]|can be expressed as follows:

A=eDA QA A=W7
B=(*-1)A"'B=K,/, = ({B=A(**-1)"'K/, (14)
C=Q:. C=0Q

As aresult, our recurrent SRA can be interpreted as a discretized ODE. Note that the ODE parameters
(A, B, C) in Eq. 14| are data-dependent with respect to the ¢-th observation X;. Therefore, this
continuous-time ODE is actually a neural ODE, S’(t) = f(S(¢), t, 0:), with a differentiable neural
network f and data-dependent parameters 0; = (A, B, C) (Chen et al [2018). The continuous
dynamics underlying the irregular sequences are models by a neural ODE as follows:

S'(t)=AS(t)+ BX(t) = f(S(t),t,0), O(t) = CS(t)
ln(At)

where A = ,B=A(* - 1)K/, C=Q,, A, = diag(1y,). (15)

Consequently, a single-head SRA serves as a discretized (neural) ODE model. When we generalize
the multi-head scenario, TrajGPT can be considered as discretized ODEs, where each head of SRA
corresponds to its own ODE and captures distinct dynamics.

D PROOF OF SSM DISCRETIZATION VIA ZOH RULE

To discretize the continuous-time model SSM, it has to compute the cumulative updates of the state
S (t) over a discrete step size. For the continuous ODE in Eq. we have a continuous-time integral
as follows:

S'(t)=AS(t)+ BX(t)
t+1
St+1)= S(t)+/ (AS(t)+BX(r))dr (16)
t
In the discrete-time system, we need to rewrite the integral as we cannot obtain all values of X ()
over a continuous interval ¢ — ¢ + 1:

t+1
S(t+1)= +Z (AS(7) + BX(1)At (17)
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We replace X () in the time derivative S’(t) as follows:
S'(t)=AS(t) + BX(t)
S'(t) — AS(t) = BX (t)
e A8/ (t) — e AAS(t) = e A BX (1)
d

7 (e_AtS(t)) = e A'BX(t)

e AS(t) = S(0) + /t e A"BX (1)dr
0

t
S(t) = eALS(0) + / A=) BX (r)dr (18)
0

By introducing a discrete step size A = tj11 — tx, we transform the above equation to a discrete-time
system as follows.

th41
S(tpg1) = eAteri=t) g1, +/ A=) BX (7)dr

ty

tht1
S(tyy1) = eA(tk+rtk)S(tk) + (/ eA(tk+1T)d’T> BX (t)) (assuming x(7) = x(tx) over the interval)
tr
trt1
S(tpr1) = e*AS(ty) + BX(tk)/ eAlth1=7) 47

123

A
S(try1) = e2AS(ty) + BX(tk)/ A" dr’ (letting 7/ = try1 — 7)
0

A
S(tesr) = eS8 (8) + BX () / AT dr
0

S(try1) = e2A8(ty) + BX (ty) (eAA — I) A7 (integral of matrix exponential function)

Sk11 = AS; + BXy, (19)
where the discretized state matrices A = ¢~ and B = (¢4 — I) A~! B. Note that we apply the
ZOH approach considering that 2(7) is constant between ¢, and tx1, we can rewrite the Eq. by
assuming X (1) ~ X (t + 1):

tet1
S(tpr1) = eAter1=t) (1) +/ A= BX (1)dr

ty

tr41
S(tpy1) = eA(tk+1—tk)S(tk) + (/ eA(tk+1—T)dT> BX (tg+1)

ty
Sy+1=AS; + BXj 11 (20)
The resulting equation is the discrete-time SSM using ZOH discretization in eq.

Derivation of B.  We use the equation e” = I + A7 + £ A%r? + .- -, we have this integral of
exponential function of A:

_ A
B:/ eA” Bdr
0
A 1
:/ (I+AT+2'A27'2+-“)dTB
O .

= (IA+;AA2+;A2A3+~~>B

— (A4 -T1)A7'B @

E DETAILS OF EXPERIMENTS
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Table 5: Configurations of TrajGPT and other transformer baselines on the PopHR dataset. We set
TrajGPT and all Transformer baseline to 7.5 million parameters.

TrajGPT
Decoder Layers 8
Heads 4
Dim (Q, K, V, FF) 200,200,400,400
Transformer baselines including Encoder-decoder and Encoder-only models
Enc-Dec Layers 4&4
Encoder Layers 8
Decoder Layers 8
Heads 4
Dim (Q, K, V, FF) 200,200,200,400
90 1 :
Method
=804 % B TrajGPT (Time-specific)
S I TrajGPT (Auto-regressive)
< B TimelyGPT
= 70 % $ %% BN PatchTST
& I MTand
(260 1
50 1
0-50 50-100 >100

Forecasting Windows

Figure 5: The distribution of top-10 recall performance for TrajGPT and baseline methods across
three forecasting window sizes. The TrajGPT with time-specific inference achieves better and more
stable performance compared with auto-regressive inference and other baselines.

94 x8 X1

Dimension 2

3 4 5 6
Dimension 1

Figure 6: The distinct decay vectors w,(yh) projected by UAMP, indicating that they capture different
patterns.
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