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ABSTRACT

Differential privacy (DP) in deep learning is a critical concern as it ensures the con-
fidentiality of training data while maintaining model utility. Existing DP training
algorithms provide privacy guarantees by clipping and then injecting external noise
into sample gradients computed by the backpropagation algorithm. Different from
backpropagation, forward-learning algorithms based on perturbation inherently
add noise during the forward pass and utilize randomness to estimate the gradients.
Although these algorithms are non-privatized, the introduction of noise during
the forward pass indirectly provides internal randomness protection to the model
parameters and their gradients, suggesting the potential for naturally providing
differential privacy. In this paper, we propose a privatized forward-learning algo-
rithm, Differential Private Unified Likelihood Ratio (DP-ULR), and demonstrate its
differential privacy guarantees. DP-ULR features a novel batch sampling operation
with rejection, of which we provide theoretical analysis in conjunction with classic
differential privacy mechanisms. DP-ULR is also underpinned by a theoretically
guided privacy controller that dynamically adjusts noise levels to manage privacy
costs in each training step. Our experiments indicate that DP-ULR achieves compet-
itive performance compared to traditional differential privacy training algorithms
based on backpropagation, maintaining nearly the same privacy loss limits.

1 INTRODUCTION

Deep neural networks have made substantial advancements across various domains, such as image
recognition (Meng et al., 2022; Dosovitskiy et al., 2020; Zhao et al., 2020), natural language
processing (Deng & Liu, 2018; Meng et al., 2022; Han et al., 2021), and autonomous driving (Huang
et al., 2018; Häuslschmid et al., 2017; Chen et al., 2015). However, training these powerful models
often involves vast amounts of data, including personal data gathered from the Internet, exacerbating
privacy concerns. It has been well-documented that neural networks do not merely learn from data
but can also memorize specific instances (Carlini et al., 2019; 2021).

Differential privacy (DP) has emerged as a widely accepted metric for assessing the leakage of
sensitive information in data (Liu et al., 2024a). In the realm of model training, DP mechanisms
(algorithms) aim to ensure that the presence or absence of any single data sample does not signifi-
cantly influence the learned parameters. The most popular learning algorithm, Differentially Private
Stochastic Gradient Descent (DP-SGD) (Abadi et al., 2016), employs a typical strategy to safeguard
privacy: assessing algorithms’ sensitivity and introducing randomness by adding random noise to
their final output. The manually introduced randomness breaks the deterministic of the computed
gradient and protects privacy. However, there are many problems when deploying DP-SGD. First, it
needs to compute the gradient of each sample individually, causing huge time consumption compared
to traditional non-private algorithms. Second, it needs the full knowledge of the computational graph
due to backpropagation, while any insertion of black-box modules in the pipeline would block the
use of DP-SGD. Third, it needs all operations to be differentiable, while many advanced models use
non-differentiable activations, such as spiking neural networks (Tavanaei et al., 2019).

Different from deterministic backpropagation-based methods, forward-learning algorithms (Peng
et al., 2022; Hinton, 2022; Salimans et al., 2017) employ perturbation or Monte Carlo simulations
to estimate the gradient directly, bypassing the need for backpropagation based on the chain rule.
Compared to backpropagation-based methods, forward-learning algorithms offer several advantages,
including high parallelizability, suitability for non-differentiable modules, and applicability in black-
box settings (Jiang et al., 2023). Moreover, as depicted in Figure 1, perturbation during the forward
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pass naturally breaks the deterministic optimizations and results in randomized converged parameters,
providing a potential ”free lunch” for equipping the model with DP. Consequently, an intuitive
question arises: How could we utilize the inherent randomness in forward-learning algorithms to
achieve differential privacy?
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Figure 1: Compared to traditional training algo-
rithms, forward-learning adds noise during forward
and estimates naturally randomized gradients, lead-
ing to a potential free lunch of differential privacy.

To answer this question, we investigate the
state-of-the-art forward-learning algorithm, the
Unified Likelihood Ratio (ULR) method (Jiang
et al., 2023). The ULR algorithm adds noise to
intermediate values, e.g., each layer logit, during
the forward propagation and utilizes theoretical
tools to estimate the parameter gradients. While
ULR inherently provides randomized gradients,
there is still a gap in fully achieving differen-
tially private learning.

In this paper, to address this gap, we propose
a privatized forward-learning algorithm, Differ-
entially Private Unified Likelihood Ratio (DP-
ULR), and provide a theoretical analysis of its
differential privacy guarantees. DP-ULR dis-
tinguishes itself from ULR and achieves DP
by incorporating novel elements, including the
sampling-with-rejection strategy and the theoret-
ically guided differential privacy controller. Although not treating DP-ULR as a drop-in replacement
for DP-SGD, our theoretical analysis and experimental findings reveal that DP-ULR demonstrates
nearly the same differential privacy properties and competitive utility in practice compared to DP-
SGD. Our contributions are summarized as follows:

• We propose a novel sampling-with-rejection technique and theoretically analyze its impact
on differential privacy in conjunction with the Gaussian mechanism.

• We introduce DP-ULR, a forward-learning differential privacy algorithm that integrates our
sampling-with-rejection strategy and a well-designed differential privacy cost controller.

• We provide a comprehensive theoretical analysis of the differential privacy guarantees of
our DP-ULR algorithm, establishing a general DP bound under typical conditions.

• We validate the effectiveness of our algorithm with MLP and CNN models on the MNIST
and CIFAR-10 datasets.

2 BACKGROUND AND RELATED WORK

2.1 DIFFERENTIAL PRIVACY

Differential privacy (Dwork, 2006; Dwork et al., 2006b;a) is the gold standard for data privacy in
controlling the disclosure of individual information. It is formally defined as the following:
Definition 1 ((ϵ, δ)-DP (Dwork et al., 2006a)). A randomized mechanismM : D → R with domain
D and rangeR, satisfies (ϵ, δ)-differential privacy if for any adjacent inputs D,D′ ∈ D and for any
subset of outputs S ⊆ R it holds that

Pr[M(D) ∈ S] ≤ eϵPr[M(D′) ∈ S] + δ. (1)

The traditional privacy analysis of existing learning algorithms is obtained through Rényi Differential
Privacy (Mironov, 2017; Mironov et al., 2019), which is defined with Rényi divergence.
Definition 2 (Rényi divergence (Mironov, 2017; Mironov et al., 2019)). Let P and Q be two
distributions (random variables) defined over the same probability space, and let p and q be their
respective probability density functions. The Rényi divergence of a finite order α ̸= 1 between P and
Q is defined as

Dα(P ∥ Q) :=
1

α− 1
lnEx∼q

(
p(x)

q(x)

)α

(2)

Rényi divergence at orders α = 1,∞ are defined by continuity.
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Definition 3 (Rényi differential privacy (RDP) (Mironov, 2017; Mironov et al., 2019)). We say that
a randomized mechanismM : D → R satisfies (α, γ)-Rényi differential privacy (RDP) if for any
two adjacent inputs D,D′ ∈ D it holds that

Dα(M(D) ∥ M(D′)) ≤ γ. (3)

In this work, we use RDP to track privacy because of its outstanding composition property. Specifi-
cally, a sequence of (α, γi)-RDP algorithms satisfies an additive RDP with (α,

∑
i γi). Moreover, we

have the following proposition serving as a tool to transform the (α, γ)-RDP to traditional (ϵ, δ)-DP.
Proposition 1 (From (α, γ)-RDP to (ϵ, δ)-DP (Mironov, 2017)). If f is an (α, γ)-RDP mech-
anism, it also satisfies (γ + ln 1/δ

α−1 , δ)-differential privacy for any 0 < δ < 1, or equivalently
(ϵ, exp [(α− 1)(γ − ϵ)])-differential privacy for any ϵ > γ.

2.2 DIFFERENTIAL PRIVACY IN DEEP LEARNING

As an adaption of Stochastic Gradient Descent (SGD) with backpropagation, DP-SGD (Abadi et al.,
2016) is the most popular DP algorithm for deep learning (De et al., 2022; Sander et al., 2023).
It assesses sensitivity by clipping the per-sample gradients and adds Gaussian noise after gradient
computation to provide differential privacy guarantees. Particularly, as a training algorithm that
comprises a sequence of adaptive mechanisms—a common scenario in deep learning—DP-SGD adds
noise to the outcome of each sub-mechanism calibrated to its sensitivity, enhancing the utility of final
learned models. While several techniques to improve the utility-privacy trade-off have been employed,
including over-parameterized model (De et al., 2022), mega-batch training (Dörmann et al., 2021;
Sander et al., 2023), averaging per-sample gradients across multiple augmentations (Hoffer et al.,
2020), temporal parameter averaging (Polyak & Juditsky, 1992), equivariant networks (Hölzl et al.,
2023), these adaptations not only heavily increase the computation cost but also do not change the
core of DP-SGD: adding noise to deterministic gradients, which does not stand in forward learning.

2.3 FORWARD LEARNING

While there is no evidence that backpropagation exists in natural intelligence (Lillicrap et al., 2020),
some studies put efforts into designing biologically plausible forward-only learning algorithms. For
example, Nøkland (2016) employs the direct feedback alignment to train hidden layers independently.
Jacot et al. (2018) leverage a neural target kernel to approximate the gradient for optimization.
Salimans et al. (2017) apply the evolutional strategy to update the neural network parameters. Hinton
(2022) replace the forward-backward pass with two forwards and optimize the neural networks by
optimizing the local loss functions on positive and negative samples. Peng et al. (2022) propose a
likelihood ratio (LR) method for unbiased gradient estimation with only one forward in the multi-layer
perception training and Jiang et al. (2023) develop the unified likelihood ratio (ULR) method for
training a wide range of deep learning models. In our work, we incorporate novel elements into
ULR and provide a theoretical-guaranteed privatized forward-learning algorithm, i.e., DP-ULR, to
achieve differential privacy. We note that while several existing works (Liu et al., 2024b; Zhang et al.,
2024; Tang et al., 2024) privatize loss values obtained in zeroth-order optimization for achieving DP,
our work differs from them in multiple aspects, including motivation, application scope, the core
algorithm, and theoretical analysis. Detailed discussion is provided in Appendix A.5.

3 METHODOLOGY

In Section 3.1, we present preliminaries of differential privacy in the deep learning setting. In
Section 3.2, we introduce our proposed algorithm, DP-ULR. In Section 3.3, we provide our theoretical
results of the DP bound. In Section 3.4, we discuss the difference between DP-ULR and DP-SGD.

3.1 PRELIMINARIES

In this paper, we consider the deep learning setting. Specifically, assume we have a (training) dataset
D = {di}N1 , where each example d = (x, y) ∈ X × Y is a pair of the input and the corresponding
label. For a given model with a non-parameter structure φ and a loss function ℓ, the goal is to optimize
the parameter θ to minimize the empirical loss, formalized as argminθ(

∑
(x,y)∈D ℓ(φ(x; θ), y)).

3
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Intuitively, the final output θ carries information from all examples as they all contribute to this
optimization. In practice, deep-learning models do easily memorize sensitive, personal, or private
data. For evaluating privacy in deep learning, differential privacy has become a significant criterion.

In the context of deep learning with differential privacy, a mechanismM refers to a training algorithm
that takes a (training) dataset D, typically large, as the input and outputs a final parameter θ. Thus, we
consider the domain D = {D ∈ 2D̄ | |D| ≥ N̄}, where N̄ is a positive integer and D̄ is a large data
pool, and the rangeR = Rdθ , where dθ is the number of dimensions of the model parameter. Then,
the adjacent inputs represent two training datasets D,D′ ∈ D that differ by exactly one example.
To guarantee privacy, we expect a randomized training algorithmM to produce effectively close
final parameter distributions in terms of (ϵ, δ)-DP or (α, γ)-RDP (Definition 1 and 3). For clarity, a
complete list of symbols used in this paper can be found in Appendix A.1.

3.2 DP-ULR ALGORITHM

Consider a model with a hierarchical non-parameter structure φ that can be sliced into L modules.
Let φl denote the l-th module and θl denote the parameter of φl. We write xl for the l-th module’s
input and vl for the output, i.e., vl := φl(xl; θl). The outline of our DP-ULR training algorithm is
depicted in Algorithm 1. Initially, in each step t ∈ [T ], we take an independent random sample from
the dataset D with equal sampling probability for each example. If the size of sampled batch Bt is
smaller than a pre-defined hyperparameter NB , it is resampled. Subsequently, during the forward
pass of each example d = (x, y) ∈ Bt, we inject Gaussian noise z into each module’s output vl
separately. This noise-added output serves as the next module’s input, i.e., xl+1 = vl + z. Then, we
compute the likelihood ratio gradient proxy ĝlt(d), which we define later in Equation (4). For each
example d, we repeat K times and clip the ℓ2 norm of averaged proxies to form the final estimated
gradient glt(d). Finally, we employ the estimated gradients over the batch to update the parameter
of the l-th module. During the whole process of training, we utilize a proxy controller method to
adjust the standard deviation (std) σ of noise given a required lower bound of the proxy’s std σ0 for
the desire of differential privacy and to compute the accumulated privacy cost.

Algorithm 1 Differential Private Likelihood Ratio Method (DP-ULR)
Input: Dataset D = {(xi, yi)}N1 , loss function ℓ, model structure φ. Parameters: learning rate ηt,

target std σ0, sampling rate q, rejection threshold NB , repeat time K, overall clip bound C.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Bt from D with sampling probability NB/N , resample if |Bt| < NB

// Estimate gradients
for l ∈ L do

Compute required noise std σ (eq. (8)) and accumulate privacy cost using proxy controller
for di = (xi, yi) ∈ Bt do

Sample K zero-mean Gaussian noise {zk}K1
iid∼ N (0, σ2I)

Add noise to the l-th module’s output xl+1
i,k = vli + zk = φl(xl

i, θ
l
t) + zk, k = 1, ...,K

Forward to compute loss Lk = ℓ(φ(xi; θ, l, zk), yi), k = 1, ...,K
Compute ĝlt,k(di)← 1

σ2D
⊤
θlv

l
i · zkLk, k = 1, ...,K ▷ D⊤

θlv
l
i is the Jacobian matrix

Compute glt(di)← 1
K

∑
k ĝ

l
t,k(di)

Clip gradient glt(di)← glt(di)/max(1, ∥gl
t(di)∥2

C )

// Gradient descent
For each layer l, θlt+1 ← θlt − ηt

NB

∑
di∈Bt

glt(di)

Output: θT = (θ1T , ..., θ
L
T ) and the overall privacy cost

Likelihood ratio proxy. In our DP-ULR, we harness the likelihood ratio gradient proxy ĝl(d)
to approximate the ground-truth gradient for each example instead of accurately computing it by
backpropagation. Let φ(x; θ, l, z) denote the model’s output when the Gaussian noise z ∼ N (0, σ2I)
is added to vl. Then, the likelihood ratio gradient proxy before clipping is defined as

ĝl(d) =
1

σ2
(Dθlvl)⊤ · zL, (4)
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where Dθlvl is the Jacobian matrix of vl with respect to θl and L := ℓ(φ(x; θ, l, z), y) represents the
final noisy loss. A result from Jiang et al. (2023) detailed as Theorem 3 in the Appendix demonstrates
that the expectation of our likelihood ratio gradient proxy equals the expectation of gradient with
noise added, i.e., Ez(ĝ

l(d)) = Ez(∇θlL). Subsequently, it follows with Proposition 2 below. It
indicates that while the proxy leads to a certain precision loss in the gradient estimation, we can
control it by selecting noise with a distribution close to 0, substantiating the utility of DP-ULR.
Proposition 2. As the standard deviation σ of noise approaches zero, the expectation of ĝl(d)
converges to the true gradient without noise, i.e.,

lim
σ↓0

Ez(ĝ
l(d)) = ∇θlℓ(φ(x; θ), y). (5)

In addition to the expectation, we are also concerned about the proxy’s variance from both perspectives
of utility and privacy. Specifically, one intuitive question is how the variance of glt(d) changes as
the std σ of injected noise changes. Through asymptotic analysis, we show that the variance of the
gradient proxy is inversely proportional to noise variance σ2 when σ is relatively small. Concretely,
we state the following Proposition 3. The detailed analysis can be found in the Appendix A.3.
Proposition 3. Given the loss without injected noise, L0 := l(φ(x; θ), y), and a small σ, we have

Var(ĝl(d)) ≈ L
2
0

σ2
(Dθlvl)⊤ ·Dθlvl. (6)

Random distribution of estimated gradients. Differential privacy guarantees are highly sensitive
to the distribution of the mechanism’s outputs. In the common strategy to protect privacy, the noise
of a Gaussian distribution is added to the output, making it also a Gaussian distribution given the
sampling result. On the contrary, in our method, the Gaussian noise is injected into the intermediate
value, leaving the final output’s distribution a mystery. Recall that the final gradient estimator is
obtained by averaging K repetitions. It follows that, according to the multidimensional central limit
theorem, glt(d) can be approximated as Gaussian when the repeat time K is large enough.

Batch subsampling with rejection. A significant difference between our proposed DP-ULR and the
previous likelihood ratio methods is the subsampling operation. In DP-ULR, we adopt an independent
sampling strategy with a predefined threshold NB . Concretely, each example in the dataset di ∈ D
is picked independently with the same probability q. But if the size of Bt is smaller than NB , it is
rejected and resampled. Like the ordinary i.i.d subsampling, our rejection strategy with a lower limit
also amplifies privacy. Specifically, in the subsampling with rejection, we expect that the privacy cost
γ diminishes quadratically with the subsampling rate but adds a very small term that is not related to
α in (α, γ)-RDP. We discuss the privacy amplification in detail in Section 3.3.

In the implementation, batches are constructed by randomly permuting examples and then partitioning
them into groups of fixed size for efficiency. For ease of analysis, however, we assume that each batch
is formed by independently picking each example with the same probability q and with rejection.

The intuition behind rejection is that, unlike traditional DP algorithms that add noise to the gradient
with fixed variance independent of batch size, the variance of the gradient estimated by our method
is directly and positively correlated with batch size. By rejecting small batches, we prevent the
privacy costs of low randomness in extreme cases. Besides, in the setting of deep neural networks, the
dimensions of the l-th module’s parameter might be less than the dimensions of l-th module’s output,
i.e., dθl > dvl . Consequently, the Jacobian matrix (Dθlvl)⊤ would be a singular transformation of
the high-dimensional random variable zL. Then, the gradient proxy’s covariance matrix must not be
full-rank. Rank-deficient covariance is a dangerous signal in differential privacy because it means
that the randomness is totally lost along certain directions in the high-dimensional space. In the quest
to address this crisis, we introduce the following assumption.
Assumption 1. There exists a positive integer N0 less than N̄ , such that the sum of the covariance
matrices of gradient proxies for any module and any batch with a size larger than N0 sampled from
any dataset is full rank. It is equivalent as follows, where we define Σĝ(d) := Var(ĝl(d)),

∃N0 ∈ [N̄ ], s.t.∀D ∈ D,∀B ⊂ D, |B| ≥ N0,∀l ∈ [L], rank(
∑
d∈B

Σĝ(d)) = dθl . (7)

Assumption 1 indicates that setting the lower limit NB large enough provides a minimum guarantee
of the output’s randomness, enabling us to bound the privacy cost by a privacy controller. In
Appendix A.4, we discuss when we expect Assumption 1 to hold.
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Privacy controller. In our DP-ULR, we adopt a privacy-controlling method to guarantee the
differential privacy cost for each step and, thus, the overall cost. The objective is to bound the
minimum variance of the output, the estimated gradient in each step. Let ΣB denote the covariance
matrix of the estimated gradient for the sampled batch B and λ(·) denote the spectrum of a matrix,
i.e., the set of its eigenvalues. Note that we introduce Assumption 1 to ensure a full-rank covariance
matrix if we set NB ≥ N0. Equivalently, we have min(λ(ΣB)) > 0. Then, Proposition 3 shows
the feasibility of controlling min(λ(ΣB)) by adjusting the std σ of injected noise. Meanwhile, the
adjustment must be dynamic because of the example-specific Jacobian matrix and non-noise loss.

Concretely, before computing likelihood ratio proxies in each step, we first execute one forward pass
without any noise to obtain the Jacobian matrix Dθlvl and the non-noisy loss L0 for each example.
Subsequently, we compute the standard covariance matrix, Σ̃ĝ(d) := L2

0(Dθlvl)⊤ · Dθlvl, in the
batch and the summation’s minimum eigenvalue. Finally, we select suitable noise std σ to bound the
minimum eigenvalue of the covariance matrix of the estimated gradient. Mathematically, it requires

σ2 ≤
min(λ(

∑
d∈Bt

Σ̃ĝ(d)))

KC2σ2
0

, (8)

where σ0 is a predefined target std of estimated gradients. In the pseudocode of Algorithm 1,
parameters are set as a constant. However, the independence of layers and steps allows for setting
different target std scales σ0, repeat time K, clipping thresholds C, and rejection thresholds NB . For
ease of the following analysis of differential privacy, we assume constant parameters at all times.

Generalization of DP-ULR. Our theoretical analysis focuses on the most general case of DP-ULR,
highlighting its robustness and versatility. The DP-ULR method is highly adaptable; by considering
different definitions of modules, we can adjust where noise is added, resulting in different variants of
DP-ULR. Our theoretical framework generalizes well to these special cases. For instance, consider
a virtual linear with the input of an identical matrix and the weight of the model parameters. Then,
adding noise to the logit of this virtual linear layer equals adding noise to the model parameters
directly, and the Jacobian matrix would be the identity matrix I, ensuring the full rank.

Remediation for violation of Assumption 1. Changing where noise is added offers a remediation
method if Assumption 1 is not satisfied under the standard module definition. Then, we can still ensure
the privacy cost is controlled, albeit with some trade-off in network learning utility. Alternatively,
extra independent noise can be added to the estimated gradient directly along its eigenvector directions,
compensating for randomness deficiencies. We provide more details in Appendix A.4.

3.3 DIFFERENTIAL PRIVACY OF DP-ULR

In this section, we provide a theoretical analysis of the differential privacy of our DP-ULR algorithm.
Let’s first consider our subsampling operation with rejection in a typical Gaussian mechanism.
Definition 4 (Sampled with Rejection Gaussian Mechanism (SRGM)). Let D be a set of datasets.
Assume datasets in D has a minimum size, i.e., ∃N̄ > 1, s.t. ∀D ∈ D, |D| > N̄ . Let f be a function
mapping subsets of datasets in D to Rd. We define the Sampled with Rejection Gaussian mechanism
(SRGM) parameterized with the sampling rate 0 < q ≤ 1, the noise σ > 0, and the lower limit
1 ≤ NB ≤ N̄ as

SRGq,σ,NB
(D) := f(D̄) +N (0, σ2Id), (9)

where each element of D is sampled independently at random with probability q without replacement
to form D̄, D̄ is rejected and resampled if |D̄| < NB , and N (0, σ2Id) is spherical d-dimensional
Gaussian noise with per-coordinate variance σ2.

SRGM is similar to the well-studied Sampled Gaussian mechanism (SGM), whose privacy bound has
been derived in several settings(Mironov et al., 2019). Since with a new parameter, rejection threshold
NB , the SRGM requires a lower bound of the dataset size in the domain S and has a different impact
on the differential privacy. Based on previous studies, we introduce the following theorem.
Theorem 1. If 1 ≤ NB ≤ qN̄ , q ≤ 1

5 , σ ≥ 4, and α satisfy 1 < α ≤ 1
2σ

2A − 2 lnσ and

α ≤
1
2σ

2A2−ln 5−2 lnσ

A+ln(qα)+1/(2σ2) , where A := ln
(
1 + 1

q(α−1)

)
, then SRGM applied to a function of ℓ2-

sensitivity 1 satisfies (α, γ)-RDP for

γ =
qp(NB − 1; N̄ , q)

1− P (NB − 1; N̄ , q)
+

2q2

σ2
α, (10)
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where p(·, N̄ , q) and P (·, N̄ , q) are defined as the probability mass function and cumulative distribu-
tion function of the binomial distribution with parameters N̄ and q, respectively.

Theorem 1 indicates a quadratic amplification with the subsampling rate q but also a certain impair-
ment on the privacy cost of SRGM. But in our case, the distribution of the estimated gradient is
not isotropic. Particularly, its covariance matrix is varying rather than constant and irrelevant to the
sampled batch in each step, making it difficult to derive a universal bound. However, conditioned
on Assumption 1, we utilize the privacy controller to guarantee a minimum level of randomness σ2

0 .
Then, we state our main theorem about DP-ULR below. The proof can be found in Appendix B.
Theorem 2. Assume σ2 satisfies Equation (8). Then, if 1 ≤ NB ≤ qN̄ , q ≤ 1

5 , σ0 ≥ 4, and α satisfy

1 < α ≤ 1
2σ

2
0A − 2 lnσ0 and α ≤

1
2σ

2
0A

2−ln 5−2 lnσ0

A+ln(qα)+1/(2σ2
0)

, where A := ln
(
1 + 1

q(α−1)

)
, DP-ULR

(Algorithm 1) satisfies (α, γ)-RDP for

γ =
Tqp(NB − 1; N̄ , q)

1− P (NB − 1; N̄ , q)
+

2Tq2

σ2
0

α, (11)

where p(·, N̄ , q) and P (·, N̄ , q) are defined as the probability mass function and cumulative distribu-
tion function of the binomial distribution with parameters N̄ and q, respectively.

3.4 DP-SGD v.s. DP-ULR

In this section, we discuss the difference between DP-SGD and DP-ULR.

Minute DP impairment. According to Mironov et al. (2019), DP-SGD(Abadi et al., 2016) satisfies
(α, γ)-RDP for a suitable range of α and γ = 2Tq2α/σ2, where σ is noise scale. If we set our target
output std σ0 equal to this noise scale, the difference in RDP bound is the impairment term from the
SRGM, which is related to the training dataset size. In practice, deep learning datasets are quite large.
Subsequently, the impairment term is extremely small to be ignored compared to the latter term. For
instance, if we consider N̄ = 10000, q = 0.01, and NB = 50, the impairment is less than 10−10,
while the second term is greater than 10−6. We provide further empirical analysis in Section 4.1.

Noise redundancy. DP-SGD injects isotropic noise directly into the precise gradient, making full
use of noise to offer differential privacy. DP-ULR attempts to utilize the inherent randomness of
gradient estimation, where noise is added to the intermediate values in the forward pass. It provides
privacy protection by ensuring the variance of the estimated gradient in an arbitrary direction no less
than a pre-defined level. However, it also means that randomness in many other directions is even
larger than this level due to the non-isotropy. This redundant noise doesn’t contribute to the bound of
differential privacy but impairs the accuracy of the gradient estimation.

Efficiency and suitability. A common limitation of DP-SGD is its slower speed compared to
traditional SGD, primarily due to the requirement to clip each individual gradient, necessitating an
independent backward pass for each example. In contrast, the computation of individual estimated
gradients in DP-ULR is inherently separate, allowing for individual clipping without additional
computational cost compared to ULR. Additionally, as a variant of ULR, DP-ULR inherits certain
advantages over backpropagation-based DP-SGD, including suitability for non-differentiable or black-
box settings, high parallelizability, and efficient pipeline design (Jiang et al., 2023). Furthermore, in
cases where the loss function cannot be expressed as a summation of individual losses, computing
individual gradients to limit example sensitivity becomes challenging for standard backpropagation.
In DP-ULR, noise can be injected separately, enabling independent gradient computation, thus
broadening its potential applications.

4 EXPERIMENTS

4.1 ANALYSIS OF DP BOUND

In our approach, the introduction of the sampling-with-rejection technique ensures adequate random-
ness across all directions in the parameter space at each step of training. As detailed in Equation 11,
the sampling-with-rejection operation introduces an additional term to the DP cost, not present in
traditional algorithms that employ common i.i.d. Poisson sampling. Despite this, we illustrate that
the impact is minimal in typical deep-learning scenarios.
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Figure 2: Contour plots of the ratio of the first term to the second term in Equation (11).

Method DP-ULR DP-SGD
Batch size σ0 Training acc.(%) Valid acc. (%) Training acc.(%) Valid acc. (%)

0.5 85.43±0.53 86.12±0.45 93.94±0.15 94.14±0.18

1 81.81±0.60 82.73±1.20 90.90±0.08 91.20±0.10

64 2 78.04±0.94 78.80±1.42 78.61±0.80 78.32±0.84

4 70.71±2.08 72.14±2.19 67.33±1.04 68.73±1.74

8 57.88±4.53 58.65±6.32 33.63±0.65 32.07±4.17

0.5 91.55±0.19 91.98±0.25 90.47±0.25 90.68±0.30

1 89.24±0.49 90.11±0.59 90.54±0.24 90.77±0.31

200 2 86.15±0.41 87.11±0.59 90.63±0.14 90.95±0.29

4 83.20±0.49 84.45±0.62 89.07±0.16 89.63±0.14

8 78.91±1.12 80.05±0.50 78.50±0.77 79.14±0.67

0.5 93.92±0.15 94.19±0.15 87.56±0.59 87.98±0.64

1 91.73±0.25 92.04±0.34 87.56±0.60 87.98±0.62

500 2 89.33±0.42 90.31±0.55 87.59±0.60 88.00±0.62

4 86.56±0.80 87.63±0.80 87.66±0.51 87.97±0.61

8 82.87±0.89 84.53±0.71 87.68±0.47 88.16±0.59

Table 1: The classification accuracy of MLP on the MNIST dataset.

Figure 2 provides contour plots of the ratio between the first and second terms of the DP cost across
various dataset sizes and rejection thresholds, based on theoretical results with parameters α = 1.1
and σ0 = 4. As shown, when the dataset size N ≥ 103 and the rejection threshold NB is slightly less
than the mean batch size qN (if without rejection), the ratio of the first impairment term (introduced
by rejection sampling) to the second term is less than 10−3. This empirical evidence suggests that the
increased privacy costs due to our sampling method are effectively negligible.

Moreover, as the dataset size increases, the relative impact of the first term on the privacy cost
diminishes further, underlining the suitability of our method for training on large-scale datasets. This
scalability is crucial for deploying differential privacy in real-world applications where large models
are trained on extensive data collections.

4.2 EVALUATIONS ON MLP

Model and dataset. Model and Dataset: We evaluated our proposed DP-ULR method by training a
multilayer perceptron (MLP) with four layers containing 128, 64, 32, and 10 neurons, respectively,
each employing GELU activations. The MLP was trained on the MNIST dataset, comprising 60, 000
training images and 10, 000 validation images across 10 classes.

Experiment Settings. We configured DP-ULR with a learning rate of 0.01, utilizing the Adam
optimizer with cross-entropy loss. We utilize the approach of adding extra noise to remediate the
violence of the full rank. We compare our method with DP-SGD, utilizing the OPACUS open-
source implementation. For DP-SGD, we use the default settings: a learning rate of 0.1 with the
SGD optimizer. We also experimented with the Adam optimizer and a learning rate of 0.01 but
found the default settings provided better performance. Furthermore, we tested DP-SGD using both
standard Poisson sampling, which is required by the theory, and a fixed batch size implementation,
observing minimal performance differences. Thus, for consistency, results with the fixed batch size
implementation are reported. For both DP-ULR and DP-SGD, the learning rate is reduced by 0.85
every 10 epoch, training is conducted over 25 epochs, and the clipping threshold C is set to 1.

We fix the target δ = 10−5 and experiment with different settings of batch size B = 64, 200, 500,
corresponding to different sample rates q = 10−3, 1

300 ,
1

120 , and target std level (noise level) σ0 =

8
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(d) q = 10−3, σ0 = 8.
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Figure 3: Optimization dynamics of the MLP training with differential privacy using DP-SGD and
our proposed DP-ULR and corresponding ϵ with δ = 10−5.

0.5, 1, 2, 4, 8. For all settings, we repeat the experiments 5 times with different random seeds and
report the average and standard deviations. We also conduct ablation experiments on model sizes, of
which results and analysis are provided in Appendix C.1.

Experiment Results. Table 1 presents the training and validation accuracies for DP-ULR and DP-
SGD across varying batch sizes and target std levels or noise levels. For DP-ULR, we report the final
epoch accuracy, while for DP-SGD, due to potential severe performance degradation over iterations,
we report the highest accuracy achieved during training if needed. We can see that DP-ULR shows
improved performance with larger batch sizes, while DP-SGD performs better with smaller batch
sizes. This is probably because the noise redundancy is more severe in smaller batch sizes, degrading
the accuracy of gradient estimation. Consequently, DP-ULR outperforms DP-SGD with the large
batch, underperforms with the small batch, and has a competitive performance compared to DP-SGD.
Another interesting observation is that DP-ULR is more sensitive to noise scale σ0 in large batch
sizes, whereas DP-SGD shows greater sensitivity to σ0 in small batch sizes.

Figure 3 illustrates the optimization dynamics of training and valid accuracy alongside the correspond-
ing ϵ value with fixed δ = 10−5. We report the results with different sample rates q = 10−3, 1

300 ,
1

120
and noise level σ0 = 1, 4, 8. To present a fair comparison, we compute the ϵ of DP-SGD using
the RDP bound from Mironov et al. (2019) rather than the value provided by OPACUS, which is
computed differently. The overlapping curves of ϵ in Figure 3 suggest that the impairment term
in the DP bound is negligible. Our results indicate that, under the same batch size and high noise
levels, DP-SGD suffers from performance degradation, whereas DP-ULR continues to converge.
Both methods exhibit minimal differences between training and validation accuracies, and in some
instances, validation accuracy surpasses training accuracy, particularly in the early training stages.

4.3 EVALUATIONS ON CNN

We further evaluate the performance of DP-ULR by training a CNN on the CIFAR-10 dataset. The
CIFAR-10 dataset has a training set of 50000 images and a test set of 10000 images. We use the
ResNet-5 as our studied model. The ResNet-5 has 5 layers, including 4 convolutional layers and 1
fully connected layer. The residual connection is between the third and fourth convolutional layers.
For the convolutional layers, we set the number of kernels as 8, 16, 32, and 32, respectively, and all
the kernel sizes as 3 × 3 with the stride as 1 and the activation function as ReLU.
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We test our DP-ULR with different sample rates q and target std level σ0. We experiment with
DP-SGD setting batch size as 64 and noise level as 1. The results are shown in Figure 4. We can
see that during the training with DP-ULR, the convergence of the model fluctuates and sometimes
drops abruptly. Nevertheless, by selecting suitable parameters, our proposed DP-ULR can achieve
comparable performance in the end with DP-SGD in terms of both accuracy and privacy cost.
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(b) q = 1
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(c) q = 1
25
, σ0 = 8.
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Figure 4: Evaluation results of the CNN training with differential privacy using DP-SGD in (a) and
our proposed DP-ULR in (b)–(d).

5 CONCLUSIONS

In this paper, we propose a forward-learning DP algorithm, Differential Private Unified Likelihood
Ratio (DP-ULR). Unlike traditional backpropagation-based methods such as DP-SGD, which rely
on computing individual gradients and adding noise, DP-ULR leverages the inherent randomness in
forward-learning algorithms to achieve differential privacy. Our approach introduces a novel batch
sampling operation with rejection and a dynamically managed privacy controller to ensure robust
privacy guarantees.

Our theoretical analysis demonstrates that the additional privacy cost introduced by the sampling-
with-rejection operation is negligible, particularly in large-scale deep-learning applications. This
indicates the scalability and efficiency of DP-ULR in practical settings. Furthermore, our empirical
results show that DP-ULR performs competitively compared to traditional DP training algorithms,
maintaining the same privacy loss constraints while offering high parallelizability and suitability for
non-differentiable or black-box modules.

In summary, DP-ULR provides a promising alternative to existing differential privacy methods,
combining the benefits of forward learning with rigorous privacy guarantees.

LIMITATIONS AND FUTURE WORK

We proposed an intuitive and direct adaptation (DP-ULR) of a forward-learning approach (ULR) that
diverges from traditional SGD by eschewing backpropagation. Our analysis in this work primarily
compares DP-ULR with the canonical form of DP-SGD. We acknowledge that recent advancements
that incrementally improve the privacy-utility trade-off in DP-SGD could potentially be generalized
to our forward-learning context; however, such extensions are beyond the scope of our initial
investigation and represent promising avenues for future research.

Although DP-ULR retains the same benefits as ULR due to the unchanged core mechanics, we did
not explore its suitability for non-differential or black-box settings in our experiments. Additionally,
we did not implement parallelization or optimize the training pipeline for efficiency. In its current
implementation, DP-ULR takes 23 seconds per epoch on an A6000 GPU with the MNIST dataset,
which is slower than DP-SGD, which takes 18 seconds per epoch. Due to the large gradient estimation
variance, the scale-up of ULR usually requires a large number of copies, which poses a great challenge
to the computation and memory cost. Future works might focus on the development of advanced
techniques to improve computational efficiency and reduce the estimation variance.

Differential privacy aims to ensure data privacy through randomness. When used to train a deep
learning model, such randomness impairs the model’s performance. Our algorithm has the same
limitation. Besides, during training with DP-ULR, we observed overfitting, where the model achieved
high accuracy (around 90% on MNIST) but exhibited extreme losses: near-zero loss for some samples
while having very high losses for others that it failed to classify. Addressing this overfitting issue is
another area for potential future exploration.
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A DIFFERENTIALLY PRIVATE UNIFIED LIKELIHOOD RATIO METHOD

A.1 LIST OF SYMBOLS

D domain (set of dataset)
D̄ large data pool
D dataset

N size of dataset (number of examples)
N̄ lower limit of the size of dataset
NB rejection threshold (hyperparameter)
N0 a level of batch size mentioned in Assumption 1

B batch (sample from dataset)
d example
x input
y label
φ non-parameter structure of model
θ parameter of model
dθ number of dimensions of parameter
v output of model
z noise (random variable)
σ std of noise
σ0 a required level of the likelihood ratio proxy’s std (hyperparameter)
Σ covariance matrix

η learning rate (hyperparameter)
q sampling rate (hyperparameter)
K repeat time (hyperparameter)
C overall clip bound (hyperparameter)

E expectation
f(·) probability density function
l(·, ·) loss function (a function)
L loss (a variable)
L0 loss without injected noise
L number of layers
T number of training steps
l index of layer, l = 1, ..., L
t index of training step, l = 1, ..., T
t index of example

xl input of l-th layer
φl non-parameter structure of l-th layer
θl parameter of l-th layer
vl output of l-th layer
zl noise that we add to vl, l = 1, ..., L− 1
dl dimension of xl

A.2 RESTATEMENT OF THE PREVIOUS THEOREM

We restate the Theorem 1 from the previous work Jiang et al. (2023).

Theorem 3. Given an input data x, assume that gl(ξ) := f(ξ − φl(xl; θl)) is differentiable, and

E
[∫

Rdl+1

∣∣E [
L(xL)|ξ, xl

] ∣∣ sup
θl∈Θl

∣∣∇θlgl(ξ)
∣∣dξ] <∞. (12)

Then, we have

∇θlE
[
L(xL)

]
= E

[
−L(xL)J⊤

θlφ
l(xl; θl)∇z ln f

l(zl)
]
. (13)
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Proof. To update the l-th layer’s parameter, we need to calculate the gradient for θl. We have

∇θlEz1,...,zL−1 [L(vL, y)] = ∇θlEz1,...,zl−1

[
Ezl,...,zL−1 [L(vL, y) | vl]

]
= ∇θlEz1,...,zl−1

[
Ezl

[
Ezl+1,...,zL−1 [L(vL, y) | zl, vl] | vl

]]
.

The conditional expectation Ezl+1,...,zL−1 [L(vL, y) | zl, vl] is only related to the sum of vl

and zl, xl+1 := vl + zl. It means Ezl+1,...,zL−1 [L(vL, y) | zl, vl] = Ezl+1,...,zL−1 [L(vL, y) |
xl+1]|xl+1=vl+zl . We denote h(ζ) := Ezl+1,...,zL−1 [L(vL, y) | xl+1]|xl+1=ζ . Then, we have

∇θlEz1,...,zL−1 [L(vL, y)] = ∇θlEz1,...,zl−1

[
Ezl [h(vl + zl) | vl]

]
= ∇θlEz1,...,zl−1

[∫
Rdl+1

h(vl + ζ)fzl(ζ)dζ

]
By changing the variable ζ to ξ = vl + ζ, we have∫

Rdl+1

h(vl + ζ)fzl(ζ)dζ =

∫
Rdl+1

h(ξ)fzl(ξ − vl)dξ. (14)

Since h(·) is not related to θl and vl = φl(xl; θl), we have

∇θlEz1,...,zL−1 [L(vL, y)] = ∇θlEz1,...,zl−1

[∫
Rdl+1

h(ξ)fzl(ξ − vl)dξ

]
= Ez1,...,zl−1

[∫
Rdl+1

∇θl

(
h(ξ)fzl(ξ − vl)

)
dξ

]
= Ez1,...,zl−1

[∫
Rdl+1

h(ξ)∇θlfzl(ξ − vl)dξ

]
.

By the chain rule,

∇θlfzl(ξ − vl) = −D⊤
θlv

l · ∇ζfzl(ζ)|ζ=ξ−vl , (15)

where Dθlvl ∈ Rdl+1×d
θl is the Jacobian matrix of vl = φl(xl; θl) with respect to θl. Thus, we have

∇θlEz1,...,zL−1 [L(vL, y)] = Ez1,...,zl−1

[∫
Rdl+1

(
−h(ξ)D⊤

θlv
l · ∇ζfzl(ζ)|ζ=ξ−vl

)
dξ

]
(16)

By changing the variable from ξ back to ζ = ξ − vl, we have

∇θlEz1,...,zL−1 [L(vL, y)]

= Ez1,...,zl−1

[∫
Rdl+1

(
−h(ζ + vl)D⊤

θlv
l · ∇ζfzl(ζ)

)
dζ

]
= Ez1,...,zl−1

[∫
Rdl+1

(
−h(ζ + vl)D⊤

θlv
l · ∇ζ ln fzl(ζ)

)
fzl(ζ)dζ

]
= Ez1,...,zl−1

[
Ezl

[
−h(zl + vl)D⊤

θlv
l · ∇ζ ln fzl(ζ)|ζ=zl | vl

]]
= Ez1,...,zl−1

[
Ezl

[
−Ezl+1,...,zL−1 [L(vL, y) | zl, vl]D⊤

θlv
l · ∇ζ ln fzl(ζ)|ζ=zl | vl

]]
= Ez1,...,zl−1

[
Ezl

[
Ezl+1,...,zL−1 [−L(vL, y)D⊤

θlv
l · ∇ζ ln fzl(ζ)|ζ=zl | zl, vl] | vl

]]
= Ez1,...,zl−1

[
Ezl,...,zL−1

[
−L(vL, y)D⊤

θlv
l · ∇ζ ln fzl(ζ)|ζ=zl | vl

]]
= Ez1,...,zL−1

[
−L(vL, y)D⊤

θlφ
l(xl; θl) · ∇ζ ln fzl(ζ)|ζ=zl

]
.

A.3 DISTRIBUTION OF ESTIMATED GRADIENTS

For a specific example, (xi, yi) ∈ D, suppose each sampling outcome D⊤
θlv

l
i · 1

σ2 zL has the mean
vector µl,i

t and the covariance matrix Σl,i
t . Then, the estimated gradient glt(xi) can be seen as

a multivariate Gaussian distribution, N (µl,i
t , 1

KΣl,i
t ), when K is large enough, according to the

multidimensional central limit theorem.
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Using multivariate Taylor expansion, we can say

L = L0 +∇xl+1L|xl+1=vl · z + 1

2
∇2

xl+1L|xl+1=vl · z2 (17)

Then we have,

1

σ2
zL =

1

σ2
(L0 +∇xl+1L|xl+1=vl · z + 1

2
∇2

xl+1L|xl+1=vl · z2)z (18)

Then the expectation of 1
σ2 zL is

E(
1

σ2
zL) = 0 +

1

σ2
∇xl+1L|xl+1=vl · σ2I+ 0 = ∇xl+1L|xl+1=vl (19)

Then the covariance matrix of 1
σ zkLk is

Var(
1

σ2
zL) = Cov(

1

σ
zL, 1

σ2
zL) (20)

= E
(L2

σ4
z · z⊤

)
−∇xl+1L|xl+1=vl · ∇⊤

xl+1L|xl+1=vl (21)

=
1

σ2
L0I+ (2L0∇2

xl+1L|xl+1=vl +∇xl+1L|xl+1=vl · ∇⊤
xl+1L|xl+1=vl (22)

+ tr(L0∇2
xl+1L|xl+1=vl +∇xl+1L|xl+1=vl · ∇⊤

xl+1L|xl+1=vl)I) + σ2... (23)

When σ approaches zero, the first term dominates others. Therefore, we have

Var(
1

σ2
zL) ≈ L

2
0

σ2
I. (24)

Since ĝl(d) = 1
σ2D

⊤
θlv

l · zL, we have

Var(ĝl(d)) ≈ L
2
0

σ2
D⊤

θlv
l ·Dθlvl. (25)

A.4 DISCUSSION OF ASSUMPTION 1

In Section 3.2, we introduce Assumption 1 to ensure full-rank covariance matrices. A rank-deficient
covariance matrix is problematic for differential privacy (DP) as it suggests a complete loss of
randomness along certain directions in high-dimensional space. In this section, we discuss when this
assumption is likely to hold and potential remedies if it does not.

The covariance matrix of the batch gradient estimator can be expressed as a weighted sum of the
transposed Jacobian matrices of output logits with respect to the parameters multiplied by itself.

ΣB := Var(
∑
d∈B

ĝ(d)) =
∑
d∈B

Var(ĝ(d)) ≈
∑
d∈B

L2
0

σ2
(Dθv)

⊤ ·Dθv (26)

Using the Rayleigh quotient, we can show that the minimum eigenvalues of two semi-definite matrices
added together must be greater than the minimum eigenvalues of any of them. This indicates that a
larger batch size will facilitate the full rank or further increase the minimum eigenvalue. For the same
reason, the rejection mechanism is designed.

Consider the case of a single input (batch size of 1) passing through a linear layer with input size
(C,Hin) and output size (C,Hout), where Hin and Hout are the numbers of input and output features,
respectively, and C is the number of channels. Denote the input as x = [xi,j ] and the output as
v = [vi,j ]. We focus on the weight parameter, w = [wi,j ] ∈ RHout×Hin , because the bias part is
always full-rank. Flatten the weight and output as w̄ = (w̄1, ..., w̄HoutHin) and v̄ = (v̄1, ..., v̄CHout),
where w̄iHin+j = wi,j and v̄iHout+j = vi,j . Let the Jacobian matrix of the output with respect to the
weight be D = [Di,j ] ∈ R(CHout)×(HoutHin), where [Di,j ] =

∂v̄i
∂w̄j

, i.e.,

[D]kHout+l,mHin+n =
∂v̄kHout + l

∂w̄mHin + n
=

∂vk,l
∂wm,n

. (27)
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D is a sparse matrix, where ∂vk,l

∂wm,n
= 0 when l ̸= m and ∂vk,m

∂wm,n
= xk,n. Consequently, the

transposed Jacobian matrix multiplied by itself, D⊤ ·D, is a block diagonal matrix with identical
blocks. Denote each block as B(D⊤D) ∈ RHin×Hin . Without loss of generality, consider one single
block. We have B(D⊤ · D) = x⊤ · x, which has at most C ranks. Ideally, when batch diversity
is high, the assumption holds if the batch size exceeds the ratio of input features to input channels.
Complex layers like convolutional layers are less prone to rank deficiency due to parameter reuse
(e.g., kernel sliding on feature maps). Models like ResNet, where linear layers are a minor component,
further mitigate this issue.

In practice, the assumption sometimes fails due to infertile diversity in data or intended small batch
size. If so, alternative solutions exist. One option is to alter the location where noise is added.
Concretely, we could consider a virtual linear with the input of an identical matrix and the weight of
the model parameters. Then, adding noise to the logit of this virtual linear layer equals adding noise
to the model parameters directly, and the Jacobian matrix would be the identity matrix, ensuring the
full rank. Another approach is to add extra noise directly to the estimated gradient, compensating
for randomness deficiencies along its eigenvector directions. This involves calculating the batch’s
gradient covariance matrix by Equation (27). Next, perform eigendecomposition: ΣB = Q · Λ ·Q−1

and compute the required covariance matrix of the extra noise by Σextra = σ2
0C

2I − diag(Λ)/K,
where σ0 is the target std scale, C is the clip threshold, and K is the repeat time. After we generate
the extra noise with covariance matrix Σextra, we use Q to transform it and then add transformed noise
to the estimated gradient of the batch.

A.5 COMPARISON TO EXISTING DP ZEROTH-ORDER METHODS

Several recent works Liu et al. (2024b); Zhang et al. (2024); Tang et al. (2024) propose DP zeroth-
order methods that privatize loss values or estimated gradients obtained via two forward passes in
zeroth-order optimization for achieving DP guarantee. Our proposed DP-ULR departs from these
methods in the following key aspects:

Motivation. Existing approaches achieve differential privacy by introducing additional noise to
zeroth-order gradients or losses. In contrast, our work first noticed that forward learning’s inherent
randomness has the potential for a ”free lunch” to provide privacy guarantees. Motivated by this,
we propose DP-ULR, which leverages the noise added for gradient estimation in forward learning
algorithms to provide privacy guarantees.

Core Algorithm and Application Scope. Existing works utilize the traditional zeroth-order method,
Simultaneous Perturbation Stochastic Approximation (SPSA), which adds noise to parameters with
dimensions significantly higher than logits—often exceeding 100 times. This leads to substantial
increases in computational costs (and estimation variance) as the model size grows, limiting their
scalability to complex deep-learning models, particularly for training from scratch. Those existing
methods are designed for fine-tuning pre-trained models. In contrast, DP-ULR operates directly on
logits, enabling the training of deep learning models from scratch and reducing the computational
overhead.

Privacy Bound. DP-ULR offers superior privacy guarantees compared to methods like ZeroDP
Liu et al. (2024b). ZeroDP has the most similar zeroth-order optimization setting to us, involving
stochastic gradient descent and repeated sampling. The privacy cost of ZeroDP scales quadratically
with the number of repetitions P (Theorem 4.1 in Liu et al. (2024b)), resulting in rapidly increasing
privacy costs for large P . In contrast, DP-ULR’s privacy cost is independent of the number of
repetitions, ensuring more robust and scalable privacy protection.

B DIFFERENTIAL PRIVACY OF DP-ULR

The following theorem is a general form for Theorem 1 and Theorem 2. In SRGM, isotropic Gaussian
noise is added to the deterministic output. Then, the variance of output is irrelevant to the size of the
sampled batch, and the minimum eigenvalue is the same as the predefined variance σ2. In DP-ULR,
we ensure minλ(

∑
i∈J Σdi

) ≥ σ2, ∀J ∈ 2[N ] and |J | ≥ NB by our differentially private controller.

Theorem 4. Suppose that f : D → Rd is a randomized function and f(·) follows multivariate
Gaussian distribution N (νd,Σd) with ∥νd∥2 ≤ 1, ∀d ∈ D. For D ∈ 2D with |D| ≥ N̄ , consider a
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randomized mechanismM defined byM(D) :=
∑

i∈J f(di), where J ⊂ [N ] is a random sample
from [N ], where N = |D|. In the sampling, each i ∈ [N ] is chosen independently with probability q,
but if the size of J is smaller than NB , it is resampled. Let λ(·) denote the spectrum of the matrix.
Assume there exist σ ≥ 1 such that minλ(

∑
i∈J Σdi) ≥ σ2, ∀J ∈ 2[N ] and |J | ≥ NB . Then, if

1 ≤ NB ≤ qN̄ , q ≤ 1
5 , σ ≥ 4, and α satisfy 1 < α ≤ 1

2σ
2A − 2 lnσ and α ≤

1
2σ

2A2−ln 5−2 lnσ

A+ln(qα)+1/(2σ2) ,

where A := ln
(
1 + 1

q(α−1)

)
, the mechanismM satisfies (α, γ)-RDP for

γ =
qp(NB − 1; N̄ , q)

1− P (NB − 1; N̄ , q)
+

2q2

σ2
α, (28)

where p(·, N̄ , q) and P (·, N̄ , q) are defined as the probability mass function and cumulative distribu-
tion function of the binomial distribution with parameters N̄ and q, respectively.

Proof. Consider two adjacent datasets D = {di}N1 and D′ = {di}N+1
1 . We want to show that

Eω∼f0 [(
f0(ω)

f1(ω)
)λ] ≤ γ, (29)

and Eω∼f1 [(
f1(ω)

f0(ω)
)λ] ≤ γ, (30)

for some explicit γ to be determined later, where f0 and f1 denote the probability density function of
M(D) andM(D′), respectively. Here we focus on the former one Eω∼f0 [(

f0(ω)
f1(ω) )

λ]. The other one
is similar. By the design of mechanismM, we have

f0(ω) = c0
∑

J∈2[N],|J|≥L

q|J|(1− q)N−|J|µ(ω;
∑
i∈J

νdi ,
∑
i∈J

Σdi), (31)

where c0 is the normalizing constant and µ(·; ν,Σ) represents the probability density function of
Gaussian distribution with mean ν and covariance matrix Σ. To simplify the expression, let us denote
µJ(ω) := µ(ω;

∑
i∈J νdi ,

∑
i∈J Σdi) for any integer set J . Similarly, we have

f1(ω) = c1
∑

J∈2[N+1],|J|≥L

q|J|(1− q)N+1−|J|µJ(ω)

= c1((
∑

J∈2[N],|J|=L−1

qL(1− q)N+1−LµJ∪{N+1}(ω)

+
∑

J∈2[N],|J|≥L

q|J|(1− q)N−|J|((1− q)µJ(ω) + qµJ∪{N+1}(ω))

< c1
∑

J∈2[N],|J|≥L

q|J|(1− q)N−|J| ((1− q)µJ(ω) + qµJ∪{N+1}(ω)
)

:= f̄1(w)

where c1 is the normalizing constant. Then, we have

Eω∼f0 [(
f0(ω)

f1(ω)
)λ] < Eω∼f0 [(

f0(ω)

f̄1(ω)
)λ] ≤ (

c0
c1

)λEω∼f0 [(
f0(ω)

((1− q) + qΓνdN+1
)f0(ω)

)λ], (32)

where Γ is a translation operator defined as Γϵf(ω) = f(ω + ϵ). Without loss of generality,
∥νdN+1

∥2 = 1 and νdi
= 0, i ̸= N + 1. Then, we have

Eω∼f0 [(
f0(ω)

f1(ω)
)λ]

≤ (
c0
c1

)λEω∼f0 [(

∑
J∈2[N],|J|≥L q|J|(1− q)N−|J|µ(ω; 0,

∑
i∈J Σdi

)

((1− q) + qΓνdN+1
)
∑

J∈2[N],|J|≥L q|J|(1− q)N−|J|µ(ω; 0,
∑

i∈J Σdi)
)λ]

≤ (
c0
c1

)λEω∼f0 [(

∑
J∈2[N],|J|≥L q|J|(1− q)N−|J|µ(ω; 0, σ2I)

((1− q) + qΓνdN+1
)
∑

J∈2[N],|J|≥L q|J|(1− q)N−|J|µ(ω; 0, σ2I)
)λ]

= (
c0
c1

)λEω∼f0 [(
µ(ω; 0, σ2I)

((1− q) + qΓνdN+1
)µ(ω; 0, σ2I)

)λ].
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Without loss of generality, νdN+1
= e1. Then, in the above equation, the numerator distribution

µ(ω; 0, σ2I) and denominator distribution ((1− q) + qΓνdN+1
)µ(ω; 0, σ2I) are identical except for

the first coordinate and hence we have a one-dimensional problem. Specifically, we have

Eω∼f0 [(
f0(ω)

f1(ω)
)λ] ≤ (

c0
c1

)λEω∼µ0
[(

µ0

((1− q) + qΓ1)µ0
)λ], (33)

where µ0 denotes the probability density function of N (0, σ2). Notice that

Eω∼f0 [(
f0(ω)

f1(ω)
)λ] = Eω∼f1 [(

f0(ω)

f1(ω)
)λ+1]. (34)

Then, we have

Dα(M(D) ∥ M(D′)) =
1

α− 1
lnEω∼f1

(
f0(ω)

f1(ω)

)α

(35)

≤ 1

α− 1
ln

[
(
c0
c1

)α−1Eω∼((1−q)+qΓ1)µ0
(

µ0

((1− q) + qΓ1)µ0
)α
]

(36)

= ln
c0
c1

+Dα(µ0 ∥ ((1− q) + qΓ1)µ0) (37)

Using the existing result from Mironov et al. (2019), we can derive

Dα(M(D) ∥ M(D′)) ≤ ln
c0
c1

+
2q2

σ2
α, (38)

when q ≤ 1
5 , σ ≥ 4, and α satisfy 1 < α ≤ 1

2σ
2A − 2 lnσ and α ≤

1
2σ

2A2−ln 5−2 lnσ

A+ln(qα)+1/(2σ2) , where

A := ln
(
1 + 1

q(α−1)

)
. Particularly, we have

c0
c1

= 1 + c0
(

N
L−1

)
qL(1− q)N+1−L = 1 +

qp(NB − 1;N, q)

1− P (NB − 1;N, q)
. (39)

If NB ≤ qN̄ , we have

c0
c1
≤ 1 +

qp(NB − 1; N̄ , q)

1− P (NB − 1; N̄ , q)
(40)

Finally, we have, if 1 ≤ NB ≤ qN̄ , q ≤ 1
5 , σ ≥ 4, and α satisfy 1 < α ≤ 1

2σ
2A − 2 lnσ and

α ≤
1
2σ

2A2−ln 5−2 lnσ

A+ln(qα)+1/(2σ2) , where A := ln
(
1 + 1

q(α−1)

)
,

Dα(M(D) ∥ M(D′)) ≤ qp(NB − 1; N̄ , q)

1− P (NB − 1; N̄ , q)
+

2q2

σ2
α. (41)

Then, directly using the composition theorem of RDP, we obtain that with certain conditions on
parameters, the RDP bound of our DP-ULR is

γ =
Tqp(NB − 1; N̄ , q)

1− P (NB − 1; N̄ , q)
+

2Tq2

σ2
0

α. (42)

C MORE EXPERIMENTS

C.1 DIFFERENT MODEL SIZES

We conduct ablation experiments to analyze the relationship between noise-redundancy impairment
and model size by evaluating three configurations of MLP models: small, medium, and large. The
parameter count for MLP (medium) and MLP (large) is approximately 2.5 and 5 times that of MLP
(small), respectively. We test both DP-ULR and DP-SGD under a high noise scale (target std level) of
σ0 = 8 with batch sizes B = 64, 128, 256. All other hyperparameters remain consistent with those
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Method DP-ULR DP-SGD
Batch size σ0 Model Training acc.(%) Valid acc. (%) Training acc.(%) Valid acc. (%)

MLP(small) 57.88±4.53 58.65±6.32 33.63±0.65 32.07±4.17

64 8 MLP(medium) 58.58±4.69 59.53±4.38 42.98±5.83 43.81±6.30

MLP(large) 40.10±5.87 41.42±7.03 28.75±3.90 24.78±6.28

MLP(small) 73.04±1.37 74.24±1.19 69.49±0.71 70.53±0.57

128 8 MLP(medium) 67.25±0.91 69.00±1.39 66.22±1.61 67.98±1.81

MLP(large) 66.48±2.13 67.75±3.00 65.87±0.81 66.15±1.49

MLP(small) 79.27±0.93 80.94±1.12 85.11±0.34 86.03±0.46

256 8 MLP(medium) 76.45±0.42 78.48±0.43 83.93±0.52 84.96±0.68

MLP(large) 76.25±0.34 78.28±0.80 84.29±0.52 85.13±0.89

Table C1: The classification accuracy of MLP of different sizes on the MNIST dataset.

specified in the Section 4.2. Each experiment is repeated five times with different random seeds, and
the mean and standard deviations are reported in Table C1.

The results indicate that with smaller batch sizes, the performance advantage of DP-ULR over
DP-SGD diminishes as model size increases. This trend may be attributed to noise redundancy,
stemming from two factors: (1) DP-ULR’s privacy cost is influenced by the smallest singular value
of the Jacobian matrix, and (2) the non-isotropic variance of our gradient proxy, which tends to grow
with model size. However, this phenomenon is mitigated as batch size increases. For batch sizes
of 128 and 256, the performance gap between DP-ULR and DP-SGD remains consistent regardless
of model size. This stabilization is likely due to the increased sample diversity with larger batches,
which reduces the non-isotropy of the
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